1
|
García-Sancha N, Corchado-Cobos R, Pérez-Losada J. Understanding Susceptibility to Breast Cancer: From Risk Factors to Prevention Strategies. Int J Mol Sci 2025; 26:2993. [PMID: 40243654 PMCID: PMC11988588 DOI: 10.3390/ijms26072993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Breast cancer is the most common malignancy among women globally, with incidence rates continuing to rise. A comprehensive understanding of its risk factors and the underlying biological mechanisms that drive tumor initiation is essential for developing effective prevention strategies. This review examines key non-modifiable risk factors, such as genetic predisposition, demographic characteristics, family history, mammographic density, and reproductive milestones, as well as modifiable risk factors like exogenous hormone exposure, obesity, diet, and physical inactivity. Importantly, reproductive history plays a dual role, providing long-term protection while temporarily increasing breast cancer risk shortly after pregnancy. Current chemoprevention strategies primarily depend on selective estrogen receptor modulators (SERMs), including tamoxifen and raloxifene, which have demonstrated efficacy in reducing the incidence of estrogen receptor-positive breast cancer but remain underutilized due to adverse effects. Emerging approaches such as aromatase inhibitors, RANKL inhibitors, progesterone antagonists, PI3K inhibitors, and immunoprevention strategies show promise for expanding preventive options. Understanding the interactions between risk factors, hormonal influences, and tumorigenesis is critical for optimizing breast cancer prevention and advancing safer, more targeted chemopreventive interventions.
Collapse
Affiliation(s)
- Natalia García-Sancha
- Institute of Molecular and Cellular Biology of Cancer (IBMCC-CIC), CSIC-University of Salamanca, 37007 Salamanca, Spain; (R.C.-C.); (J.P.-L.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Roberto Corchado-Cobos
- Institute of Molecular and Cellular Biology of Cancer (IBMCC-CIC), CSIC-University of Salamanca, 37007 Salamanca, Spain; (R.C.-C.); (J.P.-L.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Jesús Pérez-Losada
- Institute of Molecular and Cellular Biology of Cancer (IBMCC-CIC), CSIC-University of Salamanca, 37007 Salamanca, Spain; (R.C.-C.); (J.P.-L.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
2
|
Orlicky DJ, Smith EE, Johnson J, Hilton AE, Guess MK, Rascoff LG, Arruda JS, Hutchinson-Colas JA, Yang I, Connell KA. Inflammatory Cells in Control and Prolapsed Uterosacral Ligament Tissue. Reprod Sci 2024; 31:3026-3038. [PMID: 38907126 PMCID: PMC11438740 DOI: 10.1007/s43032-024-01618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/03/2024] [Indexed: 06/23/2024]
Abstract
Pelvic organ prolapse (POP), a downward descent of the vagina and/or uterus through the vaginal canal, is a prevalent condition affecting up to 40% of women. Several risk factors of POP have been identified, including childbirth, connective tissue defects, and chronic intra-abdominal pressure; however, the underlying etiologies of POP development are not fully understood, leading to a high burden on patients and the healthcare systems. The uterosacral ligaments are key support structures of the uterus and upper vagina. Our previous work describes observed histopathological changes in uterosacral ligament (USL) tissue and demonstrates the presence of neutrophils in a subgroup of POP individuals. This presence of neutrophils prompted an examination for the presence of a broader spectrum of inflammatory cell types in the USL. Immunohistochemical staining was performed to identify neutrophils, lymphocytes, macrophages, and mast cells outside of the vasculature. All 4 inflammatory cell types were increased in the POP-HQ system-defined POP-Inflammatory (POP-I) phenotype USL tissue relative to the USL tissues of control or other POP-HQ phenotypes. Focal T-lymphocyte and macrophage co-accumulations were observed in the arterial walls from some patients of the POP-vascular (POP-V) phenotype suggesting previous arterial injury. In addition, 1 control and 2 POP-V subjects' USLs contained arterial wall foamy macrophages, evidence of atherosclerosis. These findings further support a complex etiology for POP and indicate that personalized approaches to preventing and treating the condition may be warranted.
Collapse
Affiliation(s)
- David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA.
| | - E Erin Smith
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Joshua Johnson
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ashley E Hilton
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marsha K Guess
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lauren G Rascoff
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jaime S Arruda
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Juana A Hutchinson-Colas
- Department of Obstetrics, Gynecology and Reproductive Sciences, Robert Wood Johnson Medical School, Rutgers Health, New Brunswick, NJ, USA
| | - Ivana Yang
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kathleen A Connell
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
3
|
Fan Q, Yan R, Li Y, Lu L, Liu J, Li S, Fu T, Xue Y, Liu J, Li Z. Exploring Immune Cell Diversity in the Lacrimal Glands of Healthy Mice: A Single-Cell RNA-Sequencing Atlas. Int J Mol Sci 2024; 25:1208. [PMID: 38279208 PMCID: PMC10816500 DOI: 10.3390/ijms25021208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
The lacrimal gland is responsible for maintaining the health of the ocular surface through the production of tears. However, our understanding of the immune system within the lacrimal gland is currently limited. Therefore, in this study, we utilized single-cell RNA sequencing and bioinformatic analysis to identify and analyze immune cells and molecules present in the lacrimal glands of normal mice. A total of 34,891 cells were obtained from the lacrimal glands of mice and classified into 18 distinct cell clusters using Seurat clustering. Within these cell populations, 26 different immune cell subpopulations were identified, including T cells, innate lymphocytes, macrophages, mast cells, dendritic cells, and B cells. Network analysis revealed complex cell-cell interactions between these immune cells, with particularly significant interactions observed among T cells, macrophages, plasma cells, and dendritic cells. Interestingly, T cells were found to be the main source of ligands for the Thy1 signaling pathway, while M2 macrophages were identified as the primary target of this pathway. Moreover, some of these immune cells were validated using immunohistological techniques. Collectively, these findings highlight the abundance and interactions of immune cells and provide valuable insights into the complexity of the lacrimal gland immune system and its relevance to associated diseases.
Collapse
Affiliation(s)
- Qiwei Fan
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Q.F.); (J.L.)
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
| | - Ruyu Yan
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Yan Li
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Liyuan Lu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Jiangman Liu
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Q.F.); (J.L.)
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
| | - Senmao Li
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Ting Fu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Jun Liu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Zhijie Li
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; (R.Y.); (Y.L.); (L.L.); (S.L.); (T.F.); (Y.X.); (J.L.)
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| |
Collapse
|
4
|
Özgüden-Akkoc CG, Mutlu AM, Keskin A, Yumuşak E, Akkoc A. Phenotypic evaluation of mast cells in bovine mammary tissue and mastitis in the context of fibrosis. J DAIRY RES 2023; 90:387-392. [PMID: 38186214 DOI: 10.1017/s0022029923000651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
This research paper addresses the hypothesis that mast cells (MCs) contribute to the formation of mammary fibrosis. MCs are important immune regulatory and immune modulatory cells that play major roles in the inflammatory process. Since there is no detailed knowledge, this research study aimed to comparatively investigate the presence, localization, and immunophenotypes of MCs in healthy and mastitic mammary tissues. A total of 264 mammary samples were evaluated for the examination of mast cells and fibrosis. The mean mast cell number in both acute and chronic mastitis samples were very significantly higher than the control group P < 0.001). A 7.9-fold increase in the number of mast cells was found when the chronic mastitis group was compared with the control (healthy) group. Immunohistochemistry revealed presence of all three immune phenotypes in control and mastitic mammary samples (tryptase + (MCT), chymase + (MCC) and both chymase and tryptase + (MCTC). The mean MCT, MCC, and MCTC numbers in the chronic mastitis group were found to be significantly higher than the control (P < 0.001 for all three phenotypes) but did not differ significantly between control and acute mastitis samples. When the mean numbers of MCT, MCC, and MCTC in the control group and chronic mastitis group were compared, a 10.5, 7.8, and a 4.1-fold increase was observed, respectively. The amount of connective tissue was strongly increased in tissues with chronic mastitis and a 3.01-fold increase was detected compared to the control group. A statistically significant relation was also found between the amount of fibrosis and the increased number of total MCs (P < 0.001).
Collapse
Affiliation(s)
- Cansel Güzin Özgüden-Akkoc
- Department of Histology & Embryology, Faculty of Veterinary Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Ayşe Meriç Mutlu
- Department of Pathology, Health Sciences Institute, Bursa Uludağ University, Bursa, Turkey
| | - Abdülkadir Keskin
- Department of Gynaecology & Obstetrics, Faculty of Veterinary Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Ezgi Yumuşak
- Department of Pathology, Health Sciences Institute, Bursa Uludağ University, Bursa, Turkey
| | - Ahmet Akkoc
- Department of Pathology, Faculty of Veterinary Medicine, Bursa Uludağ University, Bursa, Turkey
| |
Collapse
|
5
|
Singh P, Ali SA. Mature white adipocyte plasticity during mammary gland remodelling and cancer. CELL INSIGHT 2023; 2:100123. [PMID: 37771567 PMCID: PMC10522874 DOI: 10.1016/j.cellin.2023.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023]
Abstract
Mammary gland growth and differentiation predominantly rely on stromal-epithelial cellular communication. Specifically, mammary adipocytes play a crucial role in ductal morphogenesis, as well as in the proliferation and differentiation of mammary epithelial cells. The process of lactation entails a reduction in the levels of white adipose tissue associated with the MG, allowing for the expansion of milk-producing epithelial cells. Subsequently, during involution and the regression of the milk-producing unit, adipocyte layers resurface, occupying the vacated space. This dynamic phenomenon underscores the remarkable plasticity and expansion of adipose tissue. Traditionally considered terminally differentiated, adipocytes have recently been found to exhibit plasticity in certain contexts. Unraveling the significance of this cell type within the MG could pave the way for novel approaches to reduce the risk of breast cancer and enhance lactation performance. Moreover, a comprehensive understanding of adipocyte trans- and de-differentiation processes holds promise for the development of innovative therapeutic interventions targeting cancer, fibrosis, obesity, type 2 diabetes, and other related diseases. Additionally, adipocytes may find utility in the realm of regenerative medicine. This review article provides a comprehensive examination of recent advancements in our understanding of MG remodelling, with a specific focus on the tissue-specific functions of adipocytes and their role in the development of cancer. By synthesizing current knowledge in this field, it aims to consolidate our understanding of adipocyte biology within the context of mammary gland biology, thereby fostering further research and discovery in this vital area.
Collapse
Affiliation(s)
- Parul Singh
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, 132001, India
- Division of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, 132001, India
- Division Proteomics of Stem Cells and Cancer, German Cancer Research Center, 69120, Heidelberg, Germany
| |
Collapse
|
6
|
Chia SL, Kapoor S, Carvalho C, Bajénoff M, Gentek R. Mast cell ontogeny: From fetal development to life-long health and disease. Immunol Rev 2023; 315:31-53. [PMID: 36752151 PMCID: PMC10952628 DOI: 10.1111/imr.13191] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mast cells (MCs) are evolutionarily ancient innate immune cells with important roles in protective immunity against bacteria, parasites, and venomous animals. They can be found in most organs of the body, where they also contribute to normal tissue functioning, for example by engaging in crosstalk with nerves. Despite this, they are most widely known for their detrimental roles in allergy, anaphylaxis, and atopic disease. Just like macrophages, mast cells were conventionally thought to originate from the bone marrow. However, they are already present in fetal tissues before the onset of bone marrow hematopoiesis, questioning this dogma. In recent years, our view of myeloid cell ontogeny has been revised. We now know that the first mast cells originate from progenitors made in the extra-embryonic yolk sac, and later get supplemented with mast cells produced from subsequent waves of hematopoiesis. In most connective tissues, sizeable populations of fetal-derived mast cells persist into adulthood, where they self-maintain largely independently from the bone marrow. These developmental origins are highly reminiscent of macrophages, which are known to have critical functions in development. Mast cells too may thus support healthy development. Their fetal origins and longevity also make mast cells susceptible to genetic and environmental perturbations, which may render them pathological. Here, we review our current understanding of mast cell biology from a developmental perspective. We first summarize how mast cell populations are established from distinct hematopoietic progenitor waves, and how they are subsequently maintained throughout life. We then discuss what functions mast cells may normally have at early life stages, and how they may be co-opted to cause, worsen, or increase susceptibility to disease.
Collapse
Affiliation(s)
- Shin Li Chia
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Simran Kapoor
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Cyril Carvalho
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Marc Bajénoff
- Centre d'Immunologie de Marseille‐Luminy (CIML)MarseilleFrance
| | - Rebecca Gentek
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| |
Collapse
|
7
|
Chakraborty S, Biswas S. Structure-Based Optimization of Protease-Inhibitor Interactions to Enhance Specificity of Human Stefin-A against Falcipain-2 from the Plasmodium falciparum 3D7 Strain. Biochemistry 2023; 62:1053-1069. [PMID: 36763907 DOI: 10.1021/acs.biochem.2c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The emergence of resistance in Plasmodium falciparum to frontline artemisinin-based combination therapies has raised global concerns and emphasized the identification of new drug targets for malaria. Cysteine protease falcipain-2 (FP2), involved in host hemoglobin degradation and instrumental in parasite survival, has long been proposed as a promising malarial drug target. However, designing active-site-targeted small-molecule inhibitors of FP2 becomes challenging due to their off-target specificity toward highly homologous human cysteine cathepsins. The use of proteinaceous inhibitors, which have nonconserved exosite interactions and larger interface area, can effectively circumvent this problem. In this study, we report for the first time that human stefin-A (STFA) efficiently inhibits FP2 with Ki values in the nanomolar range. The FP2-STFA complex crystal structure, determined in this study, and sequence analyses identify a unique nonconserved exosite interaction, compared to human cathepsins. Designing a mutation Lys68 > Arg in STFA amplifies its selectivity garnering a 3.3-fold lower Ki value against FP2, and the crystal structure of the FP2-STFAK68R complex shows stronger electrostatic interaction between side-chains of Arg68 (STFAK68R) and Asp109 (FP2). Comparative structural analyses and molecular dynamics (MD) simulation studies of the complexes further confirm higher buried surface areas, better interaction energies for FP2-STFAK68R, and consistency of the newly developed electrostatic interaction (STFA-R68-FP2-D109) in the MD trajectory. The STFA-K68R mutant also shows higher Ki values against human cathepsin-L and stefin, a step toward eliminating off-target specificity. Hence, this work underlines the design of host-based proteinaceous inhibitors against FP2, with further optimization to render them more potent and selective.
Collapse
Affiliation(s)
- Subhoja Chakraborty
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhan Nagar, Kolkata 700064, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sampa Biswas
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhan Nagar, Kolkata 700064, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
8
|
IL-4 and IL-13 Promote Proliferation of Mammary Epithelial Cells through STAT6 and IRS-1. Int J Mol Sci 2021; 22:ijms222112008. [PMID: 34769439 PMCID: PMC8584551 DOI: 10.3390/ijms222112008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
T helper (Th)2 cytokines such as interleukin (IL)-4 and IL-13 control immune function by acting on leukocytes. They also regulate multiple responses in non-hematopoietic cells. During pregnancy, IL-4 and IL-13 facilitate alveologenesis of mammary glands. This particular morphogenesis generates alveoli from existing ducts and requires substantial cell proliferation. Using 3D cultures of primary mouse mammary epithelial cells, we demonstrate that IL-4 and IL-13 promote cell proliferation, leading to enlargement of mammary acini with partially filled lumens. The mitogenic effects of IL-4 and IL-13 are mediated by STAT6 as inhibition of STAT6 suppresses cell proliferation and improves lumen formation. In addition, IL-4 and IL-13 stimulate tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1). Prolonged treatment with these cytokines leads to increased IRS-1 abundance, which, in turn, amplifies IL-4- and IL-13-stimulated IRS-1 tyrosine phosphorylation. Through signaling crosstalk between IL-4/IL-13 and insulin, a hormone routinely included in mammary cultures, IRS-1 tyrosine phosphorylation is further enhanced. Lowering IRS-1 expression reduces cell proliferation, suggesting that IRS-1 is involved in IL-4- and IL-13-stimulated cell proliferation. Thus, a Th2-dominant cytokine milieu during pregnancy confers mammary gland development by promoting cell proliferation.
Collapse
|
9
|
Valdés-Mora F, Salomon R, Gloss BS, Law AMK, Venhuizen J, Castillo L, Murphy KJ, Magenau A, Papanicolaou M, Rodriguez de la Fuente L, Roden DL, Colino-Sanguino Y, Kikhtyak Z, Farbehi N, Conway JRW, Sikta N, Oakes SR, Cox TR, O'Donoghue SI, Timpson P, Ormandy CJ, Gallego-Ortega D. Single-cell transcriptomics reveals involution mimicry during the specification of the basal breast cancer subtype. Cell Rep 2021; 35:108945. [PMID: 33852842 DOI: 10.1016/j.celrep.2021.108945] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/29/2020] [Accepted: 03/14/2021] [Indexed: 01/02/2023] Open
Abstract
Basal breast cancer is associated with younger age, early relapse, and a high mortality rate. Here, we use unbiased droplet-based single-cell RNA sequencing (RNA-seq) to elucidate the cellular basis of tumor progression during the specification of the basal breast cancer subtype from the luminal progenitor population in the MMTV-PyMT (mouse mammary tumor virus-polyoma middle tumor-antigen) mammary tumor model. We find that basal-like cancer cells resemble the alveolar lineage that is specified upon pregnancy and encompass the acquisition of an aberrant post-lactation developmental program of involution that triggers remodeling of the tumor microenvironment and metastatic dissemination. This involution mimicry is characterized by a highly interactive multicellular network, with involution cancer-associated fibroblasts playing a pivotal role in extracellular matrix remodeling and immunosuppression. Our results may partially explain the increased risk and poor prognosis of breast cancer associated with childbirth.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cancer-Associated Fibroblasts/metabolism
- Cancer-Associated Fibroblasts/pathology
- Carcinoma, Basal Cell/genetics
- Carcinoma, Basal Cell/metabolism
- Carcinoma, Basal Cell/pathology
- Cell Lineage/genetics
- Chemokine CXCL12/genetics
- Chemokine CXCL12/metabolism
- Collagen Type I, alpha 1 Chain/genetics
- Collagen Type I, alpha 1 Chain/metabolism
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Female
- Gene Expression Regulation, Neoplastic
- High-Throughput Nucleotide Sequencing
- Humans
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/virology
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Mammary Tumor Virus, Mouse/growth & development
- Mammary Tumor Virus, Mouse/pathogenicity
- Matrix Metalloproteinase 3/genetics
- Matrix Metalloproteinase 3/metabolism
- Mice
- Neoplasm Metastasis
- Pregnancy
- Single-Cell Analysis
- Transcriptome
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- Fátima Valdés-Mora
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; Personalised Medicine, Children's Cancer Institute, Sydney, NSW 2031, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Garvan-Weizmann Centre for Cellular Genomics. Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.
| | - Robert Salomon
- Personalised Medicine, Children's Cancer Institute, Sydney, NSW 2031, Australia; Garvan-Weizmann Centre for Cellular Genomics. Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; Institute for Biomedical Materials and Devices, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Brian Stewart Gloss
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Andrew Man Kit Law
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Jeron Venhuizen
- Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Lesley Castillo
- Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Kendelle Joan Murphy
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Astrid Magenau
- Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Michael Papanicolaou
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Laura Rodriguez de la Fuente
- Personalised Medicine, Children's Cancer Institute, Sydney, NSW 2031, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Daniel Lee Roden
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Garvan-Weizmann Centre for Cellular Genomics. Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Yolanda Colino-Sanguino
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; Personalised Medicine, Children's Cancer Institute, Sydney, NSW 2031, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia
| | - Zoya Kikhtyak
- Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Nona Farbehi
- Garvan-Weizmann Centre for Cellular Genomics. Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | | | - Neblina Sikta
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Samantha Richelle Oakes
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Thomas Robert Cox
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Seán Ignatius O'Donoghue
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; CSIRO Data61, Eveleigh, NSW 2015, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Paul Timpson
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Christopher John Ormandy
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - David Gallego-Ortega
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Garvan-Weizmann Centre for Cellular Genomics. Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.
| |
Collapse
|
10
|
Dawson CA, Visvader JE. The Cellular Organization of the Mammary Gland: Insights From Microscopy. J Mammary Gland Biol Neoplasia 2021; 26:71-85. [PMID: 33835387 DOI: 10.1007/s10911-021-09483-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/25/2021] [Indexed: 12/19/2022] Open
Abstract
Despite rapid advances in our knowledge of the cellular heterogeneity and molecular regulation of the mammary gland, how these relate to 3D cellular organization remains unclear. In addition to hormonal regulation, mammary gland development and function is directed by para- and juxtacrine signaling among diverse cell-types, particularly the immune and mesenchymal populations. Precise mapping of the cellular landscape of the breast will help to decipher this complex coordination. Imaging of thin tissue sections has provided foundational information about cell positioning in the mammary gland and now technological advances in tissue clearing and subcellular-resolution 3D imaging are painting a more complete picture. In particular, confocal, light-sheet and multiphoton microscopy applied to intact tissue can fully capture cell morphology, position and interactions, and have the power to identify spatially rare events. This review will summarize our current understanding of mammary gland cellular organization as revealed by microscopy. We focus on the mouse mammary gland and cover a broad range of immune and stromal cell types at major developmental stages and give insights into important tissue niches and cellular interactions.
Collapse
Affiliation(s)
- Caleb A Dawson
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, 3052, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, 3010, Parkville, VIC, Australia.
| | - Jane E Visvader
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, 3052, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, 3010, Parkville, VIC, Australia
| |
Collapse
|
11
|
Parity reduces mammary repopulating activity but does not affect mammary stem cells defined as CD24 + CD29/CD49fhi in mice. Breast Cancer Res Treat 2020; 183:565-575. [PMID: 32696317 DOI: 10.1007/s10549-020-05804-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/11/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Breast cancer (BCa) mortality is decreasing with early detection and improvement in therapies. The incidence of BCa, however, continues to increase, particularly estrogen-receptor-positive (ER +) subtypes. One of the greatest modifiers of ER + BCa risk is childbearing (parity), with BCa risk halved in young multiparous mothers. Despite convincing epidemiological data, the biology that underpins this protection remains unclear. Parity-induced protection has been postulated to be due to a decrease in mammary stem cells (MaSCs); however, reports to date have provided conflicting data. METHODS We have completed rigorous functional testing of repopulating activity in parous mice using unfractionated and MaSC (CD24midCD49fhi)-enriched populations. We also developed a novel serial transplant method to enable us to assess self-renewal of MaSC following pregnancy. Lastly, as each pregnancy confers additional BCa protection, we subjected mice to multiple rounds of pregnancy to assess whether additional pregnancies impact MaSC activity. RESULTS Here, we report that while repopulating activity in the mammary gland is reduced by parity in the unfractionated gland, it is not due to a loss in the classically defined MaSC (CD24+CD49fhi) numbers or function. Self-renewal was unaffected by parity and additional rounds of pregnancy also did not lead to a decrease in MaSC activity. CONCLUSIONS Our data show instead that parity impacts on the stem-like activity of cells outside the MaSC population.
Collapse
|
12
|
Jena MK, Jaswal S, Kumar S, Mohanty AK. Molecular mechanism of mammary gland involution: An update. Dev Biol 2019; 445:145-155. [DOI: 10.1016/j.ydbio.2018.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/01/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022]
|
13
|
Zwick RK, Rudolph MC, Shook BA, Holtrup B, Roth E, Lei V, Van Keymeulen A, Seewaldt V, Kwei S, Wysolmerski J, Rodeheffer MS, Horsley V. Adipocyte hypertrophy and lipid dynamics underlie mammary gland remodeling after lactation. Nat Commun 2018; 9:3592. [PMID: 30181538 PMCID: PMC6123393 DOI: 10.1038/s41467-018-05911-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/30/2018] [Indexed: 12/23/2022] Open
Abstract
Adipocytes undergo pronounced changes in size and behavior to support diverse tissue functions, but the mechanisms that control these changes are not well understood. Mammary gland-associated white adipose tissue (mgWAT) regresses in support of milk fat production during lactation and expands during the subsequent involution of milk-producing epithelial cells, providing one of the most marked physiological examples of adipose growth. We examined cellular mechanisms and functional implications of adipocyte and lipid dynamics in the mouse mammary gland (MG). Using in vivo analysis of adipocyte precursors and genetic tracing of mature adipocytes, we find mature adipocyte hypertrophy to be a primary mechanism of mgWAT expansion during involution. Lipid tracking and lipidomics demonstrate that adipocytes fill with epithelial-derived milk lipid. Furthermore, ablation of mgWAT during involution reveals an essential role for adipocytes in milk trafficking from, and proper restructuring of, the mammary epithelium. This work advances our understanding of MG remodeling and tissue-specific roles for adipocytes.
Collapse
Affiliation(s)
- Rachel K Zwick
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT, 06520, USA
| | - Michael C Rudolph
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Mail Stop F-8305; RC1 North, 12800 E. 19th Avenue P18-5107, Aurora, CO, 80045, USA
| | - Brett A Shook
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT, 06520, USA
| | - Brandon Holtrup
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT, 06520, USA
| | - Eve Roth
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT, 06520, USA
| | - Vivian Lei
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT, 06520, USA
| | - Alexandra Van Keymeulen
- WELBIO, Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles (ULB), 808, route de Lennik, BatC, C6-130, 1070, Brussels, Belgium
| | - Victoria Seewaldt
- Department of Population Sciences and Bekman Institute, City of Hope, 1500 East Duarte Rd., Duarte, CA, 91010, USA
| | - Stephanie Kwei
- Section of Plastic and Reconstructive Surgery, Department of Surgery, Yale University, 333 Ceder St., New Haven, CT, 06510, USA
| | - John Wysolmerski
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University, 333 Ceder St., New Haven, CT, 06510, USA
| | - Matthew S Rodeheffer
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University, 333 Ceder St., New Haven, CT, 06510, USA
| | - Valerie Horsley
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT, 06520, USA.
- Department of Dermatology, Yale University, 333 Ceder St., New Haven, CT, 06510, USA.
| |
Collapse
|
14
|
Hughes K, Watson CJ. The Multifaceted Role of STAT3 in Mammary Gland Involution and Breast Cancer. Int J Mol Sci 2018; 19:ijms19061695. [PMID: 29875329 PMCID: PMC6032292 DOI: 10.3390/ijms19061695] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023] Open
Abstract
Since seminal descriptions of signal transducer and activator of transcription 3 (STAT3) as a signal transducer and transcriptional regulator, which is most usually activated by phosphorylation of a specific tyrosine residue, a staggering wealth of research has delineated the key role of this transcription factor as a mediator of mammary gland postlactational regression (involution), and paradoxically, a pro-survival factor in breast cancer and some breast cancer cell lines. STAT3 is a critical regulator of lysosomal-mediated programmed cell death (LM-PCD) during mammary gland involution, where uptake of milk fat globules, and consequent high levels of free fatty acids, cause permeabilisation of lysosomal vesicle membranes, in turn leading to cathepsin protease leakage and cell death. A recent proteomic screen of STAT3-induced changes in lysosomal membrane protein components has highlighted wide-ranging effects of STAT3, which may coordinate LM-PCD via the stimulation of endocytosis, intracellular trafficking, and lysosome biogenesis. In parallel, STAT3 regulates the acute phase response during the first phase of involution, and it contributes to shaping the pro-tumourigenic 'wound healing' signature of the gland during the second phase of this process. STAT3 activation during involution is important across species, although some differences exist in the progression of involution in dairy cows. In breast cancer, a number of upstream regulators can lead to STAT3 activation and the effects of phosphorylation of STAT3 are equally wide-ranging. Recent studies have implicated microRNAs in some regulatory pathways. In this review, we will examine the multifaceted role of STAT3 in mammary gland involution and tumourigenesis, incorporating a review of these fundamental processes in tandem with a discussion of recent developments in this field.
Collapse
Affiliation(s)
- Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | - Christine J Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
15
|
Stromal cells in breast cancer as a potential therapeutic target. Oncotarget 2018; 9:23761-23779. [PMID: 29805773 PMCID: PMC5955086 DOI: 10.18632/oncotarget.25245] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Breast cancer in the United States is the second most commonly diagnosed cancer in women. About 1 in 8 women will develop invasive breast cancer over the course of her lifetime and breast cancer remains the second leading cause of cancer-related death. In pursuit of novel therapeutic strategies, researchers have examined the tumor microenvironment as a potential anti-cancer target. In addition to neoplastic cells, the tumor microenvironment is composed of several critical normal cell types, including fibroblasts, vascular and lymph endothelial cells, osteoclasts, adipocytes, and immune cells. These cells have important roles in healthy tissue stasis, which frequently are altered in tumors. Indeed, tumor-associated stromal cells often contribute to tumorigenesis, tumor progression, and metastasis. Consequently, these host cells may serve as a possible target in anti-tumor and anti-metastatic therapeutic strategies. Targeting the tumor associated host cells offers the benefit that such cells do not mutate and develop resistance in response to treatment, a major cause of failure in cancer therapeutics targeting neoplastic cells. This review discusses the role of host cells in the tumor microenvironment during tumorigenesis, progression, and metastasis, and provides an overview of recent developments in targeting these cell populations to enhance cancer therapy efficacy.
Collapse
|
16
|
Abstract
Adipose tissue depots can exist in close association with other organs, where they assume diverse, often non-traditional functions. In stem cell-rich skin, bone marrow, and mammary glands, adipocytes signal to and modulate organ regeneration and remodeling. Skin adipocytes and their progenitors signal to hair follicles, promoting epithelial stem cell quiescence and activation, respectively. Hair follicles signal back to adipocyte progenitors, inducing their expansion and regeneration, as in skin scars. In mammary glands and heart, adipocytes supply lipids to neighboring cells for nutritional and metabolic functions, respectively. Adipose depots adjacent to skeletal structures function to absorb mechanical shock. Adipose tissue near the surface of skin and intestine senses and responds to bacterial invasion, contributing to the body's innate immune barrier. As the recognition of diverse adipose depot functions increases, novel therapeutic approaches centered on tissue-specific adipocytes are likely to emerge for a range of cancers and regenerative, infectious, and autoimmune disorders.
Collapse
Affiliation(s)
- Rachel K Zwick
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Christian F Guerrero-Juarez
- Department of Developmental and Cell Biology, University of California, Irvine, 845 Health Sciences Road, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Valerie Horsley
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA; Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA.
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, 845 Health Sciences Road, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
17
|
Rieanrakwong D, Laoharatchatathanin T, Terashima R, Yonezawa T, Kurusu S, Hasegawa Y, Kawaminami M. Prolactin Suppression of Gonadotropin-Releasing Hormone Initiation of Mammary Gland Involution in Female Rats. Endocrinology 2016; 157:2750-8. [PMID: 27175971 DOI: 10.1210/en.2016-1180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been demonstrated that mammary gland involution after lactation is initiated by accumulation of milk in alveoli after weaning. Here, we report that involution is also dependent on mammary GnRH expression that is suppressed by PRL during lactation. Reduction of plasma prolactin (PRL) by the withdrawal of suckling stimuli increased GnRH and annexin A5 (ANXA5) expression in the mammary tissues after lactation with augmentation of epithelial apoptosis. Intramammary injection of a GnRH antagonist suppressed ANXA5 expression and apoptosis of epithelial cells after forcible weaning at midlactation, whereas local administration of GnRH agonist (GnRHa) caused apoptosis of epithelial cells with ANXA5 augmentation in lactating rats. The latter treatment also decreased mammary weight, milk production, and casein accumulation. Mammary mast cells were strongly immunopositive for GnRH and the number increased in the mammary tissues after weaning. GnRHa was shown to be a chemoattractant for mast cells by mammary local administration of GnRHa and Boyden chamber assay. PRL suppressed the mammary expression of both ANXA5 and GnRH mRNA. It also decreased mast cell numbers in the gland after lactation. These results are the first to demonstrate that GnRH, synthesized locally in the mammary tissues, is required for mammary involution after lactation. GnRH is also suggested to introduce mast cells into the regressing mammary gland and would be in favor of tissue remodeling. The suppression of these processes by PRL is a novel physiological function of PRL.
Collapse
Affiliation(s)
- Duangjai Rieanrakwong
- Laboratories of Veterinary Physiology (D.R., T.L., R.T., T.Y., S.K., M.K.) and Experimental Animal Science (Y.H.), School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan; Laboratory of Veterinary Clinical Pathology (T.Y.), Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; and Faculty of Veterinary Medicine (D.R., T.L.), Mahanakorn University of Technology, Bangkok 10530, Thailand
| | - Titaree Laoharatchatathanin
- Laboratories of Veterinary Physiology (D.R., T.L., R.T., T.Y., S.K., M.K.) and Experimental Animal Science (Y.H.), School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan; Laboratory of Veterinary Clinical Pathology (T.Y.), Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; and Faculty of Veterinary Medicine (D.R., T.L.), Mahanakorn University of Technology, Bangkok 10530, Thailand
| | - Ryota Terashima
- Laboratories of Veterinary Physiology (D.R., T.L., R.T., T.Y., S.K., M.K.) and Experimental Animal Science (Y.H.), School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan; Laboratory of Veterinary Clinical Pathology (T.Y.), Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; and Faculty of Veterinary Medicine (D.R., T.L.), Mahanakorn University of Technology, Bangkok 10530, Thailand
| | - Tomohiro Yonezawa
- Laboratories of Veterinary Physiology (D.R., T.L., R.T., T.Y., S.K., M.K.) and Experimental Animal Science (Y.H.), School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan; Laboratory of Veterinary Clinical Pathology (T.Y.), Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; and Faculty of Veterinary Medicine (D.R., T.L.), Mahanakorn University of Technology, Bangkok 10530, Thailand
| | - Shiro Kurusu
- Laboratories of Veterinary Physiology (D.R., T.L., R.T., T.Y., S.K., M.K.) and Experimental Animal Science (Y.H.), School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan; Laboratory of Veterinary Clinical Pathology (T.Y.), Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; and Faculty of Veterinary Medicine (D.R., T.L.), Mahanakorn University of Technology, Bangkok 10530, Thailand
| | - Yoshihisa Hasegawa
- Laboratories of Veterinary Physiology (D.R., T.L., R.T., T.Y., S.K., M.K.) and Experimental Animal Science (Y.H.), School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan; Laboratory of Veterinary Clinical Pathology (T.Y.), Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; and Faculty of Veterinary Medicine (D.R., T.L.), Mahanakorn University of Technology, Bangkok 10530, Thailand
| | - Mitsumori Kawaminami
- Laboratories of Veterinary Physiology (D.R., T.L., R.T., T.Y., S.K., M.K.) and Experimental Animal Science (Y.H.), School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan; Laboratory of Veterinary Clinical Pathology (T.Y.), Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; and Faculty of Veterinary Medicine (D.R., T.L.), Mahanakorn University of Technology, Bangkok 10530, Thailand
| |
Collapse
|
18
|
Inman JL, Robertson C, Mott JD, Bissell MJ. Mammary gland development: cell fate specification, stem cells and the microenvironment. Development 2015; 142:1028-42. [DOI: 10.1242/dev.087643] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of the mammary gland is unique: the final stages of development occur postnatally at puberty under the influence of hormonal cues. Furthermore, during the life of the female, the mammary gland can undergo many rounds of expansion and proliferation. The mammary gland thus provides an excellent model for studying the ‘stem/progenitor’ cells that allow this repeated expansion and renewal. In this Review, we provide an overview of the different cell types that constitute the mammary gland, and discuss how these cell types arise and differentiate. As cellular differentiation cannot occur without proper signals, we also describe how the tissue microenvironment influences mammary gland development.
Collapse
Affiliation(s)
- Jamie L. Inman
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | - Claire Robertson
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | - Joni D. Mott
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
19
|
Tumor-suppressive activity of Lunatic Fringe in prostate through differential modulation of Notch receptor activation. Neoplasia 2014; 16:158-67. [PMID: 24709423 DOI: 10.1593/neo.131870] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/06/2014] [Accepted: 01/17/2014] [Indexed: 01/10/2023] Open
Abstract
Elevated Notch ligand and receptor expression has been associated with aggressive forms of prostate cancer, suggesting a role for Notch signaling in regulation of prostate tumor initiation and progression. Here, we report a critical role for Lunatic Fringe (Lfng), which encodes an O-fucosylpeptide 3-ß-N-acetylglucosaminyltransferase known to modify epidermal growth factor repeats of Notch receptor proteins, in regulation of prostate epithelial differentiation and proliferation, as well as in prostate tumor suppression. Deletion of Lfng in mice caused altered Notch activation in the prostate, associated with elevated accumulation of Notch1, Notch2, and Notch4 intracellular domains, decreased levels of the putative Notch3 intracellular fragment, as well as increased expression of Hes1, Hes5, and Hey2. Loss of Lfng resulted in expansion of the basal layer, increased proliferation of both luminal and basal cells, and ultimately, prostatic intraepithelial neoplasia. The Lfng-null prostate showed down-regulation of prostatic tumor suppressor gene NKX3.1 and increased androgen receptor expression. Interestingly, expression of LFNG and NKX3.1 were positively correlated in publically available human prostate cancer data sets. Knockdown of LFNG in DU-145 prostate cancer cells led to expansion of CD44(+)CD24(-) and CD49f(+)CD24(-) stem/progenitor-like cell population associated with enhanced prostatosphere-forming capacity. Taken together, these data revealed a tumor-suppressive role for Lfng in the prostate through differential regulation of Notch signaling.
Collapse
|
20
|
da Silva EZM, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell. J Histochem Cytochem 2014; 62:698-738. [PMID: 25062998 PMCID: PMC4230976 DOI: 10.1369/0022155414545334] [Citation(s) in RCA: 421] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role.
Collapse
Affiliation(s)
- Elaine Zayas Marcelino da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| | - Maria Célia Jamur
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| | - Constance Oliver
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| |
Collapse
|
21
|
Unsworth A, Anderson R, Britt K. Stromal fibroblasts and the immune microenvironment: partners in mammary gland biology and pathology? J Mammary Gland Biol Neoplasia 2014; 19:169-82. [PMID: 24984900 DOI: 10.1007/s10911-014-9326-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/25/2014] [Indexed: 12/13/2022] Open
Abstract
The microenvironment of a tumor has emerged recently as a critical contributor to the development of cancer. Within this environment, fibroblasts and immune cells are the cell lineages that seem to be active mediators of tumour development. The activated fibroblasts that are also present during wound healing and chronic inflammation have been studied extensively. Their activation leads to altered gene expression profiles that markedly increase growth factor and cytokine secretion, leading to major alterations in the immune cell microenvironment. To better understand normal tissue development, wound healing and the chronic inflammation that leads to cancer, we review here information available on the role of fibroblasts and immune cells in normal breast development and in cancer. We also discuss the immunogenicity of breast cancer compared to other cancers and the contribution of the immune microenvironment to the initiation, progression and metastasis of tumors. Also reviewed is the limited knowledge on the role of immune cells and fibroblasts in normal development and whether the risk of cancer increases when their control is not tightly regulated.
Collapse
Affiliation(s)
- Ashleigh Unsworth
- Peter MacCallum Cancer Centre, 7 St Andrews Place East, Melbourne, 3002, Australia
| | | | | |
Collapse
|
22
|
Fornetti J, Martinson HA, Betts CB, Lyons TR, Jindal S, Guo Q, Coussens LM, Borges VF, Schedin P. Mammary gland involution as an immunotherapeutic target for postpartum breast cancer. J Mammary Gland Biol Neoplasia 2014; 19:213-28. [PMID: 24952477 PMCID: PMC4363120 DOI: 10.1007/s10911-014-9322-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/09/2014] [Indexed: 12/24/2022] Open
Abstract
Postpartum mammary gland involution has been identified as tumor-promotional and is proposed to contribute to the increased rates of metastasis and poor survival observed in postpartum breast cancer patients. In rodent models, the involuting mammary gland microenvironment is sufficient to induce enhanced tumor cell growth, local invasion, and metastasis. Postpartum involution shares many attributes with wound healing, including upregulation of genes involved in immune responsiveness and infiltration of tissue by immune cells. In rodent models, treatment with non-steroidal anti-inflammatory drugs (NSAIDs) ameliorates the tumor-promotional effects of involution, consistent with the immune milieu of the involuting gland contributing to tumor promotion. Currently, immunotherapy is being investigated as a means of breast cancer treatment with the purpose of identifying ways to enhance anti-tumor immune responses. Here we review evidence for postpartum mammary gland involution being a uniquely defined 'hot-spot' of pro-tumorigenic immune cell infiltration, and propose that immunotherapy should be explored for prevention and treatment of breast cancers that arise in this environment.
Collapse
Affiliation(s)
- Jaime Fornetti
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
- Program in Reproductive Sciences, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Holly A. Martinson
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, Aurora, CO 80045, USA
| | - Courtney B. Betts
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
- Cell Biology, Stem cells, and Development, 12801 E 17th Ave, Aurora, CO 80045, USA
| | - Traci R. Lyons
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
| | - Sonali Jindal
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
| | - Qiuchen Guo
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, Aurora, CO 80045, USA
| | - Lisa M. Coussens
- Department of Cell & Developmental Biology, Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Virginia F. Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
| | - Pepper Schedin
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
- Program in Reproductive Sciences, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, Aurora, CO 80045, USA
- Cell Biology, Stem cells, and Development, 12801 E 17th Ave, Aurora, CO 80045, USA
- Department of Cell & Developmental Biology, Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
23
|
The involvement of proteoglycans in the human plasma prekallikrein interaction with the cell surface. PLoS One 2014; 9:e91280. [PMID: 24621563 PMCID: PMC3951348 DOI: 10.1371/journal.pone.0091280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/09/2014] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The aim of this work was to evaluate the role of human plasma prekallikrein assembly and processing in cells and to determine whether proteoglycans, along with high molecular weight kininogen (H-kininogen), influence this interaction. METHODS We used the endothelial cell line ECV304 and the epithelial cell lines CHO-K1 (wild type) and CHO-745 (deficient in proteoglycans). Prekallikrein endocytosis was studied using confocal microscopy, and prekallikrein cleavage/activation was determined by immunoblotting using an antibody directed to the prekallikrein sequence C364TTKTSTR371 and an antibody directed to the entire H-kininogen molecule. RESULTS At 37°C, prekallikrein endocytosis was assessed in the absence and presence of exogenously applied H-kininogen and found to be 1,418.4±0.010 and 1,070.3±0.001 pixels/cell, respectively, for ECV304 and 1,319.1±0.003 and 631.3±0.001 pixels/cell, respectively, for CHO-K1. No prekallikrein internalization was observed in CHO-745 in either condition. Prekallikrein colocalized with LysoTracker in the absence and presence of exogenous H-kininogen at levels of 76.0% and 88.5%, respectively, for ECV304 and at levels of 40.7% and 57.0%, respectively, for CHO-K1. After assembly on the cell surface, a plasma kallikrein fragment of 53 kDa was predominant in the incubation buffer of all the cell lines studied, indicating specific proteolysis; plasma kallikrein fragments of 48-44 kDa and 34-32 kDa were also detected in the incubation buffer, indicating non-specific cleavage. Bradykinin free H-kininogen internalization was not detected in CHO-K1 or CHO-745 cells at 37°C. CONCLUSION The prekallikrein interaction with the cell surface is temperature-dependent and independent of exogenously applied H-kininogen, which results in prekallikrein endocytosis promoted by proteoglycans. Prekallikrein proteolysis/activation is influenced by H-kininogen/glycosaminoglycans assembly and controls plasma kallikrein activity.
Collapse
|
24
|
Macias H, Hinck L. Mammary gland development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 1:533-57. [PMID: 22844349 DOI: 10.1002/wdev.35] [Citation(s) in RCA: 523] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammary gland develops through several distinct stages. The first transpires in the embryo as the ectoderm forms a mammary line that resolves into placodes. Regulated by epithelial–mesenchymal interactions, the placodes descend into the underlying mesenchyme and produce the rudimentary ductal structure of the gland present at birth. Subsequent stages of development—pubertal growth, pregnancy, lactation, and involution—occur postnatally under the regulation of hormones. Puberty initiates branching morphogenesis, which requires growth hormone (GH) and estrogen, as well as insulin-like growth factor 1 (IGF1), to create a ductal tree that fills the fat pad. Upon pregnancy, the combined actions of progesterone and prolactin generate alveoli, which secrete milk during lactation. Lack of demand for milk at weaning initiates the process of involution whereby the gland is remodeled back to its prepregnancy state. These processes require numerous signaling pathways that have distinct regulatory functions at different stages of gland development. Signaling pathways also regulate a specialized subpopulation of mammary stem cells that fuel the dramatic changes in the gland occurring with each pregnancy. Our knowledge of mammary gland development and mammary stem cell biology has significantly contributed to our understanding of breast cancer and has advanced the discovery of therapies to treat this disease.
Collapse
Affiliation(s)
- Hector Macias
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | | |
Collapse
|
25
|
Portelli MA, Siedlinski M, Stewart CE, Postma DS, Nieuwenhuis MA, Vonk JM, Nurnberg P, Altmuller J, Moffatt MF, Wardlaw AJ, Parker SG, Connolly MJ, Koppelman GH, Sayers I. Genome-wide protein QTL mapping identifies human plasma kallikrein as a post-translational regulator of serum uPAR levels. FASEB J 2013; 28:923-34. [PMID: 24249636 PMCID: PMC3898658 DOI: 10.1096/fj.13-240879] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The soluble cleaved urokinase plasminogen activator receptor (scuPAR) is a circulating protein detected in multiple diseases, including various cancers, cardiovascular disease, and kidney disease, where elevated levels of scuPAR have been associated with worsening prognosis and increased disease aggressiveness. We aimed to identify novel genetic and biomolecular mechanisms regulating scuPAR levels. Elevated serum scuPAR levels were identified in asthma (n=514) and chronic obstructive pulmonary disease (COPD; n=219) cohorts when compared to controls (n=96). In these cohorts, a genome-wide association study of serum scuPAR levels identified a human plasma kallikrein gene (KLKB1) promoter polymorphism (rs4253238) associated with serum scuPAR levels in a control/asthma population (P=1.17×10−7), which was also observed in a COPD population (combined P=5.04×10−12). Using a fluorescent assay, we demonstrated that serum KLKB1 enzymatic activity was driven by rs4253238 and is inverse to scuPAR levels. Biochemical analysis identified that KLKB1 cleaves scuPAR and negates scuPAR's effects on primary human bronchial epithelial cells (HBECs) in vitro. Chymotrypsin was used as a proproteolytic control, while basal HBECs were used as a control to define scuPAR-driven effects. In summary, we reveal a novel post-translational regulatory mechanism for scuPAR using a hypothesis-free approach with implications for multiple human diseases.—Portelli, M. A., Siedlinski, M., Stewart, C. E., Postma, D. S., Nieuwenhuis, M. A., Vonk, J. M., Nurnberg, P., Altmuller, J., Moffatt, M. F., Wardlaw, A. J., Parker, S. G., Connolly, M. J., Koppelman, G. H., Sayers, I. Genome-wide protein QTL mapping identifies human plasma kallikrein as a post-translational regulator of serum uPAR levels.
Collapse
Affiliation(s)
- Michael A Portelli
- 2Division of Respiratory Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Feener EP, Zhou Q, Fickweiler W. Role of plasma kallikrein in diabetes and metabolism. Thromb Haemost 2013; 110:434-41. [PMID: 23676986 DOI: 10.1160/th13-02-0179] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/03/2013] [Indexed: 01/06/2023]
Abstract
Plasma kallikrein (PK) is a serine protease generated from plasma prekallikrein, an abundant circulating zymogen expressed by the Klkb1 gene. The physiological actions of PK have been primarily attributed to its production of bradykinin and activation of coagulation factor XII, which promotes inflammation and the intrinsic coagulation pathway. Recent genetic, molecular, and pharmacological studies of PK have provided further insight into its role in physiology and disease. Genetic analyses have revealed common Klkb1 variants that are association with blood metabolite levels, hypertension, and coagulation. Characterisation of animal models with Klkb1 deficiency and PK inhibition have demonstrated effects on inflammation, vascular function, blood pressure regulation, thrombosis, haemostasis, and metabolism. These reports have also identified a host of PK substrates and interactions, which suggest an expanded physiological role for this protease beyond the bradykinin system and coagulation. The review summarises the mechanisms that contribute to PK activation and its emerging role in diabetes and metabolism.
Collapse
Affiliation(s)
- E P Feener
- Edward P. Feener, PhD, Joslin Diabetes Center, One Joslin Place, Boston, Massachusetts 02215, USA, Tel.: +1 617 309 2599, Fax: +1 617 309 2637, E-mail:
| | | | | |
Collapse
|
27
|
Ramirez RA, Lee A, Schedin P, Russell JS, Masso-Welch PA. Alterations in mast cell frequency and relationship to angiogenesis in the rat mammary gland during windows of physiologic tissue remodeling. Dev Dyn 2012; 241:890-900. [PMID: 22431477 DOI: 10.1002/dvdy.23778] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The mammary epithelium undergoes proliferation and regression accompanied by remodeling of the fibrocellular and vascular stroma. Mast cells are abundant in these compartments and have been implicated in remodeling during wound healing and cancer progression. The purpose of this study was to test the hypothesis that mast cell abundance correlates with physiologic mammary tissue remodeling during estrous cycling, lactogenesis (pregnancy and lactation) and involution. RESULTS Mast cell and capillary frequency were quantified in the stroma surrounding ducts and lobules from mammary glands of rats. During estrous cycling, periductal mast cell numbers were unchanged, but lobule-associated mast cells significantly increased in the regressive phase of diestrus II. During lactogenesis, lobular stroma mast cells peaked early in pregnancy, at D2, followed by a significant decrease throughout lactation. Involution was associated with a rapid return in mast cell numbers, similar to diestrus II. Lobular vascularization peaked during the state of metestrus, when limited secretory differentiation occurs. Lobular angiogenesis peaked at D7 of pregnancy, regressed, and then returned to high levels during lactation and early involution, when secretory differentiation is high. CONCLUSIONS These results suggest mast cells are predominantly associated with regressive lobular remodeling during cycling and involution, whereas angiogenesis is predominantly associated with secretory differentiation.
Collapse
Affiliation(s)
- Robert A Ramirez
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | | | |
Collapse
|
28
|
Hughes K, Wickenden JA, Allen JE, Watson CJ. Conditional deletion of Stat3 in mammary epithelium impairs the acute phase response and modulates immune cell numbers during post-lactational regression. J Pathol 2012; 227:106-17. [PMID: 22081431 PMCID: PMC3477635 DOI: 10.1002/path.3961] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/04/2011] [Accepted: 10/31/2011] [Indexed: 12/31/2022]
Abstract
Mammary gland regression following weaning (involution) is associated with extensive cell death and the acquisition of an inflammatory signature. Characterizing the interplay between mammary epithelial cells, the re-emerging stroma and immune cells has implications for the understanding of the pathogenesis of pregnancy-associated breast cancer. Stat3 has a role in orchestrating cell death and involution, and we sought to determine whether expression of Stat3 by the mammary epithelium also influences the innate immune environment and inflammatory cell influx in the gland. We examined mice in which Stat3 is conditionally deleted only in the mammary epithelium. Distinct sets of genes associated with the acute phase response and innate immunity are markedly up-regulated during first phase involution in a Stat3-dependent manner. During second phase involution, chitinase 3-like 1, which has been associated with wound healing and chronic inflammatory conditions, is dramatically up-regulated by Stat3. Also at this time, the number of mammary macrophages and mast cells increases per unit area, and this increase is impaired in the absence of epithelial Stat3. Furthermore, expression of arginase-1 and Ym1, markers of alternatively activated macrophages, is significantly decreased in the absence of Stat3, whilst iNOS, a marker associated with classically activated macrophages, shows significantly increased expression in the Stat3-deleted glands. Thus, Stat3 is a key transcriptional regulator of genes associated with innate immunity and wound healing and influences mammary macrophage and mast cell numbers. The presence of epithelial Stat3 appears to polarize the macrophages and epithelial cells towards an alternatively activated phenotype, since in the absence of Stat3, the gland retains a phenotype associated with classically activated macrophages. These findings have relevance to the study of pregnancy-associated breast cancer and the role of Stat3 signalling in recruitment of alternatively activated tumour-associated macrophages in breast cancer. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
|
29
|
Jing H, Wang Z, Chen Y. Effect of Oestradiol on Mast Cell Number and Histamine Level in the Mammary Glands of Rat. Anat Histol Embryol 2011; 41:170-6. [DOI: 10.1111/j.1439-0264.2011.01120.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Abstract
The mammary gland undergoes a spectacular series of changes as it develops, and maintains a remarkable capacity to remodel and regenerate for several decades. Mammary morphogenesis has been investigated for over 100 years, motivated by the dairy industry and cancer biologists. Over the past decade, the gland has emerged as a major model system in its own right for understanding the cell biology of tissue morphogenesis. Multiple signalling pathways from several cell types are orchestrated together with mechanical cues and cell rearrangements to establish the pattern of the mammary gland. The integrated mechanical and molecular pathways that control mammary morphogenesis have implications for the developmental regulation of other epithelial organs.
Collapse
|
31
|
Nguyen DH, Martinez-Ruiz H, Barcellos-Hoff MH. Consequences of epithelial or stromal TGFβ1 depletion in the mammary gland. J Mammary Gland Biol Neoplasia 2011; 16:147-55. [PMID: 21590374 DOI: 10.1007/s10911-011-9218-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/14/2011] [Indexed: 01/21/2023] Open
Abstract
Transforming growth factor β1 (TGFβ) affects stroma and epithelial composition and interactions that mediate mammary development and determine the course of cancer. The reduction of TGFβ in Tgfβ1 heterozygote mice, which are healthy and long-lived, provides an important model to dissect the contribution of TGFβ in mammary gland biology and cancer. We used both intact mice and mammary chimeras in conjunction with Tgfβ1 genetic depletion and TGFβ neutralizing antibodies to evaluate how stromal or epithelial TGFβ depletion affect mammary development and response to physiological stimuli. Our studies of radiation carcinogenesis have revealed new aspects of TGFβ biology and suggest that the paradoxical TGFβ switch from tumor suppressor to tumor promoter can be resolved by assessing distinct stromal versus epithelial actions.
Collapse
Affiliation(s)
- David H Nguyen
- Endocrinology Graduate Group, University of California, Berkeley, CA, USA
| | | | | |
Collapse
|
32
|
Peng PH, Wu CC, Liu SC, Chang KP, Chen CD, Chang YT, Hsu CW, Chang YS, Yu JS. Quantitative plasma proteome analysis reveals aberrant level of blood coagulation-related proteins in nasopharyngeal carcinoma. J Proteomics 2011; 74:744-57. [PMID: 21376147 DOI: 10.1016/j.jprot.2011.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 01/17/2011] [Accepted: 02/18/2011] [Indexed: 01/11/2023]
|
33
|
Khokha R, Werb Z. Mammary gland reprogramming: metalloproteinases couple form with function. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004333. [PMID: 21106646 DOI: 10.1101/cshperspect.a004333] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The adult mammary structure provides for the rapid growth, development, and immunological protection of the live-born young of mammals through its production of milk. The dynamic remodeling of the branched epithelial structure of the mammary gland in response to physiological stimuli that allow its programmed branching morphogenesis at puberty, cyclical turnover during the reproductive cycle, differentiation into a secretory organ at parturition, postlactational involution, and ultimately, regression with age is critical for these processes. Extracellular metalloproteinases are essential for the remodeling programs that operate in the tissue microenvironment at the interface of the epithelium and the stroma, coupling form with function. Deregulated proteolytic activity drives the transition of a physiological mammary microenvironment into a tumor microenvironment, facilitating malignant transformation.
Collapse
Affiliation(s)
- Rama Khokha
- Ontario Cancer Institute/University Health Network, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
34
|
Abstract
Anaphylaxis is a clinical emergency, and recent reports suggest increased prevalence. A diverse set of primary genetic and environmental influences may confer susceptibility to anaphylactic reactions. Anaphylaxis presents diagnostic and therapeutic challenges. It often manifests with a broad array of symptoms and signs that might be similar to other diseases. The management of anaphylaxis consists of emergency treatment of acute episodes as well as preventive strategies to avoid recurrences. Treatment is complicated by its rapid onset and progression, presence of concurrent diseases or medications, and need for long-term allergen avoidance. Health care professionals must be able to recognize the signs of anaphylaxis, treat an episode promptly and appropriately, and provide preventive recommendations. Recognizing the gaps in our understanding and management of anaphylaxis may help identify promising targets for future treatment and prevention and areas that require further study.
Collapse
Affiliation(s)
- M Ben-Shoshan
- Division of Pediatric Allergy and Clinical Immunology, Department of Pediatrics, McGill University Health Center, Montreal, QC, Canada.
| | | |
Collapse
|
35
|
Affiliation(s)
- Christopher J Farady
- Graduate Group in Biophysics, University of California-San Francisco, San Francisco, CA 94143-2240, USA
| | | |
Collapse
|
36
|
Reed JR, Schwertfeger KL. Immune cell location and function during post-natal mammary gland development. J Mammary Gland Biol Neoplasia 2010; 15:329-39. [PMID: 20730636 PMCID: PMC4204476 DOI: 10.1007/s10911-010-9188-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 08/10/2010] [Indexed: 01/21/2023] Open
Abstract
Post-natal mammary gland development requires complex interactions between the epithelial cells and various cell types within the stroma. Recent studies have illustrated the importance of immune cells and their mediators during the various stages of mammary gland development. However, the mechanisms by which these immune cells functionally contribute to mammary gland development are only beginning to be understood. This review provides an overview of the localization of immune cells within the mammary gland during the various stages of post-natal mammary gland development. Furthermore, recent studies are summarized that illustrate the mechanisms by which these cells are recruited to the mammary gland and their functional roles in mammary gland development.
Collapse
|
37
|
Maller O, Martinson H, Schedin P. Extracellular matrix composition reveals complex and dynamic stromal-epithelial interactions in the mammary gland. J Mammary Gland Biol Neoplasia 2010; 15:301-18. [PMID: 20811805 DOI: 10.1007/s10911-010-9189-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 08/16/2010] [Indexed: 12/25/2022] Open
Abstract
The mammary gland is an excellent model system to study the interplay between stroma and epithelial cells because of the gland's unique postnatal development and its distinct functional states. This review focuses on the contribution of the extracellular matrix (ECM) to stromal-epithelial interactions in the mammary gland. We describe how ECM physical properties, protein composition, and proteolytic state impact mammary gland architecture as well as provide instructive cues that influence the function of mammary epithelial cells during pubertal gland development and throughout adulthood. Further, based on recent proteomic analyses of mammary ECM, we describe known mammary ECM proteins and their potential functions, as well as describe several ECM proteins not previously recognized in this organ. ECM proteins are discussed in the context of the morphologically-distinct stromal subcompartments: the basal lamina, the intra- and interlobular stroma, and the fibrous connective tissue. Future studies aimed at in-depth qualitative and quantitative characterization of mammary ECM within these various subcompartments is required to better elucidate the function of ECM in normal as well as in pathological breast tissue.
Collapse
Affiliation(s)
- Ori Maller
- Department of Medicine, Division of Medical Oncology, University of Colorado-Denver, 12801 E 17th Ave., Aurora, CO 80045, USA
| | | | | |
Collapse
|
38
|
Hovey RC, Aimo L. Diverse and active roles for adipocytes during mammary gland growth and function. J Mammary Gland Biol Neoplasia 2010; 15:279-90. [PMID: 20717712 PMCID: PMC2941079 DOI: 10.1007/s10911-010-9187-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 08/06/2010] [Indexed: 12/18/2022] Open
Abstract
The mammary gland is unique in its requirement to develop in close association with a depot of adipose tissue that is commonly referred to as the mammary fat pad. As discussed throughout this issue, the mammary fat pad represents a complex stromal microenvironment that includes a variety of cell types. In this article we focus on adipocytes as local regulators of epithelial cell growth and their function during lactation. Several important considerations arise from such a discussion. There is a clear and close interrelationship between different stromal tissue types within the mammary fat pad and its adipocytes. Furthermore, these relationships are both stage- and species-dependent, although many questions remain unanswered regarding their roles in these different states. Several lines of evidence also suggest that adipocytes within the mammary fat pad may function differently from those in other fat depots. Finally, past and future technologies present a variety of opportunities to model these complexities in order to more precisely delineate the many potential functions of adipocytes within the mammary glands. A thorough understanding of the role for this cell type in the mammary glands could present numerous opportunities to modify both breast cancer risk and lactation performance.
Collapse
Affiliation(s)
- Russell C Hovey
- Department of Animal Science, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
39
|
Stoop AA, Joshi RV, Eggers CT, Craik CS. Analysis of an engineered plasma kallikrein inhibitor and its effect on contact activation. Biol Chem 2010; 391:425-33. [PMID: 20180651 DOI: 10.1515/bc.2010.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Engineering of protein-protein interactions is used to enhance the affinity or specificity of proteins, such as antibodies or protease inhibitors, for their targets. However, fully diversifying all residues in a protein-protein interface is often unfeasible. Therefore, we limited our phage library for the serine protease inhibitor ecotin by restricting it to only tetranomial diversity and then targeted all 20 amino acid residues involved in protein recognition. This resulted in a high-affinity and highly specific plasma kallikrein inhibitor, ecotin-Pkal. To validate this approach we dissected the energetic contributions of each wild type (wt) or mutated surface loop to the binding of either plasma kallikrein (PKal) or membrane-type serine protease 1. The analysis demonstrated that a mutation in one loop has opposing effects depending on the sequence of surrounding loops. This finding stresses the cooperative nature of loop-loop interactions and justifies targeting multiple loops with a limited diversity. In contrast to ecotin wt, the specific loop combination of ecotin-Pkal discriminates the subtle structural differences between the active enzymes, PKal and Factor XIIa, and their respective zymogen forms. We used ecotin-Pkal to specifically inhibit contact activation of human plasma at the level mediated by plasma kallikrein.
Collapse
Affiliation(s)
- A Allart Stoop
- Department of Pharmaceutical Chemistry, University of California San Francisco, 94143-2280, USA
| | | | | | | |
Collapse
|
40
|
Mast cells contribute to the stromal microenvironment in mammary gland branching morphogenesis. Dev Biol 2009; 337:124-33. [PMID: 19850030 DOI: 10.1016/j.ydbio.2009.10.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 11/22/2022]
Abstract
The stromal microenvironment regulates mammary gland branching morphogenesis. We have observed that mast cells are present in the mammary gland throughout its postnatal development and, in particular, are found around the terminal end buds and ductal epithelium of the pubertal gland. Mast cells contribute to allergy, inflammatory diseases, and cancer development but have not been implicated in normal development. Genetic and pharmacological disruption of mast cell function in the mammary gland revealed that mast cells are involved in rapid proliferation and normal duct branching during puberty, and this effect is independent of macrophage recruitment, which also regulates mammary gland development. For mast cells to exert their effects on normal morphogenesis required activation of their serine proteases and degranulation. Our observations reveal a novel role for mast cells during normal pubertal development in the mammary gland.
Collapse
|