1
|
Lin F, Li J, Zhou L, Yi R, Chen Y, He S. Targeting vulnerability in tumor therapy: Dihydroorotate dehydrogenase. Life Sci 2025; 371:123612. [PMID: 40187643 DOI: 10.1016/j.lfs.2025.123612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Dihydroorotate dehydrogenase (DHODH) is a key enzyme in the de novo pyrimidine biosynthetic pathway and a recognized therapeutic target in various diseases. In oncology research, DHODH has gained increasing importance and become a hot target for various tumor therapy studies. This review highlights three key points: (1) DHODH enables its diverse biological functions through its unique structural features and dominates the regulation of tumor metabolism and cell fate; (2) DHODH activates oncogenic signals, drives metastatic adaptation, and remodels drug resistance networks in tumors, making it a metabolic-signaling dual hub; and (3) DHODH inhibitors have shown significant efficacy in preclinical models of various tumors but face multiple challenges in clinical trials, including drug-related limitations and external constraints. Given these challenges, future research should explore DHODH inhibitors as a foundation for overcoming technological and translational barriers while establishing a systematic framework for the clinical application of DHODH-targeted tumor therapies.
Collapse
Affiliation(s)
- Fu Lin
- Department of Pathology, School of Basic Medicine and Forensic Science, Baotou Medical College, Baotou 014040, China
| | - Jiaxin Li
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Lei Zhou
- Laboratory of Pathogen Biology and Immunology, School of Basic Medicine and Forensic Science, Baotou Medical College, Baotou 014040, China
| | - Rigui Yi
- Department of Pathology, School of Basic Medicine and Forensic Science, Baotou Medical College, Baotou 014040, China
| | - Yingge Chen
- School of Basic Medicine and Forensic Science, Baotou Medical College, Baotou 014040, China
| | - Shuai He
- Department of Pathology, School of Basic Medicine and Forensic Science, Baotou Medical College, Baotou 014040, China.
| |
Collapse
|
2
|
Nazar N, Athira AS, Nadella RK, Panda SK, Banerjee K, Chatterjee NS. Untargeted metabolomics offers insights into the risks of chronic exposure to mixtures of polycyclic aromatic hydrocarbons at environmentally relevant low concentrations. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:227. [PMID: 40413684 DOI: 10.1007/s10653-025-02547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 05/06/2025] [Indexed: 05/27/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) often occur in mixtures, creating complex interactions in humans and other organisms exposed through food. However, the effects of these PAH mixtures at environmentally relevant low concentrations (ERC) on the metabolome have been underexplored. This research investigated the ERC of PAHs in Vembanad estuary biota and examined the impact of chronic exposure to these mixtures using an untargeted metabolomics approach. The study observed that 64% of the aquatic samples analysed from India's Ramsar site (VE) had been detected with one or more PAHs (ΣPAHs5.12-1015.28 ng/g). The non-carcinogenic risk from dietary PAH exposure was low, but cancer risk analysis showed a moderate to high risk for specific areas, particularly Perumbalam. Furthermore, the untargeted metabolomics study revealed that chronic exposure to a PAH mixture at ERC dysregulated metabolites from major classes, including phosphatidylcholines, amino acids, fatty acyls, bile acids, nucleotides, purines, pyrimidines, and vitamins. These metabolites are predominantly associated with key metabolic pathways, including mitochondrial electron transport, pyrimidine metabolism, the citric acid cycle, and butyrate metabolism, all of which play critical roles in cellular energy production, biosynthesis, and regulation. Pathway analysis revealed that long-term exposure to PAH mixtures, even at low doses, significantly affects phenylalanine, tyrosine, and tryptophan metabolism, increasing the likelihood of metabolic and endocrine disorders.
Collapse
Affiliation(s)
- Nasreen Nazar
- National Reference Laboratory, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., W. Island, Cochin, 682029, India
- School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682016, India
| | - A S Athira
- National Reference Laboratory, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., W. Island, Cochin, 682029, India
| | - Ranjit Kumar Nadella
- National Reference Laboratory, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., W. Island, Cochin, 682029, India
| | - Satyen Kumar Panda
- National Reference Laboratory, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., W. Island, Cochin, 682029, India
- Food Safety and Standards Authority of India, FDA Bhawan, Kotla Road, New Delhi, 110002, India
| | - Kaushik Banerjee
- National Referral Laboratory, ICAR-National Research Centre for Grapes, Manjri Farm, Pune, 412 307, India
| | - Niladri Sekhar Chatterjee
- National Reference Laboratory, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., W. Island, Cochin, 682029, India.
| |
Collapse
|
3
|
Tang L, Wang Y, Mao S, Yu Z, Chen Y, Xu X, Cai W, Lai K, Yang G, Huang T. Engineered bone-targeting apoptotic vesicles as a minimally invasive nanotherapy for heterotopic ossification. J Nanobiotechnology 2025; 23:348. [PMID: 40369573 PMCID: PMC12077018 DOI: 10.1186/s12951-025-03431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025] Open
Abstract
Heterotopic Ossification (HO), refers to pathological extra skeletal bone formation, and there are currently no reliable methods except surgery to reverse these unexpected calcified tissues. Apoptotic vesicles (ApoEVs) are membrane-bound vesicles released by apoptotic cells, which are involved in metabolism regulation and intercellular communication. Due to its superior trauma-healing ability, the hard palate mucosa is expected to become an essential resource for tissue engineering. This work presents a minimally invasive nanotherapy based on an engineered apoEV. Briefly, apoEVs were extracted from hard palate mucosa and engineered with bone-targeting peptide SDSSD to treat HO. This engineered apoEV not only can achieve directed localization of heterotopic bones but also has the compelling dual function of promoting osteoclastic differentiation while inhibiting osteogenic differentiation. The underlying mechanism involves the activation of Hippo and Notch pathways, as well as the regulation of pyrimidine metabolism. We envision that this engineered apoEV may be a feasible and effective strategy for reversing HO.
Collapse
Affiliation(s)
- Like Tang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Yuchen Wang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Shihua Mao
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Zhou Yu
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Yitong Chen
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Xiaoqiao Xu
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Wenjin Cai
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Kaichen Lai
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China.
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| | - Tingben Huang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China.
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| |
Collapse
|
4
|
Marynowicz W, Tatarczuch A, Flis Z, Molik E, Ptak A. Involvement of Orotic Acid in Mitochondrial Activity of Ovarian Granulosa Cells and Oocyte Meiotic Maturation. Int J Mol Sci 2025; 26:4479. [PMID: 40429624 PMCID: PMC12111157 DOI: 10.3390/ijms26104479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/24/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Orotic acid (OA) is a natural component of milk and is found in many biological fluids such as human ovarian follicular fluid. However, its effect on ovarian cells is unknown. Some studies suggest that OA may alter lipid metabolism and energy production in cells. In the present study, we determine the effect of OA on mitochondrial function and lipid droplet content in the human granulosa cell line. The effect of OA on in vitro mouse oocyte maturation and mitochondrial activity was also investigated. We found that repeated exposure to OA (0.01-1000 µM) did not alter the viability of human epithelial (HOSEpiC) and granulosa (HGrC1) ovarian cells. HGrC1 cells treated with a high dose of OA (500 µM) showed a more aerobic and energetic phenotype than control cells, whereas this effect was not observed after treatment with lower doses (0.01 and 100 µM) of OA. In addition, OA at a high dose (500 µM) reduced lipid droplet (LD) content without altering glucose (GLUT1, GLUT4) and fatty acid transporter (SLC27A1) gene expression in HGrC1 cells. At the same time, OA at 100 µM did not disrupt mouse in vitro oocyte maturation, whereas OA at 500 µM inhibited this process by arresting oocytes at the germinal vesicle (GV) stage with a reduction in mitochondrial activity. Our results show that OA at high doses can disrupt female reproduction, but normal dietary orotate intake does not have a negative effect on ovarian function.
Collapse
Affiliation(s)
- Weronika Marynowicz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (W.M.); (A.T.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St 11, 30-348 Krakow, Poland
| | - Aleksandra Tatarczuch
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (W.M.); (A.T.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St 11, 30-348 Krakow, Poland
| | - Zuzanna Flis
- Department of Animal Nutrition and Biotechnology, and Fisheries, Faculty of Animal Science, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland; (Z.F.); (E.M.)
| | - Edyta Molik
- Department of Animal Nutrition and Biotechnology, and Fisheries, Faculty of Animal Science, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland; (Z.F.); (E.M.)
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; (W.M.); (A.T.)
| |
Collapse
|
5
|
Suleiman H, Emerson A, Wilson PM, Mulligan KA, Ladner RD, LaBonte MJ. Harnessing nucleotide metabolism and immunity in cancer: a tumour microenvironment perspective. FEBS J 2025; 292:2155-2172. [PMID: 39308084 PMCID: PMC12062787 DOI: 10.1111/febs.17278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/06/2024] [Accepted: 09/09/2024] [Indexed: 05/11/2025]
Abstract
The tumour microenvironment (TME) is a dynamic nexus where cancer cell metabolism and the immune system intricately converge, with nucleotide metabolism (NM) playing a pivotal role. This review explores the critical function of NM in cancer cell proliferation and its profound influence on the TME and immune landscape. NM is essential for DNA and RNA synthesis and is markedly upregulated in cancer cells to meet the demands of rapid growth. This metabolic rewiring fuels cancer progression, but also shapes the TME, impacting the function and viability of immune cells. The altered nucleotide milieu in the TME can suppress immune response, aiding cancer cell evasion from immune surveillance. Drug discoveries in the field of NM have revealed different therapeutic strategies, including inhibitors of nucleotide synthesis and drugs targeting salvage pathways, which are discussed thoroughly in this review. Furthermore, the emerging strategy of combining NM-targeted therapies with immunotherapies is emphasised, particularly their effect on sensitising tumours to immune checkpoint inhibitors and enhancing overall treatment efficacy. The Human Genome Project paved the way for personalised medicine, countering the established 'one size fits all' approach to cancer treatment. Advances in understanding the TME and NM have spurred interest in personalised therapeutic strategies. This review highlights the potential of leveraging individual tumour metabolic profiles to guide treatment selection, aiming to optimise efficacy and minimise adverse effects. The strategic importance of targeting NM in cancer therapy and its synergistic potential with immunotherapies offers a path towards more effective and personalised cancer treatments.
Collapse
Affiliation(s)
- Hadil Suleiman
- Patrick G Johnston Centre for Cancer ResearchQueen's University BelfastUK
| | - Alexandra Emerson
- Patrick G Johnston Centre for Cancer ResearchQueen's University BelfastUK
| | | | | | - Robert D. Ladner
- Patrick G Johnston Centre for Cancer ResearchQueen's University BelfastUK
- CV6 Therapeutics (NI) LtdBelfastUK
| | - Melissa J. LaBonte
- Patrick G Johnston Centre for Cancer ResearchQueen's University BelfastUK
| |
Collapse
|
6
|
Qi Y, Tan Z, Chen H, Xiao Z, Zhang L, Wu B, Liu C, Gao Y, Yang X, Wu L, Lu L, Wang H. Pyrimidine synthase CAD deamidates and inactivates p53. Cell Res 2025:10.1038/s41422-025-01112-9. [PMID: 40240485 DOI: 10.1038/s41422-025-01112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Affiliation(s)
- Yue Qi
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children's Hospital, Fudan University, Shanghai, China
| | - Zizheng Tan
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Hanyu Chen
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children's Hospital, Fudan University, Shanghai, China
| | - Ziqi Xiao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Liang Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children's Hospital, Fudan University, Shanghai, China
| | - Boxuan Wu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Chennan Liu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yunqian Gao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xueyan Yang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children's Hospital, Fudan University, Shanghai, China
| | - Lingqian Wu
- The Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lei Lu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children's Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
- Prenatal Diagnosis Center of Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, Guangzhou, China.
| |
Collapse
|
7
|
Sharma N, Turlington ZR, Zupko SP, Catoggio MN, Lukacs CM, Serbzhinskiy D, Abendroth J, Edwards TE, Lorimer DD, Barrera G, Willis S, Beyer O, Toay S, Da Li T, Torelli AT, Hicks KA, French JB. Structural and kinetic analysis of distinct active and inactive states of Burkholderia cenocepacia orotate phosphoribosyltransferase. Arch Biochem Biophys 2025; 766:110332. [PMID: 39938730 DOI: 10.1016/j.abb.2025.110332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Orotate phosphoribosyltransferase (OPRT) catalyzes the reaction that adds the pyrimidine base to the ribose in the penultimate step of the de novo biosynthesis of pyrimidine nucleotides. The OPRT structure consists of an obligate dimer, conserved throughout the phosphoribosyltransferase family. Here, we describe the structural characterization of Burkholderia cenocepacia OPRT (BcOPRT), both by X-ray crystallography and Cryo electron microscopy (Cryo-EM). While the known dimer is present in the structure of BcOPRT, a putative hexameric form was also observed by multiple methods. Analyses by chromatography, Cryo-EM, and kinetics indicate that both dimeric and hexameric forms of this enzyme are present together in solution. Comparison of the kinetics of the native protein and two variants, which were specifically designed to prevent hexamerization, reveal that only the hexameric form is enzymatically active. Collectively, these data suggest that BcOPRT may use oligomerization to control overall enzymatic activity, thus contributing to the local regulation of pyrimidine biosynthesis in this organism.
Collapse
Affiliation(s)
- Nandini Sharma
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Zachary R Turlington
- Chemistry Department, State University of New York at Cortland, Cortland, NY, 13045, USA
| | - Sean P Zupko
- Chemistry Department, State University of New York at Cortland, Cortland, NY, 13045, USA
| | - Michael N Catoggio
- Chemistry Department, State University of New York at Cortland, Cortland, NY, 13045, USA
| | - Christine M Lukacs
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98104, USA
| | - Dmitry Serbzhinskiy
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98104, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98104, USA; UCB Bioscences, Bainbridge Island, WA, 98104, USA
| | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98104, USA; UCB Bioscences, Bainbridge Island, WA, 98104, USA
| | - Donald D Lorimer
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98104, USA; UCB Bioscences, Bainbridge Island, WA, 98104, USA
| | - George Barrera
- Department of Chemistry and Biochemistry, Weber State University, Ogden, UT, 84408, USA
| | - Sydney Willis
- Department of Chemistry, Rollins College, Winter Park, FL, 32789, USA
| | - Olive Beyer
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA
| | - Sarah Toay
- Department of Biological Chemistry, Grinnell College, Grinnell, IA, 50112, USA
| | - Teng Da Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Andrew T Torelli
- Department of Chemistry, Ithaca College, Ithaca, NY, 14850, USA.
| | - Katherine A Hicks
- Chemistry Department, State University of New York at Cortland, Cortland, NY, 13045, USA
| | - Jarrod B French
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA.
| |
Collapse
|
8
|
Luganini A, Boschi D, Lolli ML, Gribaudo G. DHODH inhibitors: What will it take to get them into the clinic as antivirals? Antiviral Res 2025; 236:106099. [PMID: 39938808 DOI: 10.1016/j.antiviral.2025.106099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/19/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
The emergence of new human viruses with epidemic or pandemic potential has reaffirmed the urgency to develop effective broad-spectrum antivirals (BSAs) as part of a strategic framework for pandemic prevention and preparedness. To this end, the host nucleotide metabolic pathway has been subject to intense investigation in the search for host-targeting agents (HTAs) with potential BSA activity. In particular, human dihydroorotate dehydrogenase (hDHODH), a rate-limiting enzyme in the de novo pyrimidine biosynthetic pathway, has been identified as a preferential target of new HTAs. Viral replication in fact relies on cellular pyrimidine replenishment, making hDHODH an ideal HTA target. The depletion of the host pyrimidine pool that ensues the pharmacological inhibition of hDHODH activity elicits effective BSA activity through three distinct mechanisms: it blocks viral DNA and RNA synthesis; it activates effector mechanisms of the host innate antiviral response; and it mitigates the virus-induced inflammatory response. However, despite the spectacular results obtained in vitro, the hDHODH inhibitors examined as mono-drug therapies in animal models of human viral infections and in clinical trials have produced disappointing levels of overall antiviral efficacy. To overcome this inherent limitation, pharmacological strategies based on multi-drug combination treatments should be considered to enable efficacy of hDHODH-targeted antiviral therapies. Here, we review the state-of-the-art of antiviral applications of hDHODH inhibitors, discuss the challenges that have emerged from their testing in animal models and human clinical trials and consider how they might be addressed to advance the development of hDHODH inhibitors as BSA for the treatment of viral diseases.
Collapse
Affiliation(s)
- Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123, Turin, Italy
| | - Donatella Boschi
- Department of Drug Sciences and Technology, University of Turin, 10125, Turin, Italy
| | - Marco L Lolli
- Department of Drug Sciences and Technology, University of Turin, 10125, Turin, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Turin, 10123, Turin, Italy.
| |
Collapse
|
9
|
Zhang Q, Cui K, Kong Y, Yu J, Luo Z, Yang X, Gong L, Xie Y, Lin J, Liu C, Zhang Z, Liu Y, Liu B, Liang D, Zeng W, He Z, Lan P. Targeting both the enzymatic and non-enzymatic functions of DHODH as a therapeutic vulnerability in c-Myc-driven cancer. Cell Rep 2025; 44:115327. [PMID: 39977268 DOI: 10.1016/j.celrep.2025.115327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/08/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
c-Myc (Myc)-driven cancers exhibit aggressive phenotypes and therapeutic resistance. Here, integrating CRISPR-Cas9 screening, we identify dihydroorotate dehydrogenase (DHODH) as a promising target in Myc-driven cancer. Mechanistically, DHODH interacts with Myc to stabilize it independently of its enzymatic activity, thereby antagonizing SKP2-mediated polyubiquitination and proteasomal degradation. EN4, a Myc transcriptional activity inhibitor, disrupts DHODH-Myc interaction, promoting Myc degradation via SKP2. Additionally, Myc transcriptionally activates DHODH, enhancing pyrimidine biosynthesis and ferroptosis defense, processes dependent on DHODH enzymatic activity. Clinically, DHODH positively correlates with Myc, activating pyrimidine metabolism and ferroptosis defense in Myc-driven cancers. Hyperactivation of the DHODH-Myc axis is linked to colorectal cancer progression and poor prognosis. Therapeutically, combining EN4 with a DHODH enzymatic inhibitor demonstrates potent antitumor efficacy in Myc-driven colorectal cancer. Overall, our findings elucidate the metabolic and non-metabolic roles of DHODH in Myc-driven cancer, underscoring its dual potential as a therapeutic target addressing both enzymatic and non-enzymatic functions.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| | - Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China
| | - Yue Kong
- Department of Dermatology, Second Hospital Affiliated to Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Jing Yu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Zhanhao Luo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Xiaoya Yang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Liang Gong
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yanchun Xie
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Jiuxiu Lin
- Department of Dermatology, Second Hospital Affiliated to Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Chen Liu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Zongjin Zhang
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Yugeng Liu
- Center for Synthetic Microbiome, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Bingxin Liu
- The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dayi Liang
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Wanyi Zeng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhen He
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.
| | - Ping Lan
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510655, China.
| |
Collapse
|
10
|
Wang X, Feng JK, Mao FF, Hou YC, Zhang YQ, Liu LH, Wei Q, Sun JX, Liu C, Shi J, Cheng SQ. Prognostic and Immunotherapeutic Predictive Value of CAD Gene in Hepatocellular Carcinoma: Integrated Bioinformatics and Experimental Analysis. Mol Biotechnol 2025; 67:1240-1255. [PMID: 38683442 DOI: 10.1007/s12033-024-01125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/27/2024] [Indexed: 05/01/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common type of cancer that ranks first in cancer-associated death worldwide. Carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) are the key components of the pyrimidine pathway, which promotes cancer development. However, the function of CAD in HCC needs to be clarified. In this study, the clinical and transcriptome data of 424 TCGA-derived HCC cases were analyzed. The results demonstrated that high CAD expression was associated with poor prognosis in HCC patients. The effect of CAD on HCC was then investigated comprehensively using GO annotation analysis, KEGG enrichment analysis, Gene Set Enrichment Analysis (GSEA), and CIBERSORT algorithm. The results showed that CAD expression was correlated with immune checkpoint inhibitors and immune cell infiltration. In addition, low CAD levels in HCC patients predicted increased sensitivity to anti-CTLA4 and PD1, while HCC patients with high CAD expression exhibited high sensitivity to chemotherapeutic and molecular-targeted agents, including gemcitabine, paclitaxel, and sorafenib. Finally, the results from clinical sample suggested that CAD expression increased remarkably in HCC compared with non-cancerous tissues. Loss of function experiments demonstrated that CAD knockdown could significantly inhibit HCC cell growth and migration both in vitro and in vivo. Collectively, the results indicated that CAD is a potential oncogene during HCC metastasis and progression. Therefore, CAD is recommended as a candidate marker and target for HCC prediction and treatment.
Collapse
Affiliation(s)
- Xu Wang
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Jin-Kai Feng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Fei-Fei Mao
- Tongji University Cancer Center, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yu-Chao Hou
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Yu-Qing Zhang
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Li-Heng Liu
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Qian Wei
- The First Clinical Medicine School, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ju-Xian Sun
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Chang Liu
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Jie Shi
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China.
| | - Shu-Qun Cheng
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China.
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China.
- Tongji University Cancer Center, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
11
|
Dsouza L, Pant A, Pope B, Yang Z. Vaccinia growth factor-dependent modulation of the mTORC1-CAD axis upon nutrient restriction. J Virol 2025; 99:e0211024. [PMID: 39817770 PMCID: PMC11852859 DOI: 10.1128/jvi.02110-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
The molecular mechanisms by which vaccinia virus (VACV), the prototypical member of the poxviridae family, reprograms host cell metabolism remain largely unexplored. Additionally, cells sense and respond to fluctuating nutrient availability, thereby modulating metabolic pathways to ensure cellular homeostasis. Understanding how VACV modulates metabolic pathways in response to nutrient signals is crucial for understanding viral replication mechanisms, with the potential for developing antiviral therapies. In this study, we establish the importance of de novo pyrimidine synthesis during VACV infection. We report the significance of vaccinia growth factor (VGF), a viral early protein and a homolog of cellular epidermal growth factor (EGF), in enabling VACV to phosphorylate the key enzyme CAD of the de novo pyrimidine pathway at serine 1859, a site known to positively regulate CAD activity. Although nutrient-poor conditions typically inhibit mTORC1 activation, VACV activates CAD via the mTORC1-S6K1 signaling axis in a VGF-dependent manner, especially upon glutamine and asparagine limitation. However, unlike its cellular homolog EGF, the VGF peptide alone, in the absence of VACV infection, has minimal ability to activate CAD. This suggests the involvement of other viral factors yet to be identified. Our research provides a foundation for understanding the regulation of a significant metabolic pathway, de novo pyrimidine synthesis during VACV infection, shedding new light on viral regulation under distinct nutritional environments. This study not only has the potential to contribute to the advancement of antiviral treatments but also improve the development of VACV as an oncolytic agent and vaccine vector.IMPORTANCEViruses often reprogram host cell metabolism to facilitate replication. How poxviruses, such as the prototype member, vaccinia virus (VACV), modulate host cell metabolism is not well understood. Understanding how VACV affects these metabolic pathways is key to learning about viral replication and developing antiviral treatments. This study highlights the importance of de novo pyrimidine synthesis during VACV infection. We found that the vaccinia growth factor (VGF), a viral protein similar to the cellular epidermal growth factor (EGF), helps VACV activate the enzyme CAD of the de novo pyrimidine pathway. Upon nutrient limitation, VGF is needed for the activation of CAD through mTORC1-S6K signaling. VGF peptide alone is unable to activate this pathway independent of infection, suggesting the involvement of other viral factor(s). Our research not only sheds light on how VACV regulates metabolism but also holds promise for improving VACV as a cancer treatment and vaccine.
Collapse
Affiliation(s)
- Lara Dsouza
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Anil Pant
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Blake Pope
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Zhilong Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
12
|
Huang CY. The Loop-In Binding Mode of Dihydroorotase: Implications for Ligand Binding and Therapeutic Targeting. Int J Mol Sci 2025; 26:1359. [PMID: 39941127 PMCID: PMC11818841 DOI: 10.3390/ijms26031359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Dihydroorotase (DHOase; EC 3.5.2.3) is a zinc-dependent metalloenzyme that plays a key role in the de novo pyrimidine biosynthesis pathway, catalyzing the reversible cyclization of N-carbamoyl aspartate to dihydroorotate. This reaction is essential for the production of uridine monophosphate, the precursor of all pyrimidine nucleotides required for DNA and RNA synthesis. Despite its conserved enzymatic function, DHOase exhibits significant structural diversity across species, particularly in its oligomeric states, gene fusion patterns, and active site architecture. A crucial structural feature of DHOase is its flexible active site loop, which undergoes dynamic conformational changes during catalysis. Previously, the loop-in conformation was associated with substrate binding, whereas the loop-out conformation was linked to product release and non-substrate ligand binding. However, recent crystallographic studies challenge this paradigm, revealing that certain non-substrate ligands and inhibitors, including malate, 5-fluoroorotate, plumbagin, 5-aminouracil, and 5-fluorouracil, interact with DHOase via a loop-in binding mechanism rather than the previously assumed loop-out mode. These findings necessitate a reassessment of the catalytic mechanism of DHOase and underscore the active site loop as a potential target for drug development. This review revisits the structural and biochemical mechanisms of DHOase, with a focus on recent crystallographic insights that redefine the loop-in binding mode for ligand interaction. By leveraging the unique conformational dynamics of the active site loop, novel inhibitors may be developed to selectively target pyrimidine biosynthesis in cancer cells and microbial pathogens. These insights emphasize the crucial role of structural biology in therapeutic design and highlight DHOase as a promising drug target.
Collapse
Affiliation(s)
- Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
13
|
Lv S, Luo C. Ferroptosis in schizophrenia: Mechanisms and therapeutic potentials (Review). Mol Med Rep 2025; 31:37. [PMID: 39611491 PMCID: PMC11613623 DOI: 10.3892/mmr.2024.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Schizophrenia, a complex psychiatric disorder, presents with multifaceted symptoms and important challenges in treatment, primarily due to its pathophysiological complexity, which involves oxidative stress and aberrant iron metabolism. Recent insights into ferroptosis, a unique form of iron‑dependent cell death characterized by lipid peroxidation and antioxidant system failures, open new avenues for understanding the neurobiological foundation of schizophrenia. The present review explores the interplay between ferroptosis and schizophrenia, emphasizing the potential contributions of disrupted iron homeostasis and oxidative mechanisms to the pathology and progression of this disease. The emerging evidence linking ferroptosis with the oxidative stress observed in schizophrenia provides a compelling narrative for re‑evaluating current therapeutic strategies and exploring novel interventions targeting these molecular pathways, such as the glutathione peroxidase 4 pathway and the ferroptosis suppressor protein 1 pathway. By integrating recent advances in ferroptosis research, the current review highlights innovative therapeutic potentials, including N‑acetylcysteine, selenium, omega‑3 fatty acids and iron chelation therapy, which could address the limitations of existing treatments and improve clinical outcomes for individuals with schizophrenia.
Collapse
Affiliation(s)
- Shuang Lv
- Department of Psychiatry, Guangzhou Kangning Hospital (The Psychiatric Hospital of Guangzhou Civil Administration Bureau), Guangzhou, Guangdong 510430, P.R. China
| | - Chunxia Luo
- Department of Psychiatry, Guangzhou Kangning Hospital (The Psychiatric Hospital of Guangzhou Civil Administration Bureau), Guangzhou, Guangdong 510430, P.R. China
| |
Collapse
|
14
|
Xing N, Yan J, Gao R, Zhang A, He H, Zheng M, Li G. Alzheimer's disease: an integrative bioinformatics and machine learning analysis reveals glutamine metabolism-associated gene biomarkers. BMC Pharmacol Toxicol 2025; 26:19. [PMID: 39875978 PMCID: PMC11776333 DOI: 10.1186/s40360-025-00852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/16/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD), a hallmark of age-related cognitive decline, is defined by its unique neuropathology. Metabolic dysregulation, particularly involving glutamine (Gln) metabolism, has emerged as a critical but underexplored aspect of AD pathophysiology, representing a significant gap in our current understanding of the disease. METHODS To investigate the involvement of GlnMgs in AD, we conducted a comprehensive bioinformatic analysis. We began by identifying differentially expressed GlnMgs from a curated list of 34 candidate genes. Subsequently, we employed GSEA and GSVA to assess the biological significance of these GlnMgs. Advanced techniques such as Lasso regression and SVM-RFE were utilized to identify key hub genes and evaluate the diagnostic potential of 14 central GlnMgs in AD. Additionally, we examined their correlations with clinical parameters and validated their expression across multiple independent AD cohorts (GSE5281, GSE37263, GSE106241, GSE132903, GSE63060). RESULTS Our rigorous analysis identified 14 GlnMgs-GLS2, GLS, GLUD2, GLUL, GOT1, HAL, AADAT, PFAS, ASNSD1, PPAT, NIT2, ALDH5A1, ASRGL1, and ATCAY-as potential contributors to AD pathogenesis. These genes were implicated in vital biological processes, including lipid transport and the metabolism of purine-containing compounds, in response to nutrient availability. Notably, these GlnMgs demonstrated significant diagnostic potential, highlighting their utility as both diagnostic and prognostic biomarkers for AD. CONCLUSIONS Our study uncovers 14 GlnMgs with potential links to AD, expanding our understanding of the disease's molecular underpinnings and offering promising avenues for biomarker development. These findings not only enhance the molecular landscape of AD but also pave the way for future diagnostic and therapeutic innovations, potentially reshaping AD diagnostics and patient care.
Collapse
Affiliation(s)
- Naifei Xing
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, PR China
| | - Jingwei Yan
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, PR China
| | - Rong Gao
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, PR China
| | - Aihua Zhang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, PR China
| | - Huiyan He
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, PR China
| | - Man Zheng
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, PR China
| | - Guojing Li
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, PR China.
| |
Collapse
|
15
|
Thanasukarn V, Prajumwongs P, Muangritdech N, Loilome W, Namwat N, Klanrit P, Wangwiwatsin A, Charoenlappanit S, Jaresitthikunchai J, Roytrakul S, Titapun A. Discovery of novel serum peptide biomarkers for cholangiocarcinoma recurrence through MALDI-TOF MS and LC-MS/MS peptidome analysis. Sci Rep 2025; 15:2582. [PMID: 39833435 PMCID: PMC11746940 DOI: 10.1038/s41598-025-87124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive cancer originating from bile duct epithelial cells, with a high rate of recurrence following surgical resection. Recurrence is categorized as early linked to aggressive tumor biology than late recurrence. This study aimed to identify novel peptide mass fingerprints (PMFs) and potential biomarker panels in the serum of CCA patients with early and late recurrence using mass spectrometry. Serum samples of 81 CCA patients were analyzed using MALDI-TOF MS and LC-MS/MS, with statistical analysis correlating peptide profiles with clinical outcomes like disease-free survival (DFS) and overall survival (OS). A 365-day DFS cut-off effectively distinguished early from late recurrence, with early recurrence linked to poorer survival outcomes. The PMFs from MALDI-TOF MS differentiated recurrence types based on specific mass signatures. LC-MS/MS analysis identified 95 peptides associated with cancer progression in early recurrence and 60 in late recurrence. Distinct protein associations were found: ATR, POLA1, BLM, SP100, and PPP1R15A for early recurrence, and SERPINA1, TGFB2, SERPING1, and CAD for late recurrence, with strong interactions with chemotherapeutic drugs. This study successfully demonstrated the use of PMFs for rapid discrimination between early and late recurrence in CCA and identified potential serum peptide biomarkers to improve accuracy in recurrence classification.
Collapse
Affiliation(s)
- Vasin Thanasukarn
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Piya Prajumwongs
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Nattha Muangritdech
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Poramate Klanrit
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Arporn Wangwiwatsin
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Janthima Jaresitthikunchai
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Attapol Titapun
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
16
|
Meng J, Zhang L, He Z, Hu M, Liu J, Bao W, Tian Q, Feng H, Liu H. Development of a machine learning-based target-specific scoring function for structure-based binding affinity prediction for human dihydroorotate dehydrogenase inhibitors. J Comput Chem 2025; 46:e27510. [PMID: 39325045 DOI: 10.1002/jcc.27510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Human dihydroorotate dehydrogenase (hDHODH) is a flavin mononucleotide-dependent enzyme that can limit de novo pyrimidine synthesis, making it a therapeutic target for diseases such as autoimmune disorders and cancer. In this study, using the docking structures of complexes generated by AutoDock Vina, we integrate interaction features and ligand features, and employ support vector regression to develop a target-specific scoring function for hDHODH (TSSF-hDHODH). The Pearson correlation coefficient values of TSSF-hDHODH in the cross-validation and external validation are 0.86 and 0.74, respectively, both of which are far superior to those of classic scoring function AutoDock Vina and random forest (RF) based generic scoring function RF-Score. TSSF-hDHODH is further used for the virtual screening of potential inhibitors in the FDA-Approved & Pharmacopeia Drug Library. In conjunction with the results from molecular dynamics simulations, crizotinib is identified as a candidate for subsequent structural optimization. This study can be useful for the discovery of hDHODH inhibitors and the development of scoring functions for additional targets.
Collapse
Affiliation(s)
- Jinhui Meng
- School of Life Science, Liaoning University, Shenyang, Liaoning, China
| | - Li Zhang
- School of Life Science, Liaoning University, Shenyang, Liaoning, China
- Liaoning Provincial Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules, Liaoning University, Shenyang, Liaoning, China
- Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Liaoning University, Shenyang, Liaoning, China
| | - Zhe He
- School of Life Science, Liaoning University, Shenyang, Liaoning, China
| | - Mengfeng Hu
- School of Life Science, Liaoning University, Shenyang, Liaoning, China
| | - Jinhan Liu
- School of Life Science, Liaoning University, Shenyang, Liaoning, China
| | - Wenzhuo Bao
- School of Life Science, Liaoning University, Shenyang, Liaoning, China
| | - Qifeng Tian
- School of Life Science, Liaoning University, Shenyang, Liaoning, China
| | - Huawei Feng
- School of Pharmacy, Liaoning University, Shenyang, Liaoning, China
| | - Hongsheng Liu
- Liaoning Provincial Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules, Liaoning University, Shenyang, Liaoning, China
- Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Liaoning University, Shenyang, Liaoning, China
- School of Pharmacy, Liaoning University, Shenyang, Liaoning, China
| |
Collapse
|
17
|
Hernández‐Camacho JD, Vicente‐García C, Ardila‐García L, Padilla‐Campos A, López‐Lluch G, Santos‐Ocaña C, Zammit PS, Carvajal JJ, Navas P, Fernández‐Ayala DJ. Prenatal and progressive coenzyme Q 10 administration to mitigate muscle dysfunction in mitochondrial disease. J Cachexia Sarcopenia Muscle 2024; 15:2402-2416. [PMID: 39354863 PMCID: PMC11634497 DOI: 10.1002/jcsm.13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND ADCK genes encode aarF domain-containing mitochondrial kinases involved in coenzyme Q (CoQ) biosynthesis and regulation. Haploinsufficiency of ADCK2 in humans leads to adult-onset physical incapacity with reduced mitochondrial CoQ levels in skeletal muscle, resulting in mitochondrial myopathy and alterations in fatty acid β-oxidation. The sole current treatment for CoQ deficiencies is oral administration of CoQ10, which causes only partial recovery with postnatal treatment, underscoring the importance of early diagnosis for successful intervention. METHODS We used Adck2 heterozygous mice to examine the influence of this gene on muscle structure, function and regeneration throughout development, growth and ageing. This investigation involved techniques including immunohistochemistry, analysis of CoQ levels, mitochondrial respiratory content, muscle transcriptome analysis and functional tests. RESULTS We demonstrated that Adck2 heterozygous mice exhibit defects from embryonic development, particularly in skeletal muscle (1102 genes deregulated). Adck2 heterozygous embryos were 7% smaller in size and displayed signs of delayed development. Prenatal administration of CoQ10 could mitigate these embryonic defects. Heterozygous Adck2 mice also showed a decrease in myogenic cell differentiation, with more severe consequences in 'aged' mice (41.63% smaller) (P < 0.01). Consequently, heterozygous Adck2 mice displayed accelerated muscle wasting associated with ageing in muscle structure (P < 0.05), muscle function (less grip strength capacity) (P < 0.001) and muscle mitochondrial respiration (P < 0.001). Furthermore, progressive CoQ10 administration conferred protective effects on mitochondrial function (P < 0.0001) and skeletal muscle (P < 0.05). CONCLUSIONS Our work uncovered novel aspects of CoQ deficiencies, revealing defects during embryonic development in mammals for the first time. Additionally, we identified the gradual establishment and progression of the deleterious Adck2 mouse phenotype. Importantly, CoQ10 supplementation demonstrated a protective effect when initiated during development.
Collapse
Affiliation(s)
- Juan Diego Hernández‐Camacho
- Centro Andaluz de Biología del Desarrollo—CSICUniversidad Pablo de OlavideSevilleSpain
- CIBERERInstituto de Salud Carlos IIIMadridSpain
| | | | - Lorena Ardila‐García
- Centro Andaluz de Biología del Desarrollo—CSICUniversidad Pablo de OlavideSevilleSpain
| | - Ana Padilla‐Campos
- Centro Andaluz de Biología del Desarrollo—CSICUniversidad Pablo de OlavideSevilleSpain
| | - Guillermo López‐Lluch
- Centro Andaluz de Biología del Desarrollo—CSICUniversidad Pablo de OlavideSevilleSpain
- CIBERERInstituto de Salud Carlos IIIMadridSpain
| | - Carlos Santos‐Ocaña
- Centro Andaluz de Biología del Desarrollo—CSICUniversidad Pablo de OlavideSevilleSpain
- CIBERERInstituto de Salud Carlos IIIMadridSpain
| | - Peter S. Zammit
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| | - Jaime J. Carvajal
- Centro Andaluz de Biología del Desarrollo—CSICUniversidad Pablo de OlavideSevilleSpain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo—CSICUniversidad Pablo de OlavideSevilleSpain
- CIBERERInstituto de Salud Carlos IIIMadridSpain
| | - Daniel J.M. Fernández‐Ayala
- Centro Andaluz de Biología del Desarrollo—CSICUniversidad Pablo de OlavideSevilleSpain
- CIBERERInstituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
18
|
Wang Y, Chen X, Liu C, You C, Xu Y. Study on the molecular mechanism of atopic dermatitis in mice based on skin and serum metabolomic analysis. Metabolomics 2024; 20:131. [PMID: 39537935 DOI: 10.1007/s11306-024-02196-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Atopic dermatitis (AD) is a common chronic inflammatory dermatosis. However, the exact molecular mechanism underlying the development of AD remain largely unclear. OBJECTIVE To investigate comprehensive metabolomic alterations in serum and skin tissue between 2,4-dinitrofluorobenzene (DNFB)-induced AD-like mice and healthy controls, aiming to identify the potential disease biomarkers and explore the molecular mechanisms of AD. METHODS In this study, Untargeted metabolomics analysis was used to investigate both skin and serum metabolic abnormalities of 2,4-dinitrofluorobenzene (DNFB)-induced AD-like mice. Then, the metabolic differences among the groups were determined through the application of multivariate analysis. Additionally, the selection of predictive biomarkers was accomplished using the receiver operating characteristic (ROC) module. RESULTS Our findings showed that levels of 220 metabolites in the skin and 94 metabolites in the serum were different in AD-like mice that were treated with DNFB compared to control mice. Uracil, N-Acetyl-L-methionine, deoxyadenosine monophoosphate, 2-acetyl-l-alkyl-sn-glycero-3-phosphcholine, and prostaglandin D2 are considered potential biomarkers of AD as obtained by integrating skin and serum differential metabolite results. Metabolomic data analysis showed that the metabolic pathways in which skin and serum are involved together include histidine metabolism, pyrimidine metabolism, alanine, aspartate, and glutamate metabolism. CONCLUSION Our research explained the possible molecular mechanism of AD at the metabolite level and provided potential targets for the development of clinical drugs for AD.
Collapse
Affiliation(s)
- Yingyue Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing District, Tianjin, 300384, China
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Xiaowei Chen
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing District, Tianjin, 300384, China
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Chang Liu
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Chunxue You
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing District, Tianjin, 300384, China.
| | - Yubin Xu
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China.
| |
Collapse
|
19
|
Xu Z, Asakawa S. The Definition of RNA Age Related to RNA Sequence Changes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1876. [PMID: 39628136 DOI: 10.1002/wrna.1876] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/27/2024] [Accepted: 11/06/2024] [Indexed: 04/10/2025]
Abstract
Ribonucleic acid (RNA) undergoes dynamic changes in its structure and function under various intracellular and extracellular conditions over time. However, there is a lack of research on the concept of the RNA age to describe its diverse fates. This study proposes a definition of RNA age to address this issue. RNA age was defined as a sequence of numbers wherein the elements in the sequence were the nucleotide ages of the ribonucleotide residues in the RNA. Mean nucleotide age was used to represent RNA age. This definition describes the temporal properties of RNAs that have undergone diverse life histories and reflects the dynamic state of each ribonucleotide residue, which can be expressed mathematically. Notably, events (including base insertions, base deletions, and base substitutions) are likely to cause RNA to become younger or older when using mean nucleotide ages to represent the RNA age. Although information, including the presence of added markers in RNA, chemical modification structure of the RNA, and the excision of introns in the mRNA in cells, may provide a basis for identifying RNA age, little is known about determining the RNA age of extracellular RNA in the wild. Nonetheless, we believe that RNA age has an important relationship with the diverse biological properties of RNA under intracellular and extracellular conditions. Therefore, our proposed definition of RNA age offers new perspectives for studying dynamic changes in RNA function, RNA aging, ancient RNA, environmental RNA, and the ages of other biomolecules.
Collapse
Affiliation(s)
- Zhongneng Xu
- Department of Ecology, Jinan University, Guangzhou, China
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Mero IL, Orozco Rodriguez JM, Bjørgo K, Hankin RA, Krupinska E, Kulseth MA, Rossow MA, Knecht W. A mild skeletal phenotype with overlapping features of Miller syndrome and functional characterisation of two new variants of human dihydroorotate dehydrogenase. Heliyon 2024; 10:e38659. [PMID: 39430512 PMCID: PMC11489341 DOI: 10.1016/j.heliyon.2024.e38659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
Dihydroorotate dehydrogenase (DHODH) catalyzes the fourth enzymatic reaction of the pyrimidine biosynthesis pathway. Miller syndrome, also known as postaxial acrofacial dysostosis, is caused by biallelic pathogenic variants in DHODH. We present a patient with a relatively mild skeletal phenotype carrying a novel variant of unknown significance in DHODH: c.829G > A, p.(D277N), in combination with a known variant, c.403C > T, p.(R135C). We functionally characterized the DHODH variant D277N in comparison to a very recently reported, but functionally uncharacterized variant P43L, that was found in a patient with more pronounced Miller syndrome features. Because both cases share the same DHODH variant R135C, we aimed to study the effect on enzyme activity of the two variants D277N and P43L to determine pathogenicity and possibly a genotype-phenotype relationship on the R135C background. We found a significant reduction in enzyme activity for both variants. The variant P43L showed a more pronounced loss of function in all assays compatible with other pathogenic variants reported in Miller, whereas the D277N variant showed milder changes that could reflect the mild phenotypic features in our patient. Yet due to a lack of a known threshold of residual enzyme activity to determine pathogenicity, this needs to be confirmed in further studies.
Collapse
Affiliation(s)
- Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital, PB 4956 Nydalen, 0424, Oslo, Norway
| | | | - Kathrine Bjørgo
- Department of Medical Genetics, Oslo University Hospital, PB 4956 Nydalen, 0424, Oslo, Norway
| | | | - Ewa Krupinska
- Department of Biology & Lund Protein Production Platform, Lund University, Sölvegatan 35, 22362, Lund, Sweden
| | - Mari Ann Kulseth
- Department of Medical Genetics, Oslo University Hospital, PB 4956 Nydalen, 0424, Oslo, Norway
| | - Marvin Anthony Rossow
- Department of Biology & Lund Protein Production Platform, Lund University, Sölvegatan 35, 22362, Lund, Sweden
| | - Wolfgang Knecht
- Department of Biology & Lund Protein Production Platform, Lund University, Sölvegatan 35, 22362, Lund, Sweden
| |
Collapse
|
21
|
Yang L, Ma D, Liu S, Zou L. The DHODH inhibitor teriflunomide impedes cell proliferation and enhances chemosensitivity to daunorubicin (DNR) in T-cell acute lymphoblastic leukemia. Ann Hematol 2024:10.1007/s00277-024-05998-0. [PMID: 39377943 DOI: 10.1007/s00277-024-05998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological tumor that requires novel treatment strategies, especially for relapsed/refractory cases. Dihydroorotate dehydrogenase (DHODH), a key enzyme in the de novo pyrimidine synthesis pathway, has been identified as a potential target for tumors. Besides, Teriflunomide (TRF) is a DHODH inhibitor with anticancer effects; however, its role in T-ALL remains poorly understood. Here, we investigated the potential anticancer effects of TRF on T-ALL cells, and the results showed that TRF inhibited cell proliferation, caused S-phase cell cycle arrest, and promoted apoptosis of T-ALL (MOLT4 and JURKAT) cell lines. In addition, TRF reduced the infiltration capacity of T-ALL cells in T-ALL xenograft mice while up-regulating the expression of P53 and BTG2. The BTG2 knockdown significantly attenuated the inhibitory effect of TRF on cellular growth and suppressed the TRF-mediated elevated expression of P53 in T-ALL cells. Moreover, combined treatment with TRF and daunorubicin (DNR) significantly reduced cell viability and promoted apoptosis in DNR-resistant T-ALL cells. Our study provides valuable insights into the critical role of TRF in treating T-ALL while increasing the sensitivity of DNR-resistant T-ALL cells to DNR.
Collapse
Affiliation(s)
- Li Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Deyu Ma
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Shan Liu
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Lin Zou
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Clinical Research Unit, Children's Hospital of Shanghai Jiao Tong University, 355 Luding Rd, Putuo District, Shanghai, 200062, China.
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
| |
Collapse
|
22
|
Laybourn HA, Hellemann Polhaus C, Kristensen C, Lyngfeldt Henriksen B, Zhang Y, Brogaard L, Larsen CA, Trebbien R, Larsen LE, Kalogeropoulos K, Auf dem Keller U, Skovgaard K. Multi-omics analysis reveals the impact of influenza a virus host adaptation on immune signatures in pig tracheal tissue. Front Immunol 2024; 15:1432743. [PMID: 39247193 PMCID: PMC11378526 DOI: 10.3389/fimmu.2024.1432743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Influenza A virus (IAV) infection is a global respiratory disease, which annually leads to 3-5 million cases of severe illness, resulting in 290,000-650,000 deaths. Additionally, during the past century, four global IAV pandemics have claimed millions of human lives. The epithelial lining of the trachea plays a vital role during IAV infection, both as point of viral entry and replication as well as in the antiviral immune response. Tracheal tissue is generally inaccessible from human patients, which makes animal models crucial for the study of the tracheal host immune response. Method In this study, pigs were inoculated with swine- or human-adapted H1N1 IAV to gain insight into how host adaptation of IAV shapes the innate immune response during infection. In-depth multi-omics analysis (global proteomics and RNA sequencing) of the host response in upper and lower tracheal tissue was conducted, and results were validated by microfluidic qPCR. Additionally, a subset of samples was selected for histopathological examination. Results A classical innate antiviral immune response was induced in both upper and lower trachea after infection with either swine- or human-adapted IAV with upregulation of genes and higher abundance of proteins associated with viral infection and recognition, accompanied by a significant induction of interferon stimulated genes with corresponding higher proteins concentrations. Infection with the swine-adapted virus induced a much stronger immune response compared to infection with a human-adapted IAV strain in the lower trachea, which could be a consequence of a higher viral load and a higher degree of inflammation. Discussion Central components of the JAK-STAT pathway, apoptosis, pyrimidine metabolism, and the cytoskeleton were significantly altered depending on infection with swine- or human-adapted virus and might be relevant mechanisms in relation to antiviral immunity against putative zoonotic IAV. Based on our findings, we hypothesize that during host adaptation, IAV evolve to modulate important host cell elements to favor viral infectivity and replication.
Collapse
Affiliation(s)
- Helena Aagaard Laybourn
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Charlotte Kristensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Yaolei Zhang
- Qingdao Key Laboratory of Marine Genomics, BGI-Qingdao, Qingdao, China
| | - Louise Brogaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Cathrine Agnete Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ramona Trebbien
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Lars Erik Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
23
|
Wang JY, Cai YY, Li L, Zhu XM, Shen ZF, Wang ZH, Liao J, Lu JP, Liu XH, Lin FC. Dihydroorotase MoPyr4 is required for development, pathogenicity, and autophagy in rice blast fungus. Cell Commun Signal 2024; 22:362. [PMID: 39010102 PMCID: PMC11247805 DOI: 10.1186/s12964-024-01741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/06/2024] [Indexed: 07/17/2024] Open
Abstract
Dihydroorotase (DHOase) is the third enzyme in the six enzymatic reaction steps of the endogenous pyrimidine nucleotide de novo biosynthesis pathway, which is a metabolic pathway conserved in both bacteria and eukaryotes. However, research on the biological function of DHOase in plant pathogenic fungi is very limited. In this study, we identified and named MoPyr4, a homologous protein of Saccharomyces cerevisiae DHOase Ura4, in the rice blast fungus Magnaporthe oryzae and investigated its ability to regulate fungal growth, pathogenicity, and autophagy. Deletion of MoPYR4 led to defects in growth, conidiation, appressorium formation, the transfer and degradation of glycogen and lipid droplets, appressorium turgor accumulation, and invasive hypha expansion in M. oryzae, which eventually resulted in weakened fungal pathogenicity. Long-term replenishment of exogenous uridine-5'-phosphate (UMP) can effectively restore the phenotype and virulence of the ΔMopyr4 mutant. Further study revealed that MoPyr4 also participated in the regulation of the Pmk1-MAPK signaling pathway, co-localized with peroxisomes for the oxidative stress response, and was involved in the regulation of the Osm1-MAPK signaling pathway in response to hyperosmotic stress. In addition, MoPyr4 interacted with MoAtg5, the core protein involved in autophagy, and positively regulated autophagic degradation. Taken together, our results suggested that MoPyr4 for UMP biosynthesis was crucial for the development and pathogenicity of M. oryzae. We also revealed that MoPyr4 played an essential role in the external stress response and pathogenic mechanism through participation in the Pmk1-MAPK signaling pathway, peroxisome-related oxidative stress response mechanism, the Osm1-MAPK signaling pathway and the autophagy pathway.
Collapse
Affiliation(s)
- Jing-Yi Wang
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ying-Ying Cai
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Lin Li
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xue-Ming Zhu
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zi-Fang Shen
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zi-He Wang
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian Liao
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Hong Liu
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
24
|
Long Z, Luo Y, Yu M, Wang X, Zeng L, Yang K. Targeting ferroptosis: a new therapeutic opportunity for kidney diseases. Front Immunol 2024; 15:1435139. [PMID: 39021564 PMCID: PMC11251909 DOI: 10.3389/fimmu.2024.1435139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Ferroptosis is a form of non-apoptotic regulated cell death (RCD) that depends on iron and is characterized by the accumulation of lipid peroxides to lethal levels. Ferroptosis involves multiple pathways including redox balance, iron regulation, mitochondrial function, and amino acid, lipid, and glycometabolism. Furthermore, various disease-related signaling pathways also play a role in regulating the process of iron oxidation. In recent years, with the emergence of the concept of ferroptosis and the in-depth study of its mechanisms, ferroptosis is closely associated with various biological conditions related to kidney diseases, including kidney organ development, aging, immunity, and cancer. This article reviews the development of the concept of ferroptosis, the mechanisms of ferroptosis (including GSH-GPX4, FSP1-CoQ1, DHODH-CoQ10, GCH1-BH4, and MBOAT1/2 pathways), and the latest research progress on its involvement in kidney diseases. It summarizes research on ferroptosis in kidney diseases within the frameworks of metabolism, reactive oxygen biology, and iron biology. The article introduces key regulatory factors and mechanisms of ferroptosis in kidney diseases, as well as important concepts and major open questions in ferroptosis and related natural compounds. It is hoped that in future research, further breakthroughs can be made in understanding the regulation mechanism of ferroptosis and utilizing ferroptosis to promote treatments for kidney diseases, such as acute kidney injury(AKI), chronic kidney disease (CKD), diabetic nephropathy(DN), and renal cell carcinoma. This paves the way for a new approach to research, prevent, and treat clinical kidney diseases.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanfang Luo
- Department of Nephrology, The Central Hospital of Shaoyang, Shaoyang, Hunan, China
| | - Min Yu
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Wang
- Department of Nephrology, The Central Hospital of Shaoyang, Shaoyang, Hunan, China
| | - Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
25
|
Dsouza L, Pant A, Pope B, Yang Z. Role of vaccinia virus growth factor in stimulating the mTORC1-CAD axis of the de novo pyrimidine pathway under different nutritional cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601567. [PMID: 39005450 PMCID: PMC11245005 DOI: 10.1101/2024.07.02.601567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Vaccinia virus (VACV), the prototype poxvirus, actively reprograms host cell metabolism upon infection. However, the nature and molecular mechanisms remain largely elusive. Given the diverse nutritional exposures of cells in different physiological contexts, it is essential to understand how VACV may alter various metabolic pathways in different nutritional conditions. In this study, we established the importance of de novo pyrimidine biosynthesis in VACV infection. We elucidated the significance of vaccinia growth factor (VGF), a viral early protein and a homolog of cellular epidermal growth factor, in enabling VACV to phosphorylate the key enzyme CAD of the de novo pyrimidine pathway at serine 1859, a site known to positively regulate CAD activity. While nutrient-poor conditions typically inhibit mTORC1 activation, VACV activates CAD via mTORC1-S6K1 signaling axis, in conditions where glutamine and asparagine are absent. However, unlike its cellular homolog, epidermal growth factor (EGF), VGF peptide alone in the absence of VACV infection has minimal ability to activate CAD, suggestive of the involvement of other viral factor(s) and differential functions to EGF acquired during poxvirus evolution. Our research provides a foundation for understanding the regulation of a significant metabolic pathway, namely, de novo pyrimidine synthesis during VACV infection, shedding new light on viral regulation under distinct nutritional environments. This study not only has the potential to contribute to the advancement of antiviral treatments but also improve the development of VACV as an oncolytic agent and vaccine vector.
Collapse
Affiliation(s)
- Lara Dsouza
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Anil Pant
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Blake Pope
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Zhilong Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
26
|
Zhou L, Hou G, Liu S, Zhou H, Ye Y, Lv R, Abouelezz K, Wang D. Effects of mixed extract from two tropical plants on gut microbiome and metabolome in piglets. J Anim Physiol Anim Nutr (Berl) 2024; 108:987-998. [PMID: 38420856 DOI: 10.1111/jpn.13944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/16/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
In this study, we performed a quantitative analysis of 12 compounds derived from Piper sarmentosum extract (PSE) and guava leaf extract (GE). In addition, we investigated the effects of mixed extract (ME) of PSE and GE (1:1) on piglets' gut microbiome and metabolome. A total of 200 piglets (Duroc × Landrace × Large Yorkshire, 21-day-old) were randomly assigned into two groups with five replicates of 20 piglets/pen having the same initial body weight. Piglets were fed a basal diet supplemented with ME at 0 (T0) or 200 mg/kg (T1) for 3 weeks. The quantitation results by ultraperformance liquid chromatography linked to triple-quadrupole tandem mass spectrometry showed that vitexin 2-O-rhamnoside and pellitorine were the greatest abundant among six compounds detected in the PSE. In addition, quercetin, isoquercitrin and avicularin were found to be the richest of all detected compounds in the GE. Findings on experimental animals indicated that three differential metabolites, comprising L-alanine, sarcosine and dihydrofolic acid, in T1 compared with T0 groups, have exactly opposite levels trends in serum and faeces. Moreover, two metabolic pathways (i.e., urea cycle and glutamate metabolism) differed significantly in the serum and faeces of piglets between T0 and T1 (p < 0.05). At the same time, T1 had significantly higher relative abundances of Agathobacter and Alloprevotella than T0 at genus level (p < 0.05). Correlation analysis revealed that the genus Agathobacter correlated positively with carbamoyl phosphate (p < 0.01) and oxoglutaric acid (p < 0.05), and negatively with succinic acid (p < 0.01) and ornithine (p < 0.05). These four differential metabolites were also involved in the urea cycle and/or glutamate metabolism pathways. The results here indicated that the tested plant extract mixture represents a worthy feed additive with obvious antioxidative properties.
Collapse
Affiliation(s)
- Luli Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shengmin Liu
- Hainan State Farm Bureau Husbandry Group, Haikou, China
| | - Hanlin Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China
| | - Yuxiu Ye
- Hainan Yitian Biotechnology, Haikou, China
| | - Renlong Lv
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Khaled Abouelezz
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Dingfa Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
27
|
Dong S, Zhang M, Cheng Z, Zhang X, Liang W, Li S, Li L, Xu Q, Song S, Liu Z, Yang G, Zhao X, Tao Z, Liang S, Wang K, Zhang G, Hu S. Redistribution of defective mitochondria-mediated dihydroorotate dehydrogenase imparts 5-fluorouracil resistance in colorectal cancer. Redox Biol 2024; 73:103207. [PMID: 38805974 PMCID: PMC11152977 DOI: 10.1016/j.redox.2024.103207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
Although 5-fluorouracil (5-FU) is the primary chemotherapy treatment for colorectal cancer (CRC), its efficacy is limited by drug resistance. Ferroptosis activation is a promising treatment for 5-FU-resistant cancer cells; however, potential therapeutic targets remain elusive. This study investigated ferroptosis vulnerability and dihydroorotate dehydrogenase (DHODH) activity using stable, 5-FU-resistant CRC cell lines and xenograft models. Ferroptosis was characterized by measuring malondialdehyde levels, assessing lipid metabolism and peroxidation, and using mitochondrial imaging and assays. DHODH function is investigated through gene knockdown experiments, tumor behavior assays, mitochondrial import reactions, intramitochondrial localization, enzymatic activity analyses, and metabolomics assessments. Intracellular lipid accumulation and mitochondrial DHODH deficiency led to lipid peroxidation overload, weakening the defense system of 5-FU-resistant CRC cells against ferroptosis. DHODH, primarily located within the inner mitochondrial membrane, played a crucial role in driving intracellular pyrimidine biosynthesis and was redistributed to the cytosol in 5-FU-resistant CRC cells. Cytosolic DHODH, like its mitochondrial counterpart, exhibited dihydroorotate catalytic activity and participated in pyrimidine biosynthesis. This amplified intracellular pyrimidine pools, thereby impeding the efficacy of 5-FU treatment through molecular competition. These findings contribute to the understanding of 5-FU resistance mechanisms and suggest that ferroptosis and DHODH are promising therapeutic targets for patients with CRC exhibiting resistance to 5-FU.
Collapse
Affiliation(s)
- Shuohui Dong
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Mingguang Zhang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhiqiang Cheng
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Xiang Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Weili Liang
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Songhan Li
- Department of General Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Linchuan Li
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Qian Xu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Siyi Song
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Zitian Liu
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Guangwei Yang
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Xiang Zhao
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Ze Tao
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Shuo Liang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, No. 4, Duanxing West Road, Jinan, Shandong,250022, China.
| | - Kexin Wang
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China.
| | - Guangyong Zhang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, 250014, China.
| | - Sanyuan Hu
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China.
| |
Collapse
|
28
|
Khadka P, Young CKJ, Sachidanandam R, Brard L, Young MJ. Our current understanding of the biological impact of endometrial cancer mtDNA genome mutations and their potential use as a biomarker. Front Oncol 2024; 14:1394699. [PMID: 38993645 PMCID: PMC11236604 DOI: 10.3389/fonc.2024.1394699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Endometrial cancer (EC) is a devastating and common disease affecting women's health. The NCI Surveillance, Epidemiology, and End Results Program predicted that there would be >66,000 new cases in the United States and >13,000 deaths from EC in 2023, and EC is the sixth most common cancer among women worldwide. Regulation of mitochondrial metabolism plays a role in tumorigenesis. In proliferating cancer cells, mitochondria provide the necessary building blocks for biosynthesis of amino acids, lipids, nucleotides, and glucose. One mechanism causing altered mitochondrial activity is mitochondrial DNA (mtDNA) mutation. The polyploid human mtDNA genome is a circular double-stranded molecule essential to vertebrate life that harbors genes critical for oxidative phosphorylation plus mitochondrial-derived peptide genes. Cancer cells display aerobic glycolysis, known as the Warburg effect, which arises from the needs of fast-dividing cells and is characterized by increased glucose uptake and conversion of glucose to lactate. Solid tumors often contain at least one mtDNA substitution. Furthermore, it is common for cancer cells to harbor mixtures of wild-type and mutant mtDNA genotypes, known as heteroplasmy. Considering the increase in cancer cell energy demand, the presence of functionally relevant carcinogenesis-inducing or environment-adapting mtDNA mutations in cancer seems plausible. We review 279 EC tumor-specific mtDNA single nucleotide variants from 111 individuals from different studies. Many transition mutations indicative of error-prone DNA polymerase γ replication and C to U deamination events were present. We examine the spectrum of mutations and their heteroplasmy and discuss the potential biological impact of recurrent, non-synonymous, insertion, and deletion mutations. Lastly, we explore current EC treatments, exploiting cancer cell mitochondria for therapy and the prospect of using mtDNA variants as an EC biomarker.
Collapse
Affiliation(s)
- Pabitra Khadka
- Department of Biomedical Sciences, Division of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Carolyn K J Young
- Department of Biomedical Sciences, Division of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | | | - Laurent Brard
- Obstetrics & Gynecology, Southern Illinois University School of Medicine, Springfield, IL, United States
- Simmons Cancer Institute, Springfield, IL, United States
| | - Matthew J Young
- Department of Biomedical Sciences, Division of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, United States
- Simmons Cancer Institute, Springfield, IL, United States
| |
Collapse
|
29
|
Lindsey AR, Tennessen JM, Gelaw MA, Jones MW, Parish AJ, Newton IL, Nemkov T, D'Alessandro A, Rai M, Stark N. The intracellular symbiont Wolbachia alters Drosophila development and metabolism to buffer against nutritional stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.20.524972. [PMID: 36711506 PMCID: PMC9882369 DOI: 10.1101/2023.01.20.524972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The intracellular bacterium Wolbachia is a common symbiont of many arthropods and nematodes, well studied for its impacts on host reproductive biology. However, its broad success as a vertically transmitted infection cannot be attributed to manipulations of host reproduction alone. Using the Drosophila melanogaster model and their natively associated Wolbachia strain " w Mel", we show that Wolbachia infection supports fly development and buffers against nutritional stress. Wolbachia infection across several fly genotypes and a range of nutrient conditions resulted in reduced pupal mortality, increased adult emergence, and larger size. We determined that the exogenous supplementation of pyrimidines partially rescued developmental phenotypes in the Wolbachia -free flies, and that Wolbachia titers were responsive to reduced gene expression of the fly's de novo pyrimidine synthesis pathway. In parallel, transcriptomic and metabolomic analyses indicated that Wolbachia impacts larval biology far beyond pyrimidine metabolism. Wolbachia -infected larvae had strong signatures of shifts in glutathione and mitochondrial metabolism, plus significant changes in the expression of key developmental regulators including Notch , the insulin receptor ( lnR ), and the juvenile hormone receptor Methoprene-tolerant ( Met ). We propose that Wolbachia acts as a beneficial symbiont to support fly development and enhance host fitness, especially during periods of nutrient stress. SIGNIFICANCE Wolbachia is a bacterial symbiont of arthropods and nematodes, well described for its manipulations of arthropod reproduction. However, many have theorized there must be more to this symbiosis, even in well-studied Wolbachia- host relationships such as with Drosophila . Reproductive impacts alone cannot explain the success and ubiquity of this bacterium. Here, we use Drosophila melanogaster and their native Wolbachia infections to show that Wolbachia supports fly development and significantly buffers flies against nutritional stress. These developmental advantages might help explain the ubiquity of Wolbachia infections.
Collapse
|
30
|
Norenhag J, Edfeldt G, Stålberg K, Garcia F, Hugerth LW, Engstrand L, Fransson E, Du J, Schuppe-Koistinen I, Olovsson M. Compositional and functional differences of the vaginal microbiota of women with and without cervical dysplasia. Sci Rep 2024; 14:11183. [PMID: 38755259 PMCID: PMC11099171 DOI: 10.1038/s41598-024-61942-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024] Open
Abstract
Alterations in the vaginal microbiota, including both species composition and functional pathways, have been associated with HPV infection and progression of dysplasia to cervical cancer. To further explore this, shotgun metagenomic sequencing was used to taxonomically and functionally characterize the vaginal microbiota of women with and without cervical dysplasia. Women with histologically verified dysplasia (n = 177; low grade dysplasia (LSIL) n = 81, high-grade dysplasia (HSIL) n = 94, cancer n = 2) were compared with healthy controls recruited from the cervical screening programme (n = 177). Women with dysplasia had a higher vaginal microbial diversity, and higher abundances of Gardnerella vaginalis, Aerococcus christensenii, Peptoniphilus lacrimalis and Fannyhessea vaginae, while healthy controls had higher relative abundance of Lactobacillus crispatus. Genes involved in e.g. nucleotide biosynthesis and peptidoglycan biosynthesis were more abundant in women with dysplasia. Healthy controls showed higher abundance of genes important for e.g. amino acid biosynthesis, (especially L-lysine) and sugar degradation. These findings suggest that the microbiota may have a role in creating a pro-oncogenic environment in women with dysplasia. Its role and potential interactions with other components in the microenvironment deserve further exploration.
Collapse
Affiliation(s)
- Johanna Norenhag
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| | - Gabriella Edfeldt
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Karin Stålberg
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Fabricio Garcia
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Luisa Warchavchik Hugerth
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Emma Fransson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Juan Du
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Ina Schuppe-Koistinen
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Matts Olovsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
31
|
Guo S, Miao M, Wu Y, Pan D, Wu Q, Kang Z, Zeng J, Zhong G, Liu C, Wang J. DHODH inhibition represents a therapeutic strategy and improves abiraterone treatment in castration-resistant prostate cancer. Oncogene 2024; 43:1399-1410. [PMID: 38480915 DOI: 10.1038/s41388-024-03005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 05/05/2024]
Abstract
Castration-resistant prostate cancer (CRPC) is an aggressive disease with poor prognosis, and there is an urgent need for more effective therapeutic targets to address this challenge. Here, we showed that dihydroorotate dehydrogenase (DHODH), an enzyme crucial in the pyrimidine biosynthesis pathway, is a promising therapeutic target for CRPC. The transcript levels of DHODH were significantly elevated in prostate tumors and were negatively correlated with the prognosis of patients with prostate cancer. DHODH inhibition effectively suppressed CRPC progression by blocking cell cycle progression and inducing apoptosis. Notably, treatment with DHODH inhibitor BAY2402234 activated androgen biosynthesis signaling in CRPC cells. However, the combination treatment with BAY2402234 and abiraterone decreased intratumoral testosterone levels and induced apoptosis, which inhibited the growth of CWR22Rv1 xenograft tumors and patient-derived xenograft organoids. Taken together, these results establish DHODH as a key player in CRPC and as a potential therapeutic target for advanced prostate cancer.
Collapse
Affiliation(s)
- Shaoqiang Guo
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Miaomiao Miao
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yufeng Wu
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dongyue Pan
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Qinyan Wu
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhanfang Kang
- Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jianwen Zeng
- Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Guoping Zhong
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Chengfei Liu
- Department of Urologic Surgery, University of California, Davis, CA, USA.
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA.
| | - Junjian Wang
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
32
|
Hai Y, Fan R, Zhao T, Lin R, Zhuang J, Deng A, Meng S, Hou Z, Wei G. A novel mitochondria-targeting DHODH inhibitor induces robust ferroptosis and alleviates immune suppression. Pharmacol Res 2024; 202:107115. [PMID: 38423231 DOI: 10.1016/j.phrs.2024.107115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Dihydroorotate dehydrogenase (DHODH)-mediated ferroptosis defense is a targetable vulnerability in cancer. Currently, only a few DHODH inhibitors have been utilized in clinical practice. To further enhance DHODH targeting, we introduced the mitochondrial targeting group triphenylphosphine (TPP) to brequinar (BRQ), a robust DHODH inhibitor, resulting in the creation of active molecule B2. This compound exhibits heightened anticancer activity, effectively inhibiting proliferation in various cancer cells, and restraining tumor growth in melanoma xenografts in mice. B2 achieves these effects by targeting DHODH, triggering the formation of reactive oxygen species (ROS), promoting mitochondrial lipid peroxidation, and inducing ferroptosis in B16F10 and A375 cells. Surprisingly, B2 significantly downregulates PD-L1 and alleviates immune suppression. Importantly, B2 exhibits no apparent adverse effects in mice. Collectively, these findings highlight that enhancing the mitochondrial targeting capability of the DHODH inhibitor is a promising therapeutic approach for melanoma treatment.
Collapse
Affiliation(s)
- Yongrui Hai
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057, China
| | - Renming Fan
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057, China
| | - Ting Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruizhuo Lin
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057, China
| | - Junyan Zhuang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057, China
| | - Aohua Deng
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057, China
| | - Shanshui Meng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Zhuang Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Gaofei Wei
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057, China.
| |
Collapse
|
33
|
Soudais C, Schaus R, Bachelet C, Minet N, Mouasni S, Garcin C, Souza CL, David P, Cousu C, Asnagli H, Parker A, Palmquist-Gomes P, Sepulveda FE, Storck S, Meilhac SM, Fischer A, Martin E, Latour S. Inactivation of cytidine triphosphate synthase 1 prevents fatal auto-immunity in mice. Nat Commun 2024; 15:1982. [PMID: 38438357 PMCID: PMC10912214 DOI: 10.1038/s41467-024-45805-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
De novo synthesis of the pyrimidine, cytidine triphosphate (CTP), is crucial for DNA/RNA metabolism and depends on the CTP synthetases, CTPS1 and -2. Partial CTPS1 deficiency in humans has previously been shown to lead to immunodeficiency, with impaired expansion of T and B cells. Here, we examine the effects of conditional and inducible inactivation of Ctps1 and/or Ctps2 on mouse embryonic development and immunity. We report that deletion of Ctps1, but not Ctps2, is embryonic-lethal. Tissue and cells with high proliferation and renewal rates, such as intestinal epithelium, erythroid and thymic lineages, activated B and T lymphocytes, and memory T cells strongly rely on CTPS1 for their maintenance and growth. However, both CTPS1 and CTPS2 are required for T cell proliferation following TCR stimulation. Deletion of Ctps1 in T cells or treatment with a CTPS1 inhibitor rescued Foxp3-deficient mice from fatal systemic autoimmunity and reduced the severity of experimental autoimmune encephalomyelitis. These findings support that CTPS1 may represent a target for immune suppression.
Collapse
Affiliation(s)
- Claire Soudais
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris, France.
- Université de Paris Cité, Paris, France.
| | - Romane Schaus
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris, France
| | - Camille Bachelet
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris, France
- Université de Paris Cité, Paris, France
| | - Norbert Minet
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris, France
- Université de Paris Cité, Paris, France
| | - Sara Mouasni
- Laboratory of Molecular Basis of Altered Immune Homeostasis Inserm UMR 1163, Institut Imagine, Paris, France
| | - Cécile Garcin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris, France
- Université de Paris Cité, Paris, France
| | - Caique Lopes Souza
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris, France
- Université de Paris Cité, Paris, France
| | - Pierre David
- Transgenesis Platform, Laboratoire d'Expérimentation Animale et Transgenèse (LEAT), Institut Imagine-Structure Fédérative de Recherche Necker INSERM US24/CNRS, UMS3633, Paris, France
| | - Clara Cousu
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Hélène Asnagli
- Step-Pharma, Technoparc du Pays-de-Gex, Saint-Genis-Pouilly, France
| | - Andrew Parker
- Step-Pharma, Technoparc du Pays-de-Gex, Saint-Genis-Pouilly, France
| | - Paul Palmquist-Gomes
- Université de Paris Cité, Paris, France
- Imagine - Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, F-75015, Paris, France
| | - Fernando E Sepulveda
- Laboratory of Molecular Basis of Altered Immune Homeostasis Inserm UMR 1163, Institut Imagine, Paris, France
| | - Sébastien Storck
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Sigolène M Meilhac
- Université de Paris Cité, Paris, France
- Imagine - Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, F-75015, Paris, France
| | - Alain Fischer
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris, France
- Collège de France, Paris, France
| | - Emmanuel Martin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris, France.
- Université de Paris Cité, Paris, France.
| |
Collapse
|
34
|
Wu P, Wang Z, Adusei-Fosu K, Wang Y, Wang H, Li X. Integrative chemical, physiological, and metabolomics analyses reveal nanospecific phytotoxicity of metal nanoparticles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120338. [PMID: 38401494 DOI: 10.1016/j.jenvman.2024.120338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/18/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
The increasing application of metal nanoparticles (NPs) via agrochemicals and sewage sludge results in non-negligible phytotoxicological risks. Herein, the potential phytotoxicity of ZnO and CuO NPs on wheat was determined using integrative chemical, physiological, and metabolomics analyses, in comparison to Zn2+ and Cu2+. It was found that ZnO or CuO NPs had a stronger inhibitory effect on wheat growth than Zn2+ or Cu2+. After exposure to ZnO or CuO NPs, wheat seedlings accumulated significantly higher levels of Zn or Cu than the corresponding Zn2+ or Cu2+ treatments, indicating the active uptake of NPs via wheat root. TEM analysis further confirmed the intake of NPs. Moreover, ZnO or CuO NPs exposure altered micronutrients (Fe, Mn, Cu, and Zn) accumulation in the tissues and decreased the activities of antioxidant enzymes. The metabolomics analysis identified 312, 357, 145, and 188 significantly changed metabolites (SCMs) in wheat root exposed to ZnO NPs, CuO NPs, Zn2+, and Cu2+, respectively. Most SCMs were nano-specific to ZnO (80%) and CuO NPs (58%), suggesting greater metabolic reprogramming by NPs than metal ions. Overall, nanospecific toxicity dominated the phytotoxicity of ZnO and CuO NPs, and our results provide a molecular perspective on the phytotoxicity of metal oxide NPs.
Collapse
Affiliation(s)
- Ping Wu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China.
| | - Zeyu Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kwasi Adusei-Fosu
- Resilient Agriculture, AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Xiaofang Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China.
| |
Collapse
|
35
|
Yan Z, Xin Y, Zhong X, Yi Y, Li P, Wang Y, Zhou Y, He Y, He C, Shi Q, Xu W, He D. Evolution of dissolved organic nitrogen chemistry during transportation to the marginal sea: Insights from nitrogen isotope and molecular composition analyses. WATER RESEARCH 2024; 249:120942. [PMID: 38043348 DOI: 10.1016/j.watres.2023.120942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Estuaries are hotspots where terrestrially originated dissolved organic matter (DOM) is modified in molecular composition before entering marine environments. However, very few research has considered nitrogen (N) modifications of DOM molecules in estuaries, limiting our understanding of dissolved organic nitrogen (DON) cycling and the associated carbon cycling in estuaries. This study integrated optical, stable isotopes (δ15N and δ13C) and molecular composition (FT-ICR MS) to characterize the transformation of DOM in the Yangtze River Estuary. Both concentration of dissolved organic carbon (DOC) and DON decreased with increasing salinity, while their δ13C and δ15N increased with the increasing salinity. A significant positive correlation was found between δ15N and δ13C during the transportation of DOM to marginal seas, indicating that the behavior of both DOC and DON are primarily controlled by the mixing of freshwater and the seawater in the YRE. During the mixing process, the DON addition was observed using the conservative mixing curves. In the view of molecular composition, DOM molecules became more aromatic as the number of N atoms increased. Spearman correlations reveal that DOM molecules with fewer N atoms exhibited a higher enrichment in protein-like components, while those with more N atoms were more enriched in humic-like components. In addition, the δ15N and δ13C tended to increase as the N content of DOM decreased. Therefore, DON molecules with fewer N atoms were likely to be transformed into those with more N atoms based on the isotopic fractionation theory. This study establishes a linkage between the molecular composition and the δ15N of DOM, and discovers the N transformation pattern within DOM molecules during the transportation to marginal seas.
Collapse
Affiliation(s)
- Zhenwei Yan
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, Shandong, China
| | - Yu Xin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, Shandong, China.
| | - Xiaosong Zhong
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, Shandong, China; Research Center for Marine Ecology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Yuanbi Yi
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Penghui Li
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, China
| | - Yuntao Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Yuping Zhou
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Yuhe He
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
| | - Wenqi Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, Shandong, China
| | - Ding He
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
36
|
Mollick T, Darekar S, Dalarun B, Plastino F, Zhang J, Fernández AP, Alkasalias T, André H, Laín S. Retinoblastoma vulnerability to combined de novo and salvage pyrimidine ribonucleotide synthesis pharmacologic blockage. Heliyon 2024; 10:e23831. [PMID: 38332874 PMCID: PMC10851301 DOI: 10.1016/j.heliyon.2023.e23831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 02/10/2024] Open
Abstract
Retinoblastoma is an eye cancer that commonly affects young children. Despite significant advances, current treatments cause side effects even when administered locally, and patients may still have to undergo enucleation. This is particularly disheartening in cases of bilateral retinoblastoma. Hence, there is an urgent need for novel therapeutic strategies. Inhibitors of the enzyme dihydroorotate dehydrogenase (DHODH), which is involved in the de novo pyrimidine ribonucleotide synthesis pathway, have proven to be effective in preclinical trials against several cancers including pediatric cancers. Here we tested whether blocking pyrimidine ribonucleotide synthesis promotes retinoblastoma cell death. Cultured retinoblastoma cell lines were treated with small molecule inhibitors of DHODH alone or in combination with inhibitors of nucleoside uptake to also block the salvage pathway for pyrimidine ribonucleotide formation. On their own, DHODH inhibitors had a moderate killing effect. However, the combination with nucleoside uptake inhibitors greatly enhanced the effect of DHODH inhibition. In addition, we observed that pyrimidine ribonucleotide synthesis blockage can cause cell death in a p53 mutant retinoblastoma cell line derived from a patient with metastasis. Explaining these results, the analysis of a published patient cohort revealed that loss of chr16q22.2 (containing the DHODH gene) is amongst the most frequent alterations in retinoblastoma and that these tumors often show gains in chromosome regions expressing pyrimidine ribonucleotide salvage factors. Furthermore, these genome alterations associate with malignancy. These results indicate that targeting pyrimidine ribonucleotide synthesis may be an effective therapeutic strategy to consider as a treatment for retinoblastoma.
Collapse
Affiliation(s)
- Tanzina Mollick
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Solna, Stockholm, Sweden
| | - Suhas Darekar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Solna, Stockholm, Sweden
| | - Basile Dalarun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Solna, Stockholm, Sweden
| | - Flavia Plastino
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Juan Zhang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Solna, Stockholm, Sweden
| | - Andres Pastor Fernández
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Solna, Stockholm, Sweden
| | - Twana Alkasalias
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Solna, Stockholm, Sweden
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Sonia Laín
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Solna, Stockholm, Sweden
| |
Collapse
|
37
|
Gehlot P, Vyas VK. A Patent Review of Human Dihydroorotate Dehydrogenase (hDHODH) Inhibitors as Anticancer Agents and their Other Therapeutic Applications (1999-2022). Recent Pat Anticancer Drug Discov 2024; 19:280-297. [PMID: 37070439 DOI: 10.2174/1574892818666230417094939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 04/19/2023]
Abstract
Highly proliferating cells, such as cancer cells, are in high demand of pyrimidine nucleotides for their proliferation, accomplished by de novo pyrimidine biosynthesis. The human dihydroorotate dehydrogenase (hDHODH) enzyme plays a vital role in the rate-limiting step of de novo pyrimidine biosynthesis. As a recognised therapeutic target, hDHODH plays a significant role in cancer and other illness. In the past two decades, small molecules as inhibitors hDHODH enzyme have drawn much attention as anticancer agents, and their role in rheumatoid arthritis (RA), and multiple sclerosis (MS). In this patent review, we have compiled patented hDHODH inhibitors published between 1999 and 2022 and discussed the development of hDHODH inhibitors as anticancer agents. Therapeutic potential of small molecules as hDHODH inhibitors for the treatment of various diseases, such as cancer, is very well recognised. Human DHODH inhibitors can rapidly cause intracellular uridine monophosphate (UMP) depletion to produce starvation of pyrimidine bases. Normal cells can better endure a brief period of starvation without the side effects of conventional cytotoxic medication and resume synthesis of nucleic acid and other cellular functions after inhibition of de novo pathway using an alternative salvage pathway. Highly proliferative cells such as cancer cells do not endure starvation because they are in high demand of nucleotides for cell differentiation, which is fulfilled by de novo pyrimidine biosynthesis. In addition, hDHODH inhibitors produce their desired activity at lower doses rather than a cytotoxic dose of other anticancer agents. Thus, inhibition of de novo pyrimidine biosynthesis will create new prospects for the development of novel targeted anticancer agents, which ongoing preclinical and clinical experiments define. Our work brings together a comprehensive patent review of the role of hDHODH in cancer, as well as various patents related to the hDHODH inhibitors and their anticancer and other therapeutic potential. This compiled work on patented DHODH inhibitors will guide researchers in pursuing the most promising drug discovery strategies against the hDHODH enzyme as anticancer agents.
Collapse
Affiliation(s)
- Pinky Gehlot
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujrat, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujrat, India
| |
Collapse
|
38
|
Backer N, Kumar A, Singh AK, Singh H, Narasimhan B, Kumar P. Medicinal chemistry aspects of uracil containing dUTPase inhibitors targeting colorectal cancer. Drug Discov Today 2024; 29:103853. [PMID: 38070703 DOI: 10.1016/j.drudis.2023.103853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Deoxyuridine-5'-triphosphate nucleotidohydrolase (dUTPase), a vital enzyme in pyrimidine metabolism, is a prime target for treating colorectal cancer. Uracil shares structural traits with DNA/RNA bases, prompting exploration by medicinal chemists for pharmacological modifications. Some existing drugs, including thymidylate synthase (TS) and dUTPase inhibitors, incorporate uracil moieties. These derivatives hinder crucial cell proliferation pathways encompassing TS, dUTPases, dihydropyrimidine dehydrogenase, and uracil-DNA glycosylase. This review compiles uracil derivatives that have served as dUTPase inhibitors across various organisms, forming a library for targeting human dUTPase. Insights into their structural requisites for human applications and comparative analyses of binding pockets are provided for analyzing the compounds against human dUTPase.
Collapse
Affiliation(s)
- Nabeel Backer
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | | | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
39
|
Pfeiffer C, Grandits AM, Asnagli H, Schneller A, Huber J, Zojer N, Schreder M, Parker AE, Bolomsky A, Beer PA, Ludwig H. CTPS1 is a novel therapeutic target in multiple myeloma which synergizes with inhibition of CHEK1, ATR or WEE1. Leukemia 2024; 38:181-192. [PMID: 37898670 DOI: 10.1038/s41375-023-02071-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/30/2023]
Abstract
Targeting nucleotide biosynthesis is a proven strategy for the treatment of cancer but is limited by toxicity, reflecting the fundamental nucleotide requirement of dividing cells. The rate limiting step in de novo pyrimidine synthesis is of interest, being catalyzed by two homologous enzymes, CTP synthase 1 (CTPS1) and CTPS2, that could be differentially targeted. Herein, analyses of publicly available datasets identified an essential role for CTPS1 in multiple myeloma (MM), linking high expression of CTPS1 (but not CTPS2) with advanced disease and poor outcomes. In cellular experiments, CTPS1 knockout induced apoptosis of MM cell lines. Exposure of MM cells to STP-B, a novel and highly selective pharmacological inhibitor of CTPS1, inhibited proliferation, induced S phase arrest and led to cell death by apoptosis. Mechanistically, CTPS1 inhibition by STP-B activated DNA damage response (DDR) pathways and induced double-strand DNA breaks which accumulated in early S phase. Combination of STP-B with pharmacological inhibitors of key components of the DDR pathway (ATR, CHEK1 or WEE1) resulted in synergistic growth inhibition and early apoptosis. Taken together, these findings identify CTPS1 as a promising new target in MM, either alone or in combination with DDR pathway inhibition.
Collapse
Affiliation(s)
- Christina Pfeiffer
- Department of Medicine I, Klinik Ottakring, Wilhelminen Cancer Research Institute, Vienna, Austria
| | - Alexander M Grandits
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Anja Schneller
- Department of Medicine I, Klinik Ottakring, Wilhelminen Cancer Research Institute, Vienna, Austria
| | - Julia Huber
- Department of Medicine I, Klinik Ottakring, Wilhelminen Cancer Research Institute, Vienna, Austria
| | - Niklas Zojer
- Department of Medicine I, Klinik Ottakring, Wilhelminen Cancer Research Institute, Vienna, Austria
- Department of Medicine I, Center for Oncology and Hematology, Klinik Ottakring, Vienna, Austria
| | - Martin Schreder
- Department of Medicine I, Center for Oncology and Hematology, Klinik Ottakring, Vienna, Austria
| | | | - Arnold Bolomsky
- Department of Medicine I, Klinik Ottakring, Wilhelminen Cancer Research Institute, Vienna, Austria
| | | | - Heinz Ludwig
- Department of Medicine I, Klinik Ottakring, Wilhelminen Cancer Research Institute, Vienna, Austria.
| |
Collapse
|
40
|
Hsu CJ, Lee WT. Epilepsy and Coenzyme Q10 deficiency with COQ4 variants. Epilepsy Behav 2023; 149:109498. [PMID: 37948995 DOI: 10.1016/j.yebeh.2023.109498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Coenzyme Q10 (CoQ10) is one of the essential substances for mitochondrial energy synthesis and extra-mitochondrial vital function. Primary CoQ10 deficiency is a rare disease resulting from interruption of CoQ10 biosynthetic pathway and biallelic COQ4 variants are one of the genetic etiologies recognized in this hereditary disorder. The clinical heterogenicity is broad with wide onset age from prenatal period to adulthood. The typical manifestations include early pharmacoresistant seizure, severe cognition and/or developmental delay, dystonia, ataxia, and spasticity. Patients may also have multisystemic involvements such as cardiomyopathy, lactic acidosis or gastro-esophageal regurgitation disease. Oral CoQ10 supplement is the major therapeutic medication currently. Among those patients, c.370G > A variant is the most common pathogenic variant detected, especially in Asian population. This phenomenon also suggests that this specific allele may be the founder variants in Asia. In this article, we report two siblings with infantile onset seizures, developmental delay, cardiomyopathy, and diffuse brain atrophy. Genetic analysis of both two cases revealed homozygous COQ4 c.370G > A (p.Gly124Ser) variants. We also review the clinical manifestations of primary CoQ10 deficiency patients and possible treatment categories, which are still under survey. As oral CoQ10 supplement may improve or stabilize disease severity, early precise diagnosis of primary CoQ10 deficiency and early treatment are the most important issues. This review article helps to further understand clinical spectrum and treatment categories of primary CoQ10 deficiency with COQ4 variant.
Collapse
Affiliation(s)
- Chia-Jui Hsu
- Department of Pediatrics, National Taiwan University Hsin-Chu Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Wang-Tso Lee
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Pediatric Neurology, National Taiwan University Children's Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
41
|
Zhou X, Gou K, Xu J, Jian L, Luo Y, Li C, Guan X, Qiu J, Zou J, Zhang Y, Zhong X, Zeng T, Zhou Y, Xiao Y, Yang X, Chen W, Gao P, Liu C, Zhou Y, Tao L, Liu X, Cen X, Chen Q, Sun Q, Luo Y, Zhao Y. Discovery and Optimization of Novel hDHODH Inhibitors for the Treatment of Inflammatory Bowel Disease. J Med Chem 2023; 66:14755-14786. [PMID: 37870434 DOI: 10.1021/acs.jmedchem.3c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
As a key rate-limiting enzyme in the de novo synthesis of pyrimidine nucleotides, human dihydroorotate dehydrogenase (hDHODH) is considered a known target for the treatment of autoimmune diseases, including inflammatory bowel disease (IBD). Herein, BAY 41-2272 with a 1H-pyrazolo[3,4-b]pyridine scaffold was identified as an hDHODH inhibitor by screening an active compound library containing 5091 molecules. Further optimization led to 2-(1-(2-chloro-6-fluorobenzyl)-1H-pyrrolo[2,3-b]pyridin-3-yl)-5-cyclopropylpyrimidin-4-amine (w2), which was found to be the most promising and drug-like compound with potent inhibitory activity against hDHODH (IC50 = 173.4 nM). Compound w2 demonstrated acceptable pharmacokinetic characteristics and alleviated the severity of acute ulcerative colitis induced by dextran sulfate sodium in a dose-dependent manner. Notably, w2 exerted better therapeutic effects on ulcerative colitis than hDHODH inhibitor vidofludimus and Janus kinase (JAK) inhibitor tofacitinib. Taken together, w2 is a promising hDHODH inhibitor for the treatment of IBD and deserves to be developed as a preclinical candidate.
Collapse
Affiliation(s)
- Xia Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Kun Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lunan Jian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuan Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chungen Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiao Zou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Zhang
- School of Medicine, Tibet University, Lhasa 850000, China
| | - Xi Zhong
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ting Zeng
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuzhou Xiao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Weijie Chen
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ping Gao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chunqi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xingchen Liu
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingxiang Sun
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Youfu Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
42
|
Ma H, Cui J, Liu Z, Fang W, Lu S, Cao S, Zhang Y, Chen JA, Lu L, Xie Q, Wang Y, Huang Y, Li K, Tong H, Huang J, Lu W. Blockade of de novo pyrimidine biosynthesis triggers autophagic degradation of oncoprotein FLT3-ITD in acute myeloid leukemia. Oncogene 2023; 42:3331-3343. [PMID: 37752234 DOI: 10.1038/s41388-023-02848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
The internal tandem duplication of the FMS-like tyrosine kinase 3 (FLT3-ITD) is one of the most frequent genetic alterations in acute myeloid leukemia (AML). Limited and transient clinical benefit of FLT3 kinase inhibitors (FLT3i) emphasizes the need for alternative therapeutic options for this subset of myeloid malignancies. Herein, we showed that FLT3-ITD mutant (FLT3-ITD+) AML cells were susceptible toward inhibitors of DHODH, a rate-limiting enzyme of de novo pyrimidine biosynthesis. Genetic and pharmacological blockade of DHODH triggered downregulation of FLT3-ITD protein, subsequently suppressed activation of downstream ERK and STAT5, and promoted cell death of FLT3-ITD+ AML cells. Mechanistically, DHODH blockade triggered autophagy-mediated FLT3-ITD degradation via inactivating mTOR, a potent autophagy repressor. Notably, blockade of DHODH synergized with an FDA-approved FLT3i quizartinib in significantly impairing the growth of FLT3-ITD+ AML cells and improving tumor-bearing mice survival. We further demonstrated that DHODH blockade exhibited profound anti-proliferation effect on quizartinib-resistant cells in vitro and in vivo. In summary, this study demonstrates that the induction of degradation of FLT3-ITD protein by DHODH blockade may offer a promising therapeutic strategy for AML patients harboring FLT3-ITD mutation.
Collapse
Affiliation(s)
- Hui Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Jiayan Cui
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Zehui Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Wenqing Fang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Sisi Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Shuying Cao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Yuanyuan Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Ji-An Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Lixue Lu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Yonghui Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Ying Huang
- NMPA Key Laboratory of Rapid Drug Inspection Technology, Guangdong Institute for Drug Control, 510663, Guangzhou, China
| | - Kongfei Li
- Department of Hematology, People's Hospital Affiliated to Ningbo University, 315000, Ningbo, China
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, 310003, Hangzhou, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, 310003, Hangzhou, China
| | - Jin Huang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 200241, Shanghai, China.
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 200241, Shanghai, China.
| |
Collapse
|
43
|
Yang J, Zhang J, Chen J, Yang X, Sun H, Zhao Z, Zhou H, Shen H. Thymidylate synthase promotes esophageal squamous cell carcinoma growth by relieving oxidative stress through activating nuclear factor erythroid 2-related factor 2 expression. PLoS One 2023; 18:e0290264. [PMID: 37682862 PMCID: PMC10490860 DOI: 10.1371/journal.pone.0290264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/03/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Thymidylate synthase (TYMS) is involved in the malignant process of multiple cancers, and has gained much attention as a cancer treatment target. However, the mechanism in carcinogenesis of esophageal squamous cell cancer (ESCC) is little reported. The present study was to clear the biological roles and carcinogenic mechanism of TYMS in ESCC, and explored the possibility to use TYMS as a tumor marker in diagnosis and a drug target for the treatment of ESCC. METHODS Stably TYMS-overexpression cells established by lentivirus transduction were used for the analysis of cell proliferation. RNA sequencing was performed to explore the possible carcinogenic mechanisms. RESULTS GEPIA databases analysis showed that TYMS expression in esophageal cancer tissues was higher than that in normal tissues. The MTT assay, colony formation assay, and nude mouse subcutaneous tumor model found that the overexpression of TYMS increased cell proliferation. Transcriptome sequencing analysis revealed that the promoted cell proliferation in TYMS-overexpression ESCC cells were mediated through activating genes expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2 dependent antioxidant enzymes to relieve oxidative stress, which was confirmed by increased glutathione (GSH), glutathione peroxidase (GPX) activities, and reduced reactive oxygen species. Nrf2 active inhibitors (ML385) used in TYMS-overexpression cells inhibited the expression of Nrf2-dependent antioxidant enzyme genes, thereby increasing oxidative stress and blocking cell proliferation. CONCLUSION Our study indicated a novel and effective regulatory capacity of TYMS in the cell proliferation of ESCC by relieving oxidative stress through activating expression of Nrf2 and Nrf2-dependent antioxidant enzymes genes. These properties make TYMS and Nrf2 as appealing targets for ESCC clinical chemotherapy.
Collapse
Affiliation(s)
- Jian Yang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China
- Department of Cell Biology and Genetics, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jingjing Zhang
- Department of Physiology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jingtian Chen
- Department of Colorectal Surgery, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Xiaolong Yang
- Department of Cell Biology and Genetics, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Hui Sun
- Science & Technology Information and Strategy Research Center of Shanxi, Taiyuan, Shanxi, PR China
| | - Zhenxiang Zhao
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Hui Zhou
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Hao Shen
- College of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
44
|
Chilingaryan G, Izmailyan R, Grigoryan R, Shavina A, Arabyan E, Khachatryan H, Abelyan N, Matevosyan M, Harutyunyan V, Manukyan G, Hietel B, Shtro A, Danilenko D, Zakaryan H. Advanced virtual screening enables the discovery of a host-targeting and broad-spectrum antiviral agent. Antiviral Res 2023; 217:105681. [PMID: 37499699 DOI: 10.1016/j.antiviral.2023.105681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
We employed an advanced virtual screening (AVS) approach to identify potential inhibitors of human dihydroorotate dehydrogenase (DHODH), a validated target for development of broad-spectrum antivirals. We screened a library of 495118 compounds and identified 495 compounds that exhibited better binding scores than the reference ligands involved in the screening. From the top 100 compounds, we selected 28 based on their consensus docking scores and structural novelty. Then, we conducted in vitro experiments to investigate the antiviral activity of selected compounds on HSV-1 infection, which is susceptible to DHODH inhibitors. Among the tested compounds, seven displayed statistically significant antiviral effects, with Comp 19 being the most potent inhibitor. We found that Comp 19 exerted its antiviral effect in a dose-dependent manner (IC50 = 1.1 μM) and exhibited the most significant antiviral effect when added before viral infection. In the biochemical assay, Comp 19 inhibited human DHODH in a dose-dependent manner with the IC50 value of 7.3 μM. Long-timescale molecular dynamics simulations (1000 ns) revealed that Comp 19 formed a very stable complex with human DHODH. Comp 19 also displayed broad-spectrum antiviral activity and suppressed cytokine production in THP-1 cells. Overall, our study provides evidence that AVS could be successfully implemented to discover novel DHODH inhibitors with broad-spectrum antiviral activity.
Collapse
Affiliation(s)
- Garri Chilingaryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia; Biocentric.AI, 0051, Yerevan, Armenia
| | - Roza Izmailyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
| | - Rafayela Grigoryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
| | - Anastasiya Shavina
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia; Denovo Sciences Inc., Yerevan, Armenia
| | - Erik Arabyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
| | - Hamlet Khachatryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia; Denovo Sciences Inc., Yerevan, Armenia
| | - Narek Abelyan
- Biocentric.AI, 0051, Yerevan, Armenia; Institute of Biomedicine and Pharmacy, Russian-Armenian University, 0051, Yerevan, Armenia
| | | | | | - Gayane Manukyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
| | - Benjamin Hietel
- Fraunhofer Institute for Cell Therapy and Immunology IZI Department of Drug Design and Target Validation MWT Biocenter, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Anna Shtro
- Smorodintsev Research Institute of Influenza, 197376, St. Petersburg, Russia
| | - Daria Danilenko
- Smorodintsev Research Institute of Influenza, 197376, St. Petersburg, Russia
| | - Hovakim Zakaryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia; Denovo Sciences Inc., Yerevan, Armenia.
| |
Collapse
|
45
|
Marynowicz W, Borski N, Flis Z, Ptak A, Molik E. Orotic acid induces apoptotic death in ovarian adult granulosa tumour cells and increases mitochondrial activity in normal ovarian granulosa cells. Reprod Biol 2023; 23:100790. [PMID: 37478515 DOI: 10.1016/j.repbio.2023.100790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Orotic acid (OA) is a natural product that acts as a precursor in the pyrimidine nucleotide biosynthesis pathway. Most studies concerning administration of OA focus on its therapeutic effects; however, its effect on tumours is unclear. We aimed to determine whether treatment with OA influences the viability and apoptosis of normal (HGrC1) and tumour-derived (KGN) human ovarian granulosa cells. The effects of OA (10-250 μM) on viability and apoptosis of both cell lines were determined by using alamarBlue and assessing caspase-3/7 activity, respectively. Annexin V binding and loss of membrane integrity were evaluated in KGN cells. The cell cycle and proliferation of HGrC1 cells were assessed by performing flow cytometric and DNA content analyses, respectively. The influence of OA (10 and 100 μM) on cell cycle- and apoptosis-related gene expression was assessed by RT-qPCR in both cell lines. Mitochondrial activity was analysed by JC-1 staining in HGrC1 cells. In KGN cells, OA reduced viability and increased caspase-3/7 activity, but did not affect mRNA expression of Caspase 3, BAX, and BCL2. OA enhanced proliferation and mitochondrial activity in HGrC1 cells without activating apoptosis. This study demonstrates that the anti-cancer properties of OA in ovarian granulosa tumour cells are not related to changes in apoptosis-associated gene expression, but to increased caspase-3/7 activity. Thus, OA is a promising therapeutic agent for ovarian granulosa tumours. Further, our results suggest that differences in basal expression of cell cycle- and apoptosis-related genes between the two cell lines are responsible for their different responses to OA.
Collapse
Affiliation(s)
- Weronika Marynowicz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Norbert Borski
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Zuzanna Flis
- Department of Animal Nutrition and Biotechnology, and Fisheries, Faculty of Animal Science, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Edyta Molik
- Department of Animal Nutrition and Biotechnology, and Fisheries, Faculty of Animal Science, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland.
| |
Collapse
|
46
|
Minet N, Boschat AC, Lane R, Laughton D, Beer P, Asnagli H, Soudais C, Bourne T, Fischer A, Martin E, Latour S. Differential roles of CTP synthetases CTPS1 and CTPS2 in cell proliferation. Life Sci Alliance 2023; 6:e202302066. [PMID: 37348953 PMCID: PMC10288033 DOI: 10.26508/lsa.202302066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
The CTP nucleotide is a key precursor of nucleic acids metabolism essential for DNA replication. De novo CTP production relies on CTP synthetases 1 and 2 (CTPS1 and CTPS2) that catalyze the conversion of UTP into CTP. CTP synthetase activity is high in proliferating cells including cancer cells; however, the respective roles of CTPS1 and CTPS2 in cell proliferation are not known. By inactivation of CTPS1 and/or CTPS2 and complementation experiments, we showed that both CTPS1 and CTPS2 are differentially required for cell proliferation. CTPS1 was more efficient in promoting proliferation than CTPS2, in association with a higher intrinsic enzymatic activity that was more resistant to inhibition by 3-deaza-uridine, an UTP analog. The contribution of CTPS2 to cell proliferation was modest when CTPS1 was expressed but essential in absence of CTPS1. Public databases analysis of more than 1,000 inactivated cancer cell lines for CTPS1 or CTPS2 confirmed that cell growth is highly dependent of CTPS1 but less or not of CTPS2. Therefore, our results demonstrate that CTPS1 is the main contributor to cell proliferation.
Collapse
Affiliation(s)
- Norbert Minet
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm UMR 1163, Imagine Institute, Paris, France
- Université de Paris, Paris, France
| | - Anne-Claire Boschat
- Université de Paris, Paris, France
- Plateforme Spectrométrie de masse, Institut Imagine, Paris, France
- Laboratoire de Biochimie Métabolomique et Protéomique, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | | | | | | | | | - Claire Soudais
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm UMR 1163, Imagine Institute, Paris, France
- Université de Paris, Paris, France
| | - Tim Bourne
- Step-Pharma, Saint-Genis-Pouilly, France
| | - Alain Fischer
- Collège de France, Paris, France
- Imagine Institute, Paris, France
| | - Emmanuel Martin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm UMR 1163, Imagine Institute, Paris, France
- Université de Paris, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm UMR 1163, Imagine Institute, Paris, France
- Université de Paris, Paris, France
| |
Collapse
|
47
|
Schroader JH, Handley MT, Reddy K. Inosine triphosphate pyrophosphatase: A guardian of the cellular nucleotide pool and potential mediator of RNA function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1790. [PMID: 37092460 DOI: 10.1002/wrna.1790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023]
Abstract
Inosine triphosphate pyrophosphatase (ITPase), encoded by the ITPA gene in humans, is an important enzyme that preserves the integrity of cellular nucleotide pools by hydrolyzing the noncanonical purine nucleotides (deoxy)inosine and (deoxy)xanthosine triphosphate into monophosphates and pyrophosphate. Variants in the ITPA gene can cause partial or complete ITPase deficiency. Partial ITPase deficiency is benign but clinically relevant as it is linked to altered drug responses. Complete ITPase deficiency causes a severe multisystem disorder characterized by seizures and encephalopathy that is frequently associated with fatal infantile dilated cardiomyopathy. In the absence of ITPase activity, its substrate noncanonical nucleotides have the potential to accumulate and become aberrantly incorporated into DNA and RNA. Hence, the pathophysiology of ITPase deficiency could arise from metabolic imbalance, altered DNA or RNA regulation, or from a combination of these factors. Here, we review the known functions of ITPase and highlight recent work aimed at determining the molecular basis for ITPA-associated pathogenesis which provides evidence for RNA dysfunction. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jacob H Schroader
- The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Mark T Handley
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kaalak Reddy
- The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
48
|
Heydari N, Mahdizadeh M, Jafari SM. The evolving landscape of involvement of DTYMK enzymes in cancer. Med Oncol 2023; 40:213. [PMID: 37358701 DOI: 10.1007/s12032-023-02086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
Cancer cells require continuous synthesis of nucleotides for their uncontrolled proliferation. Deoxy thymidylate kinase (DTYMK) belongs to the thymidylate kinase family and is concerned with pyrimidine metabolism. DTYMK catalyzes the ATP-based conversion of deoxy-TMP to deoxy-TDP in both de novo and salvage pathways. Different studies demonstrated that DTYMK was increased in various types of cancers such as hepatocellular carcinoma, colon cancer, lung cancer, etc. Increased level of DTYMK was associated with poorer survival and prognosis, stage, grade and size of tumor, cell proliferation, colony formation, enhanced sensitivity to chemotherapy drugs, migration. Some studies were showed that knockdown of DTYMK reduced the signaling pathway of PI3K/AKT and downregulated expression of CART, MAPKAPK2, AKT1 and NRF1. Moreover, some microRNAs could suppress DTYMK expressions. On the other hand based on the TIMER database, the infiltration of macrophages, dendritic cells, neutrophils, B cells, CD4+ T cell and CD8+ T cell is affected by DTYMK. In the present review, we describe the genomic location, protein structure and isoforms of DTYMK and focus on its role in cancer development.
Collapse
Affiliation(s)
- Nadia Heydari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Islamic Republic of Iran
- Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Islamic Republic of Iran
| | - Mahsa Mahdizadeh
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Islamic Republic of Iran
- Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Islamic Republic of Iran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Islamic Republic of Iran.
- Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Islamic Republic of Iran.
| |
Collapse
|
49
|
Nada H, Kim S, Park S, Lee MY, Lee K. Identification of Potent hDHODH Inhibitors for Lung Cancer via Virtual Screening of a Rationally Designed Small Combinatorial Library. ACS OMEGA 2023; 8:21769-21780. [PMID: 37360481 PMCID: PMC10286098 DOI: 10.1021/acsomega.3c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Cancer is characterized by altered cellular metabolism, and metabolic enzymes are considered as a promising target for anticancer therapy. Pyrimidine metabolism dysregulation is associated with various types of cancer, particularly lung cancer, which is one of the leading causes of cancer-related mortality worldwide. Recent studies have shown that small-cell lung cancer cells are particularly reliant on the pyrimidine biosynthesis pathway and are sensitive to its disruption. DHODH, the rate-limiting enzyme of the de novo pyrimidine production pathway, is essential in the production of RNA and DNA and is overexpressed in malignancies such as AML, skin cancer, breast cancer, and lung cancer, thereby highlighting DHODH as a viable target for developing drugs to combat lung cancer. Herein, rational drug design and computational techniques were used to discover novel DHODH inhibitors. A small combinatorial library was generated, and the top hits were synthesized and tested for anticancer activity against three lung cancer cell lines. Among the tested compounds, compound 5c possessed a stronger cytotoxicity (TC50 of 11 μM) compared to the standard FDA-approved drug (Regorafenib, TC50 of 13 μM) on the A549 cell line. Furthermore, compound 5c demonstrated potent inhibitory activity against hDHODH at a nanomolar level of 421 nM. DFT, molecular docking, molecular dynamic simulations, and free energy calculations were also carried out to understand the inhibitory mechanisms of the synthesized scaffolds. These in silico studies identified key mechanisms and structural features that will be crucial for future studies.
Collapse
|
50
|
Yang C, Zhao Y, Wang L, Guo Z, Ma L, Yang R, Wu Y, Li X, Niu J, Chu Q, Fu Y, Li B. De novo pyrimidine biosynthetic complexes support cancer cell proliferation and ferroptosis defence. Nat Cell Biol 2023; 25:836-847. [PMID: 37291265 DOI: 10.1038/s41556-023-01146-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/13/2023] [Indexed: 06/10/2023]
Abstract
De novo pyrimidine biosynthesis is achieved by cytosolic carbamoyl-phosphate synthetase II, aspartate transcarbamylase and dihydroorotase (CAD) and uridine 5'-monophosphate synthase (UMPS), and mitochondrial dihydroorotate dehydrogenase (DHODH). However, how these enzymes are orchestrated remains enigmatical. Here we show that cytosolic glutamate oxaloacetate transaminase 1 clusters with CAD and UMPS, and this complex then connects with DHODH, which is mediated by the mitochondrial outer membrane protein voltage-dependent anion-selective channel protein 3. Therefore, these proteins form a multi-enzyme complex, named 'pyrimidinosome', involving AMP-activated protein kinase (AMPK) as a regulator. Activated AMPK dissociates from the complex to enhance pyrimidinosome assembly but inactivated UMPS, which promotes DHODH-mediated ferroptosis defence. Meanwhile, cancer cells with lower expression of AMPK are more reliant on pyrimidinosome-mediated UMP biosynthesis and more vulnerable to its inhibition. Our findings reveal the role of pyrimidinosome in regulating pyrimidine flux and ferroptosis, and suggest a pharmaceutical strategy of targeting pyrimidinosome in cancer treatment.
Collapse
Affiliation(s)
- Chuanzhen Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yiliang Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Liao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Zihao Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lingdi Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ronghui Yang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ying Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xuexue Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jing Niu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qiaoyun Chu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yanxia Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Binghui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.
- Department of Cancer Cell Biology and National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| |
Collapse
|