1
|
Marchetti C, Fagotti A, Fruscio R, Cassani C, Incorvaia L, Perri MT, Sassu CM, Camnasio CA, Giudice E, Minucci A, Seca M, Arbustini E, Vertechy L, De Bonis M, Boccia SM, Giannarelli D, Salutari V, Distefano M, Ferrandina MG, Nero C, Musacchio L, Russo A, Scambia G, Lorusso D. Benefit from maintenance with PARP inhibitor in newly diagnosed ovarian cancer according to BRCA1/2 mutation type and site: a multicenter real-world study. ESMO Open 2025; 10:104533. [PMID: 40174507 PMCID: PMC11999263 DOI: 10.1016/j.esmoop.2025.104533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/06/2025] [Accepted: 02/25/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Knowledge about the association between the BRCA1/2 mutation type and location and response to poly (ADP-ribose) polymerase inhibitors (PARPis) as single agent in ovarian cancer is limited. This study aimed to investigate the effectiveness of PARPi based on functional domains (FD) [RING, BRCT, DNA-binding (BD), RAD51-BD] and types (frameshift, missense, nonsense, splicing) of BRCA1/2 gene mutations in ovarian cancer. MATERIALS AND METHODS This multicenter real-world study retrospectively enrolled BRCA1/2-mutated ovarian cancer patients receiving olaparib maintenance between January 2010 and December 2022. Data were compared with historical series of patients who did not receive olaparib and analyzed based on the FD involved in BRCA1/2 mutations. Progression-free survival was calculated from the date of the last platinum-based treatment until recurrence or last follow-up. RESULTS After a median follow-up of 46 months (range 32-60 months), 140 patients who underwent olaparib maintenance were compared with 128 who did not. PARPi showed efficacy in the overall population. The no-exon 11 patients benefitted more from olaparib than exon 11 patients [hazard ratio (HR) 0.48, 95% confidence interval (CI) 0.25-0.93]. In the BRCA1 group, patients with mutations in RING and BRCT domains had significant benefits from PARPi (HR 0.08, 95% CI 0.01-0.75; HR 0.10, 95% CI 0.02-0.38, respectively). Among BRCA2-mutated patients, RAD51-BD mutations were associated with higher response to olaparib (HR 0.23, 95% CI 0.10-0.52). According to the mutation type, the major effect of PARPi was in the missense group (HR 0.04, 95% CI 0.01-0.31). No patients with p.(Ala1708Glu) in the BRCT domain (BRCA1) receiving PARPi experienced recurring disease in the study period. CONCLUSIONS BRCA1/2-mutated patients benefit from olaparib, but with variations according to the mutation type and FDs. BRCA1-mutated patients in the RING or BRCT and BRCA2-mutated in the RAD51-BD have the greatest benefit. Patients with missense mutations, especially those with p.(Ala1708Glu), have the most significant advantage from maintenance with PARPi.
Collapse
Affiliation(s)
- C Marchetti
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy; Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - A Fagotti
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy; Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - R Fruscio
- Department of Medicine and Surgery, University of Milan, Bicocca, Italy
| | - C Cassani
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Unit of Obstetrics and Gynecology, IRCCS San Matteo Foundation, Pavia, Italy
| | - L Incorvaia
- Obstetrics and Gynecology Unit, Civic Hospital, University of Palermo, Palermo, Italy
| | - M T Perri
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - C M Sassu
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - C A Camnasio
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Unit of Obstetrics and Gynecology, IRCCS San Matteo Foundation, Pavia, Italy
| | - E Giudice
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - A Minucci
- Molecular and Genomic Diagnostics Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - M Seca
- Department of Medicine and Surgery, University of Milan, Bicocca, Italy
| | - E Arbustini
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Unit of Obstetrics and Gynecology, IRCCS San Matteo Foundation, Pavia, Italy
| | - L Vertechy
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - M De Bonis
- Molecular and Genomic Diagnostics Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - S M Boccia
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - D Giannarelli
- Facility of Epidemiology and Biostatistics - GSTeP, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - V Salutari
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - M Distefano
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - M G Ferrandina
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy; Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - C Nero
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - L Musacchio
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - A Russo
- Obstetrics and Gynecology Unit, Civic Hospital, University of Palermo, Palermo, Italy
| | - G Scambia
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy; Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - D Lorusso
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
2
|
Lee K, Chen D, Loh Z, Chung W, Wang C, Chen P, Cheung CHA, Chang C, Hsu H. Benign polymorphisms in the BRCA genes with linkage disequilibrium is associated with cancer characteristics. Cancer Sci 2024; 115:3973-3985. [PMID: 39394900 PMCID: PMC11611775 DOI: 10.1111/cas.16364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 10/14/2024] Open
Abstract
Germline pathogenic mutation of the BRCA gene increases the prevalence of breast cancer. Reports on the benign variants of BRCA genes are limited. However, the definition of these variants might be altered with the accumulation of clinical evidence. Therefore, in the present study, we focused on benign single nucleotide polymorphisms (SNPs) of BRCA genes. Linkage disequilibrium was calculated from whole genome sequencing of the BRCA genes obtained from 500 healthy controls and 49 breast cancer patients. Sanger sequencing was used to confirm the mutation. The linkage disequilibrium was noted for seven and three SNPs in the BRCA1 and BRCA2 genes, respectively. Breast cancer with BRCA1/2 linkage disequilibrium was not correlated with a personal history of benign diseases or family history of cancer. Nevertheless, breast cancer with BRCA1 linkage disequilibrium was correlated with high tumor-infiltrating lymphocytes and positive extensive intraductal components. The patients with BRCA1 linkage disequilibrium tended to have worse disease-specific survival. Cancers with BRCA2 linkage disequilibrium are associated with a lower ratio of grade III cancer. Moreover, patients with BRCA2 linkage disequilibrium tended to have better overall survival. In conclusion, linkage disequilibrium from benign SNPs of the BRCA genes potentially affects cancer characteristics.
Collapse
Affiliation(s)
- Kuo‐Ting Lee
- Department of SurgeryNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan
| | | | - Zhu‐Jun Loh
- Department of SurgeryNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan
| | - Wei‐Pang Chung
- Department of OncologyNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan
- Center of Applied NanomedicineNational Cheng Kung UniversityTainanTaiwan
| | - Chih‐Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug DiscoveryCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
- Graduate Institute of Cancer Biology and Drug DiscoveryCollege of Medical Science and Technology, Taipei Medical UniversityTaipeiTaiwan
| | - Pai‐Sheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainanTaiwan
- Department of Medical Laboratory Science and BiotechnologyCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
| | - Chun Hei Antonio Cheung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainanTaiwan
- Department of PharmacologyCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
| | - Chih‐Peng Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainanTaiwan
- Department of Microbiology and ImmunologyCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
| | - Hui‐Ping Hsu
- Department of SurgeryNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan
| |
Collapse
|
3
|
Kalaimani K, Balachandran S, Boopathy LK, Roy A, Jayachandran B, Sankaranarayanan S, Arumugam MK. Recent advancements in small interfering RNA based therapeutic approach on breast cancer. Eur J Pharmacol 2024; 981:176877. [PMID: 39128807 DOI: 10.1016/j.ejphar.2024.176877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Breast cancer (BC) is the most common and malignant tumor diagnosed in women, with 2.9 million cases in 2023 and the fifth highest cancer-causing mortality worldwide. Recent developments in targeted therapy options for BC have demonstrated the promising potential of small interfering RNA (siRNA)-based cancer therapeutic approaches. As BC continues to be a global burden, siRNA therapy emerges as a potential treatment strategy to regulate disease-related genes in other types of cancers, including BC. siRNAs are tiny RNA molecules that, by preventing their expression, can specifically silence genes linked to the development of cancer. In order to increase the stability and effectiveness of siRNA delivery to BC cells, minimize off-target effects, and improve treatment efficacy, advanced delivery technologies such as lipid nanoparticles and nanocarriers have been created. Additionally, combination therapies, such as siRNAs that target multiple pathways are used in conjunction with conventional chemotherapy agents, have shown synergistic effects in various preclinical studies, opening up new treatment options for breast cancer that are personalized and precision medicine-oriented. Targeting important genes linked to BC growth, metastasis, and chemo-resistance has been reported in BC research using siRNA-based therapies. This study reviews recent reports on therapeutic approaches to siRNA for advanced treatment of BC. Furthermore, this review evaluates the role and mechanisms of siRNA in BC and demonstrates the potential of exploiting siRNA as a novel target for BC therapy.
Collapse
Affiliation(s)
- Kathirvel Kalaimani
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Shana Balachandran
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Bhuvaneshwari Jayachandran
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Sangamithra Sankaranarayanan
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Madan Kumar Arumugam
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India.
| |
Collapse
|
4
|
Mohammed H, Karhib MM, Al-Fahad KSJ, Atef AM, Eskandrani A, Darwish AAE, Sary AA, Elwakil BH, Bakr BA, Eldrieny AM. Newly synthesized chitosan nanoparticles loaded with caffeine/moringa leaf extracts Halt Her2, BRCA1, and BRCA2 expressions. Sci Rep 2024; 14:18118. [PMID: 39103402 PMCID: PMC11300450 DOI: 10.1038/s41598-024-67599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/12/2024] [Indexed: 08/07/2024] Open
Abstract
Breast cancer is among the highest morbidity and mortality rates in women around the world. In the present investigation we aimed to synthesis novel nanosystem combining two naturally important anticancer agents with different mechanism of action namely Moringa oleifera and caffeine. Firstly, chemical analysis of Moringa oleifera extract and caffeine was done by gas chromatography-mass spectroscopy (GC-MS) in order to assess the main chemical compounds present and correlate between them and the possible anticancer effect. The novel nanosystem was characterized through dynamic light scattering techniques which revealed the stability and homogeneity of the prepared M. oleifera leaves extract/Caffeine loaded chitosan nanoparticles, while FTIR and transmission electron microscope (TEM) proved the shape and the successful incorporation of M. oleifera leaves extract/Caffeine onto the nanochitosan carrier. Our initial step was to assess the anticancer effect in vitro in cancer cell line MCF-7 which proved the significant enhanced effect of M. oleifera leaves extract/Caffeine nanosystem compared to M. oleifera leaves extract or caffeine loaded nanoparticles. Further studies were conducted in vivo namely tumor biomarkers, tumor volume, bioluminescence imaging, molecular and histopathological investigations. The present study proved the potent anticancer effect of the synthesized M. oleifera leaves extract/Caffeine loaded chitosan nanoparticles. Mo/Caf/CsNPs exhibited a large number of apoptotic cells within the tumor mass while the adipose tissue regeneration was higher compared to the positive control. The prepared nanoparticles downregulated the expression of Her2, BRCA1 and BRCA2 while mTOR expression was upregulated. The aforementioned data demonstrated the successful synergistic impact of Moringa and caffeine in decreasing the carcinoma grade.
Collapse
Affiliation(s)
- Hanaa Mohammed
- Human Anatomy and Embryology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Mustafa M Karhib
- Department of Medical Laboratory Techniques, College of Health and Medical Technologies, Al-Mustaqbal University, Hillah, Babylon, 51001, Iraq
| | | | - Atef Mohamed Atef
- Faculty of Medical Applied Science, Irbid National University, Irbid, Jordan
| | - Areej Eskandrani
- College of Science, Taibah University, 30002, Madinah, Kingdom of Saudi Arabia
| | - Amira Abd-Elfattah Darwish
- Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, 21526, Egypt
| | - Ahmed Abdallah Sary
- Faculty of Physical Therapy, Pharos University in Alexandria, Alexandria, 21526, Egypt
| | - Bassma H Elwakil
- Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, 21526, Egypt.
| | - Basant A Bakr
- Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Ahmed M Eldrieny
- Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, 21526, Egypt
| |
Collapse
|
5
|
Akkoc Mustafayev FN, Shukla MA, Lanier A, Milton DR, Gutierrez AM, Gruschkus SK, Lewis JE, Murthy RK, Arun BK. Survival outcomes of patients with HER2/neu-positive breast cancer with germline BRCA mutations. Cancer 2024; 130:1600-1608. [PMID: 38100492 DOI: 10.1002/cncr.35159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Breast cancer (BC) with germline BRCA1/2 mutations and their association with triple-negative BC has been thoroughly investigated. However, some carriers of BRCA1/2 mutations have human epidermal growth factor receptor 2 (HER2/neu)-positive BC, which has a different targeted therapy approach, and data are scarce for this patient population. The authors sought to characterize the clinical characteristics and outcomes of patients with HER2/neu-positive BC who had germline BRCA1/2 mutations. METHODS This was a retrospective analysis of data from 1099 patients diagnosed with HER2/neu-positive BC who were screened for germline BRCA mutations between 1996 and 2022. Clinicopathologic features and survival rates were analyzed by BRCA mutation status. Univariate and multivariable Cox proportional hazards regression models were used to analyze the association between clinical variables and outcomes. RESULTS Of 1099 patients with HER2/neu-positive BC, 73 (6.6%) tested positive for BRCA1/2 mutations. Age, race, and tumor characteristics did not differ between BRCA noncarriers and carriers. At a median follow-up of 78.6 months, the 5-year recurrence-free survival rate was 85% in BRCA carriers and 87% in noncarriers (p = .79), and the 5-year overall survival rate was 94% in BRCA carriers and 94% in noncarriers (p = .78). In a multivariable model, BRCA was not associated with recurrence-free survival (hazard ratio, 0.99; 95% confidence interval, 0.51-1.90; p = .96) or overall survival (hazard ratio, 0.83; 95% confidence interval, 0.33-2.07; p = .69). CONCLUSIONS BRCA1/2 mutations occurred in 6.6% of patients with HER2/neu-positive BC and did not affect survival outcomes. Assessing the potential benefits of new treatment strategies, such as combining anti-HER2/neu therapies with poly(ADP-ribose) polymerase inhibitors, may lead to enhanced outcomes for these patients.
Collapse
Affiliation(s)
| | - Mihir Amitabh Shukla
- Department of Internal Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Amanda Lanier
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Denái R Milton
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Angelica M Gutierrez
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen K Gruschkus
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John E Lewis
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rashmi K Murthy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Banu K Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
6
|
Oluwole OG. The analyses of human MCPH1 DNA repair machinery and genetic variations. Open Med (Wars) 2024; 19:20240917. [PMID: 38463519 PMCID: PMC10921449 DOI: 10.1515/med-2024-0917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/29/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Causal mutations in the MCPH1 gene have been associated with disorders like microcephaly, and recently congenital hearing impairment. This study examined the MCPH1 DNA repair machinery and identified genetic variations of interest in gnomAD database to discuss the biological roles and effects of rare variants in MCPH1-related diseases. Notably, MCPH1 coordinates two of the seven known mechanisms of DNA repair which confirmed its roles in neurogenesis and chromatin condensation. A pathogenic missense variant in MCPH1 p.Gly753Arg, and two pathogenic frameshifts MCPH1 p.Asn189LysfsTer15 and p.Cys624Ter identified in this study, already had entries in ClinVar and were associated with microcephaly. A pathogenic frameshift in MCPH1 p.Val10SerfsTer5 with a loss-of-function flag and a pathogenic stop gained p.Ser571Ter variants with ultra-rare allele frequency (MAF ≤ 0.001) were identified but have not been linked to any phenotype. The predicted pathogenic ultra-rare variants identified in this study, warranty phenotypic discovery, and also positioned these variants or nearby deleterious variants candidate for screening in MCPH1-associated rare diseases.
Collapse
Affiliation(s)
- Oluwafemi G Oluwole
- Biomedical Research Centre, Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Division of Human Genetics, University of Cape Town, Cape Town, South Africa
- Non-communicable Diseases Department, Institute of Primate Research, Nairobi, Kenya
| |
Collapse
|
7
|
De Paolis E, Paris I, Tilocca B, Roncada P, Foca L, Tiberi G, D’Angelo T, Pavese F, Muratore M, Carbognin L, Garganese G, Masetti R, Di Leone A, Fabi A, Scambia G, Urbani A, Generali D, Minucci A, Santonocito C. Assessing the pathogenicity of BRCA1/2 variants of unknown significance: Relevance and challenges for breast cancer precision medicine. Front Oncol 2023; 12:1053035. [PMID: 36741700 PMCID: PMC9891372 DOI: 10.3389/fonc.2022.1053035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction Breast cancer (BC) is the leading cause of cancer-related death in women worldwide. Pathogenic variants in BRCA1 and BRCA2 genes account for approximately 50% of all hereditary BC, with 60-80% of patients characterized by Triple Negative Breast Cancer (TNBC) at an early stage phenotype. The identification of a pathogenic BRCA1/2 variant has important and expanding roles in risk-reducing surgeries, treatment planning, and familial surveillance. Otherwise, finding unclassified Variants of Unknown Significance (VUS) limits the clinical utility of the molecular test, leading to an "imprecise medicine". Methods We reported the explanatory example of the BRCA1 c.5057A>C, p.(His1686Pro) VUS identified in a patient with TNBC. We integrated data from family history and clinic-pathological evaluations, genetic analyses, and bioinformatics in silico investigations to evaluate the VUS classification. Results Our evaluation posed evidences for the pathogenicity significance of the investigated VUS: 1) association of the BRCA1 variant to cancer-affected members of the family; 2) absence of another high-risk mutation; 3) multiple indirect evidences derived from gene and protein structural analysis. Discussion In line with the ongoing efforts to uncertain variants classification, we speculated about the relevance of an in-depth assessment of pathogenicity of BRCA1/2 VUS for a personalized management of patients with BC. We underlined that the efficient integration of clinical data with the widest number of supporting molecular evidences should be adopted for the proper management of patients, with the final aim of effectively guide the best prognostic and therapeutic paths.
Collapse
Affiliation(s)
- Elisa De Paolis
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy,Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, Rome, Italy
| | - Ida Paris
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy,*Correspondence: Ida Paris,
| | - Bruno Tilocca
- Department of Health Science, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Paola Roncada
- Department of Health Science, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Laura Foca
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giordana Tiberi
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Tatiana D’Angelo
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesco Pavese
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Margherita Muratore
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luisa Carbognin
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgia Garganese
- Gynaecology and Breast Care Center, Mater Olbia Hospital, Olbia, Italy,Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Ginecologia ed Ostetricia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Masetti
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alba Di Leone
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alessandra Fabi
- Unit of Precision Medicine in Breast Cancer, Scientific Directorate, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Giovanni Scambia
- Division of Oncological Gynecology, Department of Women’s and Children’s Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Andrea Urbani
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy,Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, Rome, Italy
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Angelo Minucci
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Concetta Santonocito
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy,Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
8
|
Bhat DS, Spies MA, Spies M. A moving target for drug discovery: Structure activity relationship and many genome (de)stabilizing functions of the RAD52 protein. DNA Repair (Amst) 2022; 120:103421. [PMID: 36327799 PMCID: PMC9888176 DOI: 10.1016/j.dnarep.2022.103421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 02/02/2023]
Abstract
BRCA-ness phenotype, a signature of many breast and ovarian cancers, manifests as deficiency in homologous recombination, and as defects in protection and repair of damaged DNA replication forks. A dependence of such cancers on DNA repair factors less important for survival of BRCA-proficient cells, offers opportunities for development of novel chemotherapeutic interventions. The first drugs targeting BRCA-deficient cancers, poly-ADP-ribose polymerase (PARP) inhibitors have been approved for the treatment of advanced, chemotherapy resistant cancers in patients with BRCA1/2 germline mutations. Nine additional proteins that can be targeted to selectively kill BRCA-deficient cancer cells have been identified. Among them, a DNA repair protein RAD52 is an especially attractive target due to general tolerance of the RAD52 loss of function, and protective role of an inactivating mutation. Yet, the effective pharmacological inhibitors of RAD52 have not been forthcoming. In this review, we discuss advances in the state of our knowledge of the RAD52 structure, activities and cellular functions, with a specific focus on the features that make RAD52 an attractive, but difficult drug target.
Collapse
Affiliation(s)
- Divya S Bhat
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
| | - M Ashley Spies
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA; Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Maria Spies
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA.
| |
Collapse
|
9
|
Bai S, Taylor S, Jamalruddin MA, McGonigal S, Grimley E, Yang D, Bernstein KA, Buckanovich RJ. Targeting Therapeutic Resistance and Multinucleate Giant Cells in CCNE1-Amplified HR-Proficient Ovarian Cancer. Mol Cancer Ther 2022; 21:1473-1484. [PMID: 35732503 PMCID: PMC9452459 DOI: 10.1158/1535-7163.mct-21-0873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/30/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
Approximately 20% of high-grade serous ovarian cancers (HGSOC) have CCNE1 amplification. CCNE1-amplified tumors are homologous recombination (HR) proficient and resistant to standard therapies. Therapy resistance is associated with increased numbers of polyploid giant cancer cells (PGCC). We sought to identify new therapeutic approaches for patients with CCNE1-amplified tumors. Using TCGA data, we find that the mTOR, HR, and DNA checkpoint pathways are enriched in CCNE1-amplified ovarian cancers. Furthermore, Interactome Mapping Analysis linked the mTOR activity with upregulation of HR and DNA checkpoint pathways. Indeed, we find that mTOR inhibitors (mTORi) downregulate HR/checkpoint genes in CCNE1-amplified tumors. As CCNE1-amplified tumors are dependent on the HR pathway for viability, mTORi proved selectively effective in CCNE1-amplified tumors. Similarly, via downregulation of HR genes, mTORi increased CCNE1-amplifed HGSOC response to PARPi. In contrast, overexpression of HR/checkpoint proteins (RAD51 or ATR), induced resistance to mTORi. In vivo, mTORi alone potently reduced CCNE1-amplified tumor growth and the combination of mTORi and PARPi increased response and tumor eradication. Tumors treated with mTORi demonstrated a significant reduction in ALDH+ PGCCs. Finally, as a proof of principle, we identified three patients with CCNE1 amplified tumors who were treated with an mTORi. All three obtained clinical benefits from the therapy. Our studies and clinical experience indicate mTORi are a potential therapeutic approach for patients with CCNE1-amplified tumors.
Collapse
Affiliation(s)
- Shoumei Bai
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah Taylor
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohd Azrin Jamalruddin
- Dept of Microbiology and Molecular. Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Stacy McGonigal
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edward Grimley
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongli Yang
- Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kara A. Bernstein
- Dept of Microbiology and Molecular. Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ronald J. Buckanovich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
El makawy AI, Mabrouk DM, Mohammed SE, Abdel-Aziem SH, EL-Kader HAA, Sharaf HA, Youssef DA, Ibrahim FM. The suppressive role of nanoencapsulated chia oil against DMBA-induced breast cancer through oxidative stress repression and tumor genes expression modulation in rats. Mol Biol Rep 2022; 49:10217-10228. [PMID: 36063350 PMCID: PMC9618492 DOI: 10.1007/s11033-022-07885-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chia oil is high in omega-3 fatty acids, which have been linked to a lower risk of many diseases, including cancer. Oil encapsulation is a method that holds promise for maintaining oil content while enhancing solubility and stability. The purpose of this study is to prepare nanoencapsulated Chia oil and investigate its suppressive effects on rat chemically induced breast cancer. METHODS The oil was extracted from commercial Chia seeds and their fatty acids were analyzed using Gas Chromatography-mass spectrometry (GC/MS). Sodium alginate was used as a loading agent to create the Chia oil nanocapsules. The DPPH assay was used to assess the oil nanocapsules' capacity to scavenge free radicals. Breast cancer induction was done by single dose subcutaneously administration of 80 mg/kg dimethylbenz (a) anthracene (DMBA). Models of breast cancer were given Chia oil nanocapsules orally for one month at doses of 100 and 200 mg/kg. Through measuring intracellular reactive oxygen species (ROS) and protein carbonyl, assessing the gene expression of tumor suppressor genes (BRCA 1 & 2, TP53), and conducting histopathological analysis, the suppressive effect of Chia oil nanocapsules was examined. RESULTS The increase in ROS and PC levels brought on by DMBA was significantly decreased by the administration of Chia oil nanocapsules. In tumor tissue from rats given Chia oil nanocapsules, the mRNA expression levels of BRCA1, BRCA2, and TP53 were controlled Histopathological analysis clarified that the tissue architecture of breast tumors was improved by nanocapsules management. CONCLUSIONS These findings demonstrate the ability of Chia oil nanocapsules to inhibit cancer cells in the rat breast.
Collapse
Affiliation(s)
- Aida I. El makawy
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Dalia M. Mabrouk
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Shaimaa E. Mohammed
- Nutrition and Food Sciences Department, Food Industries and Nutrition Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Sekena H. Abdel-Aziem
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Heba A. Abd EL-Kader
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Hafiza A. Sharaf
- Pathology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Dalia A. Youssef
- Pests and Plant Protection Department, Agricultural and Biology Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Faten M. Ibrahim
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| |
Collapse
|
11
|
Creeden JF, Nanavaty NS, Einloth KR, Gillman CE, Stanbery L, Hamouda DM, Dworkin L, Nemunaitis J. Homologous recombination proficiency in ovarian and breast cancer patients. BMC Cancer 2021; 21:1154. [PMID: 34711195 PMCID: PMC8555001 DOI: 10.1186/s12885-021-08863-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023] Open
Abstract
Homologous recombination and DNA repair are important for genome maintenance. Genetic variations in essential homologous recombination genes, including BRCA1 and BRCA2 results in homologous recombination deficiency (HRD) and can be a target for therapeutic strategies including poly (ADP-ribose) polymerase inhibitors (PARPi). However, response is limited in patients who are not HRD, highlighting the need for reliable and robust HRD testing. This manuscript will review BRCA1/2 function and homologous recombination proficiency in respect to breast and ovarian cancer. The current standard testing methods for HRD will be discussed as well as trials leading to approval of PARPi's. Finally, standard of care treatment and synthetic lethality will be reviewed.
Collapse
Affiliation(s)
- Justin Fortune Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Nisha S Nanavaty
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Katelyn R Einloth
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Cassidy E Gillman
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | | | - Danae M Hamouda
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Lance Dworkin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | | |
Collapse
|
12
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
13
|
Tang M, Pei G, Su D, Wang C, Feng X, Srivastava M, Chen Z, Zhao Z, Chen J. Genome-wide CRISPR screens reveal cyclin C as synthetic survival target of BRCA2. Nucleic Acids Res 2021; 49:7476-7491. [PMID: 34197614 PMCID: PMC8287926 DOI: 10.1093/nar/gkab540] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/04/2021] [Accepted: 06/23/2021] [Indexed: 01/15/2023] Open
Abstract
Poly (ADP-ribose) polymerase inhibitor (PARPi)-based therapies initially reduce tumor burden but eventually lead to acquired resistance in cancer patients with BRCA1 or BRCA2 mutation. To understand the potential PARPi resistance mechanisms, we performed whole-genome CRISPR screens to discover genetic alterations that change the gene essentiality in cells with inducible depletion of BRCA2. We identified that several RNA Polymerase II transcription Mediator complex components, especially Cyclin C (CCNC) as synthetic survival targets upon BRCA2 loss. Total mRNA sequencing demonstrated that loss of CCNC could activate the transforming growth factor (TGF)-beta signaling pathway and extracellular matrix (ECM)-receptor interaction pathway, however the inhibition of these pathways could not reverse cell survival in BRCA2 depleted CCNC-knockout cells, indicating that the activation of these pathways is not required for the resistance. Moreover, we showed that the improved survival is not due to restoration of homologous recombination repair although decreased DNA damage signaling was observed. Interestingly, loss of CCNC could restore replication fork stability in BRCA2 deficient cells, which may contribute to PARPi resistance. Taken together, our data reveal CCNC as a critical genetic determinant upon BRCA2 loss of function, which may help the development of novel therapeutic strategies that overcome PARPi resistance.
Collapse
Affiliation(s)
- Mengfan Tang
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dan Su
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mrinal Srivastava
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, Unit 1052, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
14
|
Raimundo L, Calheiros J, Saraiva L. Exploiting DNA Damage Repair in Precision Cancer Therapy: BRCA1 as a Prime Therapeutic Target. Cancers (Basel) 2021; 13:cancers13143438. [PMID: 34298653 PMCID: PMC8303227 DOI: 10.3390/cancers13143438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/21/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Chemical inhibition of central DNA damage repair (DDR) proteins has become a promising approach in precision cancer therapy. In particular, BRCA1 and its DDR-associated proteins constitute important targets for developing DNA repair inhibiting drugs. This review provides relevant insights on DDR biology and pharmacology, aiming to boost the development of more effective DDR targeted therapies. Abstract Precision medicine aims to identify specific molecular alterations, such as driver mutations, allowing tailored and effective anticancer therapies. Poly(ADP)-ribose polymerase inhibitors (PARPi) are the prototypical example of targeted therapy, exploiting the inability of cancer cells to repair DNA damage. Following the concept of synthetic lethality, PARPi have gained great relevance, particularly in BRCA1 dysfunctional cancer cells. In fact, BRCA1 mutations culminate in DNA repair defects that can render cancer cells more vulnerable to therapy. However, the efficacy of these drugs has been greatly affected by the occurrence of resistance due to multi-connected DNA repair pathways that may compensate for each other. Hence, the search for additional effective agents targeting DNA damage repair (DDR) is of crucial importance. In this context, BRCA1 has assumed a central role in developing drugs aimed at inhibiting DNA repair activity. Collectively, this review provides an in-depth understanding of the biology and regulatory mechanisms of DDR pathways, highlighting the potential of DDR-associated molecules, particularly BRCA1 and its interconnected partners, in precision cancer medicine. It also affords an overview about what we have achieved and a reflection on how much remains to be done in this field, further addressing encouraging clues for the advance of DDR targeted therapy.
Collapse
|
15
|
McMahon KA, Stroud DA, Gambin Y, Tillu V, Bastiani M, Sierecki E, Polinkovsky ME, Hall TE, Gomez GA, Wu Y, Parat MO, Martel N, Lo HP, Khanna KK, Alexandrov K, Daly R, Yap A, Ryan MT, Parton RG. Cavin3 released from caveolae interacts with BRCA1 to regulate the cellular stress response. eLife 2021; 10:61407. [PMID: 34142659 PMCID: PMC8279762 DOI: 10.7554/elife.61407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Caveolae-associated protein 3 (cavin3) is inactivated in most cancers. We characterized how cavin3 affects the cellular proteome using genome-edited cells together with label-free quantitative proteomics. These studies revealed a prominent role for cavin3 in DNA repair, with BRCA1 and BRCA1 A-complex components being downregulated on cavin3 deletion. Cellular and cell-free expression assays revealed a direct interaction between BRCA1 and cavin3 that occurs when cavin3 is released from caveolae that are disassembled in response to UV and mechanical stress. Overexpression and RNAi-depletion revealed that cavin3 sensitized various cancer cells to UV-induced apoptosis. Supporting a role in DNA repair, cavin3-deficient cells were sensitive to PARP inhibition, where concomitant depletion of 53BP1 restored BRCA1-dependent sensitivity to PARP inhibition. We conclude that cavin3 functions together with BRCA1 in multiple cancer-related pathways. The loss of cavin3 function may provide tumor cell survival by attenuating apoptotic sensitivity and hindering DNA repair under chronic stress conditions.
Collapse
Affiliation(s)
- Kerrie-Ann McMahon
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - David A Stroud
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Yann Gambin
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Vikas Tillu
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Michele Bastiani
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Emma Sierecki
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Mark E Polinkovsky
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Thomas E Hall
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Guillermo A Gomez
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Yeping Wu
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Marie-Odile Parat
- School of Pharmacy, The University of Queensland, Woolloongabba, Australia
| | - Nick Martel
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Harriet P Lo
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Kirill Alexandrov
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Roger Daly
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Australia
| | - Alpha Yap
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Michael T Ryan
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, Queensland, Australia
| |
Collapse
|
16
|
Minten EV, Kapoor-Vazirani P, Li C, Zhang H, Balakrishnan K, Yu DS. SIRT2 promotes BRCA1-BARD1 heterodimerization through deacetylation. Cell Rep 2021; 34:108921. [PMID: 33789098 PMCID: PMC8108010 DOI: 10.1016/j.celrep.2021.108921] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 02/08/2021] [Accepted: 03/09/2021] [Indexed: 01/04/2023] Open
Abstract
The breast cancer type I susceptibility protein (BRCA1) and BRCA1-associated RING domain protein I (BARD1) heterodimer promote genome integrity through pleiotropic functions, including DNA double-strand break (DSB) repair by homologous recombination (HR). BRCA1-BARD1 heterodimerization is required for their mutual stability, HR function, and role in tumor suppression; however, the upstream signaling events governing BRCA1-BARD1 heterodimerization are unclear. Here, we show that SIRT2, a sirtuin deacetylase and breast tumor suppressor, promotes BRCA1-BARD1 heterodimerization through deacetylation. SIRT2 complexes with BRCA1-BARD1 and deacetylates conserved lysines in the BARD1 RING domain, interfacing BRCA1, which promotes BRCA1-BARD1 heterodimerization and consequently BRCA1-BARD1 stability, nuclear retention, and localization to DNA damage sites, thus contributing to efficient HR. Our findings define a mechanism for regulation of BRCA1-BARD1 heterodimerization through SIRT2 deacetylation, elucidating a critical upstream signaling event directing BRCA1-BARD1 heterodimerization, which facilitates HR and tumor suppression, and delineating a role for SIRT2 in directing DSB repair by HR. Minten et al. show that SIRT2, a sirtuin deacetylase and tumor suppressor protein, promotes BRCA1-BARD1 heterodimerization through deacetylation of BARD1 at conserved lysines within its RING domain. These findings elucidate a critical upstream signaling event directing BRCA1-BARD1 heterodimerization, which facilitates HR and tumor suppression.
Collapse
Affiliation(s)
- Elizabeth V Minten
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Priya Kapoor-Vazirani
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chunyang Li
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hui Zhang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kamakshi Balakrishnan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David S Yu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
17
|
Du C, Peng Y, He Y, Chen G, Chen H. Low levels of BRCA1 protein expression predict a worse prognosis in stage I-II colon cancer. Int J Biol Markers 2021; 36:47-53. [PMID: 33583275 DOI: 10.1177/1724600820986572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND BRCA1 and BRCA2 have been well studied for their roles in tumorigeneis, plus cancer diagnosis and treatment, but their prognostic value in colon cancer, especially for early-stage cancer, has not been fully illuminated. This study examined the expression levels of BRCA1 and BRCA2 proteins in sporadic colon cancer cases and investigated their value in prognosis. METHODS The expression levels of BRCA1 and BRCA2 in 275 colon cancer patients who underwent radical surgeries were assayed by immunohistochemical staining in dissected tumor samples. Also, its correlation with clinicopathological characteristics, disease-free survival, and overall survival was investigated. RESULTS Tumors with low expression levels of BRCA1, BRCA2, and both were 19.6%, 17.8%, and 6.5%, respectively. The levels of BRCA1/2 expression were not associated with clinicopathological parameters (gender, age, histological differentiation, and tumor node metastasis stage). Patients with low-levels of BRCA1 protein in their tumors demonstrated a lower chance of 5-year disease-free survival (55.6% vs. 69.7%, P=0.046), which was more obvious in the patients with stage I-II tumors without chemotherapy (52.6% vs. 82.6%, P=0.006). Neither BRCA1 nor BRCA2 affected overall survival in this cohort. Multivariate analysis revealed that pathologic stage and the level of BRCA1 protein were independent factors of long-term disease-free survival. CONCLUSION This study highlights BRCA1 as an independent prognosticator of early-stage colon cancer.
Collapse
Affiliation(s)
- Changzheng Du
- School of Medicine, the Southern University of Science and Technology, Shenzhen, Guangdong, People's Republic of China.,Southern University of Science and Technology Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yifan Peng
- Gastrointestinal Cancer Center, Beijing Cancer Hospital, Beijing, People's Republic of China
| | - Yiping He
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Guoan Chen
- School of Medicine, the Southern University of Science and Technology, Shenzhen, Guangdong, People's Republic of China
| | - Hao Chen
- School of Medicine, the Southern University of Science and Technology, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
18
|
Arakelyan A, Melkonyan A, Hakobyan S, Boyarskih U, Simonyan A, Nersisyan L, Nikoghosyan M, Filipenko M, Binder H. Transcriptome Patterns of BRCA1- and BRCA2- Mutated Breast and Ovarian Cancers. Int J Mol Sci 2021; 22:1266. [PMID: 33525353 PMCID: PMC7865215 DOI: 10.3390/ijms22031266] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in the BRCA1 and BRCA2 genes are known risk factors and drivers of breast and ovarian cancers. So far, few studies have been focused on understanding the differences in transcriptome and functional landscapes associated with the disease (breast vs. ovarian cancers), gene (BRCA1 vs. BRCA2), and mutation type (germline vs. somatic). In this study, we were aimed at systemic evaluation of the association of BRCA1 and BRCA2 germline and somatic mutations with gene expression, disease clinical features, outcome, and treatment. We performed BRCA1/2 mutation centered RNA-seq data analysis of breast and ovarian cancers from the TCGA repository using transcriptome and phenotype "portrayal" with multi-layer self-organizing maps and functional annotation. The results revealed considerable differences in BRCA1- and BRCA2-dependent transcriptome landscapes in the studied cancers. Furthermore, our data indicated that somatic and germline mutations for both genes are characterized by deregulation of different biological functions and differential associations with phenotype characteristics and poly(ADP-ribose) polymerase (PARP)-inhibitor gene signatures. Overall, this study demonstrates considerable variation in transcriptomic landscapes of breast and ovarian cancers associated with the affected gene (BRCA1 vs. BRCA2), as well as the mutation type (somatic vs. germline). These results warrant further investigations with larger groups of mutation carriers aimed at refining the understanding of molecular mechanisms of breast and ovarian cancers.
Collapse
Affiliation(s)
- Arsen Arakelyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, 0051 Yerevan, Armenia
| | - Ani Melkonyan
- Laboratory of Human Genomics and Immunomics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia;
| | - Siras Hakobyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
| | - Uljana Boyarskih
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (U.B.); (M.F.)
| | - Arman Simonyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
| | - Lilit Nersisyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
| | - Maria Nikoghosyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, 0051 Yerevan, Armenia
| | - Maxim Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (U.B.); (M.F.)
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, D-04107 Leipzig, Germany;
| |
Collapse
|
19
|
Tayyeb A, Shah Z, Nouroz F. In silico BRCA1 pathway analysis in breast invasive carcinoma. MGM JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/mgmj.mgmj_88_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Xu Z, Li X, Li H, Nie C, Liu W, Li S, Liu Z, Wang W, Wang J. Suppression of DDX39B sensitizes ovarian cancer cells to DNA-damaging chemotherapeutic agents via destabilizing BRCA1 mRNA. Oncogene 2020; 39:7051-7062. [PMID: 32989256 DOI: 10.1038/s41388-020-01482-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 01/28/2023]
Abstract
Multiple RNA processing events including transcription, mRNA splicing, and export are delicately coordinated by the TREX complex. As one of the essential subunits, DDX39B couples the splicing and export machineries by recruiting ALYREF onto mRNA. In this study, we further explore the functions of DDX39B in handling damaged DNA, and unexpectedly find that DDX39B facilitates DNA repair by homologous recombination through upregulating BRCA1. Specifically, DDX39B binds to and stabilizes BRCA1 mRNA. DDX39B ensures ssDNA formation and RAD51 accumulation at DSB sites by maintaining BRCA1 levels. Without DDX39B being present, ovarian cancer cells exhibit hypersensitivity to DNA-damaging chemotherapeutic agents like platinum or PARPi. Moreover, DDX39B-deficient mice show embryonic lethality or developmental retardation, highly reminiscent of those lacking BRCA1. High DDX39B expression is correlated with worse survival in ovarian cancer patients. Thus, DDX39B suppression represents a rational approach for enhancing the efficacy of chemotherapy in BRCA1-proficient ovarian cancers.
Collapse
Affiliation(s)
- Zhanzhan Xu
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaoman Li
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hanxiao Li
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Chen Nie
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Wanchang Liu
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shiwei Li
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zelin Liu
- Department of Medical Bioinformatics, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Weibin Wang
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Jiadong Wang
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
21
|
p50 mono-ubiquitination and interaction with BARD1 regulates cell cycle progression and maintains genome stability. Nat Commun 2020; 11:5007. [PMID: 33024116 PMCID: PMC7538584 DOI: 10.1038/s41467-020-18838-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/15/2020] [Indexed: 01/14/2023] Open
Abstract
p50, the mature product of NFKB1, is constitutively produced from its precursor, p105. Here, we identify BARD1 as a p50-interacting factor. p50 directly associates with the BARD1 BRCT domains via a C-terminal phospho-serine motif. This interaction is induced by ATR and results in mono-ubiquitination of p50 by the BARD1/BRCA1 complex. During the cell cycle, p50 is mono-ubiquitinated in S phase and loss of this post-translational modification increases S phase progression and chromosomal breakage. Genome-wide studies reveal a substantial decrease in p50 chromatin enrichment in S phase and Cycln E is identified as a factor regulated by p50 during the G1 to S transition. Functionally, interaction with BARD1 promotes p50 protein stability and consistent with this, in human cancer specimens, low nuclear BARD1 protein strongly correlates with low nuclear p50. These data indicate that p50 mono-ubiquitination by BARD1/BRCA1 during the cell cycle regulates S phase progression to maintain genome integrity. p50 is a constitutively produced NF-κB subunit that modulates the response to DNA damage. Here, the authors show that activation of ATR during S phase induces p50 interaction with BARD1 resulting in p50 mono-ubiquitination, facilitating cell cycle progression and promoting chromosome integrity.
Collapse
|
22
|
Shakri AR, James Zhong T, Ma W, Coker C, Hegde R, Scholze H, Chin V, Szabolcs M, Hibshoosh H, Tanji K, Baer R, Kumar Biswas A, Acharyya S. Aberrant Zip14 expression in muscle is associated with cachexia in a Bard1-deficient mouse model of breast cancer metastasis. Cancer Med 2020; 9:6766-6775. [PMID: 32730698 PMCID: PMC7520359 DOI: 10.1002/cam4.3242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/30/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
Nearly 80% of advanced cancer patients are afflicted with cachexia, a debilitating syndrome characterized by extensive loss of muscle mass and function. Cachectic cancer patients have a reduced tolerance to antineoplastic therapies and often succumb to premature death from the wasting of respiratory and cardiac muscles. Since there are no available treatments for cachexia, it is imperative to understand the mechanisms that drive cachexia in order to devise effective strategies to treat it. Although 25% of metastatic breast cancer patients develop symptoms of muscle wasting, mechanistic studies of breast cancer cachexia have been hampered by a lack of experimental models. Using tumor cells deficient for BARD1, a subunit of the BRCA1/BARD1 tumor suppressor complex, we have developed a new orthotopic model of triple‐negative breast cancer that spontaneously metastasizes to the lung and leads to systemic muscle deterioration. We show that expression of the metal‐ion transporter, Zip14, is markedly upregulated in cachectic muscles from these mice and is associated with elevated intramuscular zinc and iron levels. Aberrant Zip14 expression and altered metal‐ion homeostasis could therefore represent an underlying mechanism of cachexia development in human patients with triple‐negative breast cancer. Our study provides a unique model for studying breast cancer cachexia and identifies a potential therapeutic target for its treatment.
Collapse
Affiliation(s)
| | - Timothy James Zhong
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.,Graduate School of Arts and Sciences, Department of Pathobiology and Mechanisms of Disease, Columbia University Irving Medical Center, New York, NY, USA
| | - Wanchao Ma
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Courtney Coker
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Rohaan Hegde
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Hanna Scholze
- Barnard College, Columbia University, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Vanessa Chin
- Barnard College, Columbia University, New York, NY, USA
| | - Matthias Szabolcs
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Kurenai Tanji
- Division of Neuropathology, Department of Pathology and Cell Biology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Richard Baer
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Anup Kumar Biswas
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Swarnali Acharyya
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| |
Collapse
|
23
|
Sala-Gaston J, Martinez-Martinez A, Pedrazza L, Lorenzo-Martín LF, Caloto R, Bustelo XR, Ventura F, Rosa JL. HERC Ubiquitin Ligases in Cancer. Cancers (Basel) 2020; 12:cancers12061653. [PMID: 32580485 PMCID: PMC7352365 DOI: 10.3390/cancers12061653] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
HERC proteins are ubiquitin E3 ligases of the HECT family. The HERC subfamily is composed of six members classified by size into large (HERC1 and HERC2) and small (HERC3-HERC6). HERC family ubiquitin ligases regulate important cellular processes, such as neurodevelopment, DNA damage response, cell proliferation, cell migration, and immune responses. Accumulating evidence also shows that this family plays critical roles in cancer. In this review, we provide an integrated view of the role of these ligases in cancer, highlighting their bivalent functions as either oncogenes or tumor suppressors, depending on the tumor type. We include a discussion of both the molecular mechanisms involved and the potential therapeutic strategies.
Collapse
Affiliation(s)
- Joan Sala-Gaston
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
| | - Arturo Martinez-Martinez
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
| | - Leonardo Pedrazza
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
| | - L. Francisco Lorenzo-Martín
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer and CIBERONC, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; (L.F.L.-M.); (R.C.); (X.R.B.)
| | - Rubén Caloto
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer and CIBERONC, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; (L.F.L.-M.); (R.C.); (X.R.B.)
| | - Xosé R. Bustelo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer and CIBERONC, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; (L.F.L.-M.); (R.C.); (X.R.B.)
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
- Correspondence:
| |
Collapse
|
24
|
Gatti V, Bernassola F, Talora C, Melino G, Peschiaroli A. The Impact of the Ubiquitin System in the Pathogenesis of Squamous Cell Carcinomas. Cancers (Basel) 2020; 12:1595. [PMID: 32560247 PMCID: PMC7352818 DOI: 10.3390/cancers12061595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin system is a dynamic regulatory pathway controlling the activity, subcellular localization and stability of a myriad of cellular proteins, which in turn affects cellular homeostasis through the regulation of a variety of signaling cascades. Aberrant activity of key components of the ubiquitin system has been functionally linked with numerous human diseases including the initiation and progression of human tumors. In this review, we will contextualize the importance of the two main components of the ubiquitin system, the E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs), in the etiology of squamous cell carcinomas (SCCs). We will discuss the signaling pathways regulated by these enzymes, emphasizing the genetic and molecular determinants underlying their deregulation in SCCs.
Collapse
Affiliation(s)
- Veronica Gatti
- National Research Council of Italy, Institute of Translational Pharmacology, 00133 Rome, Italy;
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (F.B.); (G.M.)
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (F.B.); (G.M.)
| | - Angelo Peschiaroli
- National Research Council of Italy, Institute of Translational Pharmacology, 00133 Rome, Italy;
| |
Collapse
|
25
|
Hu Z, Mi S, Zhao T, Peng C, Peng Y, Chen L, Zhu W, Yao Y, Song Q, Li X, Li X, Jia C, Pei H. BGL3 lncRNA mediates retention of the BRCA1/BARD1 complex at DNA damage sites. EMBO J 2020; 39:e104133. [PMID: 32347575 DOI: 10.15252/embj.2019104133] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging regulators of genomic stability and human disease. However, the molecular mechanisms by which nuclear lncRNAs directly contribute to DNA damage responses remain largely unknown. Using RNA antisense purification coupled with quantitative mass spectrometry (RAP-qMS), we found that the lncRNA BGL3 binds to PARP1 and BARD1, exhibiting unexpected roles in homologous recombination. Mechanistically, BGL3 is recruited to DNA double-strand breaks (DSBs) by PARP1 at an early time point, which requires its interaction with the DNA-binding domain of PARP1. BGL3 also binds the C-terminal BRCT domain and an internal region (amino acids 127-424) of BARD1, which mediates interaction of the BRCA1/BARD1 complex with its binding partners such as HP1γ and RAD51, resulting in BRCA1/BARD1 retention at DSBs. Cells depleted for BGL3 displayed genomic instability and were sensitive to DNA-damaging reagents. Overall, our findings underscore the biochemical versatility of RNA as a mediator molecule in the DNA damage response pathway, which affects the accumulation of BRCA1/BARD1 at DSBs.
Collapse
Affiliation(s)
- Zhaohua Hu
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shaojie Mi
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Industrial Fermentation Microbiology, Tianjin Industrial Microbiology Key Lab, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ting Zhao
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Changmin Peng
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Science, Washington, DC, USA.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yihan Peng
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Science, Washington, DC, USA.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Lulu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Science, Washington, DC, USA.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangpan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinzhi Li
- Department of Orthopedics, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Chenxi Jia
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Huadong Pei
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Science, Washington, DC, USA.,GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
26
|
Nath S, Nagaraju G. FANCJ helicase promotes DNA end resection by facilitating CtIP recruitment to DNA double-strand breaks. PLoS Genet 2020; 16:e1008701. [PMID: 32251466 PMCID: PMC7162537 DOI: 10.1371/journal.pgen.1008701] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/16/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
FANCJ helicase mutations are known to cause hereditary breast and ovarian cancers as well as bone marrow failure syndrome Fanconi anemia. FANCJ plays an important role in the repair of DNA inter-strand crosslinks and DNA double-strand breaks (DSBs) by homologous recombination (HR). Nonetheless, the molecular mechanism by which FANCJ controls HR mediated DSB repair is obscure. Here, we show that FANCJ promotes DNA end resection by recruiting CtIP to the sites of DSBs. This recruitment of CtIP is dependent on FANCJ K1249 acetylation. Notably, FANCJ acetylation is dependent on FANCJ S990 phosphorylation by CDK. The CDK mediated phosphorylation of FANCJ independently facilitates its interaction with BRCA1 at damaged DNA sites and promotes DNA end resection by CtIP recruitment. Strikingly, mutational studies reveal that ATP binding competent but hydrolysis deficient FANCJ partially supports end resection, indicating that in addition to the scaffolding role of FANCJ in CtIP recruitment, its helicase activity is important for promoting end resection. Together, these data unravel a novel function of FANCJ helicase in DNA end resection and provide mechanistic insights into its role in repairing DSBs by HR and in genome maintenance. Homologous recombination has been considered as an error-free pathway in repairing DSBs and maintaining genome stability. Cyclin-dependent kinases (CDKs) and various factors including MRE11, CtIP, EXO1, and BLM helicase participate in DNA end resection to promote HR mediated DSB repair. Despite the identification of FANCJ helicase role in HR and tumor suppression, the molecular mechanism by which FANCJ helicase participates in HR is obscure. Here, we show that FANCJ helicase controls DNA end resection by recruiting CtIP to the sites of DSBs. The loading of CtIP is dependent on FANCJ acetylation which is mediated by CDK dependent phosphorylation of FANCJ. Moreover, in addition to FANCJ mediated CtIP recruitment, its helicase activity is also essential for DNA end resection. Our data identify FANCJ as a novel player in the DNA end resection and provide insights into its role in HR mediated DSB repair.
Collapse
Affiliation(s)
- Sarmi Nath
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Ganesh Nagaraju
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
27
|
Liu Y, Lu LY. BRCA1 and homologous recombination: implications from mouse embryonic development. Cell Biosci 2020; 10:49. [PMID: 32257107 PMCID: PMC7106644 DOI: 10.1186/s13578-020-00412-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/18/2020] [Indexed: 01/30/2023] Open
Abstract
As an important player in DNA damage response, BRCA1 maintains genomic stability and suppresses tumorigenesis by promoting DNA double-strand break (DSB) repair through homologous recombination (HR). Since the cloning of BRCA1 gene, many Brca1 mutant alleles have been generated in mice. Mice carrying homozygous Brca1 mutant alleles are embryonic lethal, suggesting that BRCA1's functions are important for embryonic development. Studies of embryonic development in Brca1 mutant mice not only reveal the physiological significance of BRCA1's known function in HR, but also lead to the discovery of BRCA1's new function in HR: regulation of DSB repair pathway choice.
Collapse
Affiliation(s)
- Yidan Liu
- 1Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin-Yu Lu
- 1Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,2Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
28
|
The Yin and Yang of cancer genes. Gene 2019; 704:121-133. [DOI: 10.1016/j.gene.2019.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/21/2019] [Accepted: 04/08/2019] [Indexed: 12/31/2022]
|
29
|
Bast RC, Matulonis UA, Sood AK, Ahmed AA, Amobi AE, Balkwill FR, Wielgos-Bonvallet M, Bowtell DDL, Brenton JD, Brugge JS, Coleman RL, Draetta GF, Doberstein K, Drapkin RI, Eckert MA, Edwards RP, Elias KM, Ennis D, Futreal A, Gershenson DM, Greenberg RA, Huntsman DG, Ji JXY, Kohn EC, Iavarone C, Lengyel ER, Levine DA, Lord CJ, Lu Z, Mills GB, Modugno F, Nelson BH, Odunsi K, Pilsworth JA, Rottapel RK, Powell DJ, Shen L, Shih LM, Spriggs DR, Walton J, Zhang K, Zhang R, Zou L. Critical questions in ovarian cancer research and treatment: Report of an American Association for Cancer Research Special Conference. Cancer 2019; 125:1963-1972. [PMID: 30835824 PMCID: PMC6557260 DOI: 10.1002/cncr.32004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/24/2022]
Abstract
Substantial progress has been made in understanding ovarian cancer at the molecular and cellular level. Significant improvement in 5-year survival has been achieved through cytoreductive surgery, combination platinum-based chemotherapy, and more effective treatment of recurrent cancer, and there are now more than 280,000 ovarian cancer survivors in the United States. Despite these advances, long-term survival in late-stage disease has improved little over the last 4 decades. Poor outcomes relate, in part, to late stage at initial diagnosis, intrinsic drug resistance, and the persistence of dormant drug-resistant cancer cells after primary surgery and chemotherapy. Our ability to accelerate progress in the clinic will depend on the ability to answer several critical questions regarding this disease. To assess current answers, an American Association for Cancer Research Special Conference on "Critical Questions in Ovarian Cancer Research and Treatment" was held in Pittsburgh, Pennsylvania, on October 1-3, 2017. Although clinical, translational, and basic investigators conducted much of the discussion, advocates participated in the meeting, and many presentations were directly relevant to patient care, including treatment with poly adenosine diphosphate ribose polymerase (PARP) inhibitors, attempts to improve immunotherapy by overcoming the immune suppressive effects of the microenvironment, and a better understanding of the heterogeneity of the disease.
Collapse
Affiliation(s)
- Robert C. Bast
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Anil K. Sood
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrew Futreal
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | | | | | | | | - Zhen Lu
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Brad H. Nelson
- University of British Columbia, Canada
- BC Cancer Agency, Canada
| | | | | | | | | | - Li Shen
- Roswell Park Cancer Institute, Buffalo, NY
| | - le-Ming Shih
- Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | | | | | - Lee Zou
- Massachusetts General Hospital, Boston, MD
| |
Collapse
|
30
|
Gorodetska I, Kozeretska I, Dubrovska A. BRCA Genes: The Role in Genome Stability, Cancer Stemness and Therapy Resistance. J Cancer 2019; 10:2109-2127. [PMID: 31205572 PMCID: PMC6548160 DOI: 10.7150/jca.30410] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Carcinogenesis is a multistep process, and tumors frequently harbor multiple mutations regulating genome integrity, cell division and death. The integrity of cellular genome is closely controlled by the mechanisms of DNA damage signaling and DNA repair. The association of breast cancer susceptibility genes BRCA1 and BRCA2 with breast and ovarian cancer development was first demonstrated over 20 years ago. Since then the germline mutations within these genes were linked to genomic instability and increased risk of many other cancer types. Genomic instability is an engine of the oncogenic transformation of non-tumorigenic cells into tumor-initiating cells and further tumor evolution. In this review we discuss the biological functions of BRCA1 and BRCA2 genes and the role of BRCA mutations in tumor initiation, regulation of cancer stemness, therapy resistance and tumor progression.
Collapse
Affiliation(s)
- Ielizaveta Gorodetska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Iryna Kozeretska
- Department of General and Medical Genetics, ESC "The Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), Partner site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
31
|
Germline Missense Variants in BRCA1: New Trends and Challenges for Clinical Annotation. Cancers (Basel) 2019; 11:cancers11040522. [PMID: 31013702 PMCID: PMC6520942 DOI: 10.3390/cancers11040522] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/13/2019] [Accepted: 03/30/2019] [Indexed: 12/24/2022] Open
Abstract
Genetic testing allows for the identification of germline DNA variations, which are associated with a significant increase in the risk of developing breast cancer (BC) and ovarian cancer (OC). Detection of a BRCA1 or BRCA2 pathogenic variant triggers several clinical management actions, which may include increased surveillance and prophylactic surgery for healthy carriers or treatment with the PARP inhibitor therapy for carriers diagnosed with cancer. Thus, standardized validated criteria for the annotation of BRCA1 and BRCA2 variants according to their pathogenicity are necessary to support clinical decision-making and ensure improved outcomes. Upon detection, variants whose pathogenicity can be inferred by the genetic code are typically classified as pathogenic, likely pathogenic, likely benign, or benign. Variants whose impact on function cannot be directly inferred by the genetic code are labeled as variants of uncertain clinical significance (VUS) and are evaluated by multifactorial likelihood models that use personal and family history of cancer, segregation data, prediction tools, and co-occurrence with a pathogenic BRCA variant. Missense variants, coding alterations that replace a single amino acid residue with another, are a class of variants for which determination of clinical relevance is particularly challenging. Here, we discuss current issues in the missense variant classification by following a typical life cycle of a BRCA1 missense variant through detection, annotation and information dissemination. Advances in massively parallel sequencing have led to a substantial increase in VUS findings. Although the comprehensive assessment and classification of missense variants according to their pathogenicity remains the bottleneck, new developments in functional analysis, high throughput assays, data sharing, and statistical models are rapidly changing this scenario.
Collapse
|
32
|
Jeusset LMP, McManus KJ. Developing Targeted Therapies That Exploit Aberrant Histone Ubiquitination in Cancer. Cells 2019; 8:cells8020165. [PMID: 30781493 PMCID: PMC6406838 DOI: 10.3390/cells8020165] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Histone ubiquitination is a critical epigenetic mechanism regulating DNA-driven processes such as gene transcription and DNA damage repair. Importantly, the cellular machinery regulating histone ubiquitination is frequently altered in cancers. Moreover, aberrant histone ubiquitination can drive oncogenesis by altering the expression of tumor suppressors and oncogenes, misregulating cellular differentiation and promoting cancer cell proliferation. Thus, targeting aberrant histone ubiquitination may be a viable strategy to reprogram transcription in cancer cells, in order to halt cellular proliferation and induce cell death, which is the basis for the ongoing development of therapies targeting histone ubiquitination. In this review, we present the normal functions of histone H2A and H2B ubiquitination and describe the role aberrant histone ubiquitination has in oncogenesis. We also describe the key benefits and challenges associated with current histone ubiquitination targeting strategies. As these strategies are predicted to have off-target effects, we discuss additional efforts aimed at developing synthetic lethal strategies and epigenome editing tools, which may prove pivotal in achieving effective and selective therapies targeting histone ubiquitination, and ultimately improving the lives and outcomes of those living with cancer.
Collapse
Affiliation(s)
- Lucile M-P Jeusset
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Kirk J McManus
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| |
Collapse
|
33
|
Rossing M, Sørensen CS, Ejlertsen B, Nielsen FC. Whole genome sequencing of breast cancer. APMIS 2019; 127:303-315. [PMID: 30689231 PMCID: PMC6850492 DOI: 10.1111/apm.12920] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/16/2018] [Indexed: 12/29/2022]
Abstract
Breast cancer was the first to take advantage of targeted therapy using endocrine therapy, and for up to 20% of all breast cancer patients a further significant improvement has been obtained by HER2‐targeted therapy. Greater insight in precision medicine is to some extent driven by technical and computational progress, with the first wave of a true technical advancement being the application of transcriptomic analysis. Molecular subtyping further improved our understanding of breast cancer biology and has through a new tumor classification enabled allocation of personalized treatment regimens. The next wave in technical progression must be next‐generation‐sequencing which is currently providing new and exciting results. Large‐scale sequencing data unravel novel somatic and potential targetable mutations as well as allowing the identification of new candidate genes predisposing for familial breast cancer. So far, around 15% of all breast cancer patients are genetically predisposed with most genes being factors in pathways implicated in genome maintenance. This review focuses on whole‐genome sequencing and the new possibilities that this technique, together with other high‐throughput analytic approaches, provides for a more individualized treatment course of breast cancer patients.
Collapse
Affiliation(s)
- Maria Rossing
- Centre for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Bent Ejlertsen
- Danish Breast Cancer Cooperative Group & Department of Clinical Oncology Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Finn Cilius Nielsen
- Centre for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
34
|
Choi EK, Lim JA, Kim JK, Jang MS, Kim SE, Baek HJ, Park EJ, Kim TH, Deng CX, Wang RH, Kim SS. Cyclin B1 stability is increased by interaction with BRCA1, and its overexpression suppresses the progression of BRCA1-associated mammary tumors. Exp Mol Med 2018; 50:1-16. [PMID: 30327455 PMCID: PMC6191436 DOI: 10.1038/s12276-018-0169-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 12/29/2022] Open
Abstract
Germline BRCA1 mutations predispose women to breast and ovarian cancer. BRCA1, a large protein with multiple functional domains, interacts with numerous proteins involved in many important biological processes and pathways. However, to date, the role of BRCA1 interactions at specific stages in the progression of mammary tumors, particularly in relation to cell cycle regulation, remains elusive. Here, we demonstrate that BRCA1 interacts with cyclin B1, a crucial cell cycle regulator, and that their interaction is modulated by DNA damage and cell cycle phase. In DNA-damaged mitotic cells, BRCA1 inhibits cytoplasmic transportation of cyclin B1, which prevents cyclin B1 degradation. Moreover, restoration of cyclin B1 in BRCA1-deficient cells reduced cell survival in association with induction of apoptosis. We further demonstrate that treatment of Brca1-mutant mammary tumors with vinblastine, which induces cyclin B1, significantly reduced tumor progression. In addition, a correlation analysis of vinblastine responses and gene expression profiles in tumors at baseline revealed 113 genes that were differentially expressed between tumors that did and did not respond to vinblastine treatment. Further analyses of protein–protein interaction networks revealed gene clusters related to vinblastine resistance, including nucleotide excision repair, epigenetic regulation, and the messenger RNA surveillance pathway. These findings enhance our understanding of how loss of BRCA1 disrupts mitosis regulation through dysregulation of cyclin B1 and provide evidence suggesting that targeting cyclin B1 may be useful in BRCA1-associated breast cancer therapy. The role of disrupted activity of the protein BRCA1 in the progression of breast cancer has been clarified, suggesting that targeting another protein with which it interacts could offer a new route to treatment. Mutations of BRCA1 are known to predispose women to both breast and ovarian cancers. Researchers led by Sang Soo Kim (National Cancer Center, South Korea) and Rui-Hong Wang (University of Macau, China) studied the interaction with a protein called cyclin B1 that controls cell growth and division. They found that, in mitosis, BRCA1 interacts with and stabilizes cyclin B1, explaining why the loss of BRCA1 can disrupt the G2/M cell cycle control and accumulate the genetic instability. Treatment of Brca1-mutant mammary tumors with vinblastine, which alters cyclin B1 level, significantly reduced tumor progression with reduction of survival and induction of apoptosis.
Collapse
Affiliation(s)
- Eun Kyung Choi
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Jeong-A Lim
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Jong Kwang Kim
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Moon Sun Jang
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Sun Eui Kim
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Hye Jung Baek
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Eun Jung Park
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Tae Hyun Kim
- Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Chu-Xia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, 999078, China
| | - Rui-Hong Wang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, 999078, China.
| | - Sang Soo Kim
- Research Institute, National Cancer Center, Goyang, 10408, Korea.
| |
Collapse
|
35
|
Petitalot A, Dardillac E, Jacquet E, Nhiri N, Guirouilh-Barbat J, Julien P, Bouazzaoui I, Bonte D, Feunteun J, Schnell JA, Lafitte P, Aude JC, Noguès C, Rouleau E, Lidereau R, Lopez BS, Zinn-Justin S, Caputo SM. Combining Homologous Recombination and Phosphopeptide-binding Data to Predict the Impact of BRCA1 BRCT Variants on Cancer Risk. Mol Cancer Res 2018; 17:54-69. [PMID: 30257991 DOI: 10.1158/1541-7786.mcr-17-0357] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 02/07/2018] [Accepted: 09/11/2018] [Indexed: 11/16/2022]
Abstract
BRCA1 mutations have been identified that increase the risk of developing hereditary breast and ovarian cancers. Genetic screening is now offered to patients with a family history of cancer, to adapt their treatment and the management of their relatives. However, a large number of BRCA1 variants of uncertain significance (VUS) are detected. To better understand the significance of these variants, a high-throughput structural and functional analysis was performed on a large set of BRCA1 VUS. Information on both cellular localization and homology-directed DNA repair (HR) capacity was obtained for 78 BRCT missense variants in the UMD-BRCA1 database and measurement of the structural stability and phosphopeptide-binding capacities was performed for 42 mutated BRCT domains. This extensive and systematic analysis revealed that most characterized causal variants affect BRCT-domain solubility in bacteria and all impair BRCA1 HR activity in cells. Furthermore, binding to a set of 5 different phosphopeptides was tested: all causal variants showed phosphopeptide-binding defects and no neutral variant showed such defects. A classification is presented on the basis of mutated BRCT domain solubility, phosphopeptide-binding properties, and VUS HR capacity. These data suggest that HR-defective variants, which present, in addition, BRCT domains either insoluble in bacteria or defective for phosphopeptide binding, lead to an increased cancer risk. Furthermore, the data suggest that variants with a WT HR activity and whose BRCT domains bind with a WT affinity to the 5 phosphopeptides are neutral. The case of variants with WT HR activity and defective phosphopeptide binding should be further characterized, as this last functional defect might be sufficient per se to lead to tumorigenesis. IMPLICATIONS: The analysis of the current study on BRCA1 structural and functional defects on cancer risk and classification presented may improve clinical interpretation and therapeutic selection.
Collapse
Affiliation(s)
- Ambre Petitalot
- Service de Génétique, Département de Biologie des Tumeurs, Institut Curie, Paris, France.,Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Université Paris Sud, UMR 9198, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Elodie Dardillac
- Institut Gustave Roussy, CNRS UMR 8200, Université Paris-Saclay, Villejuif, France.,Team labeled "Ligue 2014," Villejuif, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Naima Nhiri
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Josée Guirouilh-Barbat
- Institut Gustave Roussy, CNRS UMR 8200, Université Paris-Saclay, Villejuif, France.,Team labeled "Ligue 2014," Villejuif, France
| | - Patrick Julien
- Service de Génétique, Département de Biologie des Tumeurs, Institut Curie, Paris, France
| | - Isslam Bouazzaoui
- Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Université Paris Sud, UMR 9198, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Dorine Bonte
- Institut Gustave Roussy, CNRS UMR 8200, Université Paris-Saclay, Villejuif, France
| | - Jean Feunteun
- Institut Gustave Roussy, CNRS UMR 8200, Université Paris-Saclay, Villejuif, France
| | - Jeff A Schnell
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Lafitte
- Service de Génétique, Département de Biologie des Tumeurs, Institut Curie, Paris, France
| | - Jean-Christophe Aude
- Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Université Paris Sud, UMR 9198, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Catherine Noguès
- Service de Génétique, Département de Biologie des Tumeurs, Institut Curie, Paris, France
| | - Etienne Rouleau
- Service de Génétique, Département de Biologie des Tumeurs, Institut Curie, Paris, France
| | - Rosette Lidereau
- Service de Génétique, Département de Biologie des Tumeurs, Institut Curie, Paris, France
| | - Bernard S Lopez
- Institut Gustave Roussy, CNRS UMR 8200, Université Paris-Saclay, Villejuif, France.,Team labeled "Ligue 2014," Villejuif, France
| | - Sophie Zinn-Justin
- Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Université Paris Sud, UMR 9198, Université Paris-Saclay, Gif-sur-Yvette, France.
| | | | | |
Collapse
|
36
|
Whelan DR, Lee WTC, Yin Y, Ofri DM, Bermudez-Hernandez K, Keegan S, Fenyo D, Rothenberg E. Spatiotemporal dynamics of homologous recombination repair at single collapsed replication forks. Nat Commun 2018; 9:3882. [PMID: 30250272 PMCID: PMC6155164 DOI: 10.1038/s41467-018-06435-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/06/2018] [Indexed: 01/07/2023] Open
Abstract
Homologous recombination (HR) is a crucial pathway for the repair of DNA double-strand breaks. BRCA1/2 breast cancer proteins are key players in HR via their mediation of RAD51 nucleofilament formation and function; however, their individual roles and crosstalk in vivo are unknown. Here we use super-resolution (SR) imaging to map the spatiotemporal kinetics of HR proteins, revealing the interdependent relationships that govern the dynamic interplay and progression of repair events. We show that initial single-stranded DNA/RAD51 nucleofilament formation is mediated by RAD52 or, in the absence of RAD52, by BRCA2. In contrast, only BRCA2 can orchestrate later RAD51 recombinase activity during homology search and resolution. Furthermore, we establish that upstream BRCA1 activity is critical for BRCA2 function. Our analyses reveal the underlying epistatic landscape of RAD51 functional dependence on RAD52, BRCA1, and BRCA2 during HR and explain the phenotypic similarity of diseases associated with mutations in these proteins.
Collapse
Affiliation(s)
- Donna R Whelan
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA.,Department of Pharmacy and Applied Science, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Wei Ting C Lee
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Yandong Yin
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Dylan M Ofri
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Keria Bermudez-Hernandez
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Sarah Keegan
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - David Fenyo
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
37
|
Billing D, Horiguchi M, Wu-Baer F, Taglialatela A, Leuzzi G, Nanez SA, Jiang W, Zha S, Szabolcs M, Lin CS, Ciccia A, Baer R. The BRCT Domains of the BRCA1 and BARD1 Tumor Suppressors Differentially Regulate Homology-Directed Repair and Stalled Fork Protection. Mol Cell 2018; 72:127-139.e8. [PMID: 30244837 DOI: 10.1016/j.molcel.2018.08.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/23/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
The BRCA1 tumor suppressor preserves genome integrity through both homology-directed repair (HDR) and stalled fork protection (SFP). In vivo, BRCA1 exists as a heterodimer with the BARD1 tumor suppressor, and both proteins harbor a phosphate-binding BRCT domain. Here, we compare mice with mutations that ablate BRCT phospho-recognition by Bard1 (Bard1S563F and Bard1K607A) or Brca1 (Brca1S1598F). Brca1S1598F abrogates both HDR and SFP, suggesting that both pathways are likely impaired in most BRCA1 mutant tumors. Although not affecting HDR, the Bard1 mutations ablate poly(ADP-ribose)-dependent recruitment of BRCA1/BARD1 to stalled replication forks, resulting in fork degradation and chromosome instability. Nonetheless, Bard1S563F/S563F and Bard1K607A/K607A mice, unlike Brca1S1598F/S1598F mice, are not tumor prone, indicating that HDR alone is sufficient to suppress tumor formation in the absence of SFP. Nevertheless, because SFP, unlike HDR, is also impaired in heterozygous Brca1/Bard1 mutant cells, SFP and HDR may contribute to distinct stages of tumorigenesis in BRCA1/BARD1 mutation carriers.
Collapse
Affiliation(s)
- David Billing
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michiko Horiguchi
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Foon Wu-Baer
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Angelo Taglialatela
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Giuseppe Leuzzi
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Silvia Alvarez Nanez
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wenxia Jiang
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shan Zha
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthias Szabolcs
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chyuan-Sheng Lin
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alberto Ciccia
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Richard Baer
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
38
|
Gene-Specific Genetic Complementation between Brca1 and Cobra1 During Mouse Mammary Gland Development. Sci Rep 2018; 8:2731. [PMID: 29426838 PMCID: PMC5807304 DOI: 10.1038/s41598-018-21044-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022] Open
Abstract
Germ-line mutations in breast cancer susceptibility gene, BRCA1, result in familial predisposition to breast and ovarian cancers. The BRCA1 protein has multiple functional domains that interact with a variety of proteins in multiple cellular processes. Understanding the biological consequences of BRCA1 interactions with its binding partners is important for elucidating its tissue-specific tumor suppression function. The Cofactor of BRCA1 (COBRA1) is a BRCA1-binding protein that, as a component of negative elongation factor (NELF), regulates RNA polymerase II pausing during transcription elongation. We recently identified a genetic interaction between mouse Brca1 and Cobra1 that antagonistically regulates mammary gland development. However, it remains unclear which of the myriad functions of Brca1 are required for its genetic interaction with Cobra1. Here, we show that, unlike deletion of Brca1 exon 11, separation-of-function mutations that abrogate either the E3 ligase activity of its RING domain or the phospho-recognition property of its BRCT domain are not sufficient to rescue the mammary developmental defects in Cobra1 knockout mice. Furthermore, deletion of mouse Palb2, another breast cancer susceptibility gene with functional similarities to BRCA1, does not rescue Cobra1 knockout-associated mammary defects. Thus, the Brca1/Cobra1 genetic interaction is both domain- and gene-specific in the context of mammary gland development.
Collapse
|
39
|
Uckelmann M, Densham RM, Baas R, Winterwerp HHK, Fish A, Sixma TK, Morris JR. USP48 restrains resection by site-specific cleavage of the BRCA1 ubiquitin mark from H2A. Nat Commun 2018; 9:229. [PMID: 29335415 PMCID: PMC5768779 DOI: 10.1038/s41467-017-02653-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
BRCA1-BARD1-catalyzed ubiquitination of histone H2A is an important regulator of the DNA damage response, priming chromatin for repair by homologous recombination. However, no specific deubiquitinating enzymes (DUBs) are known to antagonize this function. Here we identify ubiquitin specific protease-48 (USP48) as a H2A DUB, specific for the C-terminal BRCA1 ubiquitination site. Detailed biochemical analysis shows that an auxiliary ubiquitin, an additional ubiquitin that itself does not get cleaved, modulates USP48 activity, which has possible implications for its regulation in vivo. In cells we reveal that USP48 antagonizes BRCA1 E3 ligase function and in BRCA1-proficient cells loss of USP48 results in positioning 53BP1 further from the break site and in extended resection lengths. USP48 repression confers a survival benefit to cells treated with camptothecin and its activity acts to restrain gene conversion and mutagenic single-strand annealing. We propose that USP48 promotes genome stability by antagonizing BRCA1 E3 ligase function.
Collapse
Affiliation(s)
- Michael Uckelmann
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ruth M Densham
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental Schools, University of Birmingham, Birmingham, B15 2TT, UK
| | - Roy Baas
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Herrie H K Winterwerp
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Alexander Fish
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental Schools, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
40
|
Paculová H, Kramara J, Šimečková Š, Fedr R, Souček K, Hylse O, Paruch K, Svoboda M, Mistrík M, Kohoutek J. BRCA1 or CDK12 loss sensitizes cells to CHK1 inhibitors. Tumour Biol 2017; 39:1010428317727479. [PMID: 29025359 DOI: 10.1177/1010428317727479] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A broad spectrum of tumors develop resistance to classic chemotherapy, necessitating the discovery of new therapies. One successful strategy exploits the synthetic lethality between poly(ADP-ribose) polymerase 1/2 proteins and DNA damage response genes, including BRCA1, a factor involved in homologous recombination-mediated DNA repair, and CDK12, a transcriptional kinase known to regulate the expression of DDR genes. CHK1 inhibitors have been shown to enhance the anti-cancer effect of DNA-damaging compounds. Since loss of BRCA1 increases replication stress and leads to DNA damage, we tested a hypothesis that CDK12- or BRCA1-depleted cells rely extensively on S-phase-related CHK1 functions for survival. The silencing of BRCA1 or CDK12 sensitized tumor cells to CHK1 inhibitors in vitro and in vivo. BRCA1 downregulation combined with CHK1 inhibition induced excessive amounts of DNA damage, resulting in an inability to complete the S-phase. Therefore, we suggest CHK1 inhibition as a strategy for targeting BRCA1- or CDK12-deficient tumors.
Collapse
Affiliation(s)
- Hana Paculová
- 1 Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Juraj Kramara
- 2 Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Šárka Šimečková
- 3 Institute of Biophysics of the Czech Academy of Sciences, Brno,Czech Republic.,4 Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Radek Fedr
- 3 Institute of Biophysics of the Czech Academy of Sciences, Brno,Czech Republic.,5 International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Karel Souček
- 3 Institute of Biophysics of the Czech Academy of Sciences, Brno,Czech Republic.,4 Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,5 International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Ondřej Hylse
- 5 International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,6 Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kamil Paruch
- 5 International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,6 Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Marek Svoboda
- 7 Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Martin Mistrík
- 2 Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jiří Kohoutek
- 1 Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
41
|
Hengel SR, Spies MA, Spies M. Small-Molecule Inhibitors Targeting DNA Repair and DNA Repair Deficiency in Research and Cancer Therapy. Cell Chem Biol 2017; 24:1101-1119. [PMID: 28938088 PMCID: PMC5679738 DOI: 10.1016/j.chembiol.2017.08.027] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/11/2017] [Accepted: 08/30/2017] [Indexed: 01/13/2023]
Abstract
To maintain stable genomes and to avoid cancer and aging, cells need to repair a multitude of deleterious DNA lesions, which arise constantly in every cell. Processes that support genome integrity in normal cells, however, allow cancer cells to develop resistance to radiation and DNA-damaging chemotherapeutics. Chemical inhibition of the key DNA repair proteins and pharmacologically induced synthetic lethality have become instrumental in both dissecting the complex DNA repair networks and as promising anticancer agents. The difficulty in capitalizing on synthetically lethal interactions in cancer cells is that many potential targets do not possess well-defined small-molecule binding determinates. In this review, we discuss several successful campaigns to identify and leverage small-molecule inhibitors of the DNA repair proteins, from PARP1, a paradigm case for clinically successful small-molecule inhibitors, to coveted new targets, such as RAD51 recombinase, RAD52 DNA repair protein, MRE11 nuclease, and WRN DNA helicase.
Collapse
Affiliation(s)
- Sarah R Hengel
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - M Ashley Spies
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmaceutical Sciences and Experimental Therapeutics, Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Maria Spies
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
42
|
BRCA1 protein expression and subcellular localization in primary breast cancer: Automated digital microscopy analysis of tissue microarrays. PLoS One 2017; 12:e0184385. [PMID: 28863181 PMCID: PMC5581176 DOI: 10.1371/journal.pone.0184385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 08/22/2017] [Indexed: 11/19/2022] Open
Abstract
Purpose Mutations in BRCA1 are associated with familial as well as sporadic aggressive subtypes of breast cancer, but less is known about whether BRCA1 expression or subcellular localization contributes to progression in population-based settings. Methods We examined BRCA1 expression and subcellular localization in invasive breast cancer tissues from an ethnically diverse sample of 286 patients and 36 normal breast tissue controls. Two different methods were used to label breast cancer tissues for BRCA1: (1) Dual immunofluoresent staining with BRCA1 and cytokeratin 8/18 and (2) immunohistochemical staining using the previously validated MS110 mouse monoclonal antibody. Slides were visualized and quantified using the VECTRA Automated Multispectral Image Analysis System and InForm software. Results BRCA1 staining was more intense in normal than in invasive breast tissue for both cytoplasmic (p<0.0001) and nuclear (p<0.01) compartments. BRCA1 nuclear to cytoplasmic ratio was higher in breast cancer cells than in normal mammary epithelial cells. Reduced BRCA1 expression was associated with high tumor grade and negative hormone receptors (estrogen receptor, progesterone receptor and Her2). On the other hand, high BRCA1 expression correlated with basal-like tumors (high CK5/6 and EGFR), and high nuclear androgen receptor staining. Lower nuclear to cytoplasmic ratio of BRCA1 correlated significantly with high Ki67 labeling index (p< 0.05) and family history of breast cancer (p = 0.001). Conclusion Findings of this study indicate that alterations in BRCA1 protein expression and subcellular localization in breast cancer correlate with poor prognostic markers and aggressive tumor features. Further large-scale studies are required to assess the potential relevance of BRCA1 protein expression and localization in routine classification of breast cancer.
Collapse
|
43
|
miR-125a, miR-139 and miR-324 contribute to Urocortin protection against myocardial ischemia-reperfusion injury. Sci Rep 2017; 7:8898. [PMID: 28827743 PMCID: PMC5566224 DOI: 10.1038/s41598-017-09198-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022] Open
Abstract
Urocortin 1 and 2 (Ucn-1 and Ucn-2) have established protective actions against myocardial ischemia-reperfusion (I/R) injuries. However, little is known about their role in posttranscriptional regulation in the process of cardioprotection. Herein, we investigated whether microRNAs play a role in urocortin-induced cardioprotection. Administration of Ucn-1 and Ucn-2 at the beginning of reperfusion significantly restored cardiac function, as evidenced ex vivo in Langendorff-perfused rat hearts and in vivo in rat subjected to I/R. Experiments using microarray and qRT-PCR determined that the addition of Ucn-1 at reperfusion modulated the expression of several miRNAs with unknown role in cardiac protection. Ucn-1 enhanced the expression of miR-125a-3p, miR-324-3p; meanwhile it decreased miR-139-3p. Similarly, intravenous infusion of Ucn-2 in rat model of I/R mimicked the effect of Ucn-1 on miR-324-3p and miR-139-3p. The effect of Ucn-1 involves the activation of corticotropin-releasing factor receptor-2, Epac2 and ERK1/2. Moreover, the overexpression of miR-125a-3p, miR-324-3p and miR-139-3p promoted dysregulation of genes expression involved in cell death and apoptosis (BRCA1, BIM, STAT2), in cAMP and Ca2+ signaling (PDE4a, CASQ1), in cell stress (NFAT5, XBP1, MAP3K12) and in metabolism (CPT2, FoxO1, MTRF1, TAZ). Altogether, these data unveil a novel role of urocortin in myocardial protection, involving posttranscriptional regulation with miRNAs.
Collapse
|
44
|
Abstract
DNA double strand breaks need to be repaired in an organized fashion to preserve genomic integrity. In the organization of faithful repair, histone ubiquitination plays a crucial role. Recent findings suggest an integrated model for DNA repair regulation through site-specific histone ubiquitination and crosstalk to other posttranslational modifications. Here we discuss how site-specific histone ubiquitination is achieved on a molecular level and how different multi-protein complexes work together to integrate different histone ubiquitination states. We propose a model where site-specific H2A ubiquitination organizes the spatio-temporal recruitment of DNA repair factors which will ultimately contribute to DNA repair pathway choice between homologous recombination and non-homologous end joining.
Collapse
Affiliation(s)
- Michael Uckelmann
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
45
|
Moazzeni H, Najafi A, Khani M. Identification of direct target genes of miR-7, miR-9, miR-96, and miR-182 in the human breast cancer cell lines MCF-7 and MDA-MB-231. Mol Cell Probes 2017; 34:45-52. [PMID: 28546132 DOI: 10.1016/j.mcp.2017.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/05/2017] [Accepted: 05/16/2017] [Indexed: 12/24/2022]
Abstract
Some microRNAs have carcinogenic or tumor suppressive effects in breast cancer, which is the most common cancer in women worldwide. MiR-7 and miR-9 are tumor suppressor microRNAs, which induce apoptosis and inhibit proliferation in breast cancer cells. Moreover, miR-96 and miR-182 are onco-microRNAs that increase proliferation, migration, and tumorigenesis in breast cancer cells. This study aimed to identify the direct target genes of these four microRNAs in the human breast cancer cell lines MCF-7 and MDA-MB-231. Initially, bioinformatics tools were used to identify the target genes that have binding sites for miR-7, MiR-9, MiR-96, and miR-182 and are also associated with breast cancer. Subsequently, the findings of the bioinformatics analysis relating to the effects of these four microRNAs on the 3'-UTR activity of the potential target genes were confirmed using the dual luciferase assay in MCF-7 and MDA-MB-231 cells co-transfected with the vectors containing 3'-UTR segments of the target genes downstream of a luciferase coding gene and each of the microRNAs. Finally, the effects of microRNAs on the endogenous expression of potential target genes were assessed by the overexpression of each of the four microRNAs in MCF-7 and MDA-MB-231 cells. Respectively, three, three, three, and seven genes were found to have binding sites for miR-7, miR-9, miR-96, and miR-182 and were associated with breast cancer. The results of empirical studies including dual luciferase assays and real-time PCR confirmed that miR-7 regulates the expression of BRCA1 and LASP1; MiR-9 regulates the expression of AR; miR-96 regulates the expression of ABCA1; and miR-182 regulates the expression of NBN, TOX3, and LASP1. Taken together, our results suggest that the tumor suppressive effects of miR-7 may be mediated partly by regulating the expression of BRCA1 as a tumor suppressor gene in breast cancer. In addition, this microRNA and miR-182 may have effects on the nodal-positivity and tumor size of breast carcinoma through the regulation of LASP1. The tumor suppressive functions of miR-9 may be mediated partly by suppressing the expression of AR-an oncogene in breast cancer. Moreover, miR-96 may play an oncogenic role in breast cancer by suppressing the apoptosis through the regulation of ABCA1.
Collapse
Affiliation(s)
- Hamidreza Moazzeni
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Marzieh Khani
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
46
|
Galvão VR, Phillips E, Giavina-Bianchi P, Castells MC. Carboplatin-allergic patients undergoing desensitization: prevalence and impact of the BRCA 1/2 mutation. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2017; 5:816-818. [PMID: 27765459 PMCID: PMC5393958 DOI: 10.1016/j.jaip.2016.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/25/2016] [Accepted: 08/23/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Violeta Régnier Galvão
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, Mass; Division of Clinical Immunology and Allergy, University of São Paulo Medical School, São Paulo, Brazil
| | - Elizabeth Phillips
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Tenn; Institute for Immunology and Infectious diseases, Murdoch University, Perth, Australia
| | - Pedro Giavina-Bianchi
- Division of Clinical Immunology and Allergy, University of São Paulo Medical School, São Paulo, Brazil
| | - Mariana C Castells
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, Mass.
| |
Collapse
|
47
|
Anantha RW, Simhadri S, Foo TK, Miao S, Liu J, Shen Z, Ganesan S, Xia B. Functional and mutational landscapes of BRCA1 for homology-directed repair and therapy resistance. eLife 2017; 6. [PMID: 28398198 PMCID: PMC5432210 DOI: 10.7554/elife.21350] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 04/10/2017] [Indexed: 12/20/2022] Open
Abstract
BRCA1 plays a critical role in homology-directed repair (HDR) of DNA double strand breaks, and the repair defect of BRCA1-mutant cancer cells is being targeted with platinum drugs and poly (ADP-ribose) polymerase (PARP) inhibitors. We have employed relatively simple and sensitive assays to determine the function of BRCA1 variants or mutants in two HDR mechanisms, homologous recombination (HR) and single strand annealing (SSA), and in conferring resistance to cisplatin and olaparib in human cancer cells. Our results define the functionality of the top 22 patient-derived BRCA1 missense variants and the contribution of different domains of BRCA1 and its E3 ubiquitin ligase activity to HDR and drug resistance. Importantly, our results also demonstrate that the BRCA1-PALB2 interaction dictates the choice between HR and SSA. These studies establish functional and mutational landscapes of BRCA1 for HDR and therapy resistance, while revealing novel insights into BRCA1 regulatory mechanisms and HDR pathway choice. DOI:http://dx.doi.org/10.7554/eLife.21350.001 Genes are the instruction manuals of life and contain the information needed to build the proteins that keep cells alive. Over time, genes can accumulate errors or mutations and eventually become faulty, which can lead to diseases like cancer. Sometimes mutations can be passed on through generations and increase the chances of getting cancer. The BRCA1 gene, for example, provides instructions for making a protein that helps to repair or remove damaged DNA and stops cells from growing uncontrollably. When the BRCA1 gene becomes faulty, cells could continue to grow with damaged DNA. This makes it more likely for cancer to develop, especially breast cancer and ovarian cancer. However, not all changes in BRCA1 gene cause the protein to become faulty or lead to cancer. In fact, about 30% of BRCA1 gene changes identified by genetic tests are referred to as ‘variants of uncertain clinical significance’, meaning that it is not clear if these variants are indeed mutations that could affect the clinical outcome of the people that carry them. Software predictions based largely on patient data have categorized many of these variants as not cancer-causing, but the majority still need to be experimentally tested and confirmed. Many studies have tried to determine the effect of selected variants on the BRCA1 protein, but a complete picture remains lacking. Now, Anantha et al. have tested the top 22 common variants in the BRCA1 gene, some of which had known effects and some did not. The study tested how these variants affect the ability of the protein to repair damaged DNA and the efficacy of chemotherapies targeting cancer cells with a DNA repair defect. The experiments revealed that three specific parts of the protein must remain intact in order for the protein to carry out this activity, i.e. mutations that affect these three areas are likely to cause cancer and also make cancer cells vulnerable to these chemotherapies. Anantha et al. also generated a series of 10 artificially shortened BRCA1 proteins, each missing a specific part, to determine the possible effects of other variants in those missing parts. Together the findings reveal previously unknown effects of certain variants that are commonly seen in cancer patients as well new insights into how the BRCA1 protein repairs DNA. The next step will be to assess rarer variants where little data is available. A better understanding of how these variants affect DNA repair and drug response will help to improve the genetic counseling and treatment of patients with breast cancer and ovarian cancer. DOI:http://dx.doi.org/10.7554/eLife.21350.002
Collapse
Affiliation(s)
- Rachel W Anantha
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States.,Department of Radiation Oncology, Rutgers, The State University of New Jersey, New Brunswick, United States
| | - Srilatha Simhadri
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States.,Department of Radiation Oncology, Rutgers, The State University of New Jersey, New Brunswick, United States.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, United States
| | - Tzeh Keong Foo
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States.,Department of Radiation Oncology, Rutgers, The State University of New Jersey, New Brunswick, United States
| | - Susanna Miao
- Department of Genetics, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, United States
| | - Jingmei Liu
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States.,Department of Radiation Oncology, Rutgers, The State University of New Jersey, New Brunswick, United States
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States.,Department of Radiation Oncology, Rutgers, The State University of New Jersey, New Brunswick, United States
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States.,Department of Radiation Oncology, Rutgers, The State University of New Jersey, New Brunswick, United States.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, United States
| | - Bing Xia
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
| |
Collapse
|
48
|
Zhao M, Howard EW, Guo Z, Parris AB, Yang X. p53 pathway determines the cellular response to alcohol-induced DNA damage in MCF-7 breast cancer cells. PLoS One 2017; 12:e0175121. [PMID: 28369097 PMCID: PMC5378409 DOI: 10.1371/journal.pone.0175121] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/21/2017] [Indexed: 02/07/2023] Open
Abstract
Alcohol consumption is associated with increased breast cancer risk; however, the underlying mechanisms that contribute to mammary tumor initiation and progression are unclear. Alcohol is known to induce oxidative stress and DNA damage; likewise, p53 is a critical modulator of the DNA repair pathway and ensures genomic integrity. p53 mutations are frequently detected in breast and other tumors. The impact of alcohol on p53 is recognized, yet the role of p53 in alcohol-induced mammary carcinogenesis remains poorly defined. In our study, we measured alcohol-mediated oxidative DNA damage in MCF-7 cells using 8-OHdG and p-H2AX foci formation assays. p53 activity and target gene expression after alcohol exposure were determined using p53 luciferase reporter assay, qPCR, and Western blotting. A mechanistic study delineating the role of p53 in DNA damage response and cell cycle arrest was based on isogenic MCF-7 cells stably transfected with control (MCF-7/Con) or p53-targeting siRNA (MCF-7/sip53), and MCF-7 cells that were pretreated with Nutlin-3 (Mdm2 inhibitor) to stabilize p53. Alcohol treatment resulted in significant DNA damage in MCF-7 cells, as indicated by increased levels of 8-OHdG and p-H2AX foci number. A p53-dependent signaling cascade was stimulated by alcohol-induced DNA damage. Moderate to high concentrations of alcohol (0.1-0.8% v/v) induced p53 activation, as indicated by increased p53 phosphorylation, reporter gene activity, and p21/Bax gene expression, which led to G0/G1 cell cycle arrest. Importantly, compared to MCF-7/Con cells, alcohol-induced DNA damage was significantly enhanced, while alcohol-induced p21/Bax expression and cell cycle arrest were attenuated in MCF-7/sip53 cells. In contrast, inhibition of p53 degradation via Nutlin-3 reinforced G0/G1 cell cycle arrest in MCF-7 control cells. Our study suggests that functional p53 plays a critical role in cellular responses to alcohol-induced DNA damage, which protects the cells from DNA damage associated with breast cancer risk.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Biological and Biomedical Sciences, Julius L. Chambers Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, Kannapolis, North Carolina
| | - Erin W. Howard
- Department of Biological and Biomedical Sciences, Julius L. Chambers Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, Kannapolis, North Carolina
| | - Zhiying Guo
- Department of Biological and Biomedical Sciences, Julius L. Chambers Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, Kannapolis, North Carolina
| | - Amanda B. Parris
- Department of Biological and Biomedical Sciences, Julius L. Chambers Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, Kannapolis, North Carolina
| | - Xiaohe Yang
- Department of Biological and Biomedical Sciences, Julius L. Chambers Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, Kannapolis, North Carolina
- * E-mail:
| |
Collapse
|
49
|
Densham RM, Morris JR. The BRCA1 Ubiquitin ligase function sets a new trend for remodelling in DNA repair. Nucleus 2017; 8:116-125. [PMID: 28032817 PMCID: PMC5403137 DOI: 10.1080/19491034.2016.1267092] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/24/2016] [Indexed: 02/05/2023] Open
Abstract
The protein product of the breast and ovarian cancer gene, BRCA1, is part of an obligate heterodimer with BARD1. Together these RING bearing proteins act as an E3 ubiquitin ligase. Several functions have been attributed to BRCA1 that contribute to genome integrity but which of these, if any, require this enzymatic function was unclear. Here we review recent studies clarifying the role of BRCA1 E3 ubiquitin ligase in DNA repair. Perhaps the most surprising finding is the narrow range of BRCA1 functions this activity relates to. Remarkably ligase activity promotes chromatin remodelling and 53BP1 positioning through the remodeller SMARCAD1, but the activity is dispensable for the cellular survival in response to cisplatin or replication stressing agents. Implications for therapy response and tumor susceptibility are discussed.
Collapse
Affiliation(s)
- Ruth M. Densham
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental School, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Joanna R. Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental School, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
50
|
Abstract
DNA repair is essential to maintain genomic integrity and initiate genetic diversity. While gene conversion and classical nonhomologous end-joining are the most physiologically predominant forms of DNA repair mechanisms, emerging lines of evidence suggest the usage of several noncanonical homology-directed repair (HDR) pathways in both prokaryotes and eukaryotes in different contexts. Here we review how these alternative HDR pathways are executed, specifically focusing on the determinants that dictate competition between them and their relevance to cancers that display complex genomic rearrangements or maintain their telomeres by homology-directed DNA synthesis.
Collapse
|