1
|
Marín M, López M, Gallego-Yerga L, Álvarez R, Peláez R. Experimental structure based drug design (SBDD) applications for anti-leishmanial drugs: A paradigm shift? Med Res Rev 2024; 44:1055-1120. [PMID: 38142308 DOI: 10.1002/med.22005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Leishmaniasis is a group of neglected tropical diseases caused by at least 20 species of Leishmania protozoa, which are spread by the bite of infected sandflies. There are three main forms of the disease: cutaneous leishmaniasis (CL, the most common), visceral leishmaniasis (VL, also known as kala-azar, the most serious), and mucocutaneous leishmaniasis. One billion people live in areas endemic to leishmaniasis, with an annual estimation of 30,000 new cases of VL and more than 1 million of CL. New treatments for leishmaniasis are an urgent need, as the existing ones are inefficient, toxic, and/or expensive. We have revised the experimental structure-based drug design (SBDD) efforts applied to the discovery of new drugs against leishmaniasis. We have grouped the explored targets according to the metabolic pathways they belong to, and the key achieved advances are highlighted and evaluated. In most cases, SBDD studies follow high-throughput screening campaigns and are secondary to pharmacokinetic optimization, due to the majoritarian belief that there are few validated targets for SBDD in leishmaniasis. However, some SBDD strategies have significantly contributed to new drug candidates against leishmaniasis and a bigger number holds promise for future development.
Collapse
Affiliation(s)
- Miguel Marín
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Marta López
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Laura Gallego-Yerga
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| |
Collapse
|
2
|
Coordination environment variations in multinuclear trigonal bipyramid Co(II) complexes bearing tetradentate sulfonamide N-donors and phenoxazinone synthase activities. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Díaz‐Sáez L, Torrie LS, McElroy SP, Gray D, Hunter WN. Burkholderia pseudomallei d-alanine-d-alanine ligase; detailed characterisation and assessment of a potential antibiotic drug target. FEBS J 2019; 286:4509-4524. [PMID: 31260169 PMCID: PMC6899670 DOI: 10.1111/febs.14976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/27/2019] [Accepted: 06/27/2019] [Indexed: 02/02/2023]
Abstract
Burkholderia pseudomallei is a serious, difficult to treat Gram-negative pathogen and an increase in the occurrence of drug-resistant strains has been detected. We have directed efforts to identify and to evaluate potential drug targets relevant to treatment of infection by B. pseudomallei. We have selected and characterised the essential enzyme d-alanine-d-alanine ligase (BpDdl), required for the ATP-assisted biosynthesis of a peptidoglycan precursor. A recombinant supply of protein supported high-resolution crystallographic and biophysical studies with ligands (AMP and AMP+d-Ala-d-Ala), and comparisons with orthologues enzymes suggest a ligand-induced conformational change occurring that might be relevant to the catalytic cycle. The detailed biochemical characterisation of the enzyme, development and optimisation of ligand binding assays supported the search for novel inhibitors by screening of selected compound libraries. In a similar manner to that observed previously in other studies, we note a paucity of hits that are worth follow-up and then in combination with a computational analysis of the active site, we conclude that this ligase represents a difficult target for drug discovery. Nevertheless, our reagents, protocols and data can underpin future efforts exploiting more diverse chemical libraries and structure-based approaches.
Collapse
Affiliation(s)
- Laura Díaz‐Sáez
- Division of Biological Chemistry and Drug DiscoverySchool of Life SciencesUniversity of DundeeUK
| | - Leah S. Torrie
- Drug Discovery UnitWellcome Centre for Anti‐Infectives ResearchSchool of Life SciencesUniversity of DundeeUK
| | - Stuart P. McElroy
- European Screening Centre Newhouse, Biocity ScotlandUniversity of DundeeNewhouseUK
- Present address:
BioAscent Discovery LtdBo'ness RoadNewhouseLanarkshireML1 5UHUK
| | - David Gray
- Drug Discovery UnitWellcome Centre for Anti‐Infectives ResearchSchool of Life SciencesUniversity of DundeeUK
| | - William N. Hunter
- Division of Biological Chemistry and Drug DiscoverySchool of Life SciencesUniversity of DundeeUK
| |
Collapse
|
4
|
Tiwari N, Tanwar N, Munde M. Molecular insights into trypanothione reductase-inhibitor interaction: A structure-based review. Arch Pharm (Weinheim) 2018; 351:e1700373. [DOI: 10.1002/ardp.201700373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Neha Tiwari
- School of Physical Sciences; Jawaharlal Nehru University; New Delhi India
| | - Neetu Tanwar
- School of Physical Sciences; Jawaharlal Nehru University; New Delhi India
| | - Manoj Munde
- School of Physical Sciences; Jawaharlal Nehru University; New Delhi India
| |
Collapse
|
5
|
Abstract
The apicomplexan protozoan parasites include the causative agents of animal and human diseases ranging from malaria (Plasmodium spp.) to toxoplasmosis (Toxoplasma gondii). The complex life cycle of T. gondii is regulated by a unique family of calcium-dependent protein kinases (CDPKs) that have become the target of intensive efforts to develop new therapeutics. In this review, we will summarize structure-based strategies, recent successes and future directions in the pursuit of specific and selective inhibitors of T. gondii CDPK1.
Collapse
|
6
|
Oliveira de Souza J, Dawson A, Hunter WN. An Improved Model of the Trypanosoma brucei CTP Synthetase Glutaminase Domain-Acivicin Complex. ChemMedChem 2017; 12:577-579. [PMID: 28333400 PMCID: PMC5413811 DOI: 10.1002/cmdc.201700118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/21/2017] [Indexed: 11/17/2022]
Abstract
The natural product acivicin inhibits the glutaminase activity of cytidine triphosphate (CTP) synthetase and is a potent lead compound for drug discovery in the area of neglected tropical diseases, specifically trypanosomaisis. A 2.1-Å-resolution crystal structure of the acivicin adduct with the glutaminase domain from Trypanosoma brucei CTP synthetase has been deposited in the RCSB Protein Data Bank (PDB) and provides a template for structure-based approaches to design new inhibitors. However, our assessment of that data identified deficiencies in the model. We now report an improved and corrected inhibitor structure with changes to the chirality at one position, the orientation and covalent structure of the isoxazoline moiety, and the location of a chloride ion in an oxyanion binding site that is exploited during catalysis. The model is now in agreement with established chemical principles and allows an accurate description of molecular recognition of the ligand and the mode of binding in a potentially valuable drug target.
Collapse
Affiliation(s)
- Juliana Oliveira de Souza
- Division of Biological Chemistry and Drug DiscoveryCollege of Life SciencesUniversity of DundeeDundeeDD1 5EHScotlandUK
| | - Alice Dawson
- Division of Biological Chemistry and Drug DiscoveryCollege of Life SciencesUniversity of DundeeDundeeDD1 5EHScotlandUK
| | - William N. Hunter
- Division of Biological Chemistry and Drug DiscoveryCollege of Life SciencesUniversity of DundeeDundeeDD1 5EHScotlandUK
| |
Collapse
|
7
|
Díaz-Sáez L, Pankov G, Hunter WN. Open and compressed conformations of Francisella tularensis ClpP. Proteins 2016; 85:188-194. [PMID: 27802578 PMCID: PMC5225881 DOI: 10.1002/prot.25197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/13/2016] [Accepted: 10/24/2016] [Indexed: 11/29/2022]
Abstract
Caseinolytic proteases are large oligomeric assemblies responsible for maintaining protein homeostasis in bacteria and in so doing influence a wide range of biological processes. The functional assembly involves three chaperones together with the oligomeric caseinolytic protease catalytic subunit P (ClpP). This protease represents a potential target for therapeutic intervention in pathogenic bacteria. Here, we detail an efficient protocol for production of recombinant ClpP from Francisella tularensis, and the structural characterization of three crystal forms which grow under similar conditions. One crystal form reveals a compressed state of the ClpP tetradecamer and two forms an open state. A comparison of the two types of structure infers that differences at the enzyme active site result from a conformational change involving a highly localized disorder‐order transition of a β‐strand α‐helix combination. This transition occurs at a subunit‐subunit interface. Our study may now underpin future efforts in a structure‐based approach to target ClpP for inhibitor or activator development. Proteins 2016; 85:188–194. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laura Díaz-Sáez
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Genady Pankov
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - William N Hunter
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
8
|
Ekins S, Litterman NK, Lipinski CA, Bunin BA. Thermodynamic Proxies to Compensate for Biases in Drug Discovery Methods. Pharm Res 2015; 33:194-205. [DOI: 10.1007/s11095-015-1779-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/13/2015] [Indexed: 11/24/2022]
|
9
|
Baum B, Lecker LSM, Zoltner M, Jaenicke E, Schnell R, Hunter WN, Brenk R. Structures of Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) and a C164Q mutant provide templates for antibacterial drug discovery and identify a buried potassium ion and a ligand-binding site that is an artefact of the crystal form. Acta Crystallogr F Struct Biol Commun 2015; 71:1020-6. [PMID: 26249693 PMCID: PMC4528935 DOI: 10.1107/s2053230x15010614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/02/2015] [Indexed: 11/16/2022] Open
Abstract
Bacterial infections remain a serious health concern, in particular causing life-threatening infections of hospitalized and immunocompromised patients. The situation is exacerbated by the rise in antibacterial drug resistance, and new treatments are urgently sought. In this endeavour, accurate structures of molecular targets can support early-stage drug discovery. Here, crystal structures, in three distinct forms, of recombinant Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) are presented. This enzyme, which is involved in fatty-acid biosynthesis, has been validated by genetic and chemical means as an antibiotic target in Gram-positive bacteria and represents a potential target in Gram-negative bacteria. The structures of apo FabF, of a C164Q mutant in which the binding site is altered to resemble the substrate-bound state and of a complex with 3-(benzoylamino)-2-hydroxybenzoic acid are reported. This compound mimics aspects of a known natural product inhibitor, platensimycin, and surprisingly was observed binding outside the active site, interacting with a symmetry-related molecule. An unusual feature is a completely buried potassium-binding site that was identified in all three structures. Comparisons suggest that this may represent a conserved structural feature of FabF relevant to fold stability. The new structures provide templates for structure-based ligand design and, together with the protocols and reagents, may underpin a target-based drug-discovery project for urgently needed antibacterials.
Collapse
Affiliation(s)
- Bernhard Baum
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität, Staudinger Weg 5, 55128 Mainz, Germany
| | - Laura S. M. Lecker
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 4EH, Scotland
| | - Martin Zoltner
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 4EH, Scotland
| | - Elmar Jaenicke
- Institut für Molekulare Biophysik, Johannes Gutenberg-Universität, Jakob Welder Weg 26, 55128 Mainz, Germany
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17 177 Stockholm, Sweden
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 4EH, Scotland
| | - Ruth Brenk
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität, Staudinger Weg 5, 55128 Mainz, Germany
| |
Collapse
|
10
|
Barrack KL, Fyfe PK, Hunter WN. The structure of tubulin-binding cofactor A from Leishmania major infers a mode of association during the early stages of microtubule assembly. Acta Crystallogr F Struct Biol Commun 2015; 71:539-46. [PMID: 25945706 PMCID: PMC4427162 DOI: 10.1107/s2053230x15000990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/16/2015] [Indexed: 11/13/2022] Open
Abstract
Tubulin-binding cofactor A (TBCA) participates in microtubule formation, a key process in eukaryotic biology to create the cytoskeleton. There is little information on how TBCA might interact with β-tubulin en route to microtubule biogenesis. To address this, the protozoan Leishmania major was targeted as a model system. The crystal structure of TBCA and comparisons with three orthologous proteins are presented. The presence of conserved features infers that electrostatic interactions that are likely to involve the C-terminal tail of β-tubulin are key to association. This study provides a reagent and template to support further work in this area.
Collapse
Affiliation(s)
- Keri L. Barrack
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - Paul K. Fyfe
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| |
Collapse
|
11
|
Saen-Oon S, Lee SG, Jez JM, Guallar V. An alternative mechanism for the methylation of phosphoethanolamine catalyzed by Plasmodium falciparum phosphoethanolamine methyltransferase. J Biol Chem 2014; 289:33815-25. [PMID: 25288796 DOI: 10.1074/jbc.m114.611319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The phosphobase methylation pathway catalyzed by the phosphoethanolamine methyltransferase in Plasmodium falciparum (PfPMT), the malaria parasite, offers an attractive target for anti-parasitic drug development. PfPMT methylates phosphoethanolamine (pEA) to phosphocholine for use in membrane biogenesis. Quantum mechanics and molecular mechanics (QM/MM) calculations tested the proposed reaction mechanism for methylation of pEA involving the previously identified Tyr-19-His-132 dyad, which indicated an energetically unfavorable mechanism. Instead, the QM/MM calculations suggested an alternative mechanism involving Asp-128. The reaction coordinate involves the stepwise transfer of a proton to Asp-128 via a bridging water molecule followed by a typical Sn2-type methyl transfer from S-adenosylmethionine to pEA. Functional analysis of the D128A, D128E, D128Q, and D128N PfPMT mutants shows a loss of activity with pEA but not with the final substrate of the methylation pathway. X-ray crystal structures of the PfPMT-D128A mutant in complex with S-adenosylhomocysteine and either pEA or phosphocholine reveal how mutation of Asp-128 disrupts a hydrogen bond network in the active site. The combined QM/MM, biochemical, and structural studies identify a key role for Asp-128 in the initial step of the phosphobase methylation pathway in Plasmodium and provide molecular insight on the evolution of multiple activities in the active site of the PMT.
Collapse
Affiliation(s)
- Suwipa Saen-Oon
- From the Joint Barcelona Supercomputing Center-Centre for Genomic Regulation-Institute for Research in Biomedicine Research Program, Carrer de Jordi Girona 29, 08034 Barcelona, Spain
| | - Soon Goo Lee
- the Department of Biology, Washington University, St. Louis, Missouri 63130, and
| | - Joseph M Jez
- the Department of Biology, Washington University, St. Louis, Missouri 63130, and
| | - Victor Guallar
- From the Joint Barcelona Supercomputing Center-Centre for Genomic Regulation-Institute for Research in Biomedicine Research Program, Carrer de Jordi Girona 29, 08034 Barcelona, Spain, the Catalan Institution for Research and Advanced Studies, Barcelona 08010, Spain
| |
Collapse
|
12
|
Combined docking, molecular dynamics simulations and spectroscopic studies for the rational design of a dipeptide ligand for affinity chromatography separation of human serum albumin. J Mol Model 2014; 20:2446. [DOI: 10.1007/s00894-014-2446-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/26/2014] [Indexed: 01/07/2023]
|
13
|
Bacterial cell division proteins as antibiotic targets. Bioorg Chem 2014; 55:27-38. [PMID: 24755375 DOI: 10.1016/j.bioorg.2014.03.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 11/21/2022]
Abstract
Proteins involved in bacterial cell division often do not have a counterpart in eukaryotic cells and they are essential for the survival of the bacteria. The genetic accessibility of many bacterial species in combination with the Green Fluorescence Protein revolution to study localization of proteins and the availability of crystal structures has increased our knowledge on bacterial cell division considerably in this century. Consequently, bacterial cell division proteins are more and more recognized as potential new antibiotic targets. An international effort to find small molecules that inhibit the cell division initiating protein FtsZ has yielded many compounds of which some are promising as leads for preclinical use. The essential transglycosylase activity of peptidoglycan synthases has recently become accessible to inhibitor screening. Enzymatic assays for and structural information on essential integral membrane proteins such as MraY and FtsW involved in lipid II (the peptidoglycan building block precursor) biosynthesis have put these proteins on the list of potential new targets. This review summarises and discusses the results and approaches to the development of lead compounds that inhibit bacterial cell division.
Collapse
|
14
|
Lee SG, Jez JM. Nematode phospholipid metabolism: an example of closing the genome-structure-function circle. Trends Parasitol 2014; 30:241-50. [PMID: 24685202 DOI: 10.1016/j.pt.2014.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 01/03/2023]
Abstract
Parasitic nematodes that infect humans, animals, and plants cause health problems, livestock and agricultural losses, and economic damage worldwide and are important targets for drug development. The growing availability of nematode genomes supports the discovery of new pathways that differ from host organisms and are a starting point for structural and functional studies of novel antiparasitic targets. As an example of how genome data, structural biology, and biochemistry integrate into a research cycle targeting parasites, we summarize the discovery of the phosphobase methylation pathway for phospholipid synthesis in nematodes and compare the phosphoethanolamine methyltransferases (PMTs) from nematodes, plants, and Plasmodium. Crystallographic and biochemical studies of the PMTs in this pathway provide a foundation that guides the next steps that close the genome-structure-function circle.
Collapse
Affiliation(s)
- Soon Goo Lee
- Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO 63130, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO 63130, USA.
| |
Collapse
|
15
|
Rimsa V, Eadsforth TC, Joosten RP, Hunter WN. High-resolution structure of the M14-type cytosolic carboxypeptidase from Burkholderia cenocepacia refined exploiting PDB_REDO strategies. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:279-89. [PMID: 24531462 PMCID: PMC3940198 DOI: 10.1107/s1399004713026801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 09/30/2013] [Indexed: 01/01/2023]
Abstract
A potential cytosolic metallocarboxypeptidase from Burkholderia cenocepacia has been crystallized and a synchrotron-radiation microfocus beamline allowed the acquisition of diffraction data to 1.9 Å resolution. The asymmetric unit comprises a tetramer containing over 1500 amino acids, and the high-throughput automated protocols embedded in PDB_REDO were coupled with model-map inspections in refinement. This approach has highlighted the value of such protocols for efficient analyses. The subunit is constructed from two domains. The N-terminal domain has previously only been observed in cytosolic carboxypeptidase (CCP) proteins. The C-terminal domain, which carries the Zn2+-containing active site, serves to classify this protein as a member of the M14D subfamily of carboxypeptidases. Although eukaryotic CCPs possess deglutamylase activity and are implicated in processing modified tubulin, the function and substrates of the bacterial family members remain unknown. The B. cenocepacia protein did not display deglutamylase activity towards a furylacryloyl glutamate derivative, a potential substrate. Residues previously shown to coordinate the divalent cation and that contribute to peptide-bond cleavage in related enzymes such as bovine carboxypeptidase are conserved. The location of a conserved basic patch in the active site adjacent to the catalytic Zn2+, where an acetate ion is identified, suggests recognition of the carboxy-terminus in a similar fashion to other carboxypeptidases. However, there are significant differences that indicate the recognition of substrates with different properties. Of note is the presence of a lysine in the S1' recognition subsite that suggests specificity towards an acidic substrate.
Collapse
Affiliation(s)
- Vadim Rimsa
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Thomas C. Eadsforth
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Robbie P. Joosten
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
16
|
Rimsa V, Eadsforth TC, Hunter WN. Two high-resolution structures of the human E3 ubiquitin ligase Siah1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1339-43. [PMID: 24316825 PMCID: PMC3855715 DOI: 10.1107/s1744309113031448] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/18/2013] [Indexed: 01/07/2023]
Abstract
Siah1 is an E3 ubiquitin ligase that contributes to proteasome-mediated degradation of multiple targets in key cellular processes and which shows promise as a therapeutic target in oncology. Structures of a truncated Siah1 bound to peptide-based inhibitors have been reported. Here, new crystallization conditions have allowed the determination of a construct encompassing dual zinc-finger subdomains and substrate-binding domains at significantly higher resolution. Although the crystals appear isomorphous, two structures present distinct states in which the spatial orientation of one zinc-finger subdomain differs with respect to the rest of the dimeric protein. Such a difference, which is indicative of conformational freedom, infers potential biological relevance related to recognition of binding partners. The crystallization conditions and improved models of Siah1 may aid future studies investigating Siah1-ligand complexes.
Collapse
Affiliation(s)
- Vadim Rimsa
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Thomas C. Eadsforth
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
17
|
Anusuya S, Natarajan J. The eradication of leprosy: molecular modeling techniques for novel drug discovery. Expert Opin Drug Discov 2013; 8:1239-51. [PMID: 23924296 DOI: 10.1517/17460441.2013.826188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Leprosy is a slowly progressing bacterial infection caused by Mycobacterium leprae. The World Health Organization recommended multidrug therapy (MDT) which is extremely effective and halts the progress of the disease. Even though the objective of eliminating leprosy as a public health problem has been achieved successfully, leprosy is not yet eradicated. Furthermore, the long-term use of MDT results in single- and multidrug resistance. Therefore, there is still a need for new drug discovery for leprosy. AREAS COVERED The authors explain the importance of discovery of new drug to leprosy and the significance of homology modeling to drug discovery. This review highlights the principle steps, applications, and the resources of homology modeling. Finally, the authors emphasize the application of different structure-based drug design (SBDD) approaches to design novel therapeutics for leprosy. EXPERT OPINION MDT has proved to be effective in controlling infection, with prevalence of leprosy now predominantly isolated to the developing countries. The emergence of single- and multidrug-resistant strains of M. leprae has, however, provided some concern with the need for newer antibacterial agents. Drug resistance can be overcome by multi-targeted therapy. SBDD approaches, which reported many successful drugs, depend predominantly on the three-dimensional (3D) structure of drug targets. As of 2013, only very few experimental structures are available for M. leprae proteins. Hence, SBDD, in leprosy research, relies heavily on homology modeling to predict the 3D structure of drug targets and to design better therapeutics.
Collapse
Affiliation(s)
- Shanmugam Anusuya
- V.M.K.V. Engineering College, Department of Bioinformatics , Salem 636308, Tamil Nadu , India
| | | |
Collapse
|
18
|
Dawson A, Trumper P, Chrysostomou G, Hunter WN. Structure of diaminohydroxyphosphoribosylaminopyrimidine deaminase/5-amino-6-(5-phosphoribosylamino)uracil reductase from Acinetobacter baumannii. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:611-7. [PMID: 23722836 PMCID: PMC3668577 DOI: 10.1107/s174430911301292x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/11/2013] [Indexed: 11/11/2022]
Abstract
The bifunctional diaminohydroxyphosphoribosylaminopyrimidine deaminase/5-amino-6-(5-phosphoribosylamino)uracil reductase (RibD) represents a potential antibacterial drug target. The structure of recombinant Acinetobacter baumannii RibD is reported in orthorhombic and tetragonal crystal forms at 2.2 and 2.0 Å resolution, respectively. Comparisons with orthologous structures in the Protein Data Bank indicated close similarities. The tetragonal crystal form was obtained in the presence of guanosine monophosphate, which surprisingly was observed to occupy the adenine-binding site of the reductase domain.
Collapse
Affiliation(s)
- Alice Dawson
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Paul Trumper
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Georgios Chrysostomou
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
19
|
Rao VA, Shepherd SM, Owen R, Hunter WN. Structure of Pseudomonas aeruginosa inosine 5'-monophosphate dehydrogenase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:243-7. [PMID: 23519796 PMCID: PMC3606566 DOI: 10.1107/s1744309113002352] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 01/23/2013] [Indexed: 05/29/2023]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) represents a potential antimicrobial drug target. The crystal structure of recombinant Pseudomonas aeruginosa IMPDH has been determined to a resolution of 2.25 Å. The structure is a homotetramer of subunits dominated by a (β/α)8-barrel fold, consistent with other known structures of IMPDH. Also in common with previous work, the cystathionine β-synthase domains, residues 92-204, are not present in the model owing to disorder. However, unlike the majority of available structures, clearly defined electron density exists for a loop that creates part of the active site. This loop, composed of residues 297-315, links α8 and β9 and carries the catalytic Cys304. P. aeruginosa IMPDH shares a high level of sequence identity with bacterial and protozoan homologues, with residues involved in binding substrate and the NAD+ cofactor being conserved. Specific differences that have been proven to contribute to selectivity against the human enzyme in a study of Cryptosporidium parvum IMPDH are also conserved, highlighting the potential value of IMPDH as a drug target.
Collapse
Affiliation(s)
- Vincenzo A. Rao
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - Sharon M. Shepherd
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - Richard Owen
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| |
Collapse
|
20
|
Moynie L, Schnell R, McMahon SA, Sandalova T, Boulkerou WA, Schmidberger JW, Alphey M, Cukier C, Duthie F, Kopec J, Liu H, Jacewicz A, Hunter WN, Naismith JH, Schneider G. The AEROPATH project targeting Pseudomonas aeruginosa: crystallographic studies for assessment of potential targets in early-stage drug discovery. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:25-34. [PMID: 23295481 PMCID: PMC3539698 DOI: 10.1107/s1744309112044739] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/29/2012] [Indexed: 12/25/2022]
Abstract
Bacterial infections are increasingly difficult to treat owing to the spread of antibiotic resistance. A major concern is Gram-negative bacteria, for which the discovery of new antimicrobial drugs has been particularly scarce. In an effort to accelerate early steps in drug discovery, the EU-funded AEROPATH project aims to identify novel targets in the opportunistic pathogen Pseudomonas aeruginosa by applying a multidisciplinary approach encompassing target validation, structural characterization, assay development and hit identification from small-molecule libraries. Here, the strategies used for target selection are described and progress in protein production and structure analysis is reported. Of the 102 selected targets, 84 could be produced in soluble form and the de novo structures of 39 proteins have been determined. The crystal structures of eight of these targets, ranging from hypothetical unknown proteins to metabolic enzymes from different functional classes (PA1645, PA1648, PA2169, PA3770, PA4098, PA4485, PA4992 and PA5259), are reported here. The structural information is expected to provide a firm basis for the improvement of hit compounds identified from fragment-based and high-throughput screening campaigns.
Collapse
Affiliation(s)
- Lucille Moynie
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, Scotland
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Stephen A. McMahon
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, Scotland
| | - Tatyana Sandalova
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | - Jason W. Schmidberger
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Magnus Alphey
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, Scotland
| | - Cyprian Cukier
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Fraser Duthie
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, Scotland
| | - Jolanta Kopec
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Huanting Liu
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, Scotland
| | - Agata Jacewicz
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - James H. Naismith
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, Scotland
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| |
Collapse
|
21
|
Eadsforth TC, Maluf FV, Hunter WN. Acinetobacter baumannii FolD ligand complexes --potent inhibitors of folate metabolism and a re-evaluation of the structure of LY374571. FEBS J 2012; 279:4350-60. [PMID: 23050773 DOI: 10.1111/febs.12025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/07/2012] [Accepted: 10/04/2012] [Indexed: 01/26/2023]
Abstract
The bifunctional N(5),N(10)-methylenetetrahydrofolate dehydrogenase/cyclohydrolase (DHCH or FolD), which is widely distributed in prokaryotes and eukaryotes, is involved in the biosynthesis of folate cofactors that are essential for growth and cellular development. The enzyme activities represent a potential antimicrobial drug target. We have characterized the kinetic properties of FolD from the Gram-negative pathogen Acinetobacter baumanni and determined high-resolution crystal structures of complexes with a cofactor and two potent inhibitors. The data reveal new details with respect to the molecular basis of catalysis and potent inhibition. A unexpected finding was that our crystallographic data revealed a different structure for LY374571 (an inhibitor studied as an antifolate) than that previously published. The implications of this observation are discussed.
Collapse
Affiliation(s)
- Thomas C Eadsforth
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | |
Collapse
|
22
|
Fyfe PK, Westrop GD, Ramos T, Müller S, Coombs GH, Hunter WN. Structure of Leishmania major cysteine synthase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:738-43. [PMID: 22750854 PMCID: PMC3388911 DOI: 10.1107/s1744309112019124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/28/2012] [Indexed: 01/19/2023]
Abstract
A crystallographic and biochemical study of L. major cysteine synthase, which is a pyridoxyl phosphate-dependent enzyme, is reported. The structure was determined to 1.8 Å resolution and revealed that the cofactor has been lost and that a fragment of γ-poly-d-glutamic acid, a crystallization ingredient, was bound in the active site. The enzyme was inhibited by peptides. Cysteine biosynthesis is a potential target for drug development against parasitic Leishmania species; these protozoa are responsible for a range of serious diseases. To improve understanding of this aspect of Leishmania biology, a crystallographic and biochemical study of L. major cysteine synthase has been undertaken, seeking to understand its structure, enzyme activity and modes of inhibition. Active enzyme was purified, assayed and crystallized in an orthorhombic form with a dimer in the asymmetric unit. Diffraction data extending to 1.8 Å resolution were measured and the structure was solved by molecular replacement. A fragment of γ-poly-d-glutamic acid, a constituent of the crystallization mixture, was bound in the enzyme active site. Although a d-glutamate tetrapeptide had insignificant inhibitory activity, the enzyme was competitively inhibited (Ki = 4 µM) by DYVI, a peptide based on the C-terminus of the partner serine acetyltransferase with which the enzyme forms a complex. The structure surprisingly revealed that the cofactor pyridoxal phosphate had been lost during crystallization.
Collapse
Affiliation(s)
- Paul K Fyfe
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | | | | | | | | | | |
Collapse
|
23
|
Assessment of Pseudomonas aeruginosa N5,N10-methylenetetrahydrofolate dehydrogenase-cyclohydrolase as a potential antibacterial drug target. PLoS One 2012; 7:e35973. [PMID: 22558288 PMCID: PMC3338484 DOI: 10.1371/journal.pone.0035973] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/24/2012] [Indexed: 01/28/2023] Open
Abstract
The bifunctional enzyme methylenetetrahydrofolate dehydrogenase - cyclohydrolase (FolD) is identified as a potential drug target in Gram-negative bacteria, in particular the troublesome Pseudomonas aeruginosa. In order to provide a comprehensive and realistic assessment of the potential of this target for drug discovery we generated a highly efficient recombinant protein production system and purification protocol, characterized the enzyme, carried out screening of two commercial compound libraries by differential scanning fluorimetry, developed a high-throughput enzyme assay and prosecuted a screening campaign against almost 80,000 compounds. The crystal structure of P. aeruginosa FolD was determined at 2.2 Å resolution and provided a template for an assessment of druggability and for modelling of ligand complexes as well as for comparisons with the human enzyme. New FolD inhibitors were identified and characterized but the weak levels of enzyme inhibition suggest that these compounds are not optimal starting points for future development. Furthermore, the close similarity of the bacterial and human enzyme structures suggest that selective inhibition might be difficult to attain. In conclusion, although the preliminary biological data indicates that FolD represents a valuable target for the development of new antibacterial drugs, indeed spurred us to investigate it, our screening results and structural data suggest that this would be a difficult enzyme to target with respect to developing the appropriate lead molecules required to underpin a serious drug discovery effort.
Collapse
|
24
|
Eadsforth TC, Cameron S, Hunter WN. The crystal structure of Leishmania major N(5),N(10)-methylenetetrahydrofolate dehydrogenase/cyclohydrolase and assessment of a potential drug target. Mol Biochem Parasitol 2012; 181:178-85. [PMID: 22108435 PMCID: PMC3368264 DOI: 10.1016/j.molbiopara.2011.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 01/24/2023]
Abstract
Three enzyme activities in the protozoan Leishmania major, namely N(5),N(10)-methylenetetrahydrofolate dehydrogenase/N(5),N(10)-methenyltetrahydrofolate cyclohydrolase (DHCH) and N(10)-formyltetrahydrofolate ligase (FTL) produce the essential intermediate N(10)-formyltetrahydrofolate. Although trypanosomatids possess at least one functional DHCH, the same is not true for FTL, which is absent in Trypanosoma brucei. Here, we present the 2.7 Å resolution crystal structure of the bifunctional apo-DHCH from L. major, which is a potential drug target. Sequence alignments show that the cytosolic enzymes found in trypanosomatids share a high level of identity of approximately 60%. Additionally, residues that interact and participate in catalysis in the human homologue are conserved amongst trypanosomatid sequences and this may complicate attempts to derive potent, parasite specific DHCH inhibitors.
Collapse
Affiliation(s)
| | | | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
25
|
Lee SG, Kim Y, Alpert TD, Nagata A, Jez JM. Structure and reaction mechanism of phosphoethanolamine methyltransferase from the malaria parasite Plasmodium falciparum: an antiparasitic drug target. J Biol Chem 2012; 287:1426-34. [PMID: 22117061 PMCID: PMC3256908 DOI: 10.1074/jbc.m111.315267] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/07/2011] [Indexed: 01/19/2023] Open
Abstract
In the malarial parasite Plasmodium falciparum, a multifunctional phosphoethanolamine methyltransferase (PfPMT) catalyzes the methylation of phosphoethanolamine (pEA) to phosphocholine for membrane biogenesis. This pathway is also found in plant and nematodes, but PMT from these organisms use multiple methyltransferase domains for the S-adenosylmethionine (AdoMet) reactions. Because PfPMT is essential for normal growth and survival of Plasmodium and is not found in humans, it is an antiparasitic target. Here we describe the 1.55 Å resolution crystal structure of PfPMT in complex with AdoMet by single-wavelength anomalous dispersion phasing. In addition, 1.19-1.52 Å resolution structures of PfPMT with pEA (substrate), phosphocholine (product), sinefungin (inhibitor), and both pEA and S-adenosylhomocysteine bound were determined. These structures suggest that domain rearrangements occur upon ligand binding and provide insight on active site architecture defining the AdoMet and phosphobase binding sites. Functional characterization of 27 site-directed mutants identifies critical active site residues and suggests that Tyr-19 and His-132 form a catalytic dyad. Kinetic analysis, isothermal titration calorimetry, and protein crystallography of the Y19F and H132A mutants suggest a reaction mechanism for the PMT. Not only are Tyr-19 and His-132 required for phosphobase methylation, but they also form a "catalytic" latch that locks ligands in the active site and orders the site for catalysis. This study provides the first insight on this antiparasitic target enzyme essential for survival of the malaria parasite; however, further studies of the multidomain PMT from plants and nematodes are needed to understand the evolutionary division of metabolic function in the phosphobase pathway of these organisms.
Collapse
Affiliation(s)
- Soon Goo Lee
- From the Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Youngchang Kim
- the Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, and
| | - Tara D. Alpert
- From the Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Akina Nagata
- From the Department of Biology, Washington University, St. Louis, Missouri 63130
- the Department of Biology, Knox College, Galesburg, Illinois 61401
| | - Joseph M. Jez
- From the Department of Biology, Washington University, St. Louis, Missouri 63130
| |
Collapse
|
26
|
Hunter WN. Isoprenoid precursor biosynthesis offers potential targets for drug discovery against diseases caused by apicomplexan parasites. Curr Top Med Chem 2011; 11:2048-59. [PMID: 21619509 DOI: 10.2174/156802611796575867] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 07/27/2010] [Indexed: 02/08/2023]
Abstract
Two, simple, C5 compounds, dimethylally diphosphate and isopentenyl diphosphate, are the universal precursors of isoprenoids, a large family of natural products involved in numerous important biological processes. Two distinct biosynthetic pathways have evolved to supply these precursors. Humans use the mevalonate route whilst many species of bacteria including important pathogens, plant chloroplasts and apicomplexan parasites exploit the non-mevalonate pathway. The absence from humans, combined with genetic and chemical validation suggests that the non-mevalonate pathway holds the potential to support new drug discovery programmes targeting Gram-negative bacteria and the apicomplexan parasites responsible for causing serious human diseases, and also infections of veterinary importance. The non-mevalonate pathway relies on eight enzyme-catalyzed stages exploiting a range of cofactors and metal ions. A wealth of structural and mechanistic data, mainly derived from studies of bacterial enzymes, now exists for most components of the pathway and these will be described. Particular attention will be paid to how these data inform on the apicomplexan orthologues concentrating on the enzymes from Plasmodium spp. these cause malaria, one the most important parasitic diseases in the world today.
Collapse
Affiliation(s)
- William N Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, UK.
| |
Collapse
|
27
|
Lee SG, Haakenson W, McCarter JP, Williams DJ, Hresko MC, Jez JM. Thermodynamic evaluation of ligand binding in the plant-like phosphoethanolamine methyltransferases of the parasitic nematode Haemonchus contortus. J Biol Chem 2011; 286:38060-38068. [PMID: 21914812 PMCID: PMC3207426 DOI: 10.1074/jbc.m111.290619] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/02/2011] [Indexed: 01/29/2023] Open
Abstract
Nematodes are a major cause of disease and the discovery of new pathways not found in hosts is critical for development of therapeutic targets. Previous studies suggest that Caenorhabditis elegans synthesizes phosphocholine via two S-adenosylmethionine (AdoMet)-dependent phosphoethanolamine methyltransferases (PMT). Here we examine two PMT from the parasitic nematode Haemonchus contortus. Sequence analysis suggests that HcPMT1 contains a methyltransferase domain in the N-terminal half of the protein and that HcPMT2 encodes a C-terminal methyltransferase domain, as in the C. elegans proteins. Kinetic analysis demonstrates that HcPMT1 catalyzes the conversion of phosphoethanolamine to phosphomonomethylethanolamine (pMME) and that HcPMT2 methylates pMME to phosphodimethylethanolamine (pDME) and pDME to phosphocholine. The IC(50) values for miltefosine, sinefungin, amodiaquine, diphenhydramine, and tacrine suggest differences in the active sites of these two enzymes. To examine the interaction of AdoMet and S-adenosylhomocysteine (AdoCys), isothermal titration calorimetry confirmed the presence of a single binding site in each enzyme. Binding of AdoMet and AdoCys is tight (K(d) ∼2-25 μm) over a range of temperatures (5-25 °C) and NaCl concentrations (0.05-0.5 m). Heat capacity changes for AdoMet and AdoCys binding suggests that each HcPMT differs in interaction surface area. Nonlinear van't Hoff plots also indicate a possible conformational change upon AdoMet/AdoCys binding. Functional analysis of the PMT from a parasitic nematode provides new insights on inhibitor and AdoMet/AdoCys binding to these enzymes.
Collapse
Affiliation(s)
- Soon Goo Lee
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | | | | | | | | - Joseph M Jez
- Department of Biology, Washington University, St. Louis, Missouri 63130.
| |
Collapse
|
28
|
O'Rourke PEF, Eadsforth TC, Fyfe PK, Shepherd SM, Hunter WN. Pseudomonas aeruginosa 4-amino-4-deoxychorismate lyase: spatial conservation of an active site tyrosine and classification of two types of enzyme. PLoS One 2011; 6:e24158. [PMID: 21935381 PMCID: PMC3174152 DOI: 10.1371/journal.pone.0024158] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/01/2011] [Indexed: 01/17/2023] Open
Abstract
4-Amino-4-deoxychorismate lyase (PabC) catalyzes the formation of 4-aminobenzoate, and release of pyruvate, during folate biosynthesis. This is an essential activity for the growth of gram-negative bacteria, including important pathogens such as Pseudomonas aeruginosa. A high-resolution (1.75 Å) crystal structure of PabC from P. aeruginosa has been determined, and sequence-structure comparisons with orthologous structures are reported. Residues around the pyridoxal 5'-phosphate cofactor are highly conserved adding support to aspects of a mechanism generic for enzymes carrying that cofactor. However, we suggest that PabC can be classified into two groups depending upon whether an active site and structurally conserved tyrosine is provided from the polypeptide that mainly forms an active site or from the partner subunit in the dimeric assembly. We considered that the conserved tyrosine might indicate a direct role in catalysis: that of providing a proton to reduce the olefin moiety of substrate as pyruvate is released. A threonine had previously been suggested to fulfill such a role prior to our observation of the structurally conserved tyrosine. We have been unable to elucidate an experimentally determined structure of PabC in complex with ligands to inform on mechanism and substrate specificity. Therefore we constructed a computational model of the catalytic intermediate docked into the enzyme active site. The model suggests that the conserved tyrosine helps to create a hydrophobic wall on one side of the active site that provides important interactions to bind the catalytic intermediate. However, this residue does not appear to participate in interactions with the C atom that undergoes an sp(2) to sp(3) conversion as pyruvate is produced. The model and our comparisons rather support the hypothesis that an active site threonine hydroxyl contributes a proton used in the reduction of the substrate methylene to pyruvate methyl in the final stage of the mechanism.
Collapse
Affiliation(s)
- Patrick E. F. O'Rourke
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Thomas C. Eadsforth
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Paul K. Fyfe
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sharon M. Shepherd
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
29
|
Morgan RE, Batot GO, Dement JM, Rao VA, Eadsforth TC, Hunter WN. Crystal structures of Burkholderia cenocepacia dihydropteroate synthase in the apo-form and complexed with the product 7,8-dihydropteroate. BMC STRUCTURAL BIOLOGY 2011; 11:21. [PMID: 21554707 PMCID: PMC3098144 DOI: 10.1186/1472-6807-11-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 05/09/2011] [Indexed: 11/22/2022]
Abstract
Background The enzyme dihydropteroate synthase (DHPS) participates in the de novo synthesis of folate cofactors by catalyzing the formation of 7,8-dihydropteroate from condensation of p-aminobenzoic acid with 6-hydroxymethyl-7,8-dihydropteroate pyrophosphate. DHPS is absent from humans, who acquire folates from diet, and has been validated as an antimicrobial therapeutic target by chemical and genetic means. The bacterium Burkholderia cenocepacia is an opportunistic pathogen and an infective agent of cystic fibrosis patients. The organism is highly resistant to antibiotics and there is a recognized need for the identification of new drugs against Burkholderia and related Gram-negative pathogens. Our characterization of the DHPS active site and interactions with the enzyme product are designed to underpin early stage drug discovery. Results An efficient recombinant protein expression system for DHPS from B. cenocepacia (BcDHPS) was prepared, the dimeric enzyme purified in high yield and crystallized. The structure of the apo-enzyme and the complex with the product 7,8-dihydropteroate have been determined to 2.35 Å and 1.95 Å resolution respectively in distinct orthorhombic crystal forms. The latter represents the first crystal structure of the DHPS-pterin product complex, reveals key interactions involved in ligand binding, and reinforces data generated by other structural studies. Comparisons with orthologues identify plasticity near the substrate-binding pocket and in particular a range of loop conformations that contribute to the architecture of the DHPS active site. These structural data provide a foundation for hit discovery. An intriguing observation, an artifact of the analysis, that of a potential sulfenamide bond within the ligand complex structure is mentioned. Conclusion Structural similarities between BcDHPS and orthologues from other Gram-negative species are evident as expected on the basis of a high level of sequence identity. The presence of 7,8-dihydropteroate in the binding site provides details about ligand recognition by the enzyme and the different states of the enzyme allow us to visualize distinct conformational states of loops adjacent to the active site. Improved drugs to combat infections by Burkholderia sp. and related Gram-negative bacteria are sought and our study now provides templates to assist that process and allow us to discuss new ways of inhibiting DHPS.
Collapse
Affiliation(s)
- Rachel E Morgan
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
30
|
Mahmoud A, Zerhouni E. Neglected tropical diseases: moving beyond mass drug treatment to understanding the science. Health Aff (Millwood) 2011; 28:1726-33. [PMID: 19887413 DOI: 10.1377/hlthaff.28.6.1726] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Neglected tropical diseases (NTDs) represent a major health burden in many developing countries. To date, global efforts to control thirteen parasitic and bacterial infections that affect more than 1.4 billion people have relied on mass drug administration. This singular approach should now be expanded to a more comprehensive suite of tools including coordinated community-based programs, vector control, local training, education, and environmental change. In addition, an intensive basic research agenda is urgently needed to develop effective diagnostic, preventive, and therapeutic interventions to stay one step ahead of the evolutionary adaptation tactics of disease-causing microbes and parasites.
Collapse
Affiliation(s)
- Adel Mahmoud
- Department of Molecular Biology and Woodrow Wilson School, Princeton University
| | | |
Collapse
|
31
|
Lee SG, Jez JM. The Phosphobase Methylation Pathway in Caernorhabditis elegans: A New Route to Phospholipids in Animals. CURRENT CHEMICAL BIOLOGY 2011; 5:183-188. [PMID: 34113540 PMCID: PMC8189325 DOI: 10.2174/2212796811105030183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parasitic nematodes are a major cause of human health problems with an estimated 1 billion people infected worldwide by these organisms. Identifying biochemical targets that differ between the parasite and host species is essential for finding effective new anti-parasitic molecules. The free-living nematode Caenorhabditis elegans is a powerful model system for experiments in genetics and developmental biology needed to achieve this goal; however, in-depth understanding of metabolic processes in this organism is limited as it still contains unexplored biochemical pathways. Eukaryotes. including nematodes and humans, share many similar metabolic pathways, which makes specific targeting of nematode parasites challenging. Recent studies suggest that C. elegans and other nematodes may use a plant-like pathway as the major biosynthetic route to phosphatidylcholine. In this pathway, a pair of phosphoethanolamine methyltransferases (PMT) catalyze the sequential methylation of phosphoethanolamine to phosphocholine, which can be incorporated into phosphatidylcholine. RNAi experiments demonstrate that both PMT are required for normal growth and development of C. elegans. Because the PMT are highly conserved across nematode parasites of humans, livestock, and plants, as well as in protozoan parasites, understanding how these enzymes function and the identification of inhibitors will aid in the development of new anti-parasite compounds of potential medical, veterinary, and agricultural value.
Collapse
Affiliation(s)
- Soon Goo Lee
- Department of Biology, Washington University, St. Louis, MO 63130
| | - Joseph M. Jez
- Department of Biology, Washington University, St. Louis, MO 63130
| |
Collapse
|
32
|
Barrack KL, Tulloch LB, Burke LA, Fyfe PK, Hunter WN. Structure of recombinant Leishmania donovani pteridine reductase reveals a disordered active site. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:33-7. [PMID: 21206018 PMCID: PMC3079966 DOI: 10.1107/s174430911004724x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 11/15/2010] [Indexed: 02/04/2023]
Abstract
Pteridine reductase (PTR1) is a potential target for drug development against parasitic Trypanosoma and Leishmania species, protozoa that are responsible for a range of serious diseases found in tropical and subtropical parts of the world. As part of a structure-based approach to inhibitor development, specifically targeting Leishmania species, well ordered crystals of L. donovani PTR1 were sought to support the characterization of complexes formed with inhibitors. An efficient system for recombinant protein production was prepared and the enzyme was purified and crystallized in an orthorhombic form with ammonium sulfate as the precipitant. Diffraction data were measured to 2.5 Å resolution and the structure was solved by molecular replacement. However, a sulfate occupies a phosphate-binding site used by NADPH and occludes cofactor binding. The nicotinamide moiety is a critical component of the active site and without it this part of the structure is disordered. The crystal form obtained under these conditions is therefore unsuitable for the characterization of inhibitor complexes.
Collapse
Affiliation(s)
- Keri L. Barrack
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Lindsay B. Tulloch
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Lynsey-Ann Burke
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Paul K. Fyfe
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
33
|
Dawson A, Tulloch LB, Barrack KL, Hunter WN. High-resolution structures of Trypanosoma brucei pteridine reductase ligand complexes inform on the placement of new molecular entities in the active site of a potential drug target. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:1334-40. [PMID: 21123874 PMCID: PMC3655514 DOI: 10.1107/s0907444910040886] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 10/12/2010] [Indexed: 03/07/2023]
Abstract
Pteridine reductase (PTR1) is a potential target for drug development against parasitic Trypanosoma and Leishmania species. These protozoa cause serious diseases for which current therapies are inadequate. High-resolution structures have been determined, using data between 1.6 and 1.1 Å resolution, of T. brucei PTR1 in complex with pemetrexed, trimetrexate, cyromazine and a 2,4-diaminopyrimidine derivative. The structures provide insight into the interactions formed by new molecular entities in the enzyme active site with ligands that represent lead compounds for structure-based inhibitor development and to support early-stage drug discovery.
Collapse
Affiliation(s)
- Alice Dawson
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | | | - Keri L. Barrack
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
34
|
Galland N, Michels PAM. Comparison of the peroxisomal matrix protein import system of different organisms. Exploration of possibilities for developing inhibitors of the import system of trypanosomatids for anti-parasite chemotherapy. Eur J Cell Biol 2010; 89:621-37. [PMID: 20435370 DOI: 10.1016/j.ejcb.2010.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/28/2010] [Accepted: 04/06/2010] [Indexed: 10/19/2022] Open
Abstract
In recent decades, research on peroxisome biogenesis has been particularly boosted since the role of these organelles in metabolism became unraveled. Indeed in plants, yeasts and fungi, peroxisomes play an important role in the adaptation of metabolism during developmental processes and/or altered environmental conditions. In mammals their importance is illustrated by the fact that several severe human inherited diseases have been identified as peroxisome biogenesis disorders (PBD). Particularly interesting are the glycosomes - peroxisome-like organelles in trypanosomatids where the major part of the glycolytic pathway is sequestered - because it was demonstrated that proper compartmentalization of matrix proteins inside glycosomes is essential for the parasite. Although the overall process of peroxisome biogenesis seems well conserved between species, careful study of the literature reveals nonetheless many differences at various steps. In this review, we present a comparison of the first two steps of peroxisome biogenesis - receptor loading and docking at the peroxisomal membrane - in yeasts, mammals, plants and trypanosomatids and highlight major differences in the import process between species despite the conservation of (some of) the proteins involved. Some of the unique features of the process as it occurs in trypanosomatids will be discussed with regard to the possibilities for exploiting them for the development of compounds that could specifically disturb interactions between trypanosomatid peroxins. This strategy could eventually lead to the discovery of drugs against the diseases caused by these parasites.
Collapse
Affiliation(s)
- Nathalie Galland
- Research Unit for Tropical Diseases, de Duve Institute, Brussels, Belgium
| | | |
Collapse
|
35
|
Studies toward the structural optimization of novel thiazolylhydrazone-based potent antitrypanosomal agents. Bioorg Med Chem 2010; 18:7826-35. [DOI: 10.1016/j.bmc.2010.09.056] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/16/2010] [Accepted: 09/22/2010] [Indexed: 11/24/2022]
|
36
|
Fyfe PK, Dawson A, Hutchison MT, Cameron S, Hunter WN. Structure of Staphylococcus aureus adenylosuccinate lyase (PurB) and assessment of its potential as a target for structure-based inhibitor discovery. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:881-8. [PMID: 20693687 PMCID: PMC2917274 DOI: 10.1107/s0907444910020081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 05/27/2010] [Indexed: 12/03/2022]
Abstract
The 2.5 Å resolution structure of S. aureus adenylosuccinate lyase is reported and compared with those of orthologues to assess its potential as a template for early stage drug discovery. AMP and a putative assignment of oxalate, the latter an artefact possibly arising from an impurity in the PEG used for crystallization, occupy the active site. The medium-resolution structure of adenylosuccinate lyase (PurB) from the bacterial pathogen Staphylococcus aureus in complex with AMP is presented. Oxalate, which is likely to be an artifact of crystallization, has been modelled in the active site and occupies a position close to that where succinate is observed in orthologous structures. PurB catalyzes reactions that support the provision of purines and the control of AMP/fumarate levels. As such, the enzyme is predicted to be essential for the survival of S. aureus and to be a potential therapeutic target. Comparisons of this pathogen PurB with the enzyme from Escherichia coli are presented to allow discussion concerning the enzyme mechanism. Comparisons with human PurB suggest that the close similarity of the active sites would make it difficult to identify species-specific inhibitors for this enyme. However, there are differences in the way that the subunits are assembled into dimers. The distinct subunit–subunit interfaces may provide a potential area to target by exploiting the observation that creation of the enzyme active site is dependent on oligomerization.
Collapse
Affiliation(s)
- Paul K Fyfe
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD15EH, Scotland
| | | | | | | | | |
Collapse
|
37
|
Dawson A, Chen M, Fyfe PK, Guo Z, Hunter WN. Structure and reactivity of Bacillus subtilis MenD catalyzing the first committed step in menaquinone biosynthesis. J Mol Biol 2010; 401:253-64. [PMID: 20600129 PMCID: PMC2914249 DOI: 10.1016/j.jmb.2010.06.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 06/10/2010] [Accepted: 06/11/2010] [Indexed: 12/19/2022]
Abstract
The first committed step in the classical biosynthetic route to menaquinone (vitamin K2) is a Stetter-like conjugate addition of α-ketoglutarate with isochorismate. This reaction is catalyzed by the thiamine diphosphate and metal-ion-dependent 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate synthase (MenD). The medium-resolution (2.35 Å) crystal structure of Bacillus subtilis MenD with cofactor and Mn2+ has been determined. Based on structure–sequence comparisons and modeling, a two-stage mechanism that is primarily driven by the chemical properties of the cofactor is proposed. Hypotheses for the molecular determinants of substrate recognition were formulated. Five basic residues (Arg32, Arg106, Arg409, Arg428, and Lys299) are postulated to interact with carboxylate and hydroxyl groups to align substrates for catalysis in combination with a cluster of non-polar residues (Ile489, Phe490, and Leu493) on one side of the active site. The powerful combination of site-directed mutagenesis, where each of the eight residues is replaced by alanine, and steady-state kinetic measurements has been exploited to address these hypotheses. Arg409 plays a significant role in binding both substrates while Arg428 contributes mainly to binding of α-ketoglutarate. Arg32 and in particular Arg106 are critical for recognition of isochorismate. Mutagenesis of Phe490 and Ile489 has the most profound influence on catalytic efficiency, indicating that these two residues are important for binding of isochorismate and for stabilizing the cofactor position. These data allow for a detailed description of the structure–reactivity relationship that governs MenD function and refinement of the model for the catalytic intermediate that supports the Stetter-like conjugate addition.
Collapse
Affiliation(s)
- Alice Dawson
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | | | | | |
Collapse
|
38
|
Pérot S, Sperandio O, Miteva MA, Camproux AC, Villoutreix BO. Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery. Drug Discov Today 2010; 15:656-67. [PMID: 20685398 DOI: 10.1016/j.drudis.2010.05.015] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/16/2010] [Accepted: 05/26/2010] [Indexed: 02/04/2023]
Abstract
Detection, comparison and analyses of binding pockets are pivotal to structure-based drug design endeavors, from hit identification, screening of exosites and de-orphanization of protein functions to the anticipation of specific and non-specific binding to off- and anti-targets. Here, we analyze protein-ligand complexes and discuss methods that assist binding site identification, prediction of druggability and binding site comparison. The full potential of pockets is yet to be harnessed, and we envision that better understanding of the pocket space will have far-reaching implications in the field of drug discovery, such as the design of pocket-specific compound libraries and scoring functions.
Collapse
|
39
|
Fyfe PK, Alphey MS, Hunter WN. Structure of Trypanosoma brucei glutathione synthetase: domain and loop alterations in the catalytic cycle of a highly conserved enzyme. Mol Biochem Parasitol 2010; 170:93-9. [PMID: 20045436 PMCID: PMC2845819 DOI: 10.1016/j.molbiopara.2009.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 12/16/2009] [Accepted: 12/21/2009] [Indexed: 01/22/2023]
Abstract
Glutathione synthetase catalyses the synthesis of the low molecular mass thiol glutathione from l-gamma-glutamyl-l-cysteine and glycine. We report the crystal structure of the dimeric enzyme from Trypanosoma brucei in complex with the product glutathione. The enzyme belongs to the ATP-grasp family, a group of enzymes known to undergo conformational changes upon ligand binding. The T. brucei enzyme crystal structure presents two dimers in the asymmetric unit. The structure reveals variability in the order and position of a small domain, which forms a lid for the active site and serves to capture conformations likely to exist during the catalytic cycle. Comparisons with orthologous enzymes, in particular from Homo sapiens and Saccharomyces cerevisae, indicate a high degree of sequence and structure conservation in part of the active site. Structural differences that are observed between the orthologous enzymes are assigned to different ligand binding states since key residues are conserved. This suggests that the molecular determinants of ligand recognition and reactivity are highly conserved across species. We conclude that it would be difficult to target the parasite enzyme in preference to the host enzyme and therefore glutathione synthetase may not be a suitable target for antiparasitic drug discovery.
Collapse
Key Words
- amp-pnp, adenylyl imidodiphosphate
- gs, glutathione synthetase
- gsh, glutathione
- hepes, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid, n-(2-hydroxyethyl)piperazine-n-(2-ethanesulfonic acid)
- mops, 3-(n-morpholino)-propanesulfonic acid
- ncs, non-crystallographic symmetry
- tb, trypanosoma brucei
- tev, tobacco etch virus
- tls, translation/libration/screw
- tsa, trypanothione synthetase
- t[sh]2, trypanothione
- atp-grasp
- glutathione
- glutathione synthetase
- trypanosoma brucei
- trypanothione
- x-ray structure
Collapse
Affiliation(s)
| | | | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
40
|
Abstract
Structural biology is rapidly accumulating a wealth of detailed information about protein function, binding sites, RNA, large assemblies and molecular motions. These data are increasingly of interest to a broader community of life scientists, not just structural experts. Visualization is a primary means for accessing and using these data, yet visualization is also a stumbling block that prevents many life scientists from benefiting from three-dimensional structural data. In this review, we focus on key biological questions where visualizing three-dimensional structures can provide insight and describe available methods and tools.
Collapse
|
41
|
dos Santos Filho JM, Leite ACL, de Oliveira BG, Moreira DRM, Lima MS, Soares MBP, Leite LFCC. Design, synthesis and cruzain docking of 3-(4-substituted-aryl)-1,2,4-oxadiazole-N-acylhydrazones as anti-Trypanosoma cruzi agents. Bioorg Med Chem 2009; 17:6682-91. [PMID: 19683450 DOI: 10.1016/j.bmc.2009.07.068] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/22/2009] [Accepted: 07/26/2009] [Indexed: 10/20/2022]
Abstract
Research in recent years has demonstrated that the Trypanosoma cruzi cysteine protease cruzain (TCC) is a valid chemotherapeutic target, since inhibitors of this protease affect the pathology appropriately. By exploring the N-acylhydrazones (NAH) as privileged structures usually present in antiparasitic agents, we investigated a library of 16 NAH bearing the 3-(4-substituted-aryl)-1,2,4-oxadiazole scaffold (NAH 3a-h, 4a-h). The in vitro bioactivity against epimastigote and trypomastigote forms of T. cruzi was evaluated, and some NAH under study exhibited antitrypanosomal activity at concentrations that are not toxic to mammalian cells. The series of compounds based on the 3-(4-substituted-aryl)-1,2,4-oxadiazole scaffold revealed the remarkable importance of each substituent at the phenyl's 4-position for the inhibitory activity. Non-nitrated compounds 3a and 4e were found to be as potent as the reference drug, Benznidazole. In addition, the molecular origin of the antitrypanosomal properties for these series was investigated using docking studies of the TCC structure.
Collapse
Affiliation(s)
- José Mauricio dos Santos Filho
- Departamento de Engenharia Química, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Rua Prof. Artur Sá S/N, Cidade Universitária, 50740-521 Recife, PE, Brazil.
| | | | | | | | | | | | | |
Collapse
|