1
|
Vasconcelos AA, Zingali RB, Almeida FCL. Surface hydrophobic clusters modulate the folding stability and molecular recognition of the disintegrin jarastatin. J Biol Chem 2025; 301:108294. [PMID: 39947470 PMCID: PMC11930076 DOI: 10.1016/j.jbc.2025.108294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
Disintegrins are cysteine-rich proteins found in snake venoms. These proteins selectively bind to integrins, which play a key role in the regulation of many physiopathological processes. They are coreless proteins that display almost all hydrophobic residues on the protein surface. The exposed hydrophobic residues form surface clusters stabilized by the interaction with the hydrophilic residues in the vicinity and the hydration shell. In the present work, we aimed to determine the stability of surface hydrophobic clusters (SHCs) and their role in protein folding and biological activity. We used urea denaturation curves followed by 1H and 15N chemical shifts to determine the free energy of unfolding (ΔGF-U) and CLEANEX experiments to measure the water exchange rates of the surface amides (kex). The amides with higher local stability and protection from water exchange are those near or at the SHCs, which form a hydrophobic face. SHCs act as foldons, guiding oxidative folding and contributing to the formation of the disulfide bond framework, which is essential for establishing the concave shape and, ultimately, the binding cleft. On the opposite side of the protein are the residues with lower local stability and amides that exchange fast with water. This face coincides with the binding cleft of the protein to the αVβ3 integrin. Taken together, the present work established a correlation between protein hydration and the binding surface.
Collapse
Affiliation(s)
- Ariana A Vasconcelos
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Russolina B Zingali
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Arora S, Ainavarapu SRK. Probing Aromatic Side Chains Reveals the Site-Specific Melting in the SUMO1 Molten Globule. Biochemistry 2024; 63:3090-3099. [PMID: 39540835 DOI: 10.1021/acs.biochem.4c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The conventional idea that a well-defined protein structure governs its functions is being challenged by the evolving significance of conformational flexibility and disorder in influencing protein activity. Here, we focus on the Small Ubiquitin-like MOdifier 1 (SUMO1) protein, a post-translational modifier, which binds various target proteins during the process of SUMOylation. We present evidence supporting the presence of both folded and "ordered" molten globule (MG) states in SUMO1 under physiological conditions. We investigate the MG state using a combination of near-UV and far-UV circular dichroism (CD) experiments. Moreover, we dissect the information from the near-UV CD data to gain specific insights about the MG intermediate. This is achieved by mutating specific aromatic amino acids, particularly creating a single-tyrosine mutant S1Y51 (by introducing Y21F and Y91F mutations) and a tryptophan mutant S1F66W. Spectroscopic studies of the mutants as a function of temperature revealed multiple insights. The transition from the folded to the MG state involves a site-specific loss of tertiary packing near Y51 but the region surrounding F66 retained most of its tertiary contacts, suggesting an ordered MG structure. We further demonstrate the increased solvent exposure of Y51 in the MG state by using time-resolved fluorescence and steady-state quenching experiments. The observed conformational flexibility and solvent accessibility, particularly around Y51 that is known to be involved in binding the cognate ligands such as PIASX and its peptide analogues, have biological and functional implications in mediating protein-protein interactions during the SUMOylation process.
Collapse
Affiliation(s)
- Simran Arora
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Sri Rama Koti Ainavarapu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
3
|
Andrade GCD, Mota MF, Moreira-Ferreira DN, Silva JL, de Oliveira GAP, Marques MA. Protein aggregation in health and disease: A looking glass of two faces. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 145:145-217. [PMID: 40324846 DOI: 10.1016/bs.apcsb.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Protein molecules organize into an intricate alphabet of twenty amino acids and five architecture levels. The jargon "one structure, one functionality" has been challenged, considering the amount of intrinsically disordered proteins in the human genome and the requirements of hierarchical hetero- and homo-protein complexes in cell signaling. The assembly of large protein structures in health and disease is now viewed through the lens of phase separation and transition phenomena. What drives protein misfolding and aggregation? Or, more fundamentally, what hinders proteins from maintaining their native conformations, pushing them toward aggregation? Here, we explore the principles of protein folding, phase separation, and aggregation, which hinge on crucial events such as the reorganization of solvents, the chemical properties of amino acids, and their interactions with the environment. We focus on the dynamic shifts between functional and dysfunctional states of proteins and the conditions that promote protein misfolding, often leading to disease. By exploring these processes, we highlight potential therapeutic avenues to manage protein aggregation and reduce its harmful impacts on health.
Collapse
Affiliation(s)
- Guilherme C de Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Michelle F Mota
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Dinarte N Moreira-Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil.
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Pillai M, Jha SK. Conformational Enigma of TDP-43 Misfolding in Neurodegenerative Disorders. ACS OMEGA 2024; 9:40286-40297. [PMID: 39372031 PMCID: PMC11447851 DOI: 10.1021/acsomega.4c04119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
Misfolding and aggregation of the protein remain some of the most common phenomena observed in neurodegeneration. While there exist multiple neurodegenerative disorders characterized by accumulation of distinct proteins, what remains particularly interesting is the ability of these proteins to undergo a conformational change to form aggregates. TDP-43 is one such nucleic acid binding protein whose misfolding is associated with many neurogenerative diseases including amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration (FTLD). TDP-43 protein assumes several different conformations and oligomeric states under the diseased condition. In this review, we explore the intrinsic relationship between the conformational variability of TDP-43 protein, with a particular focus on the RRM domains, and its propensity to undergo aggregation. We further emphasize the probable mechanism behind the formation of these conformations and suggest a potential diagnostic and therapeutic strategy in the context of these conformational states of the protein.
Collapse
Affiliation(s)
- Meenakshi Pillai
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Liu Q, Li L, Yu Y, Wei G. Elucidating the Mechanisms of R248Q Mutation-Enhanced p53 Aggregation and Its Inhibition by Resveratrol. J Phys Chem B 2023; 127:7708-7720. [PMID: 37665658 DOI: 10.1021/acs.jpcb.3c04700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Aggregation of p53 mutants can result in loss-of-function, gain-of-function, and dominant-negative effects that contribute to tumor growth. Revealing the mechanisms underlying mutation-enhanced p53 aggregation and dissecting how small molecule inhibitors prevent the conversion of p53 into aggregation-primed conformations are fundamentally important for the development of novel therapeutics for p53 aggregation-associated cancers. A recent experimental study shows that resveratrol (RSV) has an inhibitory effect on the aggregation of hot-spot R248Q mutant of the p53 core domain (p53C), while pterostilbene (PT) exhibits a relatively poor inhibitory efficacy. However, the conformational properties of the R248Q mutant leading to its enhanced aggregation propensity and the inhibitory mechanism of RSV against p53C aggregation are not well understood. Herein, we performed extensive all-atom molecular dynamics simulations on R248Q p53C in the absence and presence of RSV/PT, as well as wild-type (WT) p53C. Our simulations reveal that loop L3, where the mutation resides, remains compact in WT p53C, while it becomes extended in the R248Q mutant. The extension of loop L3 weakens the interactions between loop L3 and two crucial aggregation-prone regions (APRs) of p53C, leading to impaired interactions within the APRs and their structural destabilization as well as p53C. The destabilized APRs in the R248Q mutant are more exposed than in WT p53C, which is conducive to p53C aggregation. RSV has a higher preference to bind to R248Q p53C than PT. This binding not only stabilizes loop L3 of R248Q mutant to its WT-like conformation, preventing L3-extension-caused APRs' destabilization but also reduces APRs' solvent exposure, thereby inhibiting R248Q p53C aggregation. However, PT exhibits a lower hydrogen-bonding capability and a higher self-association propensity, which would lead to a reduced p53C binding and a weakened inhibitory effect on R248Q mutant aggregation. Our study provides mechanistic insights into the R248Q mutation-enhanced aggregation propensity and RSV's potent inhibition against R248Q p53C aggregation.
Collapse
Affiliation(s)
- Qian Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Le Li
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Yawei Yu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| |
Collapse
|
6
|
Tam HH, Zhu D, Ho SSK, Vong HW, Wong VKW, Mok SWF, Wong IN. Potential enhancement of post-stroke angiogenic response by targeting the oligomeric aggregation of p53 protein. Front Cell Neurosci 2023; 17:1193362. [PMID: 37534043 PMCID: PMC10393283 DOI: 10.3389/fncel.2023.1193362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023] Open
Abstract
Tumor suppressor gene p53 and its aggregate have been found to be involved in many angiogenesis-related pathways. We explored the possible p53 aggregation formation mechanisms commonly occur after ischemic stroke, such as hypoxia and the presence of reactive oxygen species (ROS). The angiogenic pathways involving p53 mainly occur in nucleus or cytoplasm, with one exception that occurs in mitochondria. Considering the high mitochondrial density in brain and endothelial cells, we proposed that the cyclophilin D (CypD)-dependent vascular endothelial cell (VECs) necrosis pathway occurring in the mitochondria is one of the major factors that affects angiogenesis. Hence, targeting p53 aggregation, a key intermediate in the pathway, could be an alternative therapeutic target for post-stroke management.
Collapse
Affiliation(s)
- Hoi Hei Tam
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Dongxing Zhu
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Institute of Cardiovascular Disease, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Samuel Sze King Ho
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Heng Wai Vong
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Vincent Kam Wai Wong
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Simon Wing-Fai Mok
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| |
Collapse
|
7
|
Wang J, Liu W, Zhang L, Zhang J. Targeting mutant p53 stabilization for cancer therapy. Front Pharmacol 2023; 14:1215995. [PMID: 37502209 PMCID: PMC10369794 DOI: 10.3389/fphar.2023.1215995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Over 50% cancer bears TP53 mutation, the highly stabilized mutant p53 protein drives the tumorigenesis and progression. Mutation of p53 not only cause loss-of-function and dominant-negative effects (DNE), but also results in the abnormal stability by the regulation of the ubiquitin-proteasome system and molecular chaperones that promote tumorigenesis through gain-of-function effects. The accumulation of mutant p53 is mainly regulated by molecular chaperones, including Hsp40, Hsp70, Hsp90 and other biomolecules such as TRIM21, BAG2 and Stat3. In addition, mutant p53 forms prion-like aggregates or complexes with other protein molecules and result in the accumulation of mutant p53 in tumor cells. Depleting mutant p53 has become one of the strategies to target mutant p53. This review will focus on the mechanism of mutant p53 stabilization and discuss how the strategies to manipulate these interconnected processes for cancer therapy.
Collapse
Affiliation(s)
- Jiajian Wang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Wenjun Liu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Lanqing Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jihong Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China
- Yunnan Province Clinical Research Center for Hematologic Disease, Kunming, China
| |
Collapse
|
8
|
Silva JL, Foguel D, Ferreira VF, Vieira TCRG, Marques MA, Ferretti GDS, Outeiro TF, Cordeiro Y, de Oliveira GAP. Targeting Biomolecular Condensation and Protein Aggregation against Cancer. Chem Rev 2023. [PMID: 37379327 DOI: 10.1021/acs.chemrev.3c00131] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Vitor F Ferreira
- Faculty of Pharmacy, Fluminense Federal University (UFF), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, U.K
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
9
|
Lima IDM, Pedrote MM, Marques MA, Sousa GDSD, Silva JL, de Oliveira GAP, Cino EA. Water Leakage Pathway Leads to Internal Hydration of the p53 Core Domain. Biochemistry 2023; 62:35-43. [PMID: 36535020 DOI: 10.1021/acs.biochem.2c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The gene encoding the p53 tumor suppressor protein is the most frequently mutated oncogene in cancer patients; yet, generalized strategies for rescuing the function of different p53 mutants remain elusive. This work investigates factors that may contribute to the low inherent stability of the wild-type p53 core domain (p53C) and structurally compromised Y220C mutant. Pressure-induced unfolding of p53C was compared to p63C, the p53 family member with the highest stability, the engineered superstable p53C hexamutant (p53C HM), and lower stability p53C Y220C cancer-associated mutant. The following pressure unfolding values (P50% bar) were obtained: p53C 3346, p53C Y220C 2217, p53C HM 3943, and p63C 4326. Molecular dynamics (MD) simulations revealed that p53C Y220C was most prone to water infiltration, followed by p53C, whereas the interiors of p53C HM and p63C remained comparably dry. A strong correlation (r2 = 0.92) between P50% and extent of interior hydration was observed. The pathways of individual water molecule entry and exit were mapped and analyzed, revealing a common route preserved across the p53 family involving a previously reported pocket, along with a novel surface cleft, both of which appear to be targetable by small molecules. Potential determinants of propensity to water incursion were assessed, including backbone hydrogen bond protection and combined sequence and structure similarity. Collectively, our results indicate that p53C has an intrinsic susceptibility to water leakage, which is exacerbated in a structural class mutant, suggesting that there may be a common avenue for rescuing p53 function.
Collapse
Affiliation(s)
- Igor D M Lima
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte31270-901, Brazil
| | - Murilo M Pedrote
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Structural Biology and Bioimaging, National Centrum of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro21941-901, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Structural Biology and Bioimaging, National Centrum of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro21941-901, Brazil
| | - Gileno Dos S de Sousa
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Structural Biology and Bioimaging, National Centrum of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro21941-901, Brazil
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Structural Biology and Bioimaging, National Centrum of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro21941-901, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Structural Biology and Bioimaging, National Centrum of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro21941-901, Brazil
| | - Elio A Cino
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte31270-901, Brazil
| |
Collapse
|
10
|
Julian L, Sang JC, Wu Y, Meisl G, Brelstaff JH, Miller A, Cheetham MR, Vendruscolo M, Knowles TPJ, Ruggeri FS, Bryant C, Ros S, Brindle KM, Klenerman D. Characterization of full-length p53 aggregates and their kinetics of formation. Biophys J 2022; 121:4280-4298. [PMID: 36230002 PMCID: PMC9703098 DOI: 10.1016/j.bpj.2022.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/04/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022] Open
Abstract
Mutations in the TP53 gene are common in cancer with the R248Q missense mutation conferring an increased propensity to aggregate. Previous p53 aggregation studies showed that, at micromolar concentrations, protein unfolding to produce aggregation-prone species is the rate-determining step. Here we show that, at physiological concentrations, aggregation kinetics of insect cell-derived full-length wild-type p53 and p53R248Q are determined by a nucleation-growth model, rather than formation of aggregation-prone monomeric species. Self-seeding, but not cross-seeding, increases aggregation rate, confirming the aggregation process as rate determining. p53R248Q displays enhanced aggregation propensity due to decreased solubility and increased aggregation rate, forming greater numbers of larger amorphous aggregates that disrupt lipid bilayers and invokes an inflammatory response. These results suggest that p53 aggregation can occur under physiological conditions, a rate enhanced by R248Q mutation, and that aggregates formed can cause membrane damage and inflammation that may influence tumorigenesis.
Collapse
Affiliation(s)
- Linda Julian
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jason C Sang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Yunzhao Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Georg Meisl
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jack H Brelstaff
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alyssa Miller
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Matthew R Cheetham
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Francesco Simone Ruggeri
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Clare Bryant
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Department of Veterinary Medicine, University of Cambridge, United Kingdom
| | - Susana Ros
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom.
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
11
|
The chameleonic behavior of p53 in health and disease: the transition from a client to an aberrant condensate scaffold in cancer. Essays Biochem 2022; 66:1023-1033. [DOI: 10.1042/ebc20220064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Abstract
Abstract
In 1972, the Weber statement, “The multiplicity of interactions and the variety of effects that follow from them show that multimer proteins are unlikely to be limited to a minimal number of allowed conformations,” first addressed the dynamic nature of proteins. This idea serves as a foundation for understanding why several macromolecules, such as p53, exhibit the properties of a molecular chameleon. Functionally competent states comprise a myriad of p53 three-dimensional arrangements depending on the stimuli. For instance, the interaction of p53 with nuclear components could induce liquid–liquid phase separation (LLPS) and the formation of membraneless organelles. The functional or deleterious role of p53 in liquid droplets is still unclear. Functional aspects display p53 interconverting between droplets and tetramer with its functional abilities maintained. In contrast, the aberrant phase separation is likely to fuel the aggregation path, usually associated with the onset and progression of age-related neurodegenerative diseases and cancer. Here, we gathered the most relevant aspects that lead p53 to phase separation and the resulting structural effects, attempting to understand p53’s functional and disease-relevant processes. Aberrant phase separation and aggregation of mutant p53 have become important therapeutic targets against cancer.
Collapse
|
12
|
Ahmad A, Mishra R. Polyol and sugar osmolytes stabilize the molten globule state of α-lactalbumin and inhibit amyloid fibril formation. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140853. [PMID: 36096464 DOI: 10.1016/j.bbapap.2022.140853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Protein misfolding and aggregation are associated with several human diseases such as Alzheimer's, Parkinson's, prion related disorders, type-II diabetes, etc. Different strategies using molecular chaperones, synthetic and naturally occurring small molecules, osmolytes, etc. have been used to prevent protein aggregation and amyloid fibril formation. In this study, we have used bovine α-lactalbumin at pH 1.6, 37 °C, and shaking conditions to promote amyloid fibril formation. Polyol and sugar osmolytes like glycerol, sorbitol, and trehalose have been used to inhibit the fibrillation of a number of proteins. In the present work, amyloid fibril formation of α-lactalbumin has been shown by ThT assay and AFM, while changes in the secondary structure during fibrillation has been followed by circular dichroism spectroscopy. Our results show that glycerol, sorbitol, and trehalose affect amyloid fibril formation of α-lactalbumin in a concentration-dependent manner. There is a delay in the lag phase of amyloid fibril formation in sorbitol and trehalose and complete inhibition in 6 M glycerol. Our results indicate that delay in the lag phase and inhibition of amyloid fibril formation are due to the stabilization of molten globule state by these osmolytes. At pH 1.6, the molten globule as well as the amyloid fibrils bind to ANS. However, when pH was shifted from 1.6 to 7, only the oligomeric and the fibrillar species bind to ANS due to refolding of molten globule state. The outcome of this study might be useful in designing small molecules which may stabilize the intermediate states, thus preventing amyloid fibril formation.
Collapse
Affiliation(s)
- Aziz Ahmad
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajesh Mishra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
13
|
Lei J, Li X, Cai M, Guo T, Lin D, Deng X, Li Y. Insights into Allosteric Mechanisms of the Lung-Enriched p53 Mutants V157F and R158L. Int J Mol Sci 2022; 23:ijms231710100. [PMID: 36077492 PMCID: PMC9456101 DOI: 10.3390/ijms231710100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Lung cancer is a leading fatal malignancy in humans. p53 mutants exhibit not only loss of tumor suppressor capability but also oncogenic gain-of-function, contributing to lung cancer initiation, progression and therapeutic resistance. Research shows that p53 mutants V157F and R158L occur with high frequency in lung squamous cell carcinomas. Revealing their conformational dynamics is critical for developing novel lung therapies. Here, we used all-atom molecular dynamics (MD) simulations to investigate the effect of V157F and R158L substitutions on the structural properties of the p53 core domain (p53C). Compared to wild-type (WT) p53C, both V157F and R158L mutants display slightly lesser β-sheet structure, larger radius of gyration, larger volume and larger exposed surface area, showing aggregation-prone structural characteristics. The aggregation-prone fragments (residues 249–267 and 268–282) of two mutants are more exposed to water solution than that of WT p53C. V157F and R158L mutation sites can affect the conformation switch of loop 1 through long-range associations. Simulations also reveal that the local structure and conformation around the V157F and R158L mutation sites are in a dynamic equilibrium between the misfolded and properly folded conformations. These results provide molecular mechanistic insights into allosteric mechanisms of the lung-enriched p53 mutants.
Collapse
Affiliation(s)
- Jiangtao Lei
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang 330031, China
- Correspondence: (J.L.); (Y.L.)
| | - Xuanyao Li
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang 330031, China
- Department of Physics, School of Physics and Materials Science, Nanchang University, Xuefu Avenue 999, Nanchang 330031, China
| | - Mengqiang Cai
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang 330031, China
| | - Tianjing Guo
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang 330031, China
| | - Dongdong Lin
- Department of Physics and Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Xiaohua Deng
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang 330031, China
| | - Yin Li
- Department of Physics, School of Physics and Materials Science, Nanchang University, Xuefu Avenue 999, Nanchang 330031, China
- Correspondence: (J.L.); (Y.L.)
| |
Collapse
|
14
|
Hibino E, Tenno T, Hiroaki H. Relevance of Amorphous and Amyloid-Like Aggregates of the p53 Core Domain to Loss of its DNA-Binding Activity. Front Mol Biosci 2022; 9:869851. [PMID: 35558561 PMCID: PMC9086241 DOI: 10.3389/fmolb.2022.869851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
The anti-oncogenic protein p53 is a transcription factor that prevents tumorigenesis by inducing gene repair proteins or apoptosis under DNA damage. Since the DNA-binding domain of p53 (p53C) is aggregation-prone, the anti-oncogenic function of p53 is often lost in cancer cells. This tendency is rather severe in some tumor-related p53 mutants, such as R175H. In this study, we examined the effect of salts, including KCl and sugars, on the aggregation of p53C by monitoring two distinct aggregates: amorphous-like and amyloid-like. The amorphous aggregates are detectable with 8-(phenylamino)-1-naphthalenesulfonic acid (ANS) fluorescence, whereas the amyloid aggregates are sensitive to thioflavin-T (ThT) fluorescence. We found that KCl inhibited the formation of amorphous aggregates but promoted the formation of amyloid aggregates in a p53C R175H mutant. The salts exhibited different effects against the wild-type and R175H mutants of p53C. However, the ratio of ANS/ThT fluorescence for the wild-type and R175H mutant remained constant. KCl also suppressed the structural transition and loss of the DNA-binding function of p53C. These observations indicate the existence of multiple steps of p53C aggregation, probably coupled with the dissociation of Zn. Notably, amorphous aggregates and amyloid aggregates have distinct properties that could be discriminated by various small additives upon aggregation.
Collapse
Affiliation(s)
- Emi Hibino
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takeshi Tenno
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
- BeCellBar LLC., Nagoya University, Nagoya, Japan
| | - Hidekazu Hiroaki
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
- BeCellBar LLC., Nagoya University, Nagoya, Japan
- *Correspondence: Hidekazu Hiroaki,
| |
Collapse
|
15
|
Nucleic acid actions on abnormal protein aggregation, phase transitions and phase separation. Curr Opin Struct Biol 2022; 73:102346. [PMID: 35247749 DOI: 10.1016/j.sbi.2022.102346] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/06/2021] [Accepted: 01/28/2022] [Indexed: 12/27/2022]
Abstract
Liquid-liquid phase separation (LLPS) and phase transitions (PT) of proteins, which include the formation of gel- and solid-like species, have been characterized as physical processes related to the pathology of conformational diseases. Nucleic acid (NA)-binding proteins related to neurodegenerative disorders and cancer were shown by us and others to experience PT modulated by different NAs. Herein, we discuss recent work on phase separation and phase transitions of two amyloidogenic proteins, i.e. the prion protein (PrP) and p53, which undergo conformational changes and aggregate upon NA interaction. The role of different NAs in these processes is discussed to shed light on the relevance of PSs and PTs for both the functional and pathological roles of these mammalian proteins.
Collapse
|
16
|
Socas LB, Ambroggio EE. Introducing the multi-dimensional spectral phasors: a tool for the analysis of fluorescence excitation-emission matrices. Methods Appl Fluoresc 2022; 10. [PMID: 35139496 DOI: 10.1088/2050-6120/ac5389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/09/2022] [Indexed: 11/12/2022]
Abstract
The use of phasors to analyze fluorescence data was first introduced for time-resolved studies for a simpler mathematical analysis of the fluorescence-decay curves. Recently, this approach was extended to steady-state experiments with the introduction of the spectral phasors (SP), derived from the Fourier transform of the fluorescence emission spectrum. In this work, we revise key mathematical aspects that lead to an interpretation of SP as the characteristic function of a probability distribution. This formalism allows us to introduce a new tool, called multi-dimensional spectral phasor (MdSP) that seize, not only the information from the emission spectrum, but from the full excitation-emission matrix (EEM). In addition, we developed a homemade open-source Java software to facilitate the MdSP data processing. Due to this mathematical conceptualization, we settled a mechanism for the use of MdSP as a tool to tackle spectral signal unmixing problems in a more accurate way than SP. As a proof of principle, with the use of MdSP we approach two important biophysical questions: protein conformational changes and protein-ligand interactions. Specifically, we experimentally measure the EEM changes upon denaturation of human serum albumin (HSA) or during its association with the fluorescence dye 1,8-anilinonaphtalene sulphate (ANS) detected via tryptophan-ANS Förster Resonance Energy Transfer (FRET). In this sense, MdSP allows us to obtain information of the system in a simpler and finer way than the traditional SP. Specifically, understanding a protein's EEM as a molecular fingerprint opens new doors for the use of MdSP as a tool to analyze and comprehend protein conformational changes and interactions.
Collapse
Affiliation(s)
- Luis Bp Socas
- Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba, Haya de la Torre y Medina Allende s/n, Cordoba, Córdoba, X5000HUA, ARGENTINA
| | - Ernesto Esteban Ambroggio
- Química Biológica, CIQUIBIC Química Biológica, Haya de la Torre y Medina Allende s/n, Cordoba, X5000HUA, ARGENTINA
| |
Collapse
|
17
|
Marques MA, de Andrade GC, Silva JL, de Oliveira GAP. Protein of a thousand faces: The tumor-suppressive and oncogenic responses of p53. Front Mol Biosci 2022; 9:944955. [PMID: 36090037 PMCID: PMC9452956 DOI: 10.3389/fmolb.2022.944955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022] Open
Abstract
The p53 protein is a pleiotropic regulator working as a tumor suppressor and as an oncogene. Depending on the cellular insult and the mutational status, p53 may trigger opposing activities such as cell death or survival, senescence and cell cycle arrest or proliferative signals, antioxidant or prooxidant activation, glycolysis, or oxidative phosphorylation, among others. By augmenting or repressing specific target genes or directly interacting with cellular partners, p53 accomplishes a particular set of activities. The mechanism in which p53 is activated depends on increased stability through post-translational modifications (PTMs) and the formation of higher-order structures (HOS). The intricate cell death and metabolic p53 response are reviewed in light of gaining stability via PTM and HOS formation in health and disease.
Collapse
Affiliation(s)
- Mayra A. Marques
- *Correspondence: Mayra A. Marques, ; Guilherme A. P. de Oliveira,
| | | | | | | |
Collapse
|
18
|
Lei J, Cai M, Shen Y, Lin D, Deng X. Molecular dynamics study on the inhibition mechanisms of ReACp53 peptide for p53-R175H mutant aggregation. Phys Chem Chem Phys 2021; 23:23032-23041. [PMID: 34612239 DOI: 10.1039/d1cp03094a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
p53 mutant aggregation can lead to loss-of-function (LoF), dominant-negative (DN) and gain-of-function (GoF) effects, involving in tumor growth. Finding inhibition methods of p53 mutant aggregation is a key step for developing new therapeutics against aggregation-associated cancers. Recent studies have shown that a cell-permeable peptide, ReACp53, can inhibit aggregation of the p53 mutant and restore p53 nuclear function as a transcriptional factor, showing extraordinary therapeutic potential. However, the molecular mechanism underlying the inhibition of p53 mutant aggregation by the ReAp53 peptide is unclear. In this work, we used all-atom molecular dynamics (MD) simulations to investigate the effect of ReACp53 peptide on the structural and dynamic properties of the p53 core domain (p53C) of the aggregation-prone R175H mutant. Our simulations revealed that the ReACp53 peptide can stabilize the ordered secondary structure and decrease the flexibility of disordered loops of the R175H mutant through increasing the intra-interactions of p53C. Moreover, we found that ReACp53 peptide specifically binds to the fragment (residues 180-233) of the R175H mutant through strong hydrophobic interactions with residues L188 and L201 and a salt bridge or hydrogen bond formation with residues D186, E198, D204, E221 and E224. The specific binding pattern protects the aggregation-prone fragment (residues 182-213) from exposure to water. Hence, we suggested that the ReACp53 peptide inhibits aggregation of the R175H mutant by restoring the wild-type conformation from an aggregation-prone state and reducing the exposure of the aggregation-prone segment. These results provide molecular mechanistic insight into inhibition of the ReACp53 peptide on amyloid aggregation of the R175H mutant.
Collapse
Affiliation(s)
- Jiangtao Lei
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China.
| | - Mengqiang Cai
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China.
| | - Yun Shen
- Department of Physics, School of Sciences, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China
| | - Dongdong Lin
- Department of Physics and Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang City 315211, China
| | - Xiaohua Deng
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China.
| |
Collapse
|
19
|
Sperl LE, Rührnößl F, Schiller A, Haslbeck M, Hagn F. High-resolution analysis of the conformational transition of pro-apoptotic Bak at the lipid membrane. EMBO J 2021; 40:e107159. [PMID: 34523144 PMCID: PMC8521305 DOI: 10.15252/embj.2020107159] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 12/21/2022] Open
Abstract
Permeabilization of the outer mitochondrial membrane by pore-forming Bcl2 proteins is a crucial step for the induction of apoptosis. Despite a large set of data suggesting global conformational changes within pro-apoptotic Bak during pore formation, high-resolution structural details in a membrane environment remain sparse. Here, we used NMR and HDX-MS (Hydrogen deuterium exchange mass spectrometry) in lipid nanodiscs to gain important high-resolution structural insights into the conformational changes of Bak at the membrane that are dependent on a direct activation by BH3-only proteins. Furthermore, we determined the first high-resolution structure of the Bak transmembrane helix. Upon activation, α-helix 1 in the soluble domain of Bak dissociates from the protein and adopts an unfolded and dynamic potentially membrane-bound state. In line with this finding, comparative protein folding experiments with Bak and anti-apoptotic BclxL suggest that α-helix 1 in Bak is a metastable structural element contributing to its pro-apoptotic features. Consequently, mutagenesis experiments aimed at stabilizing α-helix 1 yielded Bak variants with delayed pore-forming activity. These insights will contribute to a better mechanistic understanding of Bak-mediated membrane permeabilization.
Collapse
Affiliation(s)
- Laura E Sperl
- Bavarian NMR Center at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Florian Rührnößl
- Center for Functional Protein Assemblies and Department of ChemistryTechnical University of MunichGarchingGermany
| | - Anita Schiller
- Bavarian NMR Center at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Martin Haslbeck
- Center for Functional Protein Assemblies and Department of ChemistryTechnical University of MunichGarchingGermany
| | - Franz Hagn
- Bavarian NMR Center at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| |
Collapse
|
20
|
Lu J, Qian J, Xu Z, Yin S, Zhou L, Zheng S, Zhang W. Emerging Roles of Liquid-Liquid Phase Separation in Cancer: From Protein Aggregation to Immune-Associated Signaling. Front Cell Dev Biol 2021; 9:631486. [PMID: 34235141 PMCID: PMC8255971 DOI: 10.3389/fcell.2021.631486] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
Liquid-liquid Phase Separation (LLPS) of proteins and nucleic acids has emerged as a new paradigm in the study of cellular activities. It drives the formation of liquid-like condensates containing biomolecules in the absence of membrane structures in living cells. In addition, typical membrane-less condensates such as nuclear speckles, stress granules and cell signaling clusters play important roles in various cellular activities, including regulation of transcription, cellular stress response and signal transduction. Previous studies highlighted the biophysical and biochemical principles underlying the formation of these liquid condensates. The studies also showed how these principles determine the molecular properties, LLPS behavior, and composition of liquid condensates. While the basic rules driving LLPS are continuously being uncovered, their function in cellular activities is still unclear, especially within a pathological context. Therefore, the present review summarizes the recent progress made on the existing roles of LLPS in cancer, including cancer-related signaling pathways, transcription regulation and maintenance of genome stability. Additionally, the review briefly introduces the basic rules of LLPS, and cellular signaling that potentially plays a role in cancer, including pathways relevant to immune responses and autophagy.
Collapse
Affiliation(s)
- Jiahua Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Junjie Qian
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China.,Organ Transplantation Institute, Zhejiang University, Hangzhou, China
| | - Zhentian Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
| | - Shengyong Yin
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China.,Organ Transplantation Institute, Zhejiang University, Hangzhou, China
| | - Lin Zhou
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China.,Organ Transplantation Institute, Zhejiang University, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China.,Organ Transplantation Institute, Zhejiang University, Hangzhou, China.,Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Wu Zhang
- Organ Transplantation Institute, Zhejiang University, Hangzhou, China.,Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
21
|
Petronilho EC, Pedrote MM, Marques MA, Passos YM, Mota MF, Jakobus B, de Sousa GDS, Pereira da Costa F, Felix AL, Ferretti GDS, Almeida FP, Cordeiro Y, Vieira TCRG, de Oliveira GAP, Silva JL. Phase separation of p53 precedes aggregation and is affected by oncogenic mutations and ligands. Chem Sci 2021; 12:7334-7349. [PMID: 34163823 PMCID: PMC8171334 DOI: 10.1039/d1sc01739j] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutant p53 tends to form aggregates with amyloid properties, especially amyloid oligomers inside the nucleus, which are believed to cause oncogenic gain-of-function (GoF). The mechanism of the formation of the aggregates in the nucleus remains uncertain. The present study demonstrated that the DNA-binding domain of p53 (p53C) underwent phase separation (PS) on the pathway to aggregation under various conditions. p53C phase separated in the presence of the crowding agent polyethylene glycol (PEG). Similarly, mutant p53C (M237I and R249S) underwent PS; however, the process evolved to a solid-like phase transition faster than that in the case of wild-type p53C. The data obtained by microscopy of live cells indicated that transfection of mutant full-length p53 into the cells tended to result in PS and phase transition (PT) in the nuclear compartments, which are likely the cause of the GoF effects. Fluorescence recovery after photobleaching (FRAP) experiments revealed liquid characteristics of the condensates in the nucleus. Mutant p53 tended to undergo gel- and solid-like phase transitions in the nucleus and in nuclear bodies demonstrated by slow and incomplete recovery of fluorescence after photobleaching. Polyanions, such as heparin and RNA, were able to modulate PS and PT in vitro. Heparin apparently stabilized the condensates in a gel-like state, and RNA apparently induced a solid-like state of the protein even in the absence of PEG. Conditions that destabilize p53C into a molten globule conformation also produced liquid droplets in the absence of crowding. The disordered transactivation domain (TAD) modulated both phase separation and amyloid aggregation. In summary, our data provide mechanistic insight into the formation of p53 condensates and conditions that may result in the formation of aggregated structures, such as mutant amyloid oligomers, in cancer. The pathway of mutant p53 from liquid droplets to gel-like and solid-like (amyloid) species may be a suitable target for anticancer therapy. Mutant p53 tends to form aggregates with amyloid properties, especially amyloid oligomers inside the nucleus, which are believed to cause oncogenic gain-of-function (GoF).![]()
Collapse
Affiliation(s)
- Elaine C Petronilho
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Murilo M Pedrote
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Yulli M Passos
- Faculty of Pharmacy, Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Michelle F Mota
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Benjamin Jakobus
- Modal Informática Ltda Almeida Godinho, 19, 304 Rio de Janeiro RJ 22741-140 Brazil
| | - Gileno Dos Santos de Sousa
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Filipe Pereira da Costa
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Adriani L Felix
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Fernando P Almeida
- National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| |
Collapse
|
22
|
Cattani G, Bocedi A, Gambardella G, Iavarone F, Boroumand M, Castagnola M, Ricci G. Trypsinogen and chymotrypsinogen: the mysterious hyper-reactivity of selected cysteines is still present after their divergent evolution. FEBS J 2021; 288:6003-6018. [PMID: 33876866 DOI: 10.1111/febs.15886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/11/2021] [Accepted: 04/16/2021] [Indexed: 12/24/2022]
Abstract
An enigmatic and never described hyper-reactivity of most of the cysteines resident in the reduced, molten globule-like intermediate of a few proteins has been recently discovered. In particular, all ten cysteines of chymotrypsinogen showed hundred times increased reactivity against hydrophobic reagents. A single cysteine (Cys1) was also found thousand times more reactive toward GSSG, making speculate that a single glutathionylation could represent the primordial event of its oxidative folding. In the present study, we compare these kinetic properties with those present in trypsinogen taken in its reduced, molten globule-like intermediate and identify the origin of these unusual properties. Despite the divergent evolution of these two proteins, the different amount of disulfides and the very different 3D localization of three disulfides, their hyper-reactivity toward hydrophobic thiol reagents and disulfides is very similar. Mass spectrometry identifies two cysteines in trypsinogen, Cys148 and Cys197, 800 times more reactive toward GSSG than an unperturbed protein cysteine. These results point toward a stringent and accurate preservation of these peculiar kinetic properties during a divergent evolution suggesting some important role, which at the present can only be hypothesized. Similar extraordinary hyper-reactivity has been found also in albumin, ribonuclease, and lysozyme confirming that it cannot be considered a kinetic singularity of a single protein. Interestingly, the very flexible and fluctuating structures like those typical of the molten globule status prove capable of enabling sophisticated actions typical of enzymes such as binding to GSSG with relevant specificity and high affinity (KD = 0.4 mm) and accelerating the reaction of its cysteines by thousands of times.
Collapse
Affiliation(s)
- Giada Cattani
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Italy
| | - Alessio Bocedi
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Italy
| | - Giorgia Gambardella
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Italy
| | - Federica Iavarone
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Mozhgan Boroumand
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giorgio Ricci
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Italy
| |
Collapse
|
23
|
Ostermeier L, de Oliveira GAP, Dzwolak W, Silva JL, Winter R. Exploring the polymorphism, conformational dynamics and function of amyloidogenic peptides and proteins by temperature and pressure modulation. Biophys Chem 2020; 268:106506. [PMID: 33221697 DOI: 10.1016/j.bpc.2020.106506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 11/15/2022]
Abstract
Our understanding of amyloid structures and the mechanisms by which disease-associated peptides and proteins self-assemble into these fibrillar aggregates, has advanced considerably in recent years. It is also established that amyloid fibrils are generally polymorphic. The molecular structures of the aggregation intermediates and the causes of molecular and structural polymorphism are less understood, however. Such information is mandatory to explain the pathological diversity of amyloid diseases. What is also clear is that not only protein mutations, but also the physiological milieu, i.e. pH, cosolutes, crowding and surface interactions, have an impact on fibril formation. In this minireview, we focus on the effect of the less explored physical parameters temperature and pressure on the fibrillization propensity of proteins and how these variables can be used to reveal additional mechanistic information about intermediate states of fibril formation and molecular and structural polymorphism. Generally, amyloids are very stable and can resist harsh environmental conditions, such as extreme pH, high temperature and high pressure, and can hence serve as valuable functional amyloid. As an example, we discuss the effect of temperature and pressure on the catalytic activity of peptide amyloid fibrils that exhibit enzymatic activity.
Collapse
Affiliation(s)
- Lena Ostermeier
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteur 1 Str., 02-093 Warsaw, Poland.
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil.
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany.
| |
Collapse
|
24
|
Apolipoprotein E4 exhibits intermediates with domain interaction. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140535. [PMID: 32882410 DOI: 10.1016/j.bbapap.2020.140535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 11/23/2022]
Abstract
ApoE4(C112R) is the strongest risk factor for Alzheimer's disease, while apoE3(C112) is considered normal. The C112R substitution is believed to alter the interactions between the N-terminal (NTD) and the C-terminal domain (CTD) leading to major functional differences. Here we investigate how the molecular property of the residue at position 112 affects domain interaction using an array of C112X substitutions with arginine, alanine, threonine, valine, leucine and isoleucine as 'X'. We attempt to determine the free energy of domain interaction (∆GINT) from stabilities of the NTD (∆GNTD) and CTD (∆GCTD) in the full-length apoE, and the stabilities of fragments of the NTD (∆GNTF) and CTD (∆GCTF), using the relationship, ∆GINT = ∆GNTD + ∆GCTD - ∆GNTF - ∆GCTF. We find that although ∆GNTD is strongly dependent on the C112X substitutions, ∆GNTD - ∆GNTF is small. Furthermore, ∆GCTD remains nearly the same as ∆GCTF. Therefore, ∆GINT is estimated to be small and similar for the apoE isoforms. However, stability of domain interaction monitored by urea dependent changes in interdomain Forster Resonance Energy Transfer (FRET) is found to be strongly dependent on C112X substitutions. ApoE4 exhibits the highest mid-point of denaturation of interdomain FRET. To resolve the apparently contradictory observations, we hypothesize that higher interdomain FRET in apoE4 in urea may involve 'intermediate' states. Enhanced fluorescence of bis-ANS and susceptibility to proteolytic cleavage support that apoE4, specifically, the NTD of apoE4 harbor 'intermediates' in both native and mildly denaturing conditions. The intermediates could hold key to the pathological functions of apoE4.
Collapse
|
25
|
Pérez Socas LB, Ambroggio EE. The influence of myristoylation, liposome surface charge and nucleic acid interaction in the partition properties of HIV-1 Gag-N-terminal peptides to membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183421. [PMID: 32710855 DOI: 10.1016/j.bbamem.2020.183421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/25/2020] [Accepted: 07/07/2020] [Indexed: 01/10/2023]
Abstract
The group-specific antigen (GAG) polyprotein of HIV-1 is the main coordinator of the virus assembly process at the plasma membrane (PM) and is directed by its N-terminal matrix domain (MA). MA is myristoylated and possess a highly basic region (HBR) responsible for the interaction with the negative lipids of the PM, especially with PIP2. In addition, MA binds RNA molecules proposed as a regulatory step of the assembly process. Here we study the interaction of a synthetic peptide (N-terminal 21 amino acids of MA) and liposomes of different compositions using a variety of biophysical techniques. Particularly, we use the fluorescence properties of the single tryptophan of the peptide to analyze its partition to membranes, where we harness for first time the analytical ability of spectral phasors method to study this interaction. We found that electrostatic interactions play an important role for peptide partition to membranes and myristoylation reduces the free energy of the process. Interestingly, we observe that while the presence of PIP2 does not cause measurable changes on the peptide-membrane interaction, the interaction is favored by cholesterol. Additionally, we found that the partition process goes through a transition state involving peptide disaggregation and changes in the peptide secondary structure. On the other hand, we found that the presence of oligonucleotides competes with the interaction with lipids by increasing peptide solubility. In summary, we think that our results, in context of the current knowledge of the role of HIV-1 MA, contribute to a better molecular understanding of the membrane association process.
Collapse
Affiliation(s)
- Luis Benito Pérez Socas
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica-Ranwel Caputto, Haya de la Torre y Medina Allende s/n, Córdoba X5000HUA, Argentina; CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Haya de la Torre y Medina Allende s/n, Córdoba X5000HUA, Argentina
| | - Ernesto Esteban Ambroggio
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica-Ranwel Caputto, Haya de la Torre y Medina Allende s/n, Córdoba X5000HUA, Argentina; CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Haya de la Torre y Medina Allende s/n, Córdoba X5000HUA, Argentina.
| |
Collapse
|
26
|
Biophysical characterization of p53 core domain aggregates. Biochem J 2020; 477:111-120. [PMID: 31841126 DOI: 10.1042/bcj20190778] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022]
Abstract
Aggregation is the cause of numerous protein conformation diseases. A common facet of these maladies is the transition of a protein from its functional native state into higher order forms, such as oligomers and amyloid fibrils. p53 is an essential tumor suppressor that is prone to such conformational transitions, resulting in its compromised ability to avert cancer. This work explores the biophysical properties of early-, mid-, and late-stage p53 core domain (p53C) aggregates. Atomistic and coarse-grained molecular dynamics (MD) simulations suggest that early- and mid-stage p53C aggregates have a polymorphic topology of antiparallel and parallel β-sheets that localize to the core amyloidogenic sequence. Both topologies involve similar extents of interstrand mainchain hydrogen bonding, while sidechain interactions could play a role in regulating strand orientation. The free energy difference between the antiparallel and parallel states was within statistical uncertainty. Negative stain electron microscopy of mature fibrils shows a wide distribution of fiber widths, indicating that polymorphism may extend to the quaternary structure level. Circular dichroism of the fibrils was indicative of β-sheet rich structures in atypical conformations. The Raman spectrum of aggregated p53C was consistent with a mixture of arranged β-sheets and heterogeneous structural elements, which is compatible with the MD findings of an ordered β-sheet nucleus flanked by disordered structure. Structural polymorphism is a common property of amyloids; however, because certain polymorphs of the same protein can be more harmful than others, going forward it will be pertinent to establish correlations between p53C aggregate structure and pathology.
Collapse
|
27
|
de Oliveira GAP, Petronilho EC, Pedrote MM, Marques MA, Vieira TCRG, Cino EA, Silva JL. The Status of p53 Oligomeric and Aggregation States in Cancer. Biomolecules 2020; 10:biom10040548. [PMID: 32260447 PMCID: PMC7226498 DOI: 10.3390/biom10040548] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Despite being referred to as the guardian of the genome, when impacted by mutations, p53 can lose its protective functions and become a renegade. The malignant transformation of p53 occurs on multiple levels, such as altered DNA binding properties, acquisition of novel cellular partners, or associating into different oligomeric states. The consequences of these transformations can be catastrophic. Ongoing studies have implicated different oligomeric p53 species as having a central role in cancer biology; however, the correlation between p53 oligomerization status and oncogenic activities in cancer progression remains an open conundrum. In this review, we summarize the roles of different p53 oligomeric states in cancer and discuss potential research directions for overcoming aberrant p53 function associated with them. We address how misfolding and prion-like amyloid aggregation of p53 seem to play a crucial role in cancer development. The misfolded and aggregated states of mutant p53 are prospective targets for the development of novel therapeutic strategies against tumoral diseases.
Collapse
Affiliation(s)
- Guilherme A. P. de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-901, Brazil; (G.A.P.d.O.); (E.C.P.); (M.M.P.); (M.A.M.); (T.C.R.G.V.)
| | - Elaine C. Petronilho
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-901, Brazil; (G.A.P.d.O.); (E.C.P.); (M.M.P.); (M.A.M.); (T.C.R.G.V.)
| | - Murilo M. Pedrote
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-901, Brazil; (G.A.P.d.O.); (E.C.P.); (M.M.P.); (M.A.M.); (T.C.R.G.V.)
| | - Mayra A. Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-901, Brazil; (G.A.P.d.O.); (E.C.P.); (M.M.P.); (M.A.M.); (T.C.R.G.V.)
| | - Tuane C. R. G. Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-901, Brazil; (G.A.P.d.O.); (E.C.P.); (M.M.P.); (M.A.M.); (T.C.R.G.V.)
| | - Elio A. Cino
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte MG 31270-901, Brazil
- Correspondence: (J.L.S.); (E.A.C.); Tel.: +55-21-3938-6756 (J.L.S.); +55-31-3409-2613 (E.A.C.)
| | - Jerson L. Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-901, Brazil; (G.A.P.d.O.); (E.C.P.); (M.M.P.); (M.A.M.); (T.C.R.G.V.)
- Correspondence: (J.L.S.); (E.A.C.); Tel.: +55-21-3938-6756 (J.L.S.); +55-31-3409-2613 (E.A.C.)
| |
Collapse
|
28
|
Milošević J, Petrić J, Jovčić B, Janković B, Polović N. Exploring the potential of infrared spectroscopy in qualitative and quantitative monitoring of ovalbumin amyloid fibrillation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117882. [PMID: 31818644 DOI: 10.1016/j.saa.2019.117882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Amyloid fibrils are highly ordered self-assembled (poly)peptide aggregates with cross-β structural pattern. Ovalbumin was used as a model for exploring the potential of infrared spectroscopy in detecting structural transitions and quantitative monitoring of amyloid fibrillation. Low pH (pH 2) and high temperature (90 °C) over the course of 24 h were conditions applied for amyloid formation. Fibrillation of ovalbumin was monitored by ThT and ANS fluorescence, and SDS PAGE. A significant increase in ThT fluorescence with a plateau reached after 4 h of incubation, without the lag phase, was detected. Structural transitions leading to amyloid fibrillation were analysed using all three Amide regions in ATR-FTIR spectra. Significant changes were detected in Amide I and Amide III region (decrease of α-helix and increase of β-sheet peaks). To establish a fast, precise and simple method for quantitative monitoring of amyloid fibrillation, the Amide I/Amide II ratios of aggregation specific β-sheets (1625 and 1695 cm-1, respectively) with 1540 cm-1 as internal standard were used, resulting in good correlation (R2 = 0.93 and 0.95) with the data observed by monitoring ThT fluorescence. On the other hand, assessing aggregation specific β-sheet contents by self-deconvolution showed lower correlation with ThT fluorescence (R2 = 0.75 and 0.64). Here we examined structural transitions during ovalbumin fibrillation in a qualitative and quantitative manner by exploiting the full potential of Amide regions simultaneously. Secondary structure distribution was monitored using second derivative spectra in Amide I region. A novel, simple mathematical calculation for quantitative monitoring of fibrils formation was presented employing that the increase in low and high frequency aggregation specific β-sheet in Amide I region compared to the internal standard in Amide II region is suitable for fibril formation monitoring.
Collapse
Affiliation(s)
- Jelica Milošević
- University of Belgrade - Faculty of Chemistry, Department of Biochemistry, Belgrade, Serbia
| | - Jovan Petrić
- University of Belgrade - Faculty of Chemistry, Department of Biochemistry, Belgrade, Serbia
| | - Branko Jovčić
- University of Belgrade - Faculty of Biology, Belgrade, Serbia; Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Brankica Janković
- University of Belgrade - Faculty of Chemistry, Department of Biochemistry, Belgrade, Serbia
| | - Natalija Polović
- University of Belgrade - Faculty of Chemistry, Department of Biochemistry, Belgrade, Serbia.
| |
Collapse
|
29
|
Kamagata K, Kanbayashi S, Honda M, Itoh Y, Takahashi H, Kameda T, Nagatsugi F, Takahashi S. Liquid-like droplet formation by tumor suppressor p53 induced by multivalent electrostatic interactions between two disordered domains. Sci Rep 2020; 10:580. [PMID: 31953488 PMCID: PMC6969132 DOI: 10.1038/s41598-020-57521-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/13/2019] [Indexed: 12/25/2022] Open
Abstract
Early in vivo studies demonstrated the involvement of a tumor-suppressing transcription factor, p53, into cellular droplets such as Cajal and promyelocytic leukemia protein bodies, suggesting that the liquid-liquid phase separation (LLPS) might be involved in the cellular functions of p53. To examine this possibility, we conducted extensive investigations on the droplet formation of p53 in vitro. First, p53 itself was found to form liquid-like droplets at neutral and slightly acidic pH and at low salt concentrations. Truncated p53 mutants modulated droplet formation, suggesting the importance of multivalent electrostatic interactions among the N-terminal and C-terminal domains. Second, FRET efficiency measurements for the dimer mutants of p53 revealed that distances between the core domains and between the C-terminal domains were modulated in an opposite manner within the droplets. Third, the molecular crowding agents were found to promote droplet formation, whereas ssDNA, dsDNA, and ATP, to suppress it. Finally, the p53 mutant mimicking posttranslational phosphorylation did not form the droplets. We conclude that p53 itself has a potential to form droplets that can be controlled by cellular molecules and by posttranslational modifications, suggesting that LLPS might be involved in p53 function.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan. .,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan.
| | - Saori Kanbayashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Masaya Honda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Yuji Itoh
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Hiroto Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto, Tokyo, 135-0064, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
30
|
Mendes LFS, Batista MRB, Judge PJ, Watts A, Redfield C, Costa-Filho AJ. Conformational flexibility of GRASPs and their constituent PDZ subdomains reveals structural basis of their promiscuous interactome. FEBS J 2020; 287:3255-3272. [PMID: 31920006 DOI: 10.1111/febs.15206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/19/2019] [Accepted: 01/08/2020] [Indexed: 01/04/2023]
Abstract
The Golgi complex is a central component of the secretory pathway, responsible for several critical cellular functions in eukaryotes. The complex is organized by the Golgi matrix that includes the Golgi reassembly and stacking protein (GRASP), which was shown to be involved in cisternae stacking and lateral linkage in metazoan. GRASPs also have critical roles in other processes, with an unusual ability to interact with several different binding partners. The conserved N terminus of the GRASP family includes two PSD-95, DLG, and ZO-1 (PDZ) domains. Previous crystallographic studies of orthologues suggest that PDZ1 and PDZ2 have similar conformations and secondary structure content. However, PDZ1 alone mediates nearly all interactions between GRASPs and their partners. In this work, NMR, synchrotron radiation CD, and molecular dynamics (MD) were used to examine the structure, flexibility, and stability of the two constituent PDZ domains. GRASP PDZs are structured in an unusual β3 α1 β4 β5 α2 β6 β1 β2 secondary structural arrangement and NMR data indicate that the PDZ1 binding pocket is formed by a stable β2 -strand and a more flexible and unstable α2 -helix, suggesting an explanation for the higher PDZ1 promiscuity. The conformational free energy profiles of the two PDZ domains were calculated using MD simulations. The data suggest that, after binding, the protein partner significantly reduces the conformational space that GRASPs can access by stabilizing one particular conformation, in a partner-dependent fashion. The structural flexibility of PDZ1, modulated by PDZ2, and the coupled, coordinated movement between the two PDZs enable GRASPs to interact with multiple partners, allowing them to function as promiscuous, multitasking proteins.
Collapse
Affiliation(s)
- Luis Felipe S Mendes
- Molecular Biophysics Laboratory, Ribeirão Preto School of Philosophy, Sciences and Literature, Physics Department, University of São Paulo, Ribeirão Preto, Brazil.,Department of Biochemistry, University of Oxford, UK
| | - Mariana R B Batista
- Molecular Biophysics Laboratory, Ribeirão Preto School of Philosophy, Sciences and Literature, Physics Department, University of São Paulo, Ribeirão Preto, Brazil
| | - Peter J Judge
- Department of Biochemistry, University of Oxford, UK
| | - Anthony Watts
- Department of Biochemistry, University of Oxford, UK
| | | | - Antonio J Costa-Filho
- Molecular Biophysics Laboratory, Ribeirão Preto School of Philosophy, Sciences and Literature, Physics Department, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
31
|
Pedrote MM, Motta MF, Ferretti GDS, Norberto DR, Spohr TCLS, Lima FRS, Gratton E, Silva JL, de Oliveira GAP. Oncogenic Gain of Function in Glioblastoma Is Linked to Mutant p53 Amyloid Oligomers. iScience 2020; 23:100820. [PMID: 31981923 PMCID: PMC6976948 DOI: 10.1016/j.isci.2020.100820] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/20/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022] Open
Abstract
Tumor-associated p53 mutations endow cells with malignant phenotypes, including chemoresistance. Amyloid-like oligomers of mutant p53 transform this tumor suppressor into an oncogene. However, the composition and distribution of mutant p53 oligomers are unknown and the mechanism involved in the conversion is sparse. Here, we report accumulation of a p53 mutant within amyloid-like p53 oligomers in glioblastoma-derived cells presenting a chemoresistant gain-of-function phenotype. Statistical analysis from fluorescence fluctuation spectroscopy, pressure-induced measurements, and thioflavin T kinetics demonstrates the distribution of oligomers larger than the active tetrameric form of p53 in the nuclei of living cells and the destabilization of native-drifted p53 species that become amyloid. Collectively, these results provide insights into the role of amyloid-like mutant p53 oligomers in the chemoresistance phenotype of malignant and invasive brain tumors and shed light on therapeutic options to avert cancer. Amyloid oligomers transform p53 tumor suppressor into an oncogene Amyloid-like mutant p53 oligomers occur in chemoresistant glioblastoma cells p53 oligomer larger than tetramers is detected in the nuclei of living cells Gain-of-function p53 phenotypes is attributed to p53 amyloid oligomers
Collapse
Affiliation(s)
- Murilo M Pedrote
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Michelle F Motta
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Douglas R Norberto
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas. Av. dos Estados, 5001 Sta. Terezinha, Santo André, São Paulo 21941-590, Brazil
| | - Tania C L S Spohr
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Flavia R S Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, CA 92697-2717, USA
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA.
| |
Collapse
|
32
|
Li L, Li X, Tang Y, Lao Z, Lei J, Wei G. Common cancer mutations R175H and R273H drive the p53 DNA-binding domain towards aggregation-prone conformations. Phys Chem Chem Phys 2020; 22:9225-9232. [DOI: 10.1039/c9cp06671c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cancer mutations R175H and R273H induce p53C towards aggregation-prone conformations by increasing their SASA, water exposure of H-bonds and flexibility of loop2.
Collapse
Affiliation(s)
- Le Li
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Multiscale Research Institute of Complex Systems
- Fudan University
- Shanghai 200438
| | - Xuhua Li
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Multiscale Research Institute of Complex Systems
- Fudan University
- Shanghai 200438
| | - Yiming Tang
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Multiscale Research Institute of Complex Systems
- Fudan University
- Shanghai 200438
| | - Zenghui Lao
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Multiscale Research Institute of Complex Systems
- Fudan University
- Shanghai 200438
| | - Jiangtao Lei
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Multiscale Research Institute of Complex Systems
- Fudan University
- Shanghai 200438
| | - Guanghong Wei
- Department of Physics
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Multiscale Research Institute of Complex Systems
- Fudan University
- Shanghai 200438
| |
Collapse
|
33
|
Navalkar A, Ghosh S, Pandey S, Paul A, Datta D, Maji SK. Prion-like p53 Amyloids in Cancer. Biochemistry 2019; 59:146-155. [DOI: 10.1021/acs.biochem.9b00796] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ambuja Navalkar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Saikat Ghosh
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Satyaprakash Pandey
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Ajoy Paul
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Debalina Datta
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Samir K. Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| |
Collapse
|
34
|
de Oliveira GAP, Cordeiro Y, Silva JL, Vieira TCRG. Liquid-liquid phase transitions and amyloid aggregation in proteins related to cancer and neurodegenerative diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 118:289-331. [PMID: 31928729 DOI: 10.1016/bs.apcsb.2019.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liquid-liquid phase separation (LLPS) and phase transition (LLPT) of proteins and nucleic acids have emerged as a new paradigm in cell biology. Here we will describe the recent findings about LLPS and LLPT, including the molecular and physical determinants leading to their formation, the resulting functions and their implications in cell physiology and disease. Amyloid aggregation is implicated in many neurodegenerative diseases and cancer, and LLPS of proteins involved in these diseases appear to be related to their function in different cell contexts. Amyloid formation would correspond to an irreversible liquid-to-solid transition, as clearly observed in the case of PrP, TDP43, FUS/TLS and tau protein in neurodegenerative pathologies as well as with the mutant tumor suppressor p53 in cancer. Nucleic acids play a modulatory effect on both LLPS and amyloid aggregation. Understanding the molecular events regulating how the demixing process advances to solid-like fibril materials is crucial for the development of novel therapeutic strategies against cancer and neurodegenerative maladies.
Collapse
Affiliation(s)
- Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tuane C R G Vieira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
35
|
Clark AM, Ponniah K, Warden MS, Raitt EM, Smith BG, Pascal SM. Tetramer formation by the caspase-activated fragment of the Par-4 tumor suppressor. FEBS J 2019; 286:4060-4073. [PMID: 31177609 DOI: 10.1111/febs.14955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/10/2019] [Accepted: 06/06/2019] [Indexed: 11/27/2022]
Abstract
The prostate apoptosis response-4 (Par-4) tumor suppressor can selectively kill cancer cells via apoptosis while leaving healthy cells unharmed. Full length Par-4 has been shown to be predominantly intrinsically disordered in vitro under neutral conditions. As part of the apoptotic process, cellular Par-4 is cleaved at D131 by caspase-3, which generates a 24 kDa C-terminal activated fragment (cl-Par-4) that enters the nucleus and inhibits pro-survival genes, thereby preventing cancer cell proliferation. Here, the structure of cl-Par-4 was investigated using CD spectroscopy, dynamic light scattering, intrinsic tyrosine fluorescence, and size exclusion chromatography with mutli-angle light scattering. Biophysical characterization shows that cl-Par-4 aggregates and is disordered at low ionic strength. However, with increasing ionic strength, cl-Par-4 becomes progressively more helical and less aggregated, ultimately forming largely ordered tetramers at high NaCl concentration. These results, together with previous results showing induced folding at acidic pH, suggest that the in vivo structure and self-association state of cl-Par-4 may be strongly dependent upon cellular environment.
Collapse
Affiliation(s)
- Andrea M Clark
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Komala Ponniah
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Meghan S Warden
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Emily M Raitt
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Benjamin G Smith
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Steven M Pascal
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
36
|
Melo Dos Santos N, de Oliveira GAP, Ramos Rocha M, Pedrote MM, Diniz da Silva Ferretti G, Pereira Rangel L, Morgado-Diaz JA, Silva JL, Rodrigues Pereira Gimba E. Loss of the p53 transactivation domain results in high amyloid aggregation of the Δ40p53 isoform in endometrial carcinoma cells. J Biol Chem 2019; 294:9430-9439. [PMID: 31028175 PMCID: PMC6579457 DOI: 10.1074/jbc.ra119.007566] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/17/2019] [Indexed: 01/18/2023] Open
Abstract
Dysfunctional p53 formation and activity can result from aberrant expression and subcellular localization of distinct p53 isoforms or aggregates. Endometrial carcinoma (EC) is a cancer type in which p53 status is correlated with prognosis, and TP53 mutations are a frequent genetic modification. Here we aimed to evaluate the expression patterns of different p53 isoforms and their contributions to the formation and subcellular localization of p53 amyloid aggregates in both EC and endometrial nontumor cell lines. We found that full-length (fl) p53 and a truncated p53 isoform, Δ40p53, resulting from alternative splicing of exon 2 or alternative initiation of translation at ATG-40, are the predominantly expressed p53 variants in EC cells. However, Δ40p53 was the major p53 isoform in endometrial nontumor cells. Immunofluorescence assays revealed that Δ40p53 is mainly localized to cytoplasmic punctate structures of EC cells, resembling solid-phase structures similar to those found in neurodegenerative pathologies. Using light-scattering kinetics, CD, and transmission EM, we noted that the p53 N-terminal transactivation domain significantly reduces aggregation of the WT p53 DNA-binding domain, confirming the higher aggregation tendency of Δ40p53, which lacks this domain. This is the first report of cytoplasmic Δ40p53 in EC cells being a major component of amyloid aggregates. The differential aggregation properties of p53 isoforms in EC cells may open up new avenues in the development of therapeutic strategies that preferentially target specific p53 isoforms to prevent p53 amyloid aggregate formation.
Collapse
Affiliation(s)
- Nataly Melo Dos Santos
- From the Instituto Nacional de Câncer, Coordenação de Pesquisa, Programa de Oncobiologia Celular e Molecular, Rio de Janeiro, Brazil.,the Universidade Federal Fluminense, Instituto de Humanidades e Saúde, Departamento de Ciências da Natureza, Rio de Janeiro 28895-532, Brazil, and
| | - Guilherme A P de Oliveira
- the Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil.,the Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| | - Murilo Ramos Rocha
- From the Instituto Nacional de Câncer, Coordenação de Pesquisa, Programa de Oncobiologia Celular e Molecular, Rio de Janeiro, Brazil
| | - Murilo M Pedrote
- the Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| | - Giulia Diniz da Silva Ferretti
- the Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| | - Luciana Pereira Rangel
- the Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil.,the Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
| | - José A Morgado-Diaz
- From the Instituto Nacional de Câncer, Coordenação de Pesquisa, Programa de Oncobiologia Celular e Molecular, Rio de Janeiro, Brazil
| | - Jerson L Silva
- the Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil,
| | - Etel Rodrigues Pereira Gimba
- From the Instituto Nacional de Câncer, Coordenação de Pesquisa, Programa de Oncobiologia Celular e Molecular, Rio de Janeiro, Brazil, .,the Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil.,the Universidade Federal Fluminense, Instituto de Humanidades e Saúde, Departamento de Ciências da Natureza, Rio de Janeiro 28895-532, Brazil, and
| |
Collapse
|