1
|
Dodd RJ, Moffatt D, Vachiteva M, Parkinson JE, Chan BHK, Day AJ, Allen JE, Sutherland TE. Injury From Nematode Lung Migration Induces an IL-13-Dependent Hyaluronan Matrix. PROTEOGLYCAN RESEARCH 2024; 2:e70012. [PMID: 39606183 PMCID: PMC11589410 DOI: 10.1002/pgr2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/19/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
A consistent feature of lung injury is a rapid and sustained accumulation of hyaluronan (HA). The rodent gut-dwelling nematode Nippostrongylus brasiliensis (Nb) induces tissue damage as it migrates through the lungs. Type 2 immune responses are essential for the repair of the lungs, hence Nb infection is a well-established model to study immune-mediated lung repair. We found that Nb infection was associated with increased HA in the lung, which peaked at d7 post-infection (p.i.). Deposition of HA in the alveolar epithelium correlated with regions of damaged tissue and the type 2 immune response, which is characterized by eosinophilia and increased type 2 cytokines such as IL-13. Consistent with the accumulation of HA, we observed increased expression of the major synthase Has2, alongside decreased expression of Hyal1, Hyal2, and Tmem2, which can degrade existing HA. Expression of Tsg6 was also increased and correlated with the presence of inter-α-inhibitor heavy chain-HA complexes (HC·HA) at d7 p.i. Using IL-13-deficient mice, we found that the accumulation of HA during Nb infection was IL-13 dependent. Our data thus provide further evidence that IL-13 is a modulator of the HA matrix during lung challenge and links IL-13-mediated HA regulation to tissue repair pathways.
Collapse
Affiliation(s)
- Rebecca J. Dodd
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological SciencesUniversity of ManchesterManchesterUK
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Dora Moffatt
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Monika Vachiteva
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - James E. Parkinson
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological SciencesUniversity of ManchesterManchesterUK
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Brian H. K. Chan
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological SciencesUniversity of ManchesterManchesterUK
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Anthony J. Day
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological SciencesUniversity of ManchesterManchesterUK
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Judith E. Allen
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological SciencesUniversity of ManchesterManchesterUK
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | | |
Collapse
|
2
|
Li W, Wang X, An H. Linkage of serum ITIH4 with Th2 signature cytokine, inflammation, exacerbation risk and severity in childhood asthma. Biomark Med 2024; 18:593-602. [PMID: 39011671 PMCID: PMC11370966 DOI: 10.1080/17520363.2024.2366149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/13/2024] [Indexed: 07/17/2024] Open
Abstract
Aim: ITIH4 has anti-inflammatory properties toward eosinophilic/neutrophilic inflammation. This study aimed to explore clinical value of ITIH4 in childhood asthma.Materials & methods: Serum ITIH4 and inflammatory cytokines were determined in 120 childhood asthma patients by enzyme-linked immunosorbent assay.Results: In the entire and acute exacerbation patients, ITIH4 positively associated with IFN-γ, but negatively related to proinflammatory cytokines. ITIH4 was lowest in patients with acute exacerbation, followed by chronic persistent, and highest in clinical remission. By receiver-operating characteristic analysis, ITIH4 potentially estimated acute exacerbation asthma risk. Moreover, ITIH4 negatively related to exacerbation severity in acute exacerbation patients.Conclusion: Serum ITIH4 negatively links with Th2 cell signature cytokine, proinflammatory cytokines, exacerbation risk and severity in childhood asthma.
Collapse
Affiliation(s)
- Weina Li
- Second Department of Pediatrics, Xingtai People’s Hospital, Xingtai, 054001, Hebei, China
| | - Xiaoxue Wang
- Second Department of Pediatrics, Xingtai People’s Hospital, Xingtai, 054001, Hebei, China
| | - Hong An
- Second Department of Pediatrics, Xingtai People’s Hospital, Xingtai, 054001, Hebei, China
| |
Collapse
|
3
|
Schroeter CB, Nelke C, Stascheit F, Huntemann N, Preusse C, Dobelmann V, Theissen L, Pawlitzki M, Räuber S, Willison A, Vogelsang A, Marina AD, Hartung HP, Melzer N, Konen FF, Skripuletz T, Hentschel A, König S, Schweizer M, Stühler K, Poschmann G, Roos A, Stenzel W, Meisel A, Meuth SG, Ruck T. Inter-alpha-trypsin inhibitor heavy chain H3 is a potential biomarker for disease activity in myasthenia gravis. Acta Neuropathol 2024; 147:102. [PMID: 38888758 PMCID: PMC11195637 DOI: 10.1007/s00401-024-02754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Myasthenia gravis is a chronic antibody-mediated autoimmune disease disrupting neuromuscular synaptic transmission. Informative biomarkers remain an unmet need to stratify patients with active disease requiring intensified monitoring and therapy; their identification is the primary objective of this study. We applied mass spectrometry-based proteomic serum profiling for biomarker discovery. We studied an exploration and a prospective validation cohort consisting of 114 and 140 anti-acetylcholine receptor antibody (AChR-Ab)-positive myasthenia gravis patients, respectively. For downstream analysis, we applied a machine learning approach. Protein expression levels were confirmed by ELISA and compared to other myasthenic cohorts, in addition to myositis and neuropathy patients. Anti-AChR-Ab levels were determined by a radio receptor assay. Immunohistochemistry and immunofluorescence of intercostal muscle biopsies were employed for validation in addition to interactome studies of inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3). Machine learning identified ITIH3 as potential serum biomarker reflective of disease activity. Serum levels correlated with disease activity scores in the exploration and validation cohort and were confirmed by ELISA. Lack of correlation between anti-AChR-Ab levels and clinical scores underlined the need for biomarkers. In a subgroup analysis, ITIH3 was indicative of treatment responses. Immunostaining of muscle specimens from these patients demonstrated ITIH3 localization at the neuromuscular endplates in myasthenia gravis but not in controls, thus providing a structural equivalent for our serological findings. Immunoprecipitation of ITIH3 and subsequent proteomics lead to identification of its interaction partners playing crucial roles in neuromuscular transmission. This study provides data on ITIH3 as a potential pathophysiological-relevant biomarker of disease activity in myasthenia gravis. Future studies are required to facilitate translation into clinical practice.
Collapse
Affiliation(s)
- Christina B Schroeter
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Frauke Stascheit
- Department of Neurology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Corinna Preusse
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Bonhoefferweg 3, 10117, Berlin, Germany
| | - Vera Dobelmann
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Lukas Theissen
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Saskia Räuber
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Alice Willison
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Anna Vogelsang
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Adela Della Marina
- Department of Neuropaediatrics, Neuromuscular Centre, Universitätsmedizin Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, 94 Mallett St, Sydney, Australia
- Department of Neurology, Palacky University Olomouc, Nová Ulice, 779 00, Olomouc, Czech Republic
| | - Nico Melzer
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Felix F Konen
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Andreas Hentschel
- Leibniz-Institut Für Analytische Wissenschaften - ISAS - E.V, 44227, Dortmund, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, Medical Faculty, University of Münster, 48149, Münster, Germany
| | - Michaela Schweizer
- Electron Microscopy Unit, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University, 40225, Duesseldorf, Germany
- Molecular Proteomics Laboratory, Biological Medical Research Center, Heinrich Heine University, Universitätsstr 1, 40225, Duesseldorf, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University, 40225, Duesseldorf, Germany
| | - Andreas Roos
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
- Department of Neuropaediatrics, Neuromuscular Centre, Universitätsmedizin Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Bonhoefferweg 3, 10117, Berlin, Germany
| | - Andreas Meisel
- Department of Neurology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
4
|
Tang F, Reeves SR, Brune JE, Chang MY, Chan CK, Waldron P, Drummond SP, Milner CM, Alonge KM, Garantziotis S, Day AJ, Altemeier WA, Frevert CW. Inter-alpha-trypsin inhibitor (IαI) and hyaluronan modifications enhance the innate immune response to influenza virus in the lung. Matrix Biol 2024; 126:25-42. [PMID: 38232913 DOI: 10.1016/j.matbio.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/22/2023] [Accepted: 01/14/2024] [Indexed: 01/19/2024]
Abstract
The inter-alpha-trypsin inhibitor (IαI) complex is composed of the bikunin core protein with a single chondroitin sulfate (CS) attached and one or two heavy chains (HCs) covalently linked to the CS chain. The HCs from IαI can be transferred to hyaluronan (HA) through a TNFα-stimulated gene-6 (TSG-6) dependent process to form an HC•HA matrix. Previous studies reported increased IαI, HA, and HC•HA complexes in mouse bronchoalveolar lavage fluid (BALF) post-influenza infection. However, the expression and incorporation of HCs into the HA matrix of the lungs during the clinical course of influenza A virus (IAV) infection and the biological significance of the HC•HA matrix are poorly understood. The present study aimed to better understand the composition of HC•HA matrices in mice infected with IAV and how these matrices regulate the host pulmonary immune response. In IAV infected mice bikunin, HC1-3, TSG-6, and HAS1-3 all show increased gene expression at various times during a 12-day clinical course. The increased accumulation of IαI and HA was confirmed in the lungs of infected mice using immunohistochemistry and quantitative digital pathology. Western blots confirmed increases in the IαI components in BALF and lung tissue at 6 days post-infection (dpi). Interestingly, HCs and bikunin recovered from BALF and plasma from mice 6 dpi with IAV, displayed differences in the HC composition by Western blot analysis and differences in bikunin's CS chain sulfation patterns by mass spectrometry analysis. This strongly suggests that the IαI components were synthesized in the lungs rather than translocated from the vascular compartment. HA was significantly increased in BALF at 6 dpi, and the HA recovered in BALF and lung tissues were modified with HCs indicating the presence of an HC•HA matrix. In vitro experiments using polyinosinic-polycytidylic acid (poly(I:C)) treated mouse lung fibroblasts (MLF) showed that modification of HA with HCs increased cell-associated HA, and that this increase was due to the retention of HA in the MLF glycocalyx. In vitro studies of leukocyte adhesion showed differential binding of lymphoid (Hut78), monocyte (U937), and neutrophil (dHL60) cell lines to HA and HC•HA matrices. Hut78 cells adhered to immobilized HA in a size and concentration-dependent manner. In contrast, the binding of dHL60 and U937 cells depended on generating a HC•HA matrix by MLF. Our in vivo findings, using multiple bronchoalveolar lavages, correlated with our in vitro findings in that lymphoid cells bound more tightly to the HA-glycocalyx in the lungs of influenza-infected mice than neutrophils and mononuclear phagocytes (MNPs). The neutrophils and MNPs were associated with a HC•HA matrix and were more readily lavaged from the lungs. In conclusion, this work shows increased IαI and HA accumulation and the formation of a HC•HA matrix in mouse lungs post-IAV infection. The formation of HA and HC•HA matrices could potentially create specific microenvironments in the lungs for immune cell recruitment and activation during IAV infection.
Collapse
Affiliation(s)
- Fengying Tang
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA.
| | - Stephen R Reeves
- Center for Respiratory Biology and Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA; Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jourdan E Brune
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Mary Y Chang
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Christina K Chan
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Peter Waldron
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Sheona P Drummond
- Welcome Centre for Cell-Matrix Research, University of Manchester, Manchester, UK; Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Caroline M Milner
- Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Kimberly M Alonge
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Stavros Garantziotis
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Anthony J Day
- Welcome Centre for Cell-Matrix Research, University of Manchester, Manchester, UK; Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - William A Altemeier
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Charles W Frevert
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Man RC, Idrus RBH, Ibrahim WIW, Saim AB, Lokanathan Y. Secretome Analysis of Human Nasal Fibroblast Identifies Proteins That Promote Wound Healing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1450:59-76. [PMID: 37247133 DOI: 10.1007/5584_2023_777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Conditioned medium from cultured fibroblast cells is recognized to promote wound healing and growth through the secretion of enzymes, extracellular matrix proteins, and various growth factors and cytokines. The objective of this study was to profile the secreted proteins present in nasal fibroblast conditioned medium (NFCM). Nasal fibroblasts isolated from human nasal turbinates were cultured for 72 h in Defined Keratinocytes Serum Free Medium (DKSFM) or serum-free F12: Dulbecco's Modified Eagle's Medium (DMEM) to collect conditioned medium, denoted as NFCM_DKSFM and NFCM_FD, respectively. SDS-PAGE was performed to detect the presence of protein bands, followed by MALDI-TOF and mass spectrometry analysis. SignalP, SecretomeP, and TMHMM were used to identify the secreted proteins in conditioned media. PANTHER Classification System was performed to categorize the protein according to protein class, whereas STRING 10 was carried out to evaluate the predicted proteins interactions. SDS-PAGE results showed the presence of various protein with molecular weight ranging from ~10 kDa to ~260 kDa. Four protein bands were identified using MALDI-TOF. The analyses identified 104, 83, and 7 secreted proteins in NFCM_FD, NFCM_DKSFM, and DKSFM, respectively. Four protein classes involved in wound healing were identified, namely calcium-binding proteins, cell adhesion molecules, extracellular matrix proteins, and signaling molecules. STRING10 protein prediction successfully identified various pathways regulated by secretory proteins in NFCM. In conclusion, this study successfully profiled the secreted proteins of nasal fibroblasts and these proteins are predicted to play important roles in RECs wound healing through various pathways.
Collapse
Affiliation(s)
- Rohaina Che Man
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ruszymah Binti Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Wan Izlina Wan Ibrahim
- Medical Biotechnology Laboratory, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Aminuddin Bin Saim
- Ear, Nose & Throat Consultant Clinic, Ampang Puteri Specialist Hospital, Selangor, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Martins RA, Assunção ASDA, Vieira JCS, Rocha LC, Urayama PMG, Buzalaf MAR, Sartori JR, Padilha PDM. Proteomic Study of Broiler Plasma Supplemented with Different Levels of Copper and Manganese from Different Sources. Molecules 2023; 28:8155. [PMID: 38138643 PMCID: PMC10745542 DOI: 10.3390/molecules28248155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of the present study was to evaluate the differential expression of plasma proteins in broiler chickens supplemented with different sources (sulfates and hydroxychlorides) and levels of copper (15 and 150 mg kg-1) and manganese (80 and 120 mg kg-1). For this, plasma samples from 40 broiler chickens were used, divided into four experimental groups: S15-80 (15 ppm CuSO4 and 80 ppm MnSO4), S150-120 (150 ppm CuSO4 and 120 ppm MnSO4), H15-80 (15 ppm Cu(OH)Cl and 80 ppm Mn(OH)Cl), and H150-120 (150 ppm Cu(OH)Cl and 120 ppm Mn(OH)Cl). From plasma samples obtained from each bird from the same treatment, four pools were made considering 10 birds per group. Plasma proteome fractionation was performed by 2D-PAGE. Concentrations of the studied minerals were also evaluated in both plasma and protein pellet samples. A higher concentration of Cu and Mn was observed in the plasma and protein pellets of groups that received higher mineral supplementation levels compared to those receiving lower levels. Mn concentrations were higher in plasma and protein pellets of the hydroxychloride-supplemented groups than the sulfate-supplemented groups. Analysis of the gels revealed a total of 40 differentially expressed spots among the four treatments. Supplementation with different sources of minerals, particularly at higher levels, resulted in changes in protein regulation, suggesting a potential imbalance in homeostasis.
Collapse
Affiliation(s)
- Renata Aparecida Martins
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (R.A.M.); (A.S.d.A.A.); (L.C.R.); (P.M.G.U.); (J.R.S.)
| | - Andrey Sávio de Almeida Assunção
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (R.A.M.); (A.S.d.A.A.); (L.C.R.); (P.M.G.U.); (J.R.S.)
| | | | - Leone Campos Rocha
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (R.A.M.); (A.S.d.A.A.); (L.C.R.); (P.M.G.U.); (J.R.S.)
| | - Priscila Michelin Groff Urayama
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (R.A.M.); (A.S.d.A.A.); (L.C.R.); (P.M.G.U.); (J.R.S.)
| | | | - José Roberto Sartori
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (R.A.M.); (A.S.d.A.A.); (L.C.R.); (P.M.G.U.); (J.R.S.)
| | | |
Collapse
|
7
|
Zhao X, Guo Y, Li L, Li Y. Longitudinal change of serum inter-alpha-trypsin inhibitor heavy chain H4, and its correlation with inflammation, multiorgan injury, and death risk in sepsis. J Clin Lab Anal 2023; 37:e24834. [PMID: 36725250 PMCID: PMC9978082 DOI: 10.1002/jcla.24834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4) inhibits infection-induced inflammation and multiorgan injury through several methods. The present study aimed to estimate the association of serum ITIH4 with inflammatory cytokines, multiorgan injury, and death risk in sepsis patients. METHODS Serum samples were collected to detect ITIH4 by enzyme-linked immunosorbent assay in 127 sepsis patients at admission (baseline), day (D)1, D3, and D7 after admission, as well as in 30 healthy controls (HCs). Additionally, 28-day mortality was recorded in sepsis patients. RESULTS ITIH4 was reduced in sepsis patients versus HCs (median [interquartile range]: 147.9 [78.2-208.8] vs. 318.8 [237.2-511.4] ng/ml) (p < 0.001). In sepsis patients, ITIH4 was associated with the absence of cardiovascular and cerebrovascular disease history (p = 0.021). Additionally, ITIH4 was negatively correlated with tumor necrosis factor-α (p < 0.001), interleukin (IL)-1β (p < 0.001), IL-6 (p = 0.019), IL-17A (p = 0.002), and C-reactive protein (p = 0.001), but positively related to IL-10 (p = 0.007). Moreover, ITIH4 was also inversely associated with Acute Physiology and Chronic Health Evaluation II score (p = 0.002), Sequential Organ Failure Assessment (SOFA) score (p < 0.001), SOFA-respiratory system score (p = 0.023), and SOFA-renal system score (p = 0.007). Interestingly, ITIH4 gradually increased from baseline to D7 (p < 0.001); besides, ITIH4 at baseline (p = 0.009), D1 (p = 0.002), D3 (p < 0.001), and D7 (p = 0.015) were all decreased in sepsis deaths versus sepsis survivors. CONCLUSION Serum ITIH4 is raised from baseline to D7 after disease onset, and it reflects the reduction of systemic inflammation, disease severity, and 28-day mortality for sepsis. However, further verification is required.
Collapse
Affiliation(s)
- Xiangwang Zhao
- Department of Emergency Medicine, Shanghai East Hospital, Shanghai, China
| | - Yong Guo
- Department of Intensive Care Medicine, The Third People's Hospital, Qingdao, China
| | - Lingyu Li
- Department of Emergency Medicine, Shanghai East Hospital, Shanghai, China
| | - Yusheng Li
- Department of Emergency Medicine, Shanghai East Hospital, Shanghai, China
| |
Collapse
|
8
|
Tang F, Brune JE, Chang MY, Reeves SR, Altemeier WA, Frevert CW. Defining the versican interactome in lung health and disease. Am J Physiol Cell Physiol 2022; 323:C249-C276. [PMID: 35649251 PMCID: PMC9291419 DOI: 10.1152/ajpcell.00162.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM) imparts critical mechanical and biochemical information to cells in the lungs. Proteoglycans are essential constituents of the ECM and play a crucial role in controlling numerous biological processes, including regulating cellular phenotype and function. Versican, a chondroitin sulfate proteoglycan required for embryonic development, is almost absent from mature, healthy lungs and is reexpressed and accumulates in acute and chronic lung disease. Studies using genetically engineered mice show that the versican-enriched matrix can be pro- or anti-inflammatory depending on the cellular source or disease process studied. The mechanisms whereby versican develops a contextual ECM remain largely unknown. The primary goal of this review is to provide an overview of the interaction of versican with its many binding partners, the "versican interactome," and how through these interactions, versican is an integrator of complex extracellular information. Hopefully, the information provided in this review will be used to develop future studies to determine how versican and its binding partners can develop contextual ECMs that control select biological processes. Although this review focuses on versican and the lungs, what is described can be extended to other proteoglycans, tissues, and organs.
Collapse
Affiliation(s)
- Fengying Tang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Jourdan E Brune
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Mary Y Chang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Stephen R Reeves
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| | - William A Altemeier
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Charles W Frevert
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
9
|
Haouari W, Dubail J, Poüs C, Cormier-Daire V, Bruneel A. Inherited Proteoglycan Biosynthesis Defects-Current Laboratory Tools and Bikunin as a Promising Blood Biomarker. Genes (Basel) 2021; 12:genes12111654. [PMID: 34828260 PMCID: PMC8625474 DOI: 10.3390/genes12111654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 12/15/2022] Open
Abstract
Proteoglycans consist of proteins linked to sulfated glycosaminoglycan chains. They constitute a family of macromolecules mainly involved in the architecture of organs and tissues as major components of extracellular matrices. Some proteoglycans also act as signaling molecules involved in inflammatory response as well as cell proliferation, adhesion, and differentiation. Inborn errors of proteoglycan metabolism are a group of orphan diseases with severe and irreversible skeletal abnormalities associated with multiorgan impairments. Identifying the gene variants that cause these pathologies proves to be difficult because of unspecific clinical symptoms, hardly accessible functional laboratory tests, and a lack of convenient blood biomarkers. In this review, we summarize the molecular pathways of proteoglycan biosynthesis, the associated inherited syndromes, and the related biochemical screening techniques, and we focus especially on a circulating proteoglycan called bikunin and on its potential as a new biomarker of these diseases.
Collapse
Affiliation(s)
- Walid Haouari
- INSERM UMR1193, Paris-Saclay University, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92220 Châtenay-Malabry, France; (W.H.); (C.P.)
| | - Johanne Dubail
- INSERM UMR1163, French Reference Center for Skeletal Dysplasia, Imagine Institute, Paris University, 24 Boulevard du Montparnasse, 75015 Paris, France; (J.D.); (V.C.-D.)
- AP-HP, Necker Enfants Malades Hospital, 149 rue de Sèvres, 75015 Paris, France
| | - Christian Poüs
- INSERM UMR1193, Paris-Saclay University, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92220 Châtenay-Malabry, France; (W.H.); (C.P.)
| | - Valérie Cormier-Daire
- INSERM UMR1163, French Reference Center for Skeletal Dysplasia, Imagine Institute, Paris University, 24 Boulevard du Montparnasse, 75015 Paris, France; (J.D.); (V.C.-D.)
- AP-HP, Necker Enfants Malades Hospital, 149 rue de Sèvres, 75015 Paris, France
| | - Arnaud Bruneel
- INSERM UMR1193, Paris-Saclay University, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92220 Châtenay-Malabry, France; (W.H.); (C.P.)
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, 46 rue Henri Huchard, 75018 Paris, France
- Correspondence:
| |
Collapse
|
10
|
Keeble S, Firman RC, Sarver BAJ, Clark NL, Simmons LW, Dean MD. Evolutionary, proteomic, and experimental investigations suggest the extracellular matrix of cumulus cells mediates fertilization outcomes†. Biol Reprod 2021; 105:1043-1055. [PMID: 34007991 PMCID: PMC8511658 DOI: 10.1093/biolre/ioab082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/29/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022] Open
Abstract
Studies of fertilization biology often focus on sperm and egg interactions. However, before gametes interact, mammalian sperm must pass through the cumulus layer; in mice, this consists of several thousand cells tightly glued together with hyaluronic acid and other proteins. To better understand the role of cumulus cells and their extracellular matrix, we perform proteomic experiments on cumulus oophorus complexes (COCs) in house mice (Mus musculus), producing over 24,000 mass spectra to identify 711 proteins. Seven proteins known to stabilize hyaluronic acid and the extracellular matrix were especially abundant (using spectral counts as an indirect proxy for abundance). Through comparative evolutionary analyses, we show that three of these evolve rapidly, a classic signature of genes that influence fertilization rate. Some of the selected sites overlap regions of the protein known to impact function. In a follow-up experiment, we compared COCs from females raised in two different social environments. Female mice raised in the presence of multiple males produced COCs that were smaller and more resistant to dissociation by hyaluronidase compared to females raised in the presence of a single male, consistent with a previous study that demonstrated such females produced COCs that were more resistant to fertilization. Although cumulus cells are often thought of as enhancers of fertilization, our evolutionary, proteomic, and experimental investigations implicate their extracellular matrix as a potential mediator of fertilization outcomes.
Collapse
Affiliation(s)
- Sara Keeble
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences (M092), University of Western Australia, Australia
| | - Brice A J Sarver
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Nathan L Clark
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), University of Western Australia, Australia
| | - Matthew D Dean
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
11
|
Lord MS, Melrose J, Day AJ, Whitelock JM. The Inter-α-Trypsin Inhibitor Family: Versatile Molecules in Biology and Pathology. J Histochem Cytochem 2020; 68:907-927. [PMID: 32639183 DOI: 10.1369/0022155420940067] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Inter-α-trypsin inhibitor (IαI) family members are ancient and unique molecules that have evolved over several hundred million years of vertebrate evolution. IαI is a complex containing the proteoglycan bikunin to which heavy chain proteins are covalently attached to the chondroitin sulfate chain. Besides its matrix protective activity through protease inhibitory action, IαI family members interact with extracellular matrix molecules and most notably hyaluronan, inhibit complement, and provide cell regulatory functions. Recent evidence for the diverse roles of the IαI family in both biology and pathology is reviewed and gives insight into their pivotal roles in tissue homeostasis. In addition, the clinical uses of these molecules are explored, such as in the treatment of inflammatory conditions including sepsis and Kawasaki disease, which has recently been associated with severe acute respiratory syndrome coronavirus 2 infection in children.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, NSW, Australia.,Sydney Medical School, Northern, Sydney University, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research and Lydia Becker Institute of Immunology and Inflammation, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - John M Whitelock
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Stem Cell Extracellular Matrix & Glycobiology, Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Faculty of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
12
|
Briggs DC, Langford-Smith AWW, Birchenough HL, Jowitt TA, Kielty CM, Enghild JJ, Baldock C, Milner CM, Day AJ. Inter-α-inhibitor heavy chain-1 has an integrin-like 3D structure mediating immune regulatory activities and matrix stabilization during ovulation. J Biol Chem 2020; 295:5278-5291. [PMID: 32144206 PMCID: PMC7170535 DOI: 10.1074/jbc.ra119.011916] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/19/2020] [Indexed: 12/26/2022] Open
Abstract
Inter-α-inhibitor is a proteoglycan essential for mammalian reproduction and also plays a less well-characterized role in inflammation. It comprises two homologous "heavy chains" (HC1 and HC2) covalently attached to chondroitin sulfate on the bikunin core protein. Before ovulation, HCs are transferred onto the polysaccharide hyaluronan (HA) to form covalent HC·HA complexes, thereby stabilizing an extracellular matrix around the oocyte required for fertilization. Additionally, such complexes form during inflammatory processes and mediate leukocyte adhesion in the synovial fluids of arthritis patients and protect against sepsis. Here using X-ray crystallography, we show that human HC1 has a structure similar to integrin β-chains, with a von Willebrand factor A domain containing a functional metal ion-dependent adhesion site (MIDAS) and an associated hybrid domain. A comparison of the WT protein and a variant with an impaired MIDAS (but otherwise structurally identical) by small-angle X-ray scattering and analytical ultracentrifugation revealed that HC1 self-associates in a cation-dependent manner, providing a mechanism for HC·HA cross-linking and matrix stabilization. Surprisingly, unlike integrins, HC1 interacted with RGD-containing ligands, such as fibronectin, vitronectin, and the latency-associated peptides of transforming growth factor β, in a MIDAS/cation-independent manner. However, HC1 utilizes its MIDAS motif to bind to and inhibit the cleavage of complement C3, and small-angle X-ray scattering-based modeling indicates that this occurs through the inhibition of the alternative pathway C3 convertase. These findings provide detailed structural and functional insights into HC1 as a regulator of innate immunity and further elucidate the role of HC·HA complexes in inflammation and ovulation.
Collapse
Affiliation(s)
- David C Briggs
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Alexander W W Langford-Smith
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Holly L Birchenough
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Thomas A Jowitt
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Cay M Kielty
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Jan J Enghild
- Department of Molecular Biology & Genetics, University of Aarhus, 8000 Aarhus C, Denmark
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom; Division of Cell-Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Caroline M Milner
- Division of Cell-Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Anthony J Day
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom; Division of Cell-Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
13
|
Inter-α-inhibitor Ameliorates Endothelial Inflammation in Sepsis. Lung 2019; 197:361-369. [PMID: 31028466 DOI: 10.1007/s00408-019-00228-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/12/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Vascular endothelial cells demonstrate severe injury in sepsis, and a reduction in endothelial inflammation would be beneficial. Inter-α-Inhibitor (IαI) is a family of abundant plasma proteins with anti-inflammatory properties and has been investigated in human and animal sepsis with encouraging results. We hypothesized that IαI may protect endothelia from sepsis-related inflammation. METHODS IαI-deficient or sufficient mice were treated with endotoxin or underwent complement-induced lung injury. VCAM-1 and ICAM-1 expression was measured in blood and lung as marker of endothelial activation. Human endothelia were exposed to activated complement C5a with or without IαI. Blood from human sepsis patients was examined for VCAM-1 and ICAM-1 and levels were correlated with blood levels of IαI. RESULTS IαI-deficient mice showed increased endothelial activation in endotoxin/sepsis- and complement-induced lung injury models. In vitro, levels of endothelial pro-inflammatory cytokines and cell growth factors induced by activated complement C5a were significantly decreased in the presence of IαI. This effect was associated with decreased ERK and NFκB activation. IαI levels were inversely associated with VCAM-1 and ICAM-1 levels in a human sepsis cohort. CONCLUSIONS IαI ameliorates endothelial inflammation and may be beneficial as a treatment of sepsis.
Collapse
|
14
|
Ivancic MM, Anson LW, Pickhardt PJ, Megna B, Pooler BD, Clipson L, Reichelderfer M, Sussman MR, Dove WF. Conserved serum protein biomarkers associated with growing early colorectal adenomas. Proc Natl Acad Sci U S A 2019; 116:8471-8480. [PMID: 30971492 PMCID: PMC6486772 DOI: 10.1073/pnas.1813212116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A major challenge for the reduction of colon cancer is to detect patients carrying high-risk premalignant adenomas with minimally invasive testing. As one step, we have addressed the feasibility of detecting protein signals in the serum of patients carrying an adenoma as small as 6-9 mm in maximum linear dimension. Serum protein biomarkers, discovered in two animal models of early colonic adenomagenesis, were studied in patients using quantitative mass-spectrometric assays. One cohort included patients bearing adenomas known to be growing on the basis of longitudinal computed tomographic colonography. The other cohort, screened by optical colonoscopy, included both patients free of adenomas and patients bearing adenomas whose risk status was judged by histopathology. The markers F5, ITIH4, LRG1, and VTN were each elevated both in this patient study and in the studies of the Pirc rat model. The quantitative study in the Pirc rat model had demonstrated that the elevated level of each of these markers is correlated with the number of colonic adenomas. However, the levels of these markers in patients were not significantly correlated with the total adenoma volume. Postpolypectomy blood samples demonstrated that the elevated levels of these four conserved markers persisted after polypectomy. Two additional serum markers rapidly renormalized after polypectomy: growth-associated CRP levels were enhanced only with high-risk adenomas, while PI16 levels, not associated with growth, were reduced regardless of risk status. We discuss biological hypotheses to account for these observations, and ways for these signals to contribute to the prevention of colon cancer.
Collapse
Affiliation(s)
- Melanie M Ivancic
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706;
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Leigh W Anson
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706
| | - Perry J Pickhardt
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792;
| | - Bryant Megna
- Department of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Bryan D Pooler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Mark Reichelderfer
- Department of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705;
| | - Michael R Sussman
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706;
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - William F Dove
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705;
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
15
|
Hyaluronan biology: A complex balancing act of structure, function, location and context. Matrix Biol 2019; 78-79:1-10. [PMID: 30802498 DOI: 10.1016/j.matbio.2019.02.002] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Cell-matrix interactions are fundamental to many developmental, homeostatic, immune and pathologic processes. Hyaluronan (HA), a critical component of the extracellular matrix (ECM) that regulates normal structural integrity and development, also regulates tissue responses during injury, repair, and regeneration. Though simple in its primary structure, HA regulates biological responses in a highly complex manner with balanced contributions from its molecular size and concentration, synthesis versus enzymatic and/or oxidative-nitrative fragmentation, interactions with key HA binding proteins and cell associated receptors, and its cell context-specific signaling. This review highlights the different, but inter-related factors that dictate the biological activity of HA and introduces the overarching themes that weave throughout this special issue of Matrix Biology on hyaluronan.
Collapse
|
16
|
Csősz É, Tóth N, Deák E, Csutak A, Tőzsér J. Wound-Healing Markers Revealed by Proximity Extension Assay in Tears of Patients following Glaucoma Surgery. Int J Mol Sci 2018; 19:ijms19124096. [PMID: 30567303 PMCID: PMC6321131 DOI: 10.3390/ijms19124096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/26/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023] Open
Abstract
Tears are a constantly available and highly valuable body fluid collectable by non-invasive techniques. Although it can give information on ocular status and be used for follow-ups, tear analysis is challenging due to the low amount of sample that is available. Proximity extension assay (PEA) allows for a sensitive and scalable analysis of multiple proteins in a single run from a one-µL sample, so we applied this technique and examined the amount of 184 proteins in tears collected at different time points after trabeculectomy. The success rate of this surgical intervention highly depends on proper wound healing; therefore, information on the process is indispensable. We observed significantly higher levels of IL-6 and MMP1 at the early time points (day one, two, and four) following trabeculectomy, and the protein amounts went back to the level observed before the surgery three months after the intervention. Patients with or without complications were tested, and proteins that have roles in the immune response and wound healing could be observed with altered frequency and amounts in the cases of patients with complications. Our results highlight the importance of inflammation in wound-healing complications, and at the same time, indicate the utility of PEA in tear analysis.
Collapse
Affiliation(s)
- Éva Csősz
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., 4032 Debrecen, Hungary.
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., 4032 Debrecen, Hungary.
| | - Noémi Tóth
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary.
| | - Eszter Deák
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., 4032 Debrecen, Hungary.
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary.
| | - Adrienne Csutak
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary.
| | - József Tőzsér
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., 4032 Debrecen, Hungary.
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., 4032 Debrecen, Hungary.
| |
Collapse
|
17
|
Morgan DJ, Casulli J, Chew C, Connolly E, Lui S, Brand OJ, Rahman R, Jagger C, Hussell T. Innate Immune Cell Suppression and the Link With Secondary Lung Bacterial Pneumonia. Front Immunol 2018; 9:2943. [PMID: 30619303 PMCID: PMC6302086 DOI: 10.3389/fimmu.2018.02943] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Secondary infections arise as a consequence of previous or concurrent conditions and occur in the community or in the hospital setting. The events allowing secondary infections to gain a foothold have been studied for many years and include poor nutrition, anxiety, mental health issues, underlying chronic diseases, resolution of acute inflammation, primary immune deficiencies, and immune suppression by infection or medication. Children, the elderly and the ill are particularly susceptible. This review is concerned with secondary bacterial infections of the lung that occur following viral infection. Using influenza virus infection as an example, with comparisons to rhinovirus and respiratory syncytial virus infection, we will update and review defective bacterial innate immunity and also highlight areas for potential new investigation. It is currently estimated that one in 16 National Health Service (NHS) hospital patients develop an infection, the most common being pneumonia, lower respiratory tract infections, urinary tract infections and infection of surgical sites. The continued drive to understand the mechanisms of why secondary infections arise is therefore of key importance.
Collapse
Affiliation(s)
- David J Morgan
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Joshua Casulli
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Christine Chew
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Emma Connolly
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Sylvia Lui
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Oliver J Brand
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Rizwana Rahman
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Christopher Jagger
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
18
|
Johnson CG, Stober VP, Cyphert-Daly JM, Trempus CS, Flake GP, Cali V, Ahmad I, Midura RJ, Aronica MA, Matalon S, Garantziotis S. High molecular weight hyaluronan ameliorates allergic inflammation and airway hyperresponsiveness in the mouse. Am J Physiol Lung Cell Mol Physiol 2018; 315:L787-L798. [PMID: 30188746 PMCID: PMC6425518 DOI: 10.1152/ajplung.00009.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 12/22/2022] Open
Abstract
Allergic asthma is a major cause of morbidity in both pediatric and adult patients. Recent research has highlighted the role of hyaluronan (HA), an extracellular matrix glycosaminoglycan, in asthma pathogenesis. Experimental allergic airway inflammation and clinical asthma are associated with an increase of shorter fragments of HA (sHA), which complex with inter-α-inhibitor heavy chains (HCs) and induce inflammation and airway hyperresponsiveness (AHR). Importantly, the effects of sHA can be antagonized by the physiological counterpart high molecular weight HA (HMWHA). We used a mouse model of house dust mite-induced allergic airway inflammation and demonstrated that instilled HMWHA ameliorated allergic airway inflammation and AHR, even when given after the establishment of allergic sensitization and after challenge exposures. Furthermore, instilled HMWHA reduced the development of HA-HC complexes and the activation of Rho-associated, coiled-coil containing protein kinase 2. We conclude that airway application of HMWHA is a potential treatment for allergic airway inflammation.
Collapse
Affiliation(s)
- Collin G Johnson
- Division of Intramural Research, National Institute of Environmental Health Sciences , Research Triangle Park, North Carolina
| | - Vandy P Stober
- Division of Intramural Research, National Institute of Environmental Health Sciences , Research Triangle Park, North Carolina
| | - Jaime M Cyphert-Daly
- Division of Intramural Research, National Institute of Environmental Health Sciences , Research Triangle Park, North Carolina
| | - Carol S Trempus
- Division of Intramural Research, National Institute of Environmental Health Sciences , Research Triangle Park, North Carolina
| | - Gordon P Flake
- Division of Intramural Research, National Institute of Environmental Health Sciences , Research Triangle Park, North Carolina
| | - Valbona Cali
- Department of Pathobiology, Cleveland Clinic Foundation , Cleveland, Ohio
| | - Israr Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, and Pulmonary Injury and Repair Center, School of Medicine, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Ronald J Midura
- Department of Pathobiology, Cleveland Clinic Foundation , Cleveland, Ohio
| | - Mark A Aronica
- Department of Pathobiology, Cleveland Clinic Foundation , Cleveland, Ohio
| | - Sadis Matalon
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, and Pulmonary Injury and Repair Center, School of Medicine, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Stavros Garantziotis
- Division of Intramural Research, National Institute of Environmental Health Sciences , Research Triangle Park, North Carolina
| |
Collapse
|
19
|
Bell TJ, Brand OJ, Morgan DJ, Salek-Ardakani S, Jagger C, Fujimori T, Cholewa L, Tilakaratna V, Östling J, Thomas M, Day AJ, Snelgrove RJ, Hussell T. Defective lung function following influenza virus is due to prolonged, reversible hyaluronan synthesis. Matrix Biol 2018; 80:14-28. [PMID: 29933044 PMCID: PMC6548309 DOI: 10.1016/j.matbio.2018.06.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022]
Abstract
Little is known about the impact of viral infections on lung matrix despite its important contribution to mechanical stability and structural support. The composition of matrix also indirectly controls inflammation by influencing cell adhesion, migration, survival, proliferation and differentiation. Hyaluronan is a significant component of the lung extracellular matrix and production and degradation must be carefully balanced. We have discovered an imbalance in hyaluronan production following resolution of a severe lung influenza virus infection, driven by hyaluronan synthase 2 from epithelial cells, endothelial cells and fibroblasts. Furthermore hyaluronan is complexed with inter-α-inhibitor heavy chains due to elevated TNF-stimulated gene 6 expression and sequesters CD44-expressing macrophages. We show that intranasal administration of exogenous hyaluronidase is sufficient to release inter-α-inhibitor heavy chains, reduce lung hyaluronan content and restore lung function. Hyaluronidase is already used to facilitate dispersion of co-injected materials in the clinic. It is therefore feasible that fibrotic changes following severe lung infection and inflammation could be overcome by targeting abnormal matrix production. Influenza causes prolonged changes in hyaluronan due to increased synthase activity Influenza induces persistent hyaluronan cross-linking by inter-alpha-inhibitor heavy chains Pockets of persistent hyaluronan are associated with CD44-expressing macrophages Digestion of hyaluronan with intranasal hyaluronidase restores lung function but upon cessation of treatment post-viral complications return
Collapse
Affiliation(s)
- Thomas J Bell
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK; Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, UK
| | - Oliver J Brand
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - David J Morgan
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Samira Salek-Ardakani
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Christopher Jagger
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Toshifumi Fujimori
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Lauren Cholewa
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Viranga Tilakaratna
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Jörgen Östling
- Respiratory, Inflammation & Autoimmunity IMED, AstraZeneca, Gothenburg, Sweden
| | - Matt Thomas
- Respiratory, Inflammation & Autoimmunity IMED, AstraZeneca, Gothenburg, Sweden
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Robert J Snelgrove
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, UK
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK.
| |
Collapse
|
20
|
Stober VP, Johnson CG, Majors A, Lauer ME, Cali V, Midura RJ, Wisniewski HG, Aronica MA, Garantziotis S. TNF-stimulated gene 6 promotes formation of hyaluronan-inter-α-inhibitor heavy chain complexes necessary for ozone-induced airway hyperresponsiveness. J Biol Chem 2017; 292:20845-20858. [PMID: 29122888 PMCID: PMC5743062 DOI: 10.1074/jbc.m116.756627] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/27/2017] [Indexed: 11/06/2022] Open
Abstract
Exposure to pollutants, such as ozone, exacerbates airway inflammation and hyperresponsiveness (AHR). TNF-stimulated gene 6 (TSG-6) is required to transfer inter-α-inhibitor heavy chains (HC) to hyaluronan (HA), facilitating HA receptor binding. TSG-6 is necessary for AHR in allergic asthma, because it facilitates the development of a pathological HA-HC matrix. However, the role of TSG-6 in acute airway inflammation is not well understood. Here, we hypothesized that TSG-6 is essential for the development of HA- and ozone-induced AHR. TSG-6-/- and TSG-6+/+ mice were exposed to ozone or short-fragment HA (sHA), and AHR was assayed via flexiVent. The AHR response to sHA was evaluated in the isolated tracheal ring assay in tracheal rings from TSG-6-/- or TSG-6+/+, with or without the addition of exogenous TSG-6, and with or without inhibitors of Rho-associated, coiled-coil-containing protein kinase (ROCK), ERK, or PI3K. Smooth-muscle cells from mouse tracheas were assayed in vitro for signaling pathways. We found that TSG-6 deficiency protects against AHR after ozone (in vivo) or sHA (in vitro and in vivo) exposure. Moreover, TSG-6-/- tracheal ring non-responsiveness to sHA was reversed by exogenous TSG-6 addition. sHA rapidly activated RhoA, ERK, and Akt in airway smooth-muscle cells, but only in the presence of TSG-6. Inhibition of ROCK, ERK, or PI3K/Akt blocked sHA/TSG-6-mediated AHR. In conclusion, TSG-6 is necessary for AHR in response to ozone or sHA, in part because it facilitates rapid formation of HA-HC complexes. The sHA/TSG-6 effect is mediated by RhoA, ERK, and PI3K/Akt signaling.
Collapse
Affiliation(s)
- Vandy P Stober
- From the Immunity Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Collin G Johnson
- From the Immunity Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Alana Majors
- the Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, and
| | - Mark E Lauer
- the Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, and
| | - Valbona Cali
- the Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, and
| | - Ronald J Midura
- the Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, and
| | | | - Mark A Aronica
- the Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, and
| | - Stavros Garantziotis
- From the Immunity Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709,
| |
Collapse
|
21
|
Yu H, Cai S, Gao J, Wang C, Qiao X, Wang H, Feng L, Wang Y. Express Sequence Tag Analysis - Identification of Anseriformes Trypsin Genes from Full-Length cDNA Library of the Duck (Anas platyrhynchos) and Characterization of Their Structure and Function. BIOCHEMISTRY (MOSCOW) 2017; 81:152-62. [PMID: 27260395 DOI: 10.1134/s0006297916020097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Trypsins are key proteins important in animal protein digestion by breaking down the peptide bonds on the carboxyl side of lysine and arginine residues, hence it has been used widely in various biotechnological processes. In the current study, a full-length cDNA library with capacity of 5·10(5) CFU/ml from the duck (Anas platyrhynchos) was constructed. Using express sequence tag (EST) sequencing, genes coding two trypsins were identified and two full-length trypsin cDNAs were then obtained by rapid-amplification of cDNA end (RACE)-PCR. Using Blast, they were classified into the trypsin I and II subfamilies, but both encoded a signal peptide, an activation peptide, and a 223-a.a. mature protein located in the C-terminus. The two deduced mature proteins were designated as trypsin-IAP and trypsin-IIAP, and their theoretical isoelectric points (pI) and molecular weights (MW) were 7.99/23466.4 Da and 4.65/24066.0 Da, respectively. Molecular characterizations of genes were further performed by detailed bioinformatics analysis. Phylogenetic analysis revealed that trypsin-IIAP has an evolution pattern distinct from trypsin-IAP, suggesting its evolutionary advantage. Then the duck trypsin-IIAP was expressed in an Escherichia coli system, and its kinetic parameters were measured. The three dimensional structures of trypsin-IAP and trypsin-IIAP were predicted by homology modeling, and the conserved residues required for functionality were identified. Two loops controlling the specificity of the trypsin and the substrate-binding pocket represented in the model are almost identical in primary sequences and backbone tertiary structures of the trypsin families.
Collapse
Affiliation(s)
- Haining Yu
- Dalian University of Technology, Institute of Marine Biological Technology, School of Life Science and Biotechnology, Dalian, Liaoning, 116024, China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Pijuan-Galitó S, Tamm C, Schuster J, Sobol M, Forsberg L, Merry CLR, Annerén C. Human serum-derived protein removes the need for coating in defined human pluripotent stem cell culture. Nat Commun 2016; 7:12170. [PMID: 27405751 PMCID: PMC4947164 DOI: 10.1038/ncomms12170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/03/2016] [Indexed: 01/30/2023] Open
Abstract
Reliable, scalable and time-efficient culture methods are required to fully realize the clinical and industrial applications of human pluripotent stem (hPS) cells. Here we present a completely defined, xeno-free medium that supports long-term propagation of hPS cells on uncoated tissue culture plastic. The medium consists of the Essential 8 (E8) formulation supplemented with inter-α-inhibitor (IαI), a human serum-derived protein, recently demonstrated to activate key pluripotency pathways in mouse PS cells. IαI efficiently induces attachment and long-term growth of both embryonic and induced hPS cell lines when added as a soluble protein to the medium at seeding. IαI supplementation efficiently supports adaptation of feeder-dependent hPS cells to xeno-free conditions, clonal growth as well as single-cell survival in the absence of Rho-associated kinase inhibitor (ROCKi). This time-efficient and simplified culture method paves the way for large-scale, high-throughput hPS cell culture, and will be valuable for both basic research and commercial applications. Improved culture methods are needed to reliably grow human pluripotent stem cells (hPSCs) on a large scale. Here, the authors identify a xeno-free medium with a supplement of Inter-α-inhibitor that supports long-term propagation and improved single-cell passaging of hPSCs on uncoated plastic.
Collapse
Affiliation(s)
- Sara Pijuan-Galitó
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, 751 23 Uppsala, Sweden
| | - Christoffer Tamm
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, 751 23 Uppsala, Sweden
| | - Jens Schuster
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Box 815, Uppsala University, 751 08 Uppsala, Sweden
| | - Maria Sobol
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Box 815, Uppsala University, 751 08 Uppsala, Sweden
| | - Lars Forsberg
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Box 815, Uppsala University, 751 08 Uppsala, Sweden
| | - Catherine L R Merry
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, 751 23 Uppsala, Sweden.,Stem Cell Glycobiology Group, Wolfson Centre for Stem Cells, Tissue Engineering &Modelling Room A59, University of Nottingham, NG7 2RD Nottingham, UK
| | - Cecilia Annerén
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, 751 23 Uppsala, Sweden.,GE Healthcare Bio-Sciences AB, Björkgatan 30, 751 84 Uppsala, Sweden
| |
Collapse
|
23
|
The Rise and Fall of Hyaluronan in Respiratory Diseases. Int J Cell Biol 2015; 2015:712507. [PMID: 26448757 PMCID: PMC4581576 DOI: 10.1155/2015/712507] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/11/2015] [Accepted: 05/03/2015] [Indexed: 12/24/2022] Open
Abstract
In normal airways, hyaluronan (HA) matrices are primarily located within the airway submucosa, pulmonary vasculature walls, and, to a lesser extent, the alveoli. Following pulmonary injury, elevated levels of HA matrices accumulate in these regions, and in respiratory secretions, correlating with the extent of injury. Animal models have provided important insight into the role of HA in the onset of pulmonary injury and repair, generally indicating that the induction of HA synthesis is an early event typically preceding fibrosis. The HA that accumulates in inflamed airways is of a high molecular weight (>1600 kDa) but can be broken down into smaller fragments (<150 kDa) by inflammatory and disease-related mechanisms that have profound effects on HA pathobiology. During inflammation in the airways, HA is often covalently modified with heavy chains from inter-alpha-inhibitor via the enzyme tumor-necrosis-factor-stimulated-gene-6 (TSG-6) and this modification promotes the interaction of leukocytes with HA matrices at sites of inflammation. The clearance of HA and its return to normal levels is essential for the proper resolution of inflammation. These data portray HA matrices as an important component of normal airway physiology and illustrate its integral roles during tissue injury and repair among a variety of respiratory diseases.
Collapse
|
24
|
In vitro cadmium effects on ECM gene expression in human bronchial epithelial cells. Cytokine 2014; 72:9-16. [PMID: 25541143 DOI: 10.1016/j.cyto.2014.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/30/2014] [Accepted: 12/02/2014] [Indexed: 01/25/2023]
Abstract
Occupational and environmental exposure to the heavy metal cadmium (Cd) and its inhalation from cigarette smoke are associated with emphysema. Many growth factors and extracellular matrix (ECM) cell signaling molecules are directly involved in the epithelial bronchial cell pathway. This study investigated the direct effects of Cd on the production of several ECM components in human bronchial epithelial cells (BEAS-2B) that were exposed in vitro for 48 h to sub-toxic and toxic concentrations of Cd. Gene expression of collagens, metalloproteases (MMPs), integrins, tenascin and vitronectin were quantified by RT-PCR. To study apoptosis cascade, annexin assay and cellular cytotoxicity by MTT assay were performed. We also investigated whether an imbalance in the TGFβ/TGFβ receptor (TGFβR) expression mediated Cd effects. The results showed the sub-toxic Cd dose significantly increased tenascin, vitronectin, β1 and β5 integrin gene expression. The toxic Cd dose decreased type IV and V collagen, α1, α2 and β3 integrins. Both Cd doses down-regulated type I collagen and up-regulated metalloproteases. Each Cd dose caused a different imbalance in the complex pattern of TGFβ and its receptors. No alteration in classic apoptotic marker protein expression was observed in presence of the sub-toxic dose of Cd, suggesting this metal alters ECM production without apoptotic activation. In conclusion, all these data show even sub-toxic Cd dose exposure alters the specific gene expression of several ECM components that are crucially implicated in the mechanical properties of lung parenchyma supporting the hypothesis that the mechanism underlying Cd-induced lung disease may involve downstream changes in TGFβ/TGFβR signaling.
Collapse
|
25
|
Alcala SE, Benton AS, Watson AM, Kureshi S, Reeves EMK, Damsker J, Wang Z, Nagaraju K, Anderson J, Williams AM, Lee AJY, Hayes K, Rose MC, Hoffman EP, Freishtat RJ. Mitotic asynchrony induces transforming growth factor-β1 secretion from airway epithelium. Am J Respir Cell Mol Biol 2014; 51:363-9. [PMID: 24669775 DOI: 10.1165/rcmb.2013-0396oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We recently proposed that mitotic asynchrony in repairing tissue may underlie chronic inflammation and fibrosis, where immune cell infiltration is secondary to proinflammatory cross-talk among asynchronously repairing adjacent tissues. Building on our previous finding that mitotic asynchrony is associated with proinflammatory/fibrotic cytokine secretion (e.g., transforming growth factor [TGF]-β1), here we provide evidence supporting cause-and-effect. Under normal conditions, primary airway epithelial basal cell populations undergo mitosis synchronously and do not secrete proinflammatory or profibrotic cytokines. However, when pairs of nonasthmatic cultures were mitotically synchronized at 12 hours off-set and then combined, the mixed cell populations secreted elevated levels of TGF-β1. This shows that mitotic asynchrony is not only associated with but is also causative of TGF-β1 secretion. The secreted cytokines and other mediators from asthmatic cells were not the cause of asynchronous regeneration; synchronously mitotic nonasthmatic epithelia exposed to conditioned media from asthmatic cells did not show changes in mitotic synchrony. We also tested if resynchronization of regenerating asthmatic airway epithelia reduces TGF-β1 secretion and found that pulse-dosed dexamethasone, simvastatin, and aphidicolin were all effective. We therefore propose a new model for chronic inflammatory and fibrotic conditions where an underlying factor is mitotic asynchrony.
Collapse
|
26
|
Pijuan-Galitó S, Tamm C, Annerén C. Serum Inter-α-inhibitor activates the Yes tyrosine kinase and YAP/TEAD transcriptional complex in mouse embryonic stem cells. J Biol Chem 2014; 289:33492-502. [PMID: 25301940 DOI: 10.1074/jbc.m114.580076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have previously demonstrated that the Src family kinase Yes, the Yes-associated protein (YAP) and TEA domain TEAD2 transcription factor pathway are activated by leukemia inhibitory factor (LIF) and contribute to mouse embryonic stem (mES) cell maintenance of pluripotency and self-renewal. In addition, we have shown that fetal bovine serum (FBS) induces Yes auto-phosphorylation and activation. In the present study we confirm that serum also activates TEAD-dependent transcription in a time- and dose-dependent manner and we identify Inter-α-inhibitor (IαI) as a component in serum capable of activating the Yes/YAP/TEAD pathway by inducing Yes auto-phosphorylation, YAP nuclear localization and TEAD-dependent transcription. The cleaved heavy chain 2 (HC2) sub-component of IαI, is demonstrated to be responsible for this effect. Moreover, IαI is also shown to efficiently increase expression of TEAD-downstream target genes including well-known stem cell factors Nanog and Oct 3/4. IαI is not produced by the ES cells per se but is added to the cells via the cell culture medium containing serum or serum-derived components such as bovine serum albumin (BSA). In conclusion, we describe a novel function of IαI in activating key pluripotency pathways associated with ES cell maintenance and self-renewal.
Collapse
Affiliation(s)
- Sara Pijuan-Galitó
- From the Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75 123 Uppsala, Sweden and
| | - Christoffer Tamm
- From the Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75 123 Uppsala, Sweden and
| | - Cecilia Annerén
- From the Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75 123 Uppsala, Sweden and GE Healthcare Bio-Sciences AB, SE-751 84 Uppsala, Sweden
| |
Collapse
|
27
|
Lazrak A, Jurkuvenaite A, Ness EC, Zhang S, Woodworth BA, Muhlebach MS, Stober VP, Lim YP, Garantziotis S, Matalon S. Inter-α-inhibitor blocks epithelial sodium channel activation and decreases nasal potential differences in ΔF508 mice. Am J Respir Cell Mol Biol 2014; 50:953-62. [PMID: 24303840 DOI: 10.1165/rcmb.2013-0215oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Increased activity of lung epithelial sodium channels (ENaCs) contributes to the pathophysiology of cystic fibrosis (CF) by increasing the rate of epithelial lining fluid reabsorption. Inter-α-inhibitor (IαI), a serum protease inhibitor, may decrease ENaC activity by preventing its cleavage by serine proteases. High concentrations of IαI were detected in the bronchoalveolar lavage fluid (BALF) of children with CF and lower airway diseases. IαI decreased amiloride-sensitive (IENaC) but not cAMP-activated Cl(-) currents across confluent monolayers of rat ATII, and mouse nasal epithelial cells grew in primary culture by 45 and 25%, respectively. Changes in IENaC by IαI in ATII cells were accompanied by increased levels of uncleaved (immature) surface α-ENaC. IαI increased airway surface liquid depth overlying murine nasal epithelial cells to the same extent as amiloride, consistent with ENaC inhibition. Incubation of lung slices from C57BL/6, those lacking phenylalanine at position 508 (∆F508), or CF transmembrane conductance regulator knockout mice with IαI for 3 hours decreased the open probability of their ENaC channels by 50%. ∆F508 mice had considerably higher levels the amiloride-sensitive fractions of ENaC nasal potential difference (ENaC-NPD) than wild-type littermates and only background levels of IαI in their BALF. A single intranasal instillation of IαI decreased their ENaC-NPD 24 hours later by 25%. In conclusion, we show that IαI is present in the BALF of children with CF, is an effective inhibitor of ENaC proteolysis, and decreases ENaC activity in lung epithelial cells of ∆F508 mice.
Collapse
|
28
|
Canonici A, Pellegrino E, Siret C, Terciolo C, Czerucka D, Bastonero S, Marvaldi J, Lombardo D, Rigot V, André F. Saccharomyces boulardii improves intestinal epithelial cell restitution by inhibiting αvβ5 integrin activation state. PLoS One 2012; 7:e45047. [PMID: 23028753 PMCID: PMC3447864 DOI: 10.1371/journal.pone.0045047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/13/2012] [Indexed: 02/07/2023] Open
Abstract
Intestinal epithelial cell damage is frequently seen in the mucosal lesions of infectious or inflammatory bowel diseases such as ulcerative colitis or Crohn's disease. Complete remission of these diseases requires both the disappearance of inflammation and the repair of damaged epithelium. Saccharomyces boulardii (Sb, Biocodex) is a non-pathogenic yeast widely used as a preventive and therapeutic probiotic for the prevention and treatment of diarrhea and other gastrointestinal disorders. We recently showed that it enhances the repair of intestinal epithelium through activation of α2β1 integrin collagen receptors. In the present study, we demonstrated that α2β1 integrin is not the sole cell-extracellular matrix receptor involved during Sb-mediated intestinal restitution. Indeed, by using cell adhesion assays, we showed that Sb supernatant contains heat sensitive molecule(s), with a molecular weight higher than 9 kDa, which decreased αvβ5 integrin-mediated adhesion to vitronectin by competing with the integrin. Moreover, Sb-mediated changes in cell adhesion to vitronectin resulted in a reduction of the αvβ5signaling pathway. We used a monolayer wounding assay that mimics in vivo cell restitution to demonstrate that down-modulation of the αvβ5 integrin-vitronectin interaction is related to Sb-induced cell migration. We therefore postulated that Sb supernatant contains motogenic factors that enhance cell restitution through multiple pathways, including the dynamic fine regulation of αvβ5 integrin binding activity. This could be of major importance in diseases characterized by severe mucosal injury, such as inflammatory and infectious bowel diseases.
Collapse
Affiliation(s)
- Alexandra Canonici
- Aix-Marseille Université, Centre de Recherche en Oncologie et Oncopharmacologie, Marseille, France
- Inserm UMR 9111, Marseille, France
| | - Emilie Pellegrino
- Aix-Marseille Université, Centre de Recherche en Oncologie et Oncopharmacologie, Marseille, France
- Inserm UMR 9111, Marseille, France
| | - Carole Siret
- Aix-Marseille Université, Centre de Recherche en Oncologie et Oncopharmacologie, Marseille, France
- Inserm UMR 9111, Marseille, France
| | - Chloé Terciolo
- Aix-Marseille Université, Centre de Recherche en Oncologie et Oncopharmacologie, Marseille, France
- Inserm UMR 9111, Marseille, France
| | - Dorota Czerucka
- Team 4, Inflammation, Cancer, Cancer Stem Cells, INSERM U895, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Sonia Bastonero
- Aix-Marseille Université, Centre de Recherche en Oncologie et Oncopharmacologie, Marseille, France
- Inserm UMR 9111, Marseille, France
| | - Jacques Marvaldi
- Aix-Marseille Université, Centre de Recherche en Oncologie et Oncopharmacologie, Marseille, France
- Inserm UMR 9111, Marseille, France
| | - Dominique Lombardo
- Aix-Marseille Université, Centre de Recherche en Oncologie et Oncopharmacologie, Marseille, France
- Inserm UMR 9111, Marseille, France
| | - Véronique Rigot
- Aix-Marseille Université, Centre de Recherche en Oncologie et Oncopharmacologie, Marseille, France
- Inserm UMR 9111, Marseille, France
| | - Frédéric André
- Aix-Marseille Université, Centre de Recherche en Oncologie et Oncopharmacologie, Marseille, France
- Inserm UMR 9111, Marseille, France
- * E-mail:
| |
Collapse
|
29
|
Bredberg A, Gobom J, Almstrand AC, Larsson P, Blennow K, Olin AC, Mirgorodskaya E. Exhaled endogenous particles contain lung proteins. Clin Chem 2011; 58:431-40. [PMID: 22156667 DOI: 10.1373/clinchem.2011.169235] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND We recently developed a novel, noninvasive method for sampling nonvolatile material from the distal airways. The method is based on the collection of endogenous particles in exhaled air (PEx). The aim of this study was to characterize the protein composition of PEx and to verify that the origin of PEx is respiratory tract lining fluid (RTLF). METHOD Healthy individuals exhaled into the sampling device, which collected PEx onto a silicon plate inside a 3-stage impactor. After their extraction from the plates, PEx proteins were separated by SDS-PAGE and then analyzed by LC-MS. Proteins were identified by searching the International Protein Index human database with the Mascot search engine. RESULTS Analysis of the pooled samples identified 124 proteins. A comparison of the identified PEx proteins with published bronchoalveolar lavage (BAL) proteomic data showed a high degree of overlap, with 103 (83%) of the PEx proteins having previously been detected in BAL. The relative abundances of the proteins were estimated according to the Mascot exponentially modified protein abundance index protocol and were in agreement with the expected protein composition of RTLF. No amylase was detected, indicating the absence of saliva protein contamination with our sampling technique. CONCLUSIONS Our data strongly support that PEx originate from RTLF and reflect the composition of undiluted RTLF.
Collapse
Affiliation(s)
- Anna Bredberg
- Occupational and Environmental Medicine, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
30
|
Stepanek O, Brdicka T, Angelisova P, Horvath O, Spicka J, Stockbauer P, Man P, Horejsi V. Interaction of late apoptotic and necrotic cells with vitronectin. PLoS One 2011; 6:e19243. [PMID: 21573223 PMCID: PMC3087723 DOI: 10.1371/journal.pone.0019243] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 03/30/2011] [Indexed: 11/25/2022] Open
Abstract
Background Vitronectin is an abundant plasma glycoprotein identified also as a part of extracellular matrix. Vitronectin is substantially enriched at sites of injured, fibrosing, inflamed, and tumor tissues where it is believed to be involved in wound healing and tissue remodeling. Little is known about the mechanism of vitronectin localization into the damaged tissues. Methodology/Principal Findings 2E12 antibody has been described to bind a subset of late apoptotic cells. Using immunoisolation followed by mass spectrometry, we identified the antigen recognized by 2E12 antibody as vitronectin. Based on flow cytometry, we described that vitronectin binds to the late apoptotic and necrotic cells in cell cultures in vitro as well as in murine thymus and spleen in vivo. Confocal microscopy revealed that vitronectin binds to an intracellular cytoplasmic structure after the membrane rupture. Conclusions/Significance We propose that vitronectin could serve as a marker of membrane disruption in necrosis and apoptosis for flow cytometry analysis. Moreover, we suggest that vitronectin binding to dead cells may represent one of the mechanisms of vitronectin incorporation into the injured tissues.
Collapse
Affiliation(s)
- Ondrej Stepanek
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
| | - Tomas Brdicka
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
| | - Pavla Angelisova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
| | - Ondrej Horvath
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
| | - Jiri Spicka
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
| | - Petr Stockbauer
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Petr Man
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Praha, Czech Republic
| | - Vaclav Horejsi
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
- * E-mail:
| |
Collapse
|
31
|
Charro N, Hood BL, Faria D, Pacheco P, Azevedo P, Lopes C, de Almeida AB, Couto FM, Conrads TP, Penque D. Serum proteomics signature of cystic fibrosis patients: a complementary 2-DE and LC-MS/MS approach. J Proteomics 2010; 74:110-26. [PMID: 20950718 DOI: 10.1016/j.jprot.2010.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/17/2010] [Accepted: 10/05/2010] [Indexed: 01/01/2023]
Abstract
Complementary 2D-PAGE and 'shotgun' LC-MS/MS approaches were combined to identify medium and low-abundant proteins in sera of Cystic Fibrosis (CF) patients (mild or severe pulmonary disease) in comparison with healthy CF-carrier and non-CF carrier individuals aiming to gain deeper insights into the pathogenesis of this multifactorial genetic disease. 78 differentially expressed spots were identified from 2D-PAGE proteome profiling yielding 28 identifications and postulating the existence of post-translation modifications (PTM). The 'shotgun' approach highlighted altered levels of proteins actively involved in CF: abnormal tissue/airway remodeling, protease/antiprotease imbalance, innate immune dysfunction, chronic inflammation, nutritional imbalance and Pseudomonas aeruginosa colonization. Members of the apolipoproteins family (VDBP, ApoA-I, and ApoB) presented gradually lower expression from non-CF to CF-carrier individuals and from those to CF patients, results validated by an independent assay. The multifunctional enzyme NDKB was identified only in the CF group and independently validated by WB. Its functions account for ion sensor in epithelial cells, pancreatic secretion, neutrophil-mediated inflammation and energy production, highlighting its physiological significance in the context of CF. Complementary proteomics-based approaches are reliable tools to reveal pathways and circulating proteins actively involved in a heterogeneous disease such as CF.
Collapse
Affiliation(s)
- Nuno Charro
- Laboratório de Proteómica, Departamento de Genética, INSA, I.P., Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Anti-inflammatory actions of serine protease inhibitors containing the Kunitz domain. Inflamm Res 2010; 59:679-87. [PMID: 20454830 DOI: 10.1007/s00011-010-0205-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/01/2010] [Accepted: 04/12/2010] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Protease inhibitors, including the Kunitz, Kazal, serpin and mucus families, play important roles in inhibiting protease activities during homeostasis, inflammation, tissue injury, and cancer progression. Interestingly, in addition to their anti-protease activity, protease inhibitors also often possess other intrinsic properties that contribute to termination of the inflammatory process, including modulation of cytokine expression, signal transduction and tissue remodeling. In this review we have tried to summarize recent findings on the Kunitz family of serine proteinase inhibitors and their implications in health and disease. MATERIALS AND METHODS A systematic search was performed in the electronic databases PubMed and ScienceDirect up to October 2009. We tried to limit the review to anti-inflammatory actions and actions not related to protease inhibition. RESULTS AND CONCLUSION Recent studies have demonstrated that the Kunitz inhibitors are not only protease inhibitors, but can also prevent inflammation and tissue injury and subsequently promote tissue remodeling.
Collapse
|
33
|
Crosby LM, Waters CM. Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol 2010; 298:L715-31. [PMID: 20363851 DOI: 10.1152/ajplung.00361.2009] [Citation(s) in RCA: 523] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The recovery of an intact epithelium following lung injury is critical for restoration of lung homeostasis. The initial processes following injury include an acute inflammatory response, recruitment of immune cells, and epithelial cell spreading and migration upon an autologously secreted provisional matrix. Injury causes the release of factors that contribute to repair mechanisms including members of the epidermal growth factor and fibroblast growth factor families (TGF-alpha, KGF, HGF), chemokines (MCP-1), interleukins (IL-1beta, IL-2, IL-4, IL-13), and prostaglandins (PGE(2)), for example. These factors coordinate processes involving integrins, matrix materials (fibronectin, collagen, laminin), matrix metalloproteinases (MMP-1, MMP-7, MMP-9), focal adhesions, and cytoskeletal structures to promote cell spreading and migration. Several key signaling pathways are important in regulating these processes, including sonic hedgehog, Rho GTPases, MAP kinase pathways, STAT3, and Wnt. Changes in mechanical forces may also affect these pathways. Both localized and distal progenitor stem cells are recruited into the injured area, and proliferation and phenotypic differentiation of these cells leads to recovery of epithelial function. Persistent injury may contribute to the pathology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. For example, dysregulated repair processes involving TGF-beta and epithelial-mesenchymal transition may lead to fibrosis. This review focuses on the processes of epithelial restitution, the localization and role of epithelial progenitor stem cells, the initiating factors involved in repair, and the signaling pathways involved in these processes.
Collapse
Affiliation(s)
- Lynn M Crosby
- Departments of 1Physiology, University of Tennessee Health Science Center, Memphis, TN 38163-0001, USA
| | | |
Collapse
|
34
|
Zhuo L, Kimata K. Serum Level of SHAP as a Disease Marker: A Comparison with Hyaluronan. TRENDS GLYCOSCI GLYC 2010. [DOI: 10.4052/tigg.22.80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|