1
|
Wang R, Wang Q, Liao J, Yu X, Li W. Piperlongumine overcomes osimertinib resistance via governing ubiquitination-modulated Sp1 turnover. JCI Insight 2025; 10:e186165. [PMID: 40125551 PMCID: PMC11949057 DOI: 10.1172/jci.insight.186165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/31/2025] [Indexed: 03/25/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is a common cause of cancer-related deaths worldwide, and its incidence has been increasing in recent years. While targeted therapies like osimertinib, an epidermal growth factor receptor tyrosine kinase inhibitor, have brought about notable improvements in patient outcomes for advanced NSCLC, the challenge of acquired drug resistance persists. Here, we found that cellular mesenchymal-epithelial transition factor (c-Met) was highly expressed in osimertinib-resistant cells, and depletion of c-Met markedly inhibited the growth of osimertinib-resistant cells ex vivo and in vivo, suggesting that c-Met is a potential target to address osimertinib resistance. Through a screening process using a natural product compound library, we identified piperlongumine as a potent inhibitor to overcome osimertinib resistance. Furthermore, the combined treatment of piperlongumine and osimertinib exhibited robust antitumor effects in resistant cells, partially restoring their sensitivity to osimertinib. Additionally, we discovered that piperlongumine could enhance the interaction between E3 ligase RNF4 and Sp1, inhibit the phosphorylation of Sp1 at Thr739, facilitate the ubiquitination and degradation of Sp1, lead to c-Met destabilization, and trigger intrinsic apoptosis in resistant cells. In summary, our study sheds light on the potential of piperlongumine in overcoming osimertinib resistance, offering new strategies and perspectives for the clinical management of drug-resistant NSCLC.
Collapse
Affiliation(s)
| | - Qiang Wang
- NHC Key Laboratory of Translational Research on Transplantation Medicine, Department of Transplant Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | | | - Xinfang Yu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Li
- Department of Radiology and
| |
Collapse
|
2
|
Trembley JH, Kren BT, Afzal M, Scaria GA, Klein MA, Ahmed K. Protein kinase CK2 – diverse roles in cancer cell biology and therapeutic promise. Mol Cell Biochem 2022; 478:899-926. [PMID: 36114992 PMCID: PMC9483426 DOI: 10.1007/s11010-022-04558-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
The association of protein kinase CK2 (formerly casein kinase II or 2) with cell growth and proliferation in cells was apparent at early stages of its investigation. A cancer-specific role for CK2 remained unclear until it was determined that CK2 was also a potent suppressor of cell death (apoptosis); the latter characteristic differentiated its function in normal versus malignant cells because dysregulation of both cell growth and cell death is a universal feature of cancer cells. Over time, it became evident that CK2 exerts its influence on a diverse range of cell functions in normal as well as in transformed cells. As such, CK2 and its substrates are localized in various compartments of the cell. The dysregulation of CK2 is documented in a wide range of malignancies; notably, by increased CK2 protein and activity levels with relatively moderate change in its RNA abundance. High levels of CK2 are associated with poor prognosis in multiple cancer types, and CK2 is a target for active research and testing for cancer therapy. Aspects of CK2 cellular roles and targeting in cancer are discussed in the present review, with focus on nuclear and mitochondrial functions and prostate, breast and head and neck malignancies.
Collapse
Affiliation(s)
- Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Betsy T Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Muhammad Afzal
- Department of Biochemistry, Riphah International University, Islamabad, Pakistan
| | - George A Scaria
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Mark A Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Khalil Ahmed
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
CK2 Regulation: Perspectives in 2021. Biomedicines 2021; 9:biomedicines9101361. [PMID: 34680478 PMCID: PMC8533506 DOI: 10.3390/biomedicines9101361] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/20/2022] Open
Abstract
The protein kinase CK2 (CK2) family encompasses a small number of acidophilic serine/threonine kinases that phosphorylate substrates involved in numerous biological processes including apoptosis, cell proliferation, and the DNA damage response. CK2 has also been implicated in many human malignancies and other disorders including Alzheimer′s and Parkinson’s diseases, and COVID-19. Interestingly, no single mechanism describes how CK2 is regulated, including activation by external proteins or domains, phosphorylation, or dimerization. Furthermore, the kinase has an elongated activation loop that locks the kinase into an active conformation, leading CK2 to be labelled a constitutively active kinase. This presents an interesting paradox that remains unanswered: how can a constitutively active kinase regulate biological processes that require careful control? Here, we highlight a selection of studies where CK2 activity is regulated at the substrate level, and discuss them based on the regulatory mechanism. Overall, this review describes numerous biological processes where CK2 activity is regulated, highlighting how a constitutively active kinase can still control numerous cellular activities. It is also evident that more research is required to fully elucidate the mechanisms that regulate CK2 and what causes aberrant CK2 signaling in disease.
Collapse
|
4
|
Borgo C, D'Amore C, Cesaro L, Sarno S, Pinna LA, Ruzzene M, Salvi M. How can a traffic light properly work if it is always green? The paradox of CK2 signaling. Crit Rev Biochem Mol Biol 2021; 56:321-359. [PMID: 33843388 DOI: 10.1080/10409238.2021.1908951] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CK2 is a constitutively active protein kinase that assuring a constant level of phosphorylation to its numerous substrates supports many of the most important biological functions. Nevertheless, its activity has to be controlled and adjusted in order to cope with the varying needs of a cell, and several examples of a fine-tune regulation of its activity have been described. More importantly, aberrant regulation of this enzyme may have pathological consequences, e.g. in cancer, chronic inflammation, neurodegeneration, and viral infection. Our review aims at summarizing our current knowledge about CK2 regulation. In the first part, we have considered the most important stimuli shown to affect protein kinase CK2 activity/expression. In the second part, we focus on the molecular mechanisms by which CK2 can be regulated, discussing controversial aspects and future perspectives.
Collapse
Affiliation(s)
- Christian Borgo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Claudio D'Amore
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Luca Cesaro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stefania Sarno
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Padova, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Padova, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
5
|
Tripathi R, Fiore LS, Richards DL, Yang Y, Liu J, Wang C, Plattner R. Abl and Arg mediate cysteine cathepsin secretion to facilitate melanoma invasion and metastasis. Sci Signal 2018; 11:11/518/eaao0422. [PMID: 29463776 DOI: 10.1126/scisignal.aao0422] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The incidence of melanoma is increasing, particularly in young women, and the disease remains incurable for many because of its aggressive, metastatic nature and its high rate of resistance to conventional, targeted, and immunological agents. Cathepsins are proteases that are critical for melanoma progression and therapeutic resistance. Intracellular cathepsins cleave or degrade proteins that restrict cancer progression, whereas extracellular cathepsins directly cleave the extracellular matrix and activate proinvasive proteases in the tumor microenvironment. Cathepsin secretion is markedly increased in cancer cells. We investigated the signaling pathways leading to increased cathepsin secretion in melanoma cells. We found that the nonreceptor tyrosine kinases Abl and Arg (Abl/Arg) promoted the secretion of cathepsin B and cathepsin L by activating transcription factors (namely, Ets1, Sp1, and NF-κB/p65) that have key roles in the epithelial-mesenchymal transition (EMT), invasion, and therapeutic resistance. In some melanoma cell lines, Abl/Arg promoted the Ets1/p65-induced secretion of cathepsin B and cathepsin L in a kinase-independent manner, whereas in other melanoma lines, Abl/Arg promoted the kinase-dependent, Sp1/Ets1/p65-mediated induction of cathepsin L secretion and the Sp1/p65-mediated induction of cathepsin B secretion. As an indication of clinical relevance, the abundance of mRNAs encoding Abl/Arg, Sp1, Ets1, and cathepsins was positively correlated in primary melanomas, and Abl/Arg-driven invasion in culture and metastasis in vivo required cathepsin secretion. These data suggest that drugs targeting Abl kinases, many of which are FDA-approved, might inhibit cathepsin secretion in some melanomas and potentially other aggressive cancers harboring activated Abl kinases.
Collapse
Affiliation(s)
- Rakshamani Tripathi
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Leann S Fiore
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Dana L Richards
- Department of Pathology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Yuchen Yang
- Department of Statistics, University of Kentucky, Lexington, KY 40536, USA
| | - Jinpeng Liu
- Department of Biostatistics and Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Department of Biostatistics and Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Rina Plattner
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
6
|
Das N, Datta N, Chatterjee U, Ghosh MK. Estrogen receptor alpha transcriptionally activates casein kinase 2 alpha: A pivotal regulator of promyelocytic leukaemia protein (PML) and AKT in oncogenesis. Cell Signal 2016; 28:675-87. [PMID: 27012497 DOI: 10.1016/j.cellsig.2016.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/17/2016] [Indexed: 01/17/2023]
Abstract
Protein kinase CK2α is frequently upregulated in different cancers. Alteration of CK2α expression and its activity is sufficient to induce dramatic changes in cell fate. It has been established that CK2α induces oncogenesis through modulation of both AKT and PML. CK2α has been found to be overexpressed in breast cancer. In contrary, statistical reports have shown low level of PML. However, the regulation of CK2α gene expression is not fully understood. In the current study, we found that CK2α and activated AKT positively correlate with ERα, whereas PML follows an inverse correlation in human breast cancer tissues. Modulation of ERα signalling leads to recruitment of activated ERα on the ERE sites of CK2α promoter, resulting in CK2α transactivation. Furthermore, the DMBA induced tumours in rat showed elevated level of active CK2α. Consequently it mediates enhancement of AKT activity and PML degradation, resulting in increased cellular proliferation, migration and metastasis. Syngeneic ERα overexpressing stable mouse 4T1 cells produce larger primary tumours and metastatic lung nodules in mice, corroborating our in vitro findings. Hence, our study provides a novel route of ERα dependent CK2α mediated oncogenesis that causes upregulation and consequent AKT activation along with degradation of tumour suppressor PML.
Collapse
Affiliation(s)
- Nilanjana Das
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, West Bengal, India.
| | - Neerajana Datta
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, West Bengal, India.
| | - Uttara Chatterjee
- Division of Pathology, Park Clinic, 4, Gorky Terrace, Kolkata 700017, India.
| | - Mrinal Kanti Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, West Bengal, India.
| |
Collapse
|
7
|
CK2 kinase activity but not its binding to CK2 promoter regions is implicated in the regulation of CK2α and CK2β gene expressions. Mol Cell Biochem 2013; 384:71-82. [DOI: 10.1007/s11010-013-1782-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/09/2013] [Indexed: 12/11/2022]
|
8
|
Drygin D. CK2 as a Logical Target in Cancer Therapy: Potential for Combining CK2 Inhibitors with Various Classes of Cancer Therapeutic Agents. PROTEIN KINASE CK2 2013:383-439. [DOI: 10.1002/9781118482490.ch15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Protein kinase CK2 is a critical regulator of epithelial homeostasis in chronic intestinal inflammation. Mucosal Immunol 2013; 6:136-45. [PMID: 22763408 PMCID: PMC3517934 DOI: 10.1038/mi.2012.57] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The molecular mechanisms that restore intestinal epithelial homeostasis during colitis are incompletely understood. Here, we report that during intestinal inflammation, multiple inflammatory cytokines promote the activity of a master regulator of cell proliferation and apoptosis, serine/threonine kinase CK2. Enhanced mucosal CK2 protein expression and activity were observed in animal models of chronic colitis, particularly within intestinal epithelial cells (IECs). The in vitro treatment of intestinal epithelial cell lines with cytokines resulted in increased CK2 expression and nuclear translocation of its catalytic α subunit. Similarly, nuclear translocation of CK2α was a prominent feature observed in colonic crypts from individuals with ulcerative colitis and Crohn's disease. Further in vitro studies revealed that CK2 activity promotes epithelial restitution, and protects normal IECs from cytokine-induced apoptosis. These observations identify CK2 as a key regulator of homeostatic properties of the intestinal epithelium that serves to promote wound healing, in part through inhibition of apoptosis under conditions of inflammation.
Collapse
|
10
|
Garat CV, Crossno JT, Sullivan TM, Reusch JE, Klemm DJ. Thiazolidinediones prevent PDGF-BB-induced CREB depletion in pulmonary artery smooth muscle cells by preventing upregulation of casein kinase 2 alpha' catalytic subunit. J Cardiovasc Pharmacol 2010; 55:469-80. [PMID: 20147842 PMCID: PMC2874608 DOI: 10.1097/fjc.0b013e3181d64dbe] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The transcription factor CREB is diminished in smooth muscle cells (SMCs) in remodeled, hypertensive pulmonary arteries (PAs) in animals exposed to chronic hypoxia. Forced depletion of cyclic adenosine monophosphate response element binding protein (CREB) in PA SMCs stimulates their proliferation and migration in vitro. Platelet-derived growth factor (PDGF) produced in the hypoxic PA wall promotes CREB proteasomal degradation in SMCs via phosphatidylinositol-3-kinase/Akt signaling, which promotes phosphorylation of CREB at 2 casein kinase 2 (CK2) sites. Here we tested whether thiazolidinediones, agents that inhibit hypoxia-induced PA remodeling, attenuate SMC CREB loss. METHODS Depletion of CREB and changes in casein kinase 2 catalytic subunit expression and activity were measured in PA SMC treated with PDGF. PA remodeling and changes in medial PA CREB and casein kinase 2 levels were evaluated in lung sections from rats exposed to hypoxia for 21 days. RESULTS We found that the thiazolidinedione rosiglitazone prevented PA remodeling and SMC CREB loss in rats exposed to chronic hypoxia. Likewise, the thiazolidinedione troglitazone blocked PA SMC proliferation and CREB depletion induced by PDGF in vitro. Thiazolidinediones did not repress Akt activation by hypoxia in vivo or by PDGF in vitro. However, PDGF-induced CK2 alpha' catalytic subunit expression and activity in PA SMCs, and depletion of CK2 alpha' subunit prevented PDGF-stimulated CREB loss. Troglitazone inhibited PDGF-induced CK2 alpha' subunit expression in vitro and rosiglitazone blocked induction of CK2 catalytic subunit expression by hypoxia in PA SMCs in vivo. CONCLUSION We conclude that thiazolidinediones prevent PA remodeling in part by suppressing upregulation of CK2 and loss of CREB in PA SMCs.
Collapse
MESH Headings
- Animals
- Becaplermin
- Blotting, Western
- Casein Kinase II/biosynthesis
- Cell Nucleus/drug effects
- Cell Nucleus/enzymology
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/antagonists & inhibitors
- Cytosol/drug effects
- Cytosol/enzymology
- Cytosol/metabolism
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/prevention & control
- Hypoxia/complications
- Hypoxia/drug therapy
- Hypoxia/metabolism
- Hypoxia/pathology
- Male
- Microscopy, Fluorescence
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/metabolism
- PPAR alpha/antagonists & inhibitors
- Platelet-Derived Growth Factor/pharmacology
- Proto-Oncogene Proteins c-sis
- Pulmonary Artery/cytology
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Rats
- Rats, Inbred WKY
- Rosiglitazone
- Thiazolidinediones/pharmacology
- Up-Regulation
Collapse
Affiliation(s)
- Chrystelle V. Garat
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver, Aurora, Colorado 80045
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado 80045
| | - Joseph T. Crossno
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver, Aurora, Colorado 80045
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado 80045
| | - Timothy M. Sullivan
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver, Aurora, Colorado 80045
| | - Jane E.B. Reusch
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver, Aurora, Colorado 80045
- Division of Endocrinology, University of Colorado Denver, Aurora, Colorado 80045
| | - Dwight J. Klemm
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver, Aurora, Colorado 80045
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado 80045
| |
Collapse
|
11
|
Simicevic J, Deplancke B. DNA-centered approaches to characterize regulatory protein-DNA interaction complexes. MOLECULAR BIOSYSTEMS 2009; 6:462-8. [PMID: 20174675 DOI: 10.1039/b916137f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gene regulation is mediated by site-specific DNA-binding proteins or transcription factors (TFs), which form protein complexes at regulatory loci either to activate or repress the expression of a target gene. The study of the dynamic properties of these regulatory DNA-binding complexes has so far been dominated by protein-centered methodologies, aiming to characterize the DNA-binding behavior of one specific protein at a time. With the emerging evidence for a role of DNA in allosterically influencing DNA-binding protein complex formation, there is renewed interest in DNA-centered approaches to capture protein complexes on defined regulatory loci and to correlate changes in their composition with alterations in target gene expression. In this review, we present the current state-of-the-art in such DNA-centered approaches and evaluate recent technological improvements in the purification as well as in the identification of regulatory DNA-binding protein complexes within or outside their biological context. Finally, we suggest possible areas of improvement and assess the putative impact of DNA-centered methodologies on the gene regulation field for the forthcoming years.
Collapse
Affiliation(s)
- Jovan Simicevic
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Institute of Bioengineering, Station 15, 1015 Lausanne, Switzerland.
| | | |
Collapse
|
12
|
Kim EK, Kang JY, Rho YH, Kim YS, Kim DS, Bae YS. Silencing of the CKIIα and CKIIα' genes during cellular senescence is mediated by DNA methylation. Gene 2009; 431:55-60. [DOI: 10.1016/j.gene.2008.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 10/24/2008] [Accepted: 10/25/2008] [Indexed: 12/01/2022]
|
13
|
Qian B, Sun Z, Wu Z, Liu H, Wang X, Zhai Z. A novel translocation, t(3;20)(q13;p13), in acute monocytic leukemia. ACTA ACUST UNITED AC 2009; 188:52-3. [PMID: 19061781 DOI: 10.1016/j.cancergencyto.2008.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 06/03/2008] [Indexed: 11/28/2022]
|
14
|
Borthakur A, Saksena S, Gill RK, Alrefai WA, Ramaswamy K, Dudeja PK. Regulation of monocarboxylate transporter 1 (MCT1) promoter by butyrate in human intestinal epithelial cells: involvement of NF-kappaB pathway. J Cell Biochem 2008; 103:1452-63. [PMID: 17786924 PMCID: PMC2673490 DOI: 10.1002/jcb.21532] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Butyrate, a short chain fatty acid (SCFA) produced by bacterial fermentation of undigested carbohydrates in the colon, constitutes the major fuel for colonocytes. We have earlier shown the role of apically localized monocarboxylate transporter isoform 1 (MCT1) in transport of butyrate into human colonic Caco-2 cells. In an effort to study the regulation of MCT1 gene, we and others have cloned the promoter region of the MCT1 gene and identified cis elements for key transcription factors. A previous study has shown up-regulation of MCT1 expression, and activity by butyrate in AA/C1 human colonic epithelial cells, however, the detailed mechanisms of this up-regulation are not known. In this study, we demonstrate that butyrate, a substrate for MCT1, stimulates MCT1 promoter activity in Caco-2 cells. This effect was dose dependent and specific to butyrate as other predominant SCFAs, acetate, and propionate, were ineffective. Utilizing progressive deletion constructs of the MCT1 promoter, we showed that the putative butyrate responsive elements are in the -229/+91 region of the promoter. Butyrate stimulation of the MCT1 promoter was found to be independent of PKC, PKA, and tyrosine kinases. However, specific inhibitors of the NF-kappaB pathway, lactacystein (LC), and caffeic acid phenyl ester (CAPE) significantly reduced the MCT1 promoter stimulation by butyrate. Also, butyrate directly stimulated NF-kappaB-dependent luciferase reporter activity. Histone deacetylase (HDAC) inhibitor trichostatin A (TSA) also stimulated MCT1 promoter activity, however, unlike butyrate, this stimulation was unaltered by the NF-kappaB inhibitors. Further, the combined effect of butyrate, and TSA on MCT1 promoter activity was additive, indicating that their mechanisms of action were independent. Our results demonstrate the involvement of NF-kappaB pathway in the regulation of MCT1 promoter activity by butyrate.
Collapse
Affiliation(s)
- Alip Borthakur
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois 60612
| | - Seema Saksena
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois 60612
| | - Ravinder K. Gill
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois 60612
| | - Waddah A. Alrefai
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois 60612
| | - Krishnamurthy Ramaswamy
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois 60612
| | - Pradeep K. Dudeja
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois 60612
| |
Collapse
|
15
|
Too much of a good thing: The role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:33-47. [DOI: 10.1016/j.bbapap.2007.08.017] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 08/21/2007] [Accepted: 08/23/2007] [Indexed: 11/24/2022]
|
16
|
Wheatley C. The return of the Scarlet Pimpernel: cobalamin in inflammation II - cobalamins can both selectively promote all three nitric oxide synthases (NOS), particularly iNOS and eNOS, and, as needed, selectively inhibit iNOS and nNOS. JOURNAL OF NUTRITIONAL & ENVIRONMENTAL MEDICINE 2007; 16:181-211. [PMID: 18836533 PMCID: PMC2556189 DOI: 10.1080/10520290701791839] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The up-regulation of transcobalamins [hitherto posited as indicating a central need for cobalamin (Cbl) in inflammation], whose expression, like inducible nitric oxide synthase (iNOS), is Sp1- and interferondependent, together with increased intracellular formation of glutathionylcobalamin (GSCbl), adenosylcobalamin (AdoCbl), methylcobalamin (MeCbl), may be essential for the timely promotion and later selective inhibition of iNOS and concordant regulation of endothelial and neuronal NOS (eNOS/nNOS.) Cbl may ensure controlled high output of nitric oxide (NO) and its safe deployment, because: (1) Cbl is ultimately responsible for the synthesis or availability of the NOS substrates and cofactors heme, arginine, BH(4) flavin adenine dinucleotide/flavin mononucleotide (FAD/FMN) and NADPH, via the far-reaching effects of the two Cbl coenzymes, methionine synthase (MS) and methylmalonyl CoA mutase (MCoAM) in, or on, the folate, glutathione, tricarboxylic acid (TCA) and urea cycles, oxidative phosphorylation, glycolysis and the pentose phosphate pathway. Deficiency of any of theNOS substrates and cofactors results in 'uncoupled' NOS reactions, decreasedNO production and increased or excessive O(2) (-), H(2)O(2), ONOO(-) and other reactive oxygen species (ROS), reactive nitric oxide species (RNIS) leading to pathology. (2) Cbl is also the overlooked ultimate determinant of positive glutathione status, which favours the formation of more benign NO species, s-nitrosothiols, the predominant form in which NO is safely deployed. Cbl status may consequently act as a 'back-up disc' that ensures the active status of antioxidant systems, as well as reversing and modulating the effects of nitrosylation in cell signal transduction.New evidence shows that GSCbl can significantly promote iNOS/ eNOS NO synthesis in the early stages of inflammation, thus lowering high levels of tumour necrosis factor-a that normally result in pathology, while existing evidence shows that in extreme nitrosative and oxidative stress, GSCbl can regenerate the activity of enzymes important for eventual resolution, such as glucose 6 phosphate dehydrogenase, which ensures NADPH supply, lactate dehydrogenase, and more; with human clinical case studies of OHCbl for cyanide poisoning, suggesting Cbl may regenerate aconitase and cytochrome c oxidase in the TCA cycle and oxidative phosphorylation. Thus, Cbl may simultaneously promote a strong inflammatory response and the means to resolve it.
Collapse
Affiliation(s)
- Carmen Wheatley
- Orthomolecular Oncology, 4 Richmond Road, Oxford OX1 2JJ, UK
| |
Collapse
|
17
|
Simard JM, Gerzanich V. Sphingolipids and transient receptor potential channels: evolutionarily ancient families now joined. Circ Res 2006; 98:1347-8. [PMID: 16763170 DOI: 10.1161/01.res.0000228464.97010.ee] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Ackermann K, Neidhart T, Gerber J, Waxmann A, Pyerin W. The catalytic subunit alpha' gene of human protein kinase CK2 (CSNK2A2): genomic organization, promoter identification and determination of Ets1 as a key regulator. Mol Cell Biochem 2006; 274:91-101. [PMID: 16335532 DOI: 10.1007/s11010-005-3076-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The human genome contains four protein kinase CK2 loci, enclosing three active genes coding for the catalytic subunits alpha and alpha' and the regulatory subunit beta, and a processed alpha subunit pseudogene. Extensive structure and transcriptional control data of the genes are available, except for the CK2alpha' gene (CSNK2A2). Using in silico and experimental approaches, we find CSNK2A2 to be located on the long arm of chromosome 16 (in contrast to published data), to span 40kb and to consist of 12 exons, with the translational start in Exon 1 and the stop in Exon 11. Exon/intron boundaries conform to the gt/ag rule, and various potential polyadenylation signals determine transcript species with lengths of 1.7-5.7 kb. The upstream region of the gene displays housekeeping characteristics, lacking a TATA box and possessing several GC boxes as well as a CpG island around Exon 1. According to reporter gene assay results, the promoter activity ranges from -1308 to 197 with the highest activity in region -396 to -129. This region contains binding motifs for various transcription factors, including NFkappaB, Sp and Ets family members. Site-directed mutagenesis indicates that the Ets motifs play, in cooperation with Sp motif clusters, a central role in regulating CK2alpha' gene transcription. A similar control has been described for the transcription of the CK2alpha and CK2beta genes so that the presented data are compatible with the assumption of a coordinate transcriptional regulation of all three active human CK2 genes decisively determined by Ets family members.
Collapse
Affiliation(s)
- Karin Ackermann
- Biochemical Cell Physiology (A135), German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
19
|
Götz C, Kartarius S, Schetting S, Montenarh M. Immunologically defined subclasses of the protein kinase CK2 beta-subunit in prostate carcinoma cell lines. Mol Cell Biochem 2006; 274:181-7. [PMID: 16335537 DOI: 10.1007/s11010-005-2950-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Both, the activity as well as the expression of protein kinase CK2 is enhanced in various cancer types and in established tumour cell lines. This phenomenon is not due to an increase in the CK2 message but rather to posttranscriptional and posttranslational mechanisms. In order to get an insight into these posttranslational modifications we analyzed CK2 in prostate cancer cell lines, which differ by their hormone-sensitivity. We found that the CK2 activity is significantly higher in hormone-refractory than in hormone-sensitive cells although the amount of the catalytic alpha- and alpha'- subunits is comparable. In contrast, we detected seemingly lower amounts of the regulatory beta-subunit in the hormone-refractory cell lines, which later turned out to be an immunologically defined subclass. This subclass is realized by a phosphate group, which is attached to serine 209. The phosphorylation occurs in vivo during mitosis and is executed by the p34(cdc2)/cyclin B kinase. As this phosphorylation enhances the CK2 activity this change might well account for the higher activity of CK2 in prostate cancer cells.
Collapse
Affiliation(s)
- Claudia Götz
- Universität des Saarlandes, Medizinische Biochemie und Molekularbiologie, Gebäude 44, D-66421 Homburg, Germany
| | | | | | | |
Collapse
|
20
|
Wheatley C. A scarlet pimpernel for the resolution of inflammation? The role of supra-therapeutic doses of cobalamin, in the treatment of systemic inflammatory response syndrome (SIRS), sepsis, severe sepsis, and septic or traumatic shock. Med Hypotheses 2006; 67:124-42. [PMID: 16545917 DOI: 10.1016/j.mehy.2006.01.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 01/19/2006] [Indexed: 02/06/2023]
Abstract
Cobalamin carrier proteins,the Transcobalamins (TCS), are elevated during trauma, infections and chronic inflammatory conditions. This remains un-explained. It is proposed that such TC elevations signal a need for cobalamin central to the resolution of inflammation. Thus Cobalamin may regulate the transcription factor, NFkappaB, activation or suppression of which determines the inflammatory response and its resolution. Such regulation may involve at least 5 separate mechanisms: (i) hormone-like regulation of TNFalpha, through reduction of excess NO by cobalamin, as well as through the selective inhibition, in tandem with glutathione, of inducible nitric oxide synthase; (ii) quenching of nitric oxide radicals and reactive oxygen species, enhanced by cobalamin's glutathione sparing effect; (iii) the promotion of acetylcholine synthesis, central to the neuro-immune cholinergic anti-inflammatory pathway; (iv) the promotion of oxidative phosphorylation; (v) and a bacteriostatic role of the TCS released by neutrophil secondary granules during phagocytosis, which also appears to modulate the inflammatory response. TC elevations are dependent on NFkappaB activation, through crosstalk between NFkappaB and Sp1, another member of the helix-loop-helix protein family, which directly mediates transcription of the TCII gene. Sp1 also has binding sites on the TNFalpha and EGF gene promoters. NFkappaB may thus ensure sufficient cobalamin to determine its own eventual suppression. Cobalamin's established regulation of EGF may additionally preserve normal function of macrophages and the coagulation cascade in wound healing. By regulating NFkappaB, Cobalamin may also be the as yet unidentified mediator needed to potentiate the anti-inflammatory action of eicosanoids derived from omega-3 essential fatty acids. Moreover, animal and human clinical data suggests that high dose cobalamin may prove a promising approach to SIRS/sepsis/septic and traumatic shock.
Collapse
Affiliation(s)
- Carmen Wheatley
- Orthomolecular Oncology, 4, Richmond Road, Oxford OX1 2JJ, United Kingdom.
| |
Collapse
|
21
|
Wu Z, Kim HP, Xue HH, Liu H, Zhao K, Leonard WJ. Interleukin-21 receptor gene induction in human T cells is mediated by T-cell receptor-induced Sp1 activity. Mol Cell Biol 2005; 25:9741-52. [PMID: 16260592 PMCID: PMC1280258 DOI: 10.1128/mcb.25.22.9741-9752.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Interleukin-21 (IL-21) plays important roles in regulating the immune response. IL-21 receptor (IL-21R) mRNA is expressed at a low level in human resting T cells but is rapidly induced by mitogenic stimulation. We now investigate the basis for IL21R gene regulation in T cells. We found that the -80 to -20 region critically regulates IL-21R promoter activity and corresponds to a major DNase I-hypersensitive site. Electrophoretic mobility shift assays, DNA affinity chromatography followed by mass spectrometry, and chromatin immunoprecipitation assays revealed that Sp1 binds to this region in vitro and in vivo. Moreover, mutation of the Sp1 motif markedly reduced IL-21R promoter activity, and Sp1 small interfering RNAs effectively diminished IL-21R expression in activated T cells. Interestingly, upon T-cell receptor (TCR) stimulation, T cells increased IL-21R expression and Sp1 protein levels while decreasing Sp1 phosphorylation. Moreover, phosphatase inhibitors that increased phosphorylation of Sp1 diminished IL-21R transcription. These data indicate that TCR-induced IL-21R expression is driven by TCR-mediated augmentation of Sp1 protein levels and may partly depend on the dephosphorylation of Sp1.
Collapse
MESH Headings
- Amino Acid Motifs
- Base Sequence
- Blotting, Western
- Chromatin Immunoprecipitation
- Chromatography, Affinity
- DNA Restriction Enzymes/pharmacology
- Deoxyribonuclease I/metabolism
- Exons
- Gene Expression Regulation
- Genes, Reporter
- Humans
- Interleukin-21 Receptor alpha Subunit
- Luciferases/metabolism
- Lymphocytes/metabolism
- Mass Spectrometry
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Phosphorylation
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Interleukin/genetics
- Receptors, Interleukin-21
- Reverse Transcriptase Polymerase Chain Reaction
- Sp1 Transcription Factor/metabolism
- Sp3 Transcription Factor/metabolism
- T-Lymphocytes/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- Zheng Wu
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood InstituteNational Institutes of Health, Building 10, Room 7N252, Bethesda, Maryland 20892-1674, USA
| | | | | | | | | | | |
Collapse
|
22
|
Sugimoto H, Okamura K, Sugimoto S, Satou M, Hattori T, Vance DE, Izumi T. Sp1 Is a Co-activator with Ets-1, and Net Is an Important Repressor of the Transcription of CTP:Phosphocholine Cytidylyltransferase α. J Biol Chem 2005; 280:40857-66. [PMID: 16157598 DOI: 10.1074/jbc.m503578200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylcholine biosynthesis via the CDP-choline pathway is primarily regulated by CTP:phosphocholine cytidylyltransferase (CT) encoded by the Pcyt1a and Pcyt1b genes. Previously, we identified an Ets-1-binding site located at -49/-47 in the promoter of Pcyt1a as an important transcriptional element involved in basal CTalpha transcription (Sugimoto, H., Sugimoto, S., Tatei, K., Obinata, H., Bakovic, M., Izumi, T., and Vance, D. E. (2003) J. Biol. Chem. 278, 19716-19722). In this study, we determined whether or not there were other important elements and binding proteins for basal CTalpha transcription in the Pcyt1a promoter, and if other Ets family proteins bind to the Ets-1-binding site. The results indicate the formation of a ternary complex with Ets-1 binding at -49/-47 and Sp1 binding at -58/-54 of the Pcyt1a promoter that is important for activating CTalpha transcription. When nuclear extracts of COS-7 cells expressing various Ets family repressors were incubated with DNA probes, binding of Net to the probes was observed. Net dose-dependently depressed the promoter-luciferase activity by 98%, even when co-expressed with Ets-1. RNA interference targeting Net caused an increase of endogenous CTalpha mRNA. After synchronizing the cell cycle in NIH3T3 cells, CTalpha mRNA increased at the S-M phase corresponding to an increase of Ets-1 mRNA and a decrease of Net mRNA. These results indicated that Net is an important endogenous repressor for CTalpha transcription.
Collapse
Affiliation(s)
- Hiroyuki Sugimoto
- Department of Molecular Biochemistry, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Dessauge F, Lizundia R, Langsley G. Constitutively activated CK2 potentially plays a pivotal role in Theileria-induced lymphocyte transformation. Parasitology 2005; 130 Suppl:S37-44. [PMID: 16281991 DOI: 10.1017/s0031182005008140] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Activation of casein kinase II (CK2) was one of the first observations made on how Theileria parasites manipulate host cell signal transduction pathways and we argue that CK2 induction may in fact contribute to many of the different activation events that have been described since 1993 for Theileria-infected lymphocytes such as sustained activation of transcription factors c-Myc and NF-κB. CK2 also contributes to infected lymphocyte survival by inhibiting caspase activation and is probably behind constitutive PI3-K activation by phosphorylating PTEN. Finally, we also discuss how CK2A may act not only as a kinase, but also as a stimulatory subunit for the protein phosphatase PP2A, so dampening down the MEK/ERK and Akt/PKB pathways and for all these reasons we propose CK2 as a central player in Theileria-induced lymphocyte transformation.
Collapse
Affiliation(s)
- F Dessauge
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, UMR 8104 CNRS/U567 INSERM, Département Maladies Infectieuses, Hôpital Cochin-Bâtiment Gustave Roussy, Institut Cochin, Paris, France
| | | | | |
Collapse
|
24
|
Cho YH, Park JY, Han SY, Chung IK. Identification of the functional elements in the promoter region of human DNA topoisomerase IIIbeta gene. ACTA ACUST UNITED AC 2004; 1679:272-8. [PMID: 15358519 DOI: 10.1016/j.bbaexp.2004.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 08/03/2004] [Indexed: 11/24/2022]
Abstract
In this study, we have isolated and characterized the promoter region of the human DNA topoisomerase IIIbeta (hTOP3beta) gene. The 5' RACE assay showed a short exon 1 encoding only the 35-bp untranslated region and suggested the presence of multiple transcription initiation sites. The hTOP3beta gene promoter lacks a canonical TATA box or initiation element and is moderately high in GC content. Transient expression of a luciferase reporter gene under the control of serially deleted 5'-flanking sequence identified an activator element between -141 and -119 upstream of the transcription initiation site and a second regulatory element between -91 and -71. On the basis of scanning mutations of triple nucleotides, we demonstrated that a 5'GGAACC3' element between -117 and -112 plays a critical role in the up-regulation of the basal transcription activity. Changing the 5'GGAACC3' sequence leads to markedly reduced promoter activity. Gel mobility shift assays revealed that the 5'GGAACC3' element is required for DNA binding by the transcription factor complex. These observations lead to the conclusion that the positive regulatory region including the 5'GGAACC3' core element is essential for efficient expression of the hTOP3beta gene as well as for the binding of as yet unidentified regulatory factor(s).
Collapse
Affiliation(s)
- Young Hoon Cho
- Department of Biology, Molecular Aging Research Center, and Protein Network Research Center, College of Science, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea
| | | | | | | |
Collapse
|
25
|
Cavin LG, Romieu-Mourez R, Panta GR, Sun J, Factor VM, Thorgeirsson SS, Sonenshein GE, Arsura M. Inhibition of CK2 activity by TGF-beta1 promotes IkappaB-alpha protein stabilization and apoptosis of immortalized hepatocytes. Hepatology 2003; 38:1540-51. [PMID: 14647065 DOI: 10.1016/j.hep.2003.09.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nuclear factor kappaB (NF-kappaB) is an antiapoptotic factor involved in development, regeneration, and neoplastic progression of the liver. Previously, we have shown that stabilization of inhibitor kappaB (IkappaB)-alpha protein following treatment of hepatocytes with transforming growth factor (TGF)-beta1 promoted NF-kappaB repression, which then permitted induction of AP-1/SMAD-mediated liver cell death. Because basal IkappaB-alpha protein turnover is regulated by protein kinase CK2, here we have elucidated the regulation of CK2 kinase activity and its role in control of NF-kappaB levels following treatment with TGF-beta1. We show that both messenger RNA (mRNA) and protein levels of the CK2alpha catalytic subunit are down-regulated following TGF-beta1 stimulation in murine hepatocyte cells. The ensuing inhibition of CK2 kinase activity promotes stabilization of IkappaB protein, which is followed by the shutoff of constitutive NF-kappaB activity and induction of apoptosis. Ectopic expression of CK2alpha inhibits TGF-beta1-induced apoptosis through sustained activation of NF-kappaB. Conversely, expression of a kinase-dead mutant of CK2alpha potentiates TGF-beta1 cell killing. Importantly, we show that hepatocellular carcinomas (HCCs) derived from TGF-beta1 transgenic mice and human HCC cell lines display enhanced CK2 IkappaB kinase activity that contributes in part to an elevated NF-kappaB activity in vivo. In conclusion, inhibition of CK2 expression levels by TGF-beta1 is crucial for the induction of apoptosis of hepatocytes. Circumvention of this process by up-regulation of CK2 activity in transformed cells may contribute to the promotion of TGF-beta1-induced liver carcinogenesis.
Collapse
Affiliation(s)
- Lakita G Cavin
- Department of Pharmacology, Center for Anticancer Drug Research, University of Tennessee Cancer Institute, College of Medicine, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Protein kinase CK2 (formerly known as casein kinase 2) was among the first protein kinases to be identified and characterized. Surprisingly, in spite of intense efforts, the regulation and cellular functions of CK2 remain obscure. However, recent data on its molecular structure, its signal-mediated intracellular dynamic localization and its unexpected function in cell survival have raised new interest in this enzyme. These studies reveal unique features of CK2 and highlight its importance in the transduction of survival signals.
Collapse
Affiliation(s)
- Thierry Buchou
- Inserm EMI 104, Département Réponse et Dynamique Cellulaire, CEA Grenoble, 38054 Grenoble Cedex 9, France
| | | |
Collapse
|
27
|
Sugimoto H, Sugimoto S, Tatei K, Obinata H, Bakovic M, Izumi T, Vance DE. Identification of Ets-1 as an important transcriptional activator of CTP:phosphocholine cytidylyltransferase alpha in COS-7 cells and co-activation with transcriptional enhancer factor-4. J Biol Chem 2003; 278:19716-22. [PMID: 12642588 DOI: 10.1074/jbc.m301590200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylcholine biosynthesis via the CDP-choline pathway is primarily regulated by CTP:phosphocholine cytidylyltransferase (CT). Transcriptional enhancer factor-4 (TEF-4) enhances the transcription of CTalpha in COS-7 cells by interactions with the basal transcription machinery (Sugimoto, H., Bakovic, M., Yamashita, S., and Vance, D.E. (2001) J. Biol. Chem. 276,12338-12344). To identify the most important transcription factor involved in basal CTalpha transcription, we made CTalpha promoter-deletion and -mutated constructs linked to a luciferase reporter and transfected them into COS-7 cells. The results indicate that an important site regulating basal CTalpha transcription is -53/-47 (GACTTCC), which is a putative consensus-binding site of Ets transcription factors (GGAA) in the opposite orientation. Gel shift analyses indicated the existence of a binding protein for -53/-47 (GACTTCC) in nuclear extracts of COS-7 cells. When anti-Ets-1 antibody was incubated with the probe in gel shift analyses, the intensity of the binding protein was decreased. The binding of endogenous Ets-1 to the promoter probe was increased when TEF-4 was expressed; however, the amount of Ets-1 detected by immunoblotting was unchanged. When cells were transfected with Ets-1 cDNA, the luciferase activity of CTalpha promoter constructs was greatly enhanced. Co-transfection experiments with Ets-1 and TEF-4 showed enhanced expression of reporter constructs as well as CTalpha mRNA. These results suggest that Ets-1 is an important transcriptional activator of the CTalpha gene and that Ets-1 activity is enhanced by TEF-4.
Collapse
Affiliation(s)
- Hiroyuki Sugimoto
- Department of Biochemistry, Gunma University School of Medicine, Maebashi 371-8511, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Ko JL, Liu HC, Loh HH. Role of an AP-2-like element in transcriptional regulation of mouse mu-opioid receptor gene. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 112:153-62. [PMID: 12670713 DOI: 10.1016/s0169-328x(03)00086-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previously, several important cis-elements and trans-factors have been shown to play a functional role in the proximal promoter of mouse mu-opioid receptor (MOR) gene. In this study, we defined another functional element located the in -450 to -400 bp (translational start site designated as +1) region of the proximal promoter, which is also essential for the full promoter activity. It is designated as the morAP-2-like element for its sequence homologous to the consensus AP-2 element. Surprisingly, electrophoretic mobility shift analysis (EMSA) revealed that Sp1 and Sp3, but not AP-2 proteins, were specifically bound to the morAP-2-like element. Mutation of the morAP-2-like element, resulting in a loss of Sp binding, led to an approximately 35% decrease in activity, further confirming the positive role of the morAP-2-like element in MOR gene expression. Dephosphorylation of Sp proteins with alkaline phosphatase also decreased Sp binding to the morAP-2-like element in EMSA, suggesting phosphorylation of Sp is essential for its binding to this element. However, direct or indirect activation of PKA, a classical G-protein coupled signaling pathway, resulted in no significant change of Sp binding to the morAP-2-like element, nor of the promoter activity the SH-SY5Y cells, MOR expressing cells, suggesting that phosphorylation of Sp does not involve PKA. These results suggest that the binding of different phosphorylated forms of Sp proteins to the morAP-2-like element may contribute to the fine tuning of MOR expression in different cells.
Collapse
Affiliation(s)
- Jane L Ko
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
29
|
Pyerin W, Ackermann K. The genes encoding human protein kinase CK2 and their functional links. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 74:239-73. [PMID: 14510078 DOI: 10.1016/s0079-6603(03)01015-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Walter Pyerin
- Biochemische Zellphysiologie (B0200), Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | | |
Collapse
|
30
|
Zhu GH, Lenzi M, Schwartz EL. The Sp1 transcription factor contributes to the tumor necrosis factor-induced expression of the angiogenic factor thymidine phosphorylase in human colon carcinoma cells. Oncogene 2002; 21:8477-85. [PMID: 12466967 DOI: 10.1038/sj.onc.1206030] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2002] [Revised: 08/30/2002] [Accepted: 09/04/2002] [Indexed: 11/09/2022]
Abstract
Thymidine phosphorylase (TP; also known as platelet-derived endothelial cell growth factor, PD-ECGF) is an angiogenic factor that is chemotactic for endothelial cells and has been found to induce neovascularization in vivo. TP is frequently overexpressed in human solid tumors, where its expression has been correlated with increased tumor microvessel density, invasion, and metastasis, and shorter patient survival. In this report, TP activity in the WiDr colon carcinoma cell line was found to be induced 100-fold by tumor necrosis factor (TNFalpha), a secretory product of activated macrophages that has indirect angiogenic activities. Increased TP activity was accompanied by increased TP mRNA levels and without an increase in mRNA stability. TNFalpha-induced TP mRNA levels were reduced by mithramycin, a DNA-binding transcription inhibitor specific for GC-rich sequences. Transcriptional regulation by TNFalpha was confirmed by transient transfection of WiDr with upstream TP sequences in a luciferase reporter construct. Deletion analysis of the reporter pinpointed two regions of the TP promoter with regulatory elements for both TNFalpha-inducible and basal expression, and they contained, respectively, three and one consensus binding sites for the Sp1-family of transcription factors. One additional region contributed only to basal TP expression, and it contained three Sp1 sites. TNFalpha-induced TP expression decreased when point mutations were made in three of the four Sp1 sites postulated to contribute to both basal and TNFalpha-inducible expression. Electrophoretic mobility shift assays further demonstrated binding of nuclear Sp1 to these three sites. Sp1-binding activity was also increased in cells treated with TNFalpha. These studies establish a role for Sp1 in the regulation of expression of the angiogenic factor TP in colon cancer WiDr cells.
Collapse
Affiliation(s)
- Geng Hui Zhu
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, 111 East 210th Street, Bronx, New York 10467, USA
| | | | | |
Collapse
|
31
|
Daibata M, Taguchi T, Taguchi H. A novel t(16;20)(q22;p13) in polycythemia vera. CANCER GENETICS AND CYTOGENETICS 2002; 137:29-32. [PMID: 12377410 DOI: 10.1016/s0165-4608(02)00543-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report a patient with polycythemia vera whose bone marrow cells carried a novel t(16;20)(q22;p13) as detected by karyotype analysis using G- and Q-banding techniques. The reciprocal translocation was confirmed by fluorescence in situ hybridization (FISH) using DNA libraries of chromosomes 16 and 20. To our knowledge, t(16;20)(q22;p13) has not been reported previously. The core binding factor beta (CBFbeta) gene located on 16q22 is known to be frequently involved in acute myelocytic leukemia. On the other hand, the 20p13 locus contains a gene encoding protein kinase CK2alpha, which is closely related to cell proliferation and cell cycle regulation. The t(16;20)(q22;p13) may be one of the cytogenetic aberrations in myeloproliferative disorders, and therefore, our observation warrants further studies on a possible involvement of the genes resulting from this translocation.
Collapse
Affiliation(s)
- Masanori Daibata
- Department of Medicine, Kochi Medical School, 783-8505, Kochi, Japan.
| | | | | |
Collapse
|
32
|
Chi LM, Yu JS, Chang YS. Identification of protein kinase CK2 as a potent kinase of Epstein-Barr virus latent membrane protein 1. Biochem Biophys Res Commun 2002; 294:586-91. [PMID: 12056807 DOI: 10.1016/s0006-291x(02)00515-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The C-terminus of latent membrane protein 1 (LMP1) can be phosphorylated in vivo. However, the protein kinase responsible for LMP1 phosphorylation has not yet been identified. In this study, GST fusion proteins containing the C-terminus of LMP1 were generated and used as substrates to survey the kinases that phosphorylate LMP1. Among several purified protein kinases tested, only protein kinase CK2 (CK2) could specifically phosphorylate LMP1. Using the in-gel kinase assay in the absence and presence of a selective CK2 inhibitor, 4,5,6,7-tetrabromobenzotriazole, CK2 was determined to be the major kinase to phosphorylate LMP1 in lymphoma and epithelial cell lines. This is the first study to show that CK2 is a potent kinase to phosphorylate LMP1 in vitro.
Collapse
Affiliation(s)
- Lang-Ming Chi
- Department of Medical Technology, Yuan-Pei Institute of Science and Technology, Hsinchu, Taiwan, ROC.
| | | | | |
Collapse
|
33
|
Tsytsykova AV, Goldfeld AE. Inducer-specific enhanceosome formation controls tumor necrosis factor alpha gene expression in T lymphocytes. Mol Cell Biol 2002; 22:2620-31. [PMID: 11909956 PMCID: PMC133734 DOI: 10.1128/mcb.22.8.2620-2631.2002] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present evidence that the inducer-specific regulation of the human tumor necrosis factor alpha (TNF-alpha) gene in T cells involves the assembly of distinct higher-order transcription enhancer complexes (enhanceosomes), which is dependent upon inducer-specific helical phasing relationships between transcription factor binding sites. While ATF-2, c-Jun, and the coactivator proteins CBP/p300 play a central role in TNF-alpha gene activation stimulated by virus infection or intracellular calcium flux, different sets of activators including NFATp, Sp1, and Ets/Elk are recruited to a shared set of transcription factor binding sites depending upon the particular stimulus. Thus, these studies demonstrate that the inducer-specific assembly of unique enhanceosomes is a general mechanism by which a single gene is controlled in response to different extracellular stimuli.
Collapse
Affiliation(s)
- Alla V Tsytsykova
- The Center for Blood Research and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
34
|
Lacroix I, Lipcey C, Imbert J, Kahn-Perlès B. Sp1 transcriptional activity is up-regulated by phosphatase 2A in dividing T lymphocytes. J Biol Chem 2002; 277:9598-605. [PMID: 11779871 DOI: 10.1074/jbc.m111444200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have followed Sp1 expression in primary human T lymphocytes induced, via CD2 plus CD28 costimulation, to sustained proliferation and subsequent return to quiescence. Binding of Sp1 to wheat germ agglutinin lectin was not modified following activation, indicating that the overall glycosylation of the protein was unchanged. Sp1 underwent, instead, a major dephosphorylation that correlated with cyclin A expression and, thus, with cell cycle progression. A similar change was observed in T cells that re-entered cell cycle following secondary interleukin-2 stimulation, as well as in serum-induced proliferating NIH/3T3 fibroblasts. Phosphatase 2A (PP2A) appears involved because 1) treatment of dividing cells with okadaic acid or cantharidin inhibited Sp1 dephosphorylation and 2) PP2A dephosphorylated Sp1 in vitro and strongly interacted with Sp1 in vivo. Sp1 dephosphorylation is likely to increase its transcriptional activity because PP2A overexpression potentiated Sp1 site-driven chloramphenicol acetyltransferase expression in dividing Kit225 T cells and okadaic acid reversed this effect. This increase might be mediated by a stronger affinity of dephosphorylated Sp1 for DNA, as illustrated by the reduced DNA occupancy by hyperphosphorylated Sp factors from cantharidin- or nocodazole-treated cells. Finally, Sp1 dephosphorylation appears to occur throughout cell cycle except for mitosis, a likely common feature to all cycling cells.
Collapse
Affiliation(s)
- Isabelle Lacroix
- Unité de Cancérologie Expérimentale, U119 INSERM, 27 boulevard Lei Roure, 13009 Marseille, France
| | | | | | | |
Collapse
|
35
|
Wang T, Lafuse WP, Zwilling BS. NFkappaB and Sp1 elements are necessary for maximal transcription of toll-like receptor 2 induced by Mycobacterium avium. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6924-32. [PMID: 11739511 DOI: 10.4049/jimmunol.167.12.6924] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We have previously reported that Toll-like receptor (TLR) 2 mRNA was induced after infection with Mycobacterium avium. To investigate the molecular basis of TLR2 expression in macrophages, we cloned and analyzed the murine putative 5'-proximal promoter. Transient transfection of a 326-bp region from nucleotides -294-+32 relative to the first transcription start site was sufficient to induce maximal luciferase activity at the basal level and after infection with M. avium in J774A.1 cells. Sequence analysis showed that the region lacked a TATA box but contained two typical stimulating factor (Sp) 1 sites, two NF-kappaB sites, one IFN-regulatory factor site and one AP-1 site. Site-directed mutagenesis revealed that the NF-kappaB and Sp1 sites but not the IFN-regulatory factor site or the AP-1 site contributed to the basal level and the induction of luciferase activity during M. avium infection. Binding of Sp1/Sp3 and NF-kappaB (p50/p65) was confirmed by EMSA. Further studies showed that three copies of Sp1 elements or NF-kappaB elements are not sufficient to confer M. avium induction on a heterologous promoter. By contrast, overexpression of NF-kappaB p65 caused a strong increase in transcription from an intact TLR2 promoter, whereas it caused only a partial increase in promoter activity when cotransfected with the TLR2 promoter with one of the Sp1 sites mutated. Sp1 and NF-kappaB were the minimum mammalian transcription factors required for effective TLR2 transcriptional activity when transfected into Drosophila Schneider cells. Together, these data provide genetic and biochemical evidence for NF-kappaB as well as Sp1 in regulating TLR2 transcription.
Collapse
Affiliation(s)
- T Wang
- Department of Microbiology and Molecular Virology, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
36
|
Book McAlexander M, Yu-Lee LY. Sp1 is required for prolactin activation of the interferon regulatory factor-1 gene. Mol Cell Endocrinol 2001; 184:135-41. [PMID: 11694349 DOI: 10.1016/s0303-7207(01)00593-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Transcription of the interferon regulatory factor-1 gene (IRF-1) is induced in a biphasic manner (G1 and G1/S phase) in Nb2 T cells in response to prolactin (PRL) stimulation. Signal transducer and activator of transcription 1 (Stat1) is required for PRL activation of the IRF-1 promoter. Mutation of a -200 bp Sp1 site in the IRF-1 promoter results in a loss of G1 but not G1/S IRF-1 transcriptional activity in response to PRL. These studies illustrate that the temporal transcription of the IRF-1 gene is mediated by not only Stat1 but also Sp1 in response to PRL stimulation.
Collapse
Affiliation(s)
- M Book McAlexander
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
37
|
Black AR, Black JD, Azizkhan-Clifford J. Sp1 and krüppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol 2001; 188:143-60. [PMID: 11424081 DOI: 10.1002/jcp.1111] [Citation(s) in RCA: 849] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Sp/KLF family contains at least twenty identified members which include Sp1-4 and numerous krüppel-like factors. Members of the family bind with varying affinities to sequences designated as 'Sp1 sites' (e.g., GC-boxes, CACCC-boxes, and basic transcription elements). Family members have different transcriptional properties and can modulate each other's activity by a variety of mechanisms. Since cells can express multiple family members, Sp/KLF factors are likely to make up a transcriptional network through which gene expression can be fine-tuned. 'Sp1 site'-dependent transcription can be growth-regulated, and the activity, expression, and/or post-translational modification of multiple family members is altered with cell growth. Furthermore, Sp/KLF factors are involved in many growth-related signal transduction pathways and their overexpression can have positive or negative effects on proliferation. In addition to growth control, Sp/KLF factors have been implicated in apoptosis and angiogenesis; thus, the family is involved in several aspects of tumorigenesis. Consistent with a role in cancer, Sp/KLF factors interact with oncogenes and tumor suppressors, they can be oncogenic themselves, and altered expression of family members has been detected in tumors. Effects of changes in Sp/KLF factors are context-dependent and can appear contradictory. Since these factors act within a network, this diversity of effects may arise from differences in the expression profile of family members in various cells. Thus, it is likely that the properties of the overall network of Sp/KLF factors play a determining role in regulation of cell growth and tumor progression.
Collapse
Affiliation(s)
- A R Black
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | | | |
Collapse
|
38
|
Cram EJ, Liu BD, Bjeldanes LF, Firestone GL. Indole-3-carbinol inhibits CDK6 expression in human MCF-7 breast cancer cells by disrupting Sp1 transcription factor interactions with a composite element in the CDK6 gene promoter. J Biol Chem 2001; 276:22332-40. [PMID: 11297539 DOI: 10.1074/jbc.m010539200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Indole-3-carbinol (I3C), a compound naturally occurring in Brassica vegetables, can induce a G(1) cell cycle arrest of human MCF-7 breast cancer cells that is accompanied by the selective inhibition of cyclin-dependent kinase 6 (CDK6) expression. Reverse transcriptase-polymerase chain reaction analysis of CDK6 mRNA decay rates revealed that I3C had no effect on CDK6 transcript stability. We report the first identification and functional characterization of the CDK6 promoter in order to determine whether I3C inhibits CDK6 transcription. In MCF-7 cells stably transfected with CDK6 promoter-linked luciferase reporter plasmids, I3C inhibited CDK6 promoter activity in an I3C-specific response that was not a consequence of the growth-arrested state of the cells. Deletion analysis revealed a 167-base pair I3C-responsive region of the CDK6 promoter between -805 and -638. Site-specific mutations within this region revealed that both Sp1 and Ets-like sites, which are spaced 5 base pairs apart, were necessary for I3C responsiveness in the context of the CDK6 promoter. Electrophoretic mobility shift analysis of protein-DNA complexes formed with nuclear proteins isolated from I3C-treated and -untreated cells, in combination with supershift assays using Sp1 antibodies, demonstrated that the Sp1-binding site in the CDK6 promoter forms a specific I3C-responsive DNA-protein complex that contains the Sp1 transcription factor. Taken together, our results suggest that I3C down-regulates CDK6 transcription by targeting Sp1 at a composite DNA site in the CDK6 promoter.
Collapse
Affiliation(s)
- E J Cram
- Department of Molecular and Cell Biology, the Cancer Research Laboratory, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
39
|
Krehan A, Schmalzbauer R, Böcher O, Ackermann K, Wirkner U, Brouwers S, Pyerin W. Ets1 is a common element in directing transcription of the alpha and beta genes of human protein kinase CK2. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3243-52. [PMID: 11389726 DOI: 10.1046/j.1432-1327.2001.02219.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein kinase CK2 is a conserved and vital Ser/Thr phosphotransferase with various links to malignant diseases, occurring as a tetramer composed of two catalytically active (CK2alpha and/or CK2alpha') and two regulatory subunits (CK2beta). There is balanced availability of CK2alpha and CK2beta transcripts in proliferating and differentiating cultured cells. Examination of the human CK2beta gene for transcriptionally active regions by systematic deletions and reporter gene assays indicates strong promoter activity at positions -42 to 14 and 12 to 72 containing transcription start sites 1 and 2 of the gene (positions +1 and 33), respectively, an upstream and a downstream enhancer activity at positions -241 to -168 and 123 to 677, respectively, and silencer activity at positions -241 to -261. Of the various transcription factor binding motifs present in those regions, Ets1 and CAAT-related motifs turned out to be of particular importance, Ets1 for promoter activation and CAAT-related motifs for enhancer activation. In addition, there are contributions by Sp1. Most strikingly, the Ets1 region representing two adjoining consensus motifs also occurs with complete identity in the recently characterized promoter of the CK2alpha gene [Krehan, A., Ansuini, H., Böcher, O., Grein, S., Wirkner, U. & Pyerin, W. (2001) J. Biol. Chem. 275, 18327-18336], and affects comparably, when assayed in parallel, the promoters of both CK2 genes, both by motif mutations and by Ets1 overexpression. The data strongly support the hypothesis that Ets1 acts as a common regulatory element of the CK2alpha and CK2beta genes involved in directing coordinate transcription and contributing to the balanced availability of transcripts.
Collapse
Affiliation(s)
- A Krehan
- Biochemische Zellphysiologie (B0200), Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Ets proteins are a family of transcription factors that share an 85 amino acid conserved DNA binding domain, the ETS domain. Over 25 mammalian Ets family members control important biological processes, including cellular proliferation, differentiation, lymphocyte development and activation, transformation and apoptosis by recognizing the GGA core motif in the promoter or enhancer of their target genes. Protein - protein interactions regulates DNA binding, subcellular localization, target gene selection and transcriptional activity of Ets proteins. Combinatorial control is a characteristic property of Ets family members, involving interaction between Ets and other key transcriptional factors such as AP-1, NFkappaB and Pax family members. Specific domains of Ets proteins interact with many protein motifs such as bHLH, bZipper and Paired domain. Such interactions coordinate cellular processes in response to diverse signals including cytokines, growth factors, antigen and cellular stresses.
Collapse
Affiliation(s)
- R Li
- Center for Molecular and Structural Biology, Medical University of South Carolina, Charleston, South Carolina, SC 29425, USA
| | | | | |
Collapse
|
41
|
Abstract
Ets is a family of transcription factors present in species ranging from sponges to human. All family members contain an approximately 85 amino acid DNA binding domain, designated the Ets domain. Ets proteins bind to specific purine-rich DNA sequences with a core motif of GGAA/T, and transcriptionally regulate a number of viral and cellular genes. Thus, Ets proteins are an important family of transcription factors that control the expression of genes that are critical for several biological processes, including cellular proliferation, differentiation, development, transformation, and apoptosis. Here, we tabulate genes that are regulated by Ets factors and describe past, present and future strategies for the identification and validation of Ets target genes. Through definition of authentic target genes, we will begin to understand the mechanisms by which Ets factors control normal and abnormal cellular processes.
Collapse
Affiliation(s)
- V I Sementchenko
- Center for Molecular and Structural Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, SC 29403, USA
| | | |
Collapse
|