1
|
Ham SJ, Yoon E, Lee DH, Kim S, Yoo H, Chung J. Reciprocal rescue of Wolfram syndrome by two causative genes. EMBO Rep 2025:10.1038/s44319-025-00436-2. [PMID: 40181095 DOI: 10.1038/s44319-025-00436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 02/24/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025] Open
Abstract
Wolfram syndrome (WS) is marked by juvenile-onset diabetes mellitus, optic atrophy, diabetes insipidus, and sensorineural hearing loss. The causative genes, WFS1 and CISD2, correspond to WS types 1 and 2, respectively. Here, we establish their mutual indispensability for inositol 1,4,5-triphosphate receptor (IP3R) activity, demonstrating their ability to restore reduced IP3R activity in WFS1- or CISD2-deficient mammalian cells. Additionally, our Drosophila WS models lacking dWFS1 or dCISD exhibit diabetes-like phenotypes analogous to WS patients, and overexpression of dWFS1 and dCISD in the flies alleviates their phenotypes. We have engineered a peptide containing the CDGSH domain of CISD2, critical for its interaction with IP3R. Overexpression of our CISD2 peptide or treatment with its cell-penetrating peptide (CPP)-conjugated form restores calcium homeostasis in WFS1- or CISD2-deficient cells, and overexpressing the homologous dCISD peptide suppresses diabetes-like phenotypes in WS model flies. These findings underscore the intricate involvements of WFS1 and CISD2 in ER calcium regulation and provide potential therapeutic prospects for WS-related diabetes.
Collapse
Affiliation(s)
- Su Jin Ham
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eunju Yoon
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Da Hyun Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sehyeon Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heesuk Yoo
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jongkyeong Chung
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Pacinella G, Ciaccio AM, Tuttolomondo A. Molecular Links and Clinical Effects of Inflammation and Metabolic Background on Ischemic Stroke: An Update Review. J Clin Med 2024; 13:7515. [PMID: 39768436 PMCID: PMC11679813 DOI: 10.3390/jcm13247515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025] Open
Abstract
Stroke is a major global health concern, with 12.2 million new cases and 6.6 million deaths reported in 2019, making it the second leading cause of death and third leading cause of disability worldwide. Ischemic stroke, caused by blood vessel occlusion, accounts for 87% of stroke cases and results in neuronal death due to oxygen and nutrient deprivation. The rising global stroke burden is linked to aging populations and increased metabolic risk factors like high blood pressure, obesity, and elevated glucose levels, which promote chronic inflammation. This article explores the intricate molecular and clinical interplay between inflammation and metabolic disorders, emphasizing their role in ischemic stroke development, progression, and outcomes.
Collapse
Affiliation(s)
| | | | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (PROMISE), University of Palermo, 90127 Palermo, Italy; (G.P.); (A.M.C.)
| |
Collapse
|
3
|
Dilworth L, Stennett D, Facey A, Omoruyi F, Mohansingh S, Omoruyi FO. Diabetes and the associated complications: The role of antioxidants in diabetes therapy and care. Biomed Pharmacother 2024; 181:117641. [PMID: 39541789 DOI: 10.1016/j.biopha.2024.117641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by high blood sugar levels (hyperglycemia). Poorly managed diabetes can lead to complications affecting multiple organ systems. Antioxidants play a crucial role in reducing oxidative stress caused by reactive oxygen species (ROS), primarily triggered by uncontrolled high blood sugar levels in diabetes. Antioxidants like vitamin C, E, selenium, and alpha-lipoic acid, when used as supplements, have shown promise in reducing oxidative stress markers and improving antioxidant status in laboratory and animal studies and diabetic patients. Antioxidant supplementation may help reduce the risk of diabetic complications such as neuropathy, nephropathy, retinopathy, and cardiovascular disease. Additionally, antioxidants also have anti-inflammatory properties, which could be beneficial in reducing inflammation associated with diabetes. Antioxidant supplementation has been shown to enhance endothelial function, insulin sensitivity, and glucose metabolism, thereby aiding in glycemic control and overall diabetic management. Combining antioxidants with certain medications may have therapeutic benefits, such as effectively neutralizing free radicals and enhancing the regulation of antioxidant defense systems. This review presents an update on diabetes, the sources of free radical generation, the body's natural defense mechanisms, the clinical evidence regarding using antioxidants in managing diabetic complications, and the potential new therapeutic approaches. Overall, antioxidant supplementation may offer some benefits in managing diabetic complications. However, further studies are needed to understand the mechanisms of action, determine the optimal supplementation, explore potential interactions with other medications, and conduct long-term studies to establish the possible use of antioxidants for optimal benefits in diabetes care.
Collapse
Affiliation(s)
- Lowell Dilworth
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Dewayne Stennett
- The Transitional Year Programme, University of Toronto, Toronto, ON M5S 2E8, Canada.
| | - Aldeam Facey
- Mona Academy of Sport, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Felix Omoruyi
- University of Rochester Medical Center, Department of Ophthalmology, Rochester, NY, USA.
| | - Shada Mohansingh
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Felix O Omoruyi
- Department of Health Sciences, Texas A&M University, Corpus Christi, TX 78412, USA; Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA.
| |
Collapse
|
4
|
Makio T, Chen J, Simmen T. ER stress as a sentinel mechanism for ER Ca 2+ homeostasis. Cell Calcium 2024; 124:102961. [PMID: 39471738 DOI: 10.1016/j.ceca.2024.102961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024]
Abstract
Endoplasmic reticulum (ER) stress is triggered upon the interference with oxidative protein folding that aims to produce fully folded, disulfide-bonded and glycosylated proteins, which are then competent to exit the ER. Many of the enzymes catalyzing this process require the binding of Ca2+ ions, including the chaperones BiP/GRP78, calnexin and calreticulin. The induction of ER stress with a variety of drugs interferes with chaperone Ca2+ binding, increases cytosolic Ca2+through the opening of ER Ca2+ channels, and activates store-operated Ca2+ entry (SOCE). Posttranslational modifications (PTMs) of the ER Ca2+ handling proteins through ER stress-dependent phosphorylation or oxidation control these mechanisms, as demonstrated in the case of the sarco/endoplasmic reticulum ATPase (SERCA), inositol 1,4,5 trisphosphate receptors (IP3Rs) or stromal interaction molecule 1 (STIM1). Their aim is to restore ER Ca2+ homeostasis but also to increase Ca2+ transfer from the ER to mitochondria during ER stress. This latter function boosts ER bioenergetics, but also triggers apoptosis if ER Ca2+ signaling persists. ER Ca2+ toolkit oxidative modifications upon ER stress can occur within the ER lumen or in the adjacent cytosol. Enzymes involved in this redox control include ER oxidoreductin 1 (ERO1) or the thioredoxin-family protein disulfide isomerases (PDI) and ERp57. A tight, but adaptive connection between ER Ca2+ content, ER stress and mitochondrial readouts allows for the proper functioning of many tissues, including skeletal muscle, the liver, and the pancreas, where ER stress either maintains or compromises their function, depending on its extent and context. Upon mutation of key regulators of ER Ca2+ signaling, diseases such as muscular defects (e.g., from mutated selenoprotein N, SEPN1/SELENON), or diabetes (e.g., from mutated PERK) are the result.
Collapse
Affiliation(s)
- Tadashi Makio
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada
| | - Junsheng Chen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada.
| |
Collapse
|
5
|
Niu F, Liu W, Ren Y, Tian Y, Shi W, Li M, Li Y, Xiong Y, Qian L. β-cell neogenesis: A rising star to rescue diabetes mellitus. J Adv Res 2024; 62:71-89. [PMID: 37839502 PMCID: PMC11331176 DOI: 10.1016/j.jare.2023.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Diabetes Mellitus (DM), a chronic metabolic disease characterized by elevated blood glucose, is caused by various degrees of insulin resistance and dysfunctional insulin secretion, resulting in hyperglycemia. The loss and failure of functional β-cells are key mechanisms resulting in type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). AIM OF REVIEW Elucidating the underlying mechanisms of β-cell failure, and exploring approaches for β-cell neogenesis to reverse β-cell dysfunction may provide novel strategies for DM therapy. KEY SCIENTIFIC CONCEPTS OF REVIEW Emerging studies reveal that genetic susceptibility, endoplasmic reticulum (ER) stress, oxidative stress, islet inflammation, and protein modification linked to multiple signaling pathways contribute to DM pathogenesis. Over the past few years, replenishing functional β-cell by β-cell neogenesis to restore the number and function of pancreatic β-cells has remarkably exhibited a promising therapeutic approach for DM therapy. In this review, we provide a comprehensive overview of the underlying mechanisms of β-cell failure in DM, highlight the effective approaches for β-cell neogenesis, as well as discuss the current clinical and preclinical agents research advances of β-cell neogenesis. Insights into the challenges of translating β-cell neogenesis into clinical application for DM treatment are also offered.
Collapse
Affiliation(s)
- Fanglin Niu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wenxuan Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Department of Neurology, Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Wenzhen Shi
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Medical Research Center, the affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Man Li
- Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Yujia Li
- Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Elahi R, Nazari M, Mohammadi V, Esmaeilzadeh K, Esmaeilzadeh A. IL-17 in type II diabetes mellitus (T2DM) immunopathogenesis and complications; molecular approaches. Mol Immunol 2024; 171:66-76. [PMID: 38795686 DOI: 10.1016/j.molimm.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 05/28/2024]
Abstract
Chronic inflammation has long been considered the characteristic feature of type II diabetes mellitus (T2DM) Immunopathogenesis. Pro-inflammatory cytokines are considered the central drivers of the inflammatory cascade leading to β-cell dysfunction and insulin resistance (IR), two major pathologic events contributing to T2DM. Analyzing the cytokine profile of T2DM patients has also introduced interleukin-17 (IL-17) as an upstream regulator of inflammation, regarding its role in inducing the nuclear factor-kappa B (NF-κB) pathway. In diabetic tissues, IL-17 induces the expression of inflammatory cytokines and chemokines. Hence, IL-17 can deteriorate insulin signaling and β-cell function by activating the JNK pathway and inducing infiltration of neutrophils into pancreatic islets, respectively. Additionally, higher levels of IL-17 expression in patients with diabetic complications compared to non-complicated individuals have also proposed a role for IL-17 in T2DM complications. Here, we highlight the role of IL-17 in the Immunopathogenesis of T2DM and corresponding pathways, recent advances in preclinical and clinical studies targeting IL-17 in T2DM, and corresponding challenges and possible solutions.
Collapse
Affiliation(s)
- Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Vahid Mohammadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kimia Esmaeilzadeh
- Department of Medical Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
7
|
Dobson JR, Jacobson DA. Disrupted Endoplasmic Reticulum Ca 2+ Handling: A Harβinger of β-Cell Failure. BIOLOGY 2024; 13:379. [PMID: 38927260 PMCID: PMC11200644 DOI: 10.3390/biology13060379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
The β-cell workload increases in the setting of insulin resistance and reduced β-cell mass, which occurs in type 2 and type 1 diabetes, respectively. The prolonged elevation of insulin production and secretion during the pathogenesis of diabetes results in β-cell ER stress. The depletion of β-cell Ca2+ER during ER stress activates the unfolded protein response, leading to β-cell dysfunction. Ca2+ER is involved in many pathways that are critical to β-cell function, such as protein processing, tuning organelle and cytosolic Ca2+ handling, and modulating lipid homeostasis. Mutations that promote β-cell ER stress and deplete Ca2+ER stores are associated with or cause diabetes (e.g., mutations in ryanodine receptors and insulin). Thus, improving β-cell Ca2+ER handling and reducing ER stress under diabetogenic conditions could preserve β-cell function and delay or prevent the onset of diabetes. This review focuses on how mechanisms that control β-cell Ca2+ER are perturbed during the pathogenesis of diabetes and contribute to β-cell failure.
Collapse
Affiliation(s)
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA;
| |
Collapse
|
8
|
Kim HS, Lee D, Shen S. Endoplasmic reticular stress as an emerging therapeutic target for chronic pain: a narrative review. Br J Anaesth 2024; 132:707-724. [PMID: 38378384 PMCID: PMC10925894 DOI: 10.1016/j.bja.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 02/22/2024] Open
Abstract
Chronic pain is a severely debilitating condition with enormous socioeconomic costs. Current treatment regimens with nonsteroidal anti-inflammatory drugs (NSAIDs), steroids, or opioids have been largely unsatisfactory with uncertain benefits or severe long-term side effects. This is mainly because chronic pain has a multifactorial aetiology. Although conventional pain medications can alleviate pain by keeping several dysfunctional pathways under control, they can mask other underlying pathological causes, ultimately worsening nerve pathologies and pain outcome. Recent preclinical studies have shown that endoplasmic reticulum (ER) stress could be a central hub for triggering multiple molecular cascades involved in the development of chronic pain. Several ER stress inhibitors and unfolded protein response modulators, which have been tested in randomised clinical trials or apprpoved by the US Food and Drug Administration for other chronic diseases, significantly alleviated hyperalgesia in multiple preclinical pain models. Although the role of ER stress in neurodegenerative disorders, metabolic disorders, and cancer has been well established, research on ER stress and chronic pain is still in its infancy. Here, we critically analyse preclinical studies and explore how ER stress can mechanistically act as a central node to drive development and progression of chronic pain. We also discuss therapeutic prospects, benefits, and pitfalls of using ER stress inhibitors and unfolded protein response modulators for managing intractable chronic pain. In the future, targeting ER stress to impact multiple molecular networks might be an attractive therapeutic strategy against chronic pain refractory to steroids, NSAIDs, or opioids. This novel therapeutic strategy could provide solutions for the opioid crisis and public health challenge.
Collapse
Affiliation(s)
- Harper S Kim
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donghwan Lee
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shiqian Shen
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Zhao Y, Zhao Y, Xu B, Liu H, Chang Q. Microenvironmental dynamics of diabetic wounds and insights for hydrogel-based therapeutics. J Tissue Eng 2024; 15:20417314241253290. [PMID: 38818510 PMCID: PMC11138198 DOI: 10.1177/20417314241253290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/22/2024] [Indexed: 06/01/2024] Open
Abstract
The rising prevalence of diabetes has underscored concerns surrounding diabetic wounds and their potential to induce disability. The intricate healing mechanisms of diabetic wounds are multifaceted, influenced by ambient microenvironment, including prolonged hyperglycemia, severe infection, inflammation, elevated levels of reactive oxygen species (ROS), ischemia, impaired vascularization, and altered wound physicochemical properties. In recent years, hydrogels have emerged as promising candidates for diabetic wound treatment owing to their exceptional biocompatibility and resemblance to the extracellular matrix (ECM) through a three-dimensional (3D) porous network. This review will first summarize the microenvironment alterations occurring in the diabetic wounds, aiming to provide a comprehensive understanding of its pathogenesis, then a comprehensive classification of recently developed hydrogels will be presented, encompassing properties such as hypoglycemic effects, anti-inflammatory capabilities, antibacterial attributes, ROS scavenging abilities, promotion of angiogenesis, pH responsiveness, and more. The primary objective is to offer a valuable reference for repairing diabetic wounds based on their unique microenvironment. Moreover, this paper outlines potential avenues for future advancements in hydrogel dressings to facilitate and expedite the healing process of diabetic wounds.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Burn and Plastic surgery, Jinan University Affiliated Shunde Hospital, Jinan University, Foshan, China
| | - Yulan Zhao
- Department of Nephropathy Rheumatology, Guizhou Medical University Affiliated Zhijin Hospital, Zhijin, China
| | - Bing Xu
- Department of Burn and Plastic surgery, Jinan University Affiliated Shunde Hospital, Jinan University, Foshan, China
| | - Hongwei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Qiang Chang
- Department of Plastic and Reconstruction Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Ansari MA, Chauhan W, Shoaib S, Alyahya SA, Ali M, Ashraf H, Alomary MN, Al-Suhaimi EA. Emerging therapeutic options in the management of diabetes: recent trends, challenges and future directions. Int J Obes (Lond) 2023; 47:1179-1199. [PMID: 37696926 DOI: 10.1038/s41366-023-01369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/04/2023] [Accepted: 08/17/2023] [Indexed: 09/13/2023]
Abstract
Diabetes is a serious health issue that causes a progressive dysregulation of carbohydrate metabolism due to insufficient insulin hormone, leading to consistently high blood glucose levels. According to the epidemiological data, the prevalence of diabetes has been increasing globally, affecting millions of individuals. It is a long-term condition that increases the risk of various diseases caused by damage to small and large blood vessels. There are two main subtypes of diabetes: type 1 and type 2, with type 2 being the most prevalent. Genetic and molecular studies have identified several genetic variants and metabolic pathways that contribute to the development and progression of diabetes. Current treatments include gene therapy, stem cell therapy, statin therapy, and other drugs. Moreover, recent advancements in therapeutics have also focused on developing novel drugs targeting these pathways, including incretin mimetics, SGLT2 inhibitors, and GLP-1 receptor agonists, which have shown promising results in improving glycemic control and reducing the risk of complications. However, these treatments are often expensive, inaccessible to patients in underdeveloped countries, and can have severe side effects. Peptides, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are being explored as a potential therapy for diabetes. These peptides are postprandial glucose-dependent pancreatic beta-cell insulin secretagogues and have received much attention as a possible treatment option. Despite these advances, diabetes remains a major health challenge, and further research is needed to develop effective treatments and prevent its complications. This review covers various aspects of diabetes, including epidemiology, genetic and molecular basis, and recent advancements in therapeutics including herbal and synthetic peptides.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Waseem Chauhan
- Department of Hematology, Duke University, Durham, NC, 27710, USA
| | - Shoaib Shoaib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Mubashshir Ali
- USF Health Byrd Alzheimer's Center and Neuroscience Institute, Department of Molecular Medicine, Tampa, FL, USA
| | - Hamid Ashraf
- Rajiv Gandhi Center for Diabetes and Endocrinology, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia.
| | - Ebtesam A Al-Suhaimi
- King Abdulaziz & his Companions Foundation for Giftedness & Creativity, Riyadh, Saudi Arabia.
| |
Collapse
|
11
|
Yamasaki E, Thakore P, Ali S, Solano AS, Wang X, Gao X, Labelle-Dumais C, Chaumeil MM, Gould DB, Earley S. Impaired intracellular Ca 2+ signaling contributes to age-related cerebral small vessel disease in Col4a1 mutant mice. Sci Signal 2023; 16:eadi3966. [PMID: 37963192 PMCID: PMC10726848 DOI: 10.1126/scisignal.adi3966] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023]
Abstract
Humans and mice with mutations in COL4A1 and COL4A2 manifest hallmarks of cerebral small vessel disease (cSVD). Mice with a missense mutation in Col4a1 at amino acid 1344 (Col4a1+/G1344D) exhibit age-dependent intracerebral hemorrhages (ICHs) and brain lesions. Here, we report that this pathology was associated with the loss of myogenic vasoconstriction, an intrinsic vascular response essential for the autoregulation of cerebral blood flow. Electrophysiological analyses showed that the loss of myogenic constriction resulted from blunted pressure-induced smooth muscle cell (SMC) membrane depolarization. Furthermore, we found that dysregulation of membrane potential was associated with impaired Ca2+-dependent activation of large-conductance Ca2+-activated K+ (BK) and transient receptor potential melastatin 4 (TRPM4) cation channels linked to disruptions in sarcoplasmic reticulum (SR) Ca2+ signaling. Col4a1 mutations impair protein folding, which can cause SR stress. Treating Col4a1+/G1344D mice with 4-phenylbutyrate, a compound that promotes the trafficking of misfolded proteins and alleviates SR stress, restored SR Ca2+ signaling, maintained BK and TRPM4 channel activity, prevented loss of myogenic tone, and reduced ICHs. We conclude that alterations in SR Ca2+ handling that impair ion channel activity result in dysregulation of SMC membrane potential and loss of myogenic tone and contribute to age-related cSVD in Col4a1+/G1344D mice.
Collapse
Affiliation(s)
- Evan Yamasaki
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Sher Ali
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Alfredo Sanchez Solano
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| | - Xiaowei Wang
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA 94158, USA
| | - Xiao Gao
- Department of Physical Therapy and Rehabilitation Science, UCSF School of Medicine, San Francisco, CA 94143, USA
- Department of Radiology and Biomedical Imaging, UCSF School of Medicine, San Francisco, CA 94143, USA
| | | | - Myriam M. Chaumeil
- Department of Physical Therapy and Rehabilitation Science, UCSF School of Medicine, San Francisco, CA 94143, USA
- Department of Radiology and Biomedical Imaging, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Douglas B. Gould
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA 94158, USA
- Department of Anatomy, Institute for Human Genetics, Cardiovascular Research Institute, Bakar Aging Research Institute, UCSF School of Medicine, San Francisco, CA 94158, USA
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557-0318, USA
| |
Collapse
|
12
|
Bhagwat Y, Kumar S. A Review on Case Burden of Diabetes Mellitus Before and After the Implementation of National Programme for Prevention and Control of Cancer, Diabetes, Cardiovascular Diseases and Stroke. Cureus 2023; 15:e49446. [PMID: 38149165 PMCID: PMC10751034 DOI: 10.7759/cureus.49446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/26/2023] [Indexed: 12/28/2023] Open
Abstract
This article focuses on the role of the National Health Program called National Program for Prevention and Control of Cancer, Diabetes, Cardiovascular Disease, and Stroke (NPCDCS) in the screening and reduction of the case burden of Diabetes mellitus. The article first discusses the case burden of Diabetes before the implementation of NPCDCS and then the burden of the disease after the implementation of the program by mainly reviewing the cross-sectional studies done in four districts, Jaipur district, Gandhinagar district, Belagavi taluka district, and Udupi district. The studies were conducted at least four years after the program's implementation. The reason for preparing this review article is to assess the efficacy of NPCDCS in controlling the most dreaded chronic disease, which has its highest prevalence in India. Over the past century, there has been a consistent rise in the prevalence of Diabetes. In all departments of medicine, Diabetes has been a common predisposing factor in several adversities such as blindness, limb amputation, cerebrovascular stroke, diabetic nephropathy, and other microvascular and macrovascular diseases. The studies include field-level cross-checking and on-ground cross-sectional studies, which were done in 2019 in Jaipur, standard cross-sectional studies from the primary data collected from the primary health care center in the Belagavi taluka district, a national-level cross-sectional study conducted by the National NCD Monitoring survey, and cross-sectional studies in Udupi district in Karnataka, which was the first district to be included by NPCDCS in its second phase.
Collapse
Affiliation(s)
- Yash Bhagwat
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sunil Kumar
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
13
|
Iida H, Kono T, Lee CC, Krishnan P, Arvin MC, Weaver SA, Jarvela TS, Branco RCS, McLaughlin MR, Bone RN, Tong X, Arvan P, Lindberg I, Evans-Molina C. SERCA2 regulates proinsulin processing and processing enzyme maturation in pancreatic beta cells. Diabetologia 2023; 66:2042-2061. [PMID: 37537395 PMCID: PMC10542743 DOI: 10.1007/s00125-023-05979-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/13/2023] [Indexed: 08/05/2023]
Abstract
AIMS/HYPOTHESIS Increased circulating levels of incompletely processed insulin (i.e. proinsulin) are observed clinically in type 1 and type 2 diabetes. Previous studies have suggested that Ca2+ signalling within beta cells regulates insulin processing and secretion; however, the mechanisms that link impaired Ca2+ signalling with defective insulin maturation remain incompletely understood. METHODS We generated mice with beta cell-specific sarcoendoplasmic reticulum Ca2+ ATPase-2 (SERCA2) deletion (βS2KO mice) and used an INS-1 cell line model of SERCA2 deficiency. Whole-body metabolic phenotyping, Ca2+ imaging, RNA-seq and protein processing assays were used to determine how loss of SERCA2 impacts beta cell function. To test key findings in human model systems, cadaveric islets were treated with diabetogenic stressors and prohormone convertase expression patterns were characterised. RESULTS βS2KO mice exhibited age-dependent glucose intolerance and increased plasma and pancreatic levels of proinsulin, while endoplasmic reticulum (ER) Ca2+ levels and glucose-stimulated Ca2+ synchronicity were reduced in βS2KO islets. Islets isolated from βS2KO mice and SERCA2-deficient INS-1 cells showed decreased expression of the active forms of the proinsulin processing enzymes PC1/3 and PC2. Additionally, immunofluorescence staining revealed mis-location and abnormal accumulation of proinsulin and proPC2 in the intermediate region between the ER and the Golgi (i.e. the ERGIC) and in the cis-Golgi in beta cells of βS2KO mice. Treatment of islets from human donors without diabetes with high glucose and palmitate concentrations led to reduced expression of the active forms of the proinsulin processing enzymes, thus phenocopying the findings observed in βS2KO islets and SERCA2-deficient INS-1 cells. Similar findings were observed in wild-type mouse islets treated with brefeldin A, a compound that perturbs ER-to-Golgi trafficking. CONCLUSIONS/INTERPRETATION Taken together, these data highlight an important link between ER Ca2+ homeostasis and proinsulin processing in beta cells. Our findings suggest a model whereby chronic ER Ca2+ depletion due to SERCA2 deficiency impairs the spatial regulation of prohormone trafficking, processing and maturation within the secretory pathway. DATA AVAILABILITY RNA-seq data have been deposited in the Gene Expression Omnibus (GEO; accession no.: GSE207498).
Collapse
Affiliation(s)
- Hitoshi Iida
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tatsuyoshi Kono
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Chih-Chun Lee
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Preethi Krishnan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew C Arvin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Staci A Weaver
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Timothy S Jarvela
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Renato C S Branco
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Madeline R McLaughlin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Robert N Bone
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xin Tong
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carmella Evans-Molina
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
14
|
Jalil AT, Abdulhadi MA, Alkubaisy SA, Thejeel SH, Essa IM, Merza MS, Zabibah RS, Al-Tamimi R. The role of endoplasmic reticulum stress in promoting aerobic glycolysis in cancer cells: An overview. Pathol Res Pract 2023; 251:154905. [PMID: 37925820 DOI: 10.1016/j.prp.2023.154905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Aerobic glycolysis, also known as the Warburg effect, is a metabolic phenomenon frequently observed in cancer cells, characterized by the preferential utilization of glucose through glycolysis, even under normal oxygen conditions. This metabolic shift provides cancer cells with a proliferative advantage and supports their survival and growth. While the Warburg effect has been extensively studied, the underlying mechanisms driving this metabolic adaptation in cancer cells remain incompletely understood. In recent years, emerging evidence has suggested a potential link between endoplasmic reticulum (ER) stress and the promotion of aerobic glycolysis in cancer cells. The ER is a vital organelle involved in protein folding, calcium homeostasis, and lipid synthesis. Various cellular stresses, such as hypoxia, nutrient deprivation, and accumulation of misfolded proteins, can lead to ER stress. In response, cells activate the unfolded protein response (UPR) to restore ER homeostasis. However, prolonged or severe ER stress can activate alternative signaling pathways that modulate cellular metabolism, including the promotion of aerobic glycolysis. This review aims to provide an overview of the current understanding regarding the influence of ER stress on aerobic glycolysis in cancer cells to shed light on the complex interplay between ER stress and metabolic alterations in cancer cells. Understanding the intricate relationship between ER stress and the promotion of aerobic glycolysis in cancer cells may provide valuable insights for developing novel therapeutic strategies targeting metabolic vulnerabilities in cancer.
Collapse
Affiliation(s)
| | - Mohanad Ali Abdulhadi
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Sara Hamed Thejeel
- National University of Science and Technology, Al-Nasiriyah, Thi-Qar, Iraq
| | - Israa M Essa
- Department of Veterinary Parasitology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal, University College, Hillah, Babylon, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University of Najaf, Najaf, Iraq
| | - Raad Al-Tamimi
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
15
|
Sohn P, McLaughlin MR, Krishnan P, Wu W, Slak Rupnik M, Takasu A, Senda T, Lee CC, Kono T, Evans-Molina C. Stromal Interaction Molecule 1 Maintains β-Cell Identity and Function in Female Mice Through Preservation of G-Protein-Coupled Estrogen Receptor 1 Signaling. Diabetes 2023; 72:1433-1445. [PMID: 37478155 PMCID: PMC10545557 DOI: 10.2337/db22-0988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/07/2023] [Indexed: 07/23/2023]
Abstract
Altered endoplasmic reticulum (ER) Ca2+ signaling has been linked with β-cell dysfunction and diabetes development. Store-operated Ca2+ entry replenishes ER Ca2+ through reversible gating of plasma membrane Ca2+ channels by the ER Ca2+ sensor, stromal interaction molecule 1 (STIM1). For characterization of the in vivo impact of STIM1 loss, mice with β-cell-specific STIM1 deletion (STIM1Δβ mice) were generated and challenged with high-fat diet. Interestingly, β-cell dysfunction was observed in female, but not male, mice. Female STIM1Δβ mice displayed reductions in β-cell mass, a concomitant increase in α-cell mass, and reduced expression of markers of β-cell maturity, including MafA and UCN3. Consistent with these findings, STIM1 expression was inversely correlated with HbA1c levels in islets from female, but not male, human organ donors. Mechanistic assays demonstrated that the sexually dimorphic phenotype observed in STIM1Δβ mice was due, in part, to loss of signaling through the noncanonical 17-β estradiol receptor (GPER1), as GPER1 knockdown and inhibition led to a similar loss of expression of β-cell maturity genes in INS-1 cells. Together, these data suggest that STIM1 orchestrates pancreatic β-cell function and identity through GPER1-mediated estradiol signaling. ARTICLE HIGHLIGHTS Store-operated Ca2+ entry replenishes endoplasmic reticulum (ER) Ca2+ through reversible gating of plasma membrane Ca2+ channels by the ER Ca2+ sensor, stromal interaction molecule 1 (STIM1). β-Cell-specific deletion of STIM1 results in a sexually dimorphic phenotype, with β-cell dysfunction and loss of identity in female but not male mice. Expression of the noncanonical 17-β estradiol receptor (GPER1) is decreased in islets of female STIM1Δβ mice, and modulation of GPER1 levels leads to alterations in expression of β-cell maturity genes in INS-1 cells.
Collapse
Affiliation(s)
- Paul Sohn
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Madeline R. McLaughlin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Preethi Krishnan
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Wenting Wu
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Marjan Slak Rupnik
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Akira Takasu
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Ibaraki, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Ibaraki, Japan
| | - Chih-Chun Lee
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Tatsuyoshi Kono
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN
| | - Carmella Evans-Molina
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
16
|
Postić S, Pfabe J, Sarikas S, Ehall B, Pieber T, Korošak D, Slak Rupnik M, Huang YC. Tracking Ca2+ Dynamics in NOD Mouse Islets During Spontaneous Diabetes Development. Diabetes 2023; 72:1251-1261. [PMID: 37257067 PMCID: PMC10451015 DOI: 10.2337/db22-0952] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
The mechanisms accounting for the functional changes of α- and β-cells over the course of type 1 diabetes (T1D) development are largely unknown. Permitted by our established technology of high spatiotemporal resolution imaging of cytosolic Ca2+ ([Ca2+]c) dynamics on fresh pancreas tissue slices, we tracked the [Ca2+]c dynamic changes, as the assessment of function, in islet α- and β-cells of female nonobese diabetic (NOD) mice during the development of spontaneous diabetes. We showed that, during the phases of islet inflammation, 8 mmol/L glucose-induced synchronized short [Ca2+]c events in β-cells were diminished, whereas long [Ca2+]c events were gradually more triggerable at substimulatory 4 and 6 mmol/L glucose. In the islet destruction phase, the synchronized short [Ca2+]c events in a subset of β-cells resumed at high glucose condition, while the long [Ca2+]c events were significantly elevated already at substimulatory glucose concentrations. In the α-cells, the glucose sensitivity of the [Ca2+]c events persisted throughout the course of T1D development. At the late islet destruction phase, the α-cell [Ca2+]c events exhibited patterns of synchronicity. Our work has uncovered windows of functional recovery in β-cells and potential α-cells functional synchronization in NOD mice over the course of T1D development. ARTICLE HIGHLIGHTS In NOD mice β-cells, 8 mmol/L glucose-induced synchronized short [Ca2+]c events diminish in the early phases of islet inflammation, and long Ca2+ events became more sensitive to substimulatory 4 and 6 mmol/L glucose. In the late islet destruction phase, the synchronized short [Ca2+]c events in a subset of β-cells resumed at 8 mmol/L glucose, while the long Ca2+ events were significantly elevated at substimulatory glucose concentrations. In the α-cells, the glucose sensitivity of the [Ca2+]c events persisted throughout the course of type 1 diabetes development. α-Cell [Ca2+]c events occasionally synchronize in the islets with severe β-cell destruction.
Collapse
Affiliation(s)
- Sandra Postić
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Johannes Pfabe
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Srdjan Sarikas
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Barbara Ehall
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Thomas Pieber
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Dean Korošak
- Faculty of Civil Engineering, Transportation Engineering and Architecture, University of Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Faculty of Civil Engineering, Transportation Engineering and Architecture, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea – European Center Maribor, Maribor, Slovenia
| | - Ya-Chi Huang
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Glassman I, Le N, Asif A, Goulding A, Alcantara CA, Vu A, Chorbajian A, Mirhosseini M, Singh M, Venketaraman V. The Role of Obesity in Breast Cancer Pathogenesis. Cells 2023; 12:2061. [PMID: 37626871 PMCID: PMC10453206 DOI: 10.3390/cells12162061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Research has shown that obesity increases the risk for type 2 diabetes mellitus (Type 2 DM) by promoting insulin resistance, increases serum estrogen levels by the upregulation of aromatase, and promotes the release of reactive oxygen species (ROS) by macrophages. Increased circulating glucose has been shown to activate mammalian target of rapamycin (mTOR), a significant signaling pathway in breast cancer pathogenesis. Estrogen plays an instrumental role in estrogen-receptor-positive breast cancers. The role of ROS in breast cancer warrants continued investigation, in relation to both pathogenesis and treatment of breast cancer. We aim to review the role of obesity in breast cancer pathogenesis and novel therapies mediating obesity-associated breast cancer development. We explore the association between body mass index (BMI) and breast cancer incidence and the mechanisms by which oxidative stress modulates breast cancer pathogenesis. We discuss the role of glutathione, a ubiquitous antioxidant, in breast cancer therapy. Lastly, we review breast cancer therapies targeting mTOR signaling, leptin signaling, blood sugar reduction, and novel immunotherapy targets.
Collapse
Affiliation(s)
- Ira Glassman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Nghia Le
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Aamna Asif
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Anabel Goulding
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Cheldon Ann Alcantara
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Annie Vu
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Abraham Chorbajian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Mercedeh Mirhosseini
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Manpreet Singh
- Corona Regional Medical Center, Department of Emergency Medicine, Corona, CA 92882, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| |
Collapse
|
18
|
Zhang IX, Herrmann A, Leon J, Jeyarajan S, Arunagiri A, Arvan P, Gilon P, Satin LS. ER stress increases expression of intracellular calcium channel RyR1 to modify Ca 2+ homeostasis in pancreatic beta cells. J Biol Chem 2023; 299:105065. [PMID: 37468098 PMCID: PMC10448220 DOI: 10.1016/j.jbc.2023.105065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023] Open
Abstract
Pancreatic beta cells maintain glucose homeostasis by secreting pulses of insulin in response to a rise in plasma glucose. Pulsatile insulin secretion occurs as a result of glucose-induced oscillations in beta-cell cytosolic Ca2+. The endoplasmic reticulum (ER) helps regulate beta-cell cytosolic Ca2+, and ER stress can lead to ER Ca2+ reduction, beta-cell dysfunction, and an increased risk of type 2 diabetes. However, the mechanistic effects of ER stress on individual calcium channels are not well understood. To determine the effects of tunicamycin-induced ER stress on ER inositol 1,4,5-triphosphate receptors (IP3Rs) and ryanodine receptors (RyRs) and their involvement in subsequent Ca2+ dysregulation, we treated INS-1 832/13 cells and primary mouse islets with ER stress inducer tunicamycin (TM). We showed TM treatment increased RyR1 mRNA without affecting RyR2 mRNA and decreased both IP3R1 and IP3R3 mRNA. Furthermore, we found stress reduced ER Ca2+ levels, triggered oscillations in cytosolic Ca2+ under subthreshold glucose conditions, and increased apoptosis and that these changes were prevented by cotreatment with the RyR1 inhibitor dantrolene. In addition, we demonstrated silencing RyR1-suppressed TM-induced subthreshold cytosolic Ca2+ oscillations, but silencing RyR2 did not affect these oscillations. In contrast, inhibiting IP3Rs with xestospongin-C failed to suppress the TM-induced cytosolic Ca2+ oscillations and did not protect beta cells from TM-induced apoptosis although xestospongin-C inclusion did prevent ER Ca2+ reduction. Taken together, these results show changes in RyR1 play a critical role in ER stress-induced Ca2+ dysfunction and beta-cell apoptosis.
Collapse
Affiliation(s)
- Irina X Zhang
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrea Herrmann
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Juan Leon
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Sivakumar Jeyarajan
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anoop Arunagiri
- Department of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter Arvan
- Department of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick Gilon
- Pole of Endocrinology, Diabetes and Nutrition (EDIN), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Leslie S Satin
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
19
|
Pan S, Worker CJ, Feng Earley Y. The hypothalamus as a key regulator of glucose homeostasis: emerging roles of the brain renin-angiotensin system. Am J Physiol Cell Physiol 2023; 325:C141-C154. [PMID: 37273237 PMCID: PMC10312332 DOI: 10.1152/ajpcell.00533.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/06/2023]
Abstract
The regulation of plasma glucose levels is a complex and multifactorial process involving a network of receptors and signaling pathways across numerous organs that act in concert to ensure homeostasis. However, much about the mechanisms and pathways by which the brain regulates glycemic homeostasis remains poorly understood. Understanding the precise mechanisms and circuits employed by the central nervous system to control glucose is critical to resolving the diabetes epidemic. The hypothalamus, a key integrative center within the central nervous system, has recently emerged as a critical site in the regulation of glucose homeostasis. Here, we review the current understanding of the role of the hypothalamus in regulating glucose homeostasis, with an emphasis on the paraventricular nucleus, the arcuate nucleus, the ventromedial hypothalamus, and lateral hypothalamus. In particular, we highlight the emerging role of the brain renin-angiotensin system in the hypothalamus in regulating energy expenditure and metabolic rate, as well as its potential importance in the regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Shiyue Pan
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, Nevada, United States
- Department of Physiology & Cell Biology, School of Medicine, University of Nevada, Reno, Reno, Nevada, United States
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, United States
| | - Caleb J Worker
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, Nevada, United States
- Department of Physiology & Cell Biology, School of Medicine, University of Nevada, Reno, Reno, Nevada, United States
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, United States
| | - Yumei Feng Earley
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, Nevada, United States
- Department of Physiology & Cell Biology, School of Medicine, University of Nevada, Reno, Reno, Nevada, United States
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, United States
| |
Collapse
|
20
|
Singh RP, Bhardwaj A. β-glucans: a potential source for maintaining gut microbiota and the immune system. Front Nutr 2023; 10:1143682. [PMID: 37215217 PMCID: PMC10198134 DOI: 10.3389/fnut.2023.1143682] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
The human gastrointestinal (GI) tract holds a complex and dynamic population of microbial communities, which exerts a marked influence on the host physiology during homeostasis and disease conditions. Diet is considered one of the main factors in structuring the gut microbiota across a lifespan. Intestinal microbial communities play a vital role in sustaining immune and metabolic homeostasis as well as protecting against pathogens. The negatively altered gut bacterial composition has related to many inflammatory diseases and infections. β-glucans are a heterogeneous assemblage of glucose polymers with a typical structure comprising a leading chain of β-(1,4) and/or β-(1,3)-glucopyranosyl units with various branches and lengths as a side chain. β-glucans bind to specific receptors on immune cells and initiate immune responses. However, β-glucans from different sources differ in their structures, conformation, physical properties, and binding affinity to receptors. How these properties modulate biological functions in terms of molecular mechanisms is not known in many examples. This review provides a critical understanding of the structures of β-glucans and their functions for modulating the gut microbiota and immune system.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | | |
Collapse
|
21
|
Lu S, Dai Z, Cui Y, Kong DM. Recent Development of Advanced Fluorescent Molecular Probes for Organelle-Targeted Cell Imaging. BIOSENSORS 2023; 13:360. [PMID: 36979572 PMCID: PMC10046058 DOI: 10.3390/bios13030360] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Fluorescent molecular probes are very powerful tools that have been generally applied in cell imaging in the research fields of biology, pathology, pharmacology, biochemistry, and medical science. In the last couple of decades, numerous molecular probes endowed with high specificity to particular organelles have been designed to illustrate intracellular images in more detail at the subcellular level. Nowadays, the development of cell biology has enabled the investigation process to go deeply into cells, even at the molecular level. Therefore, probes that can sketch a particular organelle's location while responding to certain parameters to evaluate intracellular bioprocesses are under urgent demand. It is significant to understand the basic ideas of organelle properties, as well as the vital substances related to each unique organelle, for the design of probes with high specificity and efficiency. In this review, we summarize representative multifunctional fluorescent molecular probes developed in the last decade. We focus on probes that can specially target nuclei, mitochondria, endoplasmic reticulums, and lysosomes. In each section, we first briefly introduce the significance and properties of different organelles. We then discuss how probes are designed to make them highly organelle-specific. Finally, we also consider how probes are constructed to endow them with additional functions to recognize particular physical/chemical signals of targeted organelles. Moreover, a perspective on the challenges in future applications of highly specific molecular probes in cell imaging is also proposed. We hope that this review can provide researchers with additional conceptual information about developing probes for cell imaging, assisting scientists interested in molecular biology, cell biology, and biochemistry to accelerate their scientific studies.
Collapse
Affiliation(s)
- Sha Lu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhiqi Dai
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yunxi Cui
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Di Giuseppe G, Ciccarelli G, Soldovieri L, Capece U, Cefalo CMA, Moffa S, Nista EC, Brunetti M, Cinti F, Gasbarrini A, Pontecorvi A, Giaccari A, Mezza T. First-phase insulin secretion: can its evaluation direct therapeutic approaches? Trends Endocrinol Metab 2023; 34:216-230. [PMID: 36858875 DOI: 10.1016/j.tem.2023.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023]
Abstract
Our work is aimed at unraveling the role of the first-phase insulin secretion in the natural history of type 2 diabetes mellitus (T2DM) and its interrelationship with insulin resistance and with β cell function and mass. Starting from pathophysiology, we investigate the impact of impaired secretion on glucose homeostasis and explore postmeal hyperglycemia as the main clinical feature, underlining its relevance in the management of the disease. We also review dietary and pharmacological approaches aimed at improving early secretory defects and restoring residual β cell function. Furthermore, we discuss possible approaches to detect early secretory defects in clinical practice. By providing a journey through human and animal data, we attempt a unification of the recent evidence in an effort to offer a new outlook on β cell secretion.
Collapse
Affiliation(s)
- Gianfranco Di Giuseppe
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Gea Ciccarelli
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Laura Soldovieri
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Umberto Capece
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara M A Cefalo
- Department of Clinical and Molecular Medicine, University of Rome - Sapienza, Rome, Italy
| | - Simona Moffa
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Enrico C Nista
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy; Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Michela Brunetti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Cinti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy; Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alfredo Pontecorvi
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Giaccari
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Teresa Mezza
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy; Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
23
|
Harvey KE, Tang S, LaVigne EK, Pratt EPS, Hockerman GH. RyR2 regulates store-operated Ca2+ entry, phospholipase C activity, and electrical excitability in the insulinoma cell line INS-1. PLoS One 2023; 18:e0285316. [PMID: 37141277 PMCID: PMC10159205 DOI: 10.1371/journal.pone.0285316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
The ER Ca2+ channel ryanodine receptor 2 (RyR2) is required for maintenance of insulin content and glucose-stimulated insulin secretion, in part, via regulation of the protein IRBIT in the insulinoma cell line INS-1. Here, we examined store-operated and depolarization-dependent Ca2+entry using INS-1 cells in which either RyR2 or IRBIT were deleted. Store-operated Ca2+ entry (SOCE) stimulated with thapsigargin was reduced in RyR2KO cells compared to controls, but was unchanged in IRBITKO cells. STIM1 protein levels were not different between the three cell lines. Basal and stimulated (500 μM carbachol) phospholipase C (PLC) activity was also reduced specifically in RyR2KO cells. Insulin secretion stimulated by tolbutamide was reduced in RyR2KO and IRBITKO cells compared to controls, but was potentiated by an EPAC-selective cAMP analog in all three cell lines. Cellular PIP2 levels were increased and cortical f-actin levels were reduced in RyR2KO cells compared to controls. Whole-cell Cav channel current density was increased in RyR2KO cells compared to controls, and barium current was reduced by acute activation of the lipid phosphatase pseudojanin preferentially in RyR2KO cells over control INS-1 cells. Action potentials stimulated by 18 mM glucose were more frequent in RyR2KO cells compared to controls, and insensitive to the SK channel inhibitor apamin. Taken together, these results suggest that RyR2 plays a critical role in regulating PLC activity and PIP2 levels via regulation of SOCE. RyR2 also regulates β-cell electrical activity by controlling Cav current density and SK channel activation.
Collapse
Affiliation(s)
- Kyle E Harvey
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
| | - Shiqi Tang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
| | - Emily K LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, Indiana, United States of America
| | - Evan P S Pratt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, Indiana, United States of America
| | - Gregory H Hockerman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
24
|
Postić S, Sarikas S, Pfabe J, Pohorec V, Križančić Bombek L, Sluga N, Skelin Klemen M, Dolenšek J, Korošak D, Stožer A, Evans-Molina C, Johnson JD, Slak Rupnik M. High-resolution analysis of the cytosolic Ca 2+ events in β cell collectives in situ. Am J Physiol Endocrinol Metab 2023; 324:E42-E55. [PMID: 36449570 PMCID: PMC9829482 DOI: 10.1152/ajpendo.00165.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022]
Abstract
The release of peptide hormones is predominantly regulated by a transient increase in cytosolic Ca2+ concentration ([Ca2+]c). To trigger exocytosis, Ca2+ ions enter the cytosol from intracellular Ca2+ stores or from the extracellular space. The molecular events of late stages of exocytosis, and their dependence on [Ca2+]c, were extensively described in isolated single cells from various endocrine glands. Notably, less work has been done on endocrine cells in situ to address the heterogeneity of [Ca2+]c events contributing to a collective functional response of a gland. For this, β cell collectives in a pancreatic islet are particularly well suited as they are the smallest, experimentally manageable functional unit, where [Ca2+]c dynamics can be simultaneously assessed on both cellular and collective level. Here, we measured [Ca2+]c transients across all relevant timescales, from a subsecond to a minute time range, using high-resolution imaging with a low-affinity Ca2+ sensor. We quantified the recordings with a novel computational framework for automatic image segmentation and [Ca2+]c event identification. Our results demonstrate that under physiological conditions the duration of [Ca2+]c events is variable, and segregated into three reproducible modes, subsecond, second, and tens of seconds time range, and are a result of a progressive temporal summation of the shortest events. Using pharmacological tools we show that activation of intracellular Ca2+ receptors is both sufficient and necessary for glucose-dependent [Ca2+]c oscillations in β cell collectives, and that a subset of [Ca2+]c events could be triggered even in the absence of Ca2+ influx across the plasma membrane. In aggregate, our experimental and analytical platform was able to readily address the involvement of intracellular Ca2+ receptors in shaping the heterogeneity of [Ca2+]c responses in collectives of endocrine cells in situ.NEW & NOTEWORTHY Physiological glucose or ryanodine stimulation of β cell collectives generates a large number of [Ca2+]c events, which can be rapidly assessed with our newly developed automatic image segmentation and [Ca2+]c event identification pipeline. The event durations segregate into three reproducible modes produced by a progressive temporal summation. Using pharmacological tools, we show that activation of ryanodine intracellular Ca2+ receptors is both sufficient and necessary for glucose-dependent [Ca2+]c oscillations in β cell collectives.
Collapse
Affiliation(s)
- Sandra Postić
- Center for physiology and pharmacology, Medical University of Vienna, Vienna, Austria
| | - Srdjan Sarikas
- Center for physiology and pharmacology, Medical University of Vienna, Vienna, Austria
| | - Johannes Pfabe
- Center for physiology and pharmacology, Medical University of Vienna, Vienna, Austria
| | - Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | - Nastja Sluga
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Dean Korošak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Civil Engineering, Transportation Engineering and Architecture, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - James D Johnson
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marjan Slak Rupnik
- Center for physiology and pharmacology, Medical University of Vienna, Vienna, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea-European Center Maribor, Maribor, Slovenia
| |
Collapse
|
25
|
Cappabianca L, Sebastiano M, Ruggieri M, Sbaffone M, Zelli V, Farina AR, Mackay AR. Doxorubicin-Induced TrkAIII Activation: A Selection Mechanism for Resistant Dormant Neuroblastoma Cells. Int J Mol Sci 2022; 23:ijms231810895. [PMID: 36142807 PMCID: PMC9503591 DOI: 10.3390/ijms231810895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Patients with advanced neuroblastoma (NB) receive multimodal clinical therapy, including the potent anthracycline chemotherapy drug doxorubicin (Dox). The acquisition of Dox resistance, however, is a major barrier to a sustained response and leads to a poor prognosis in advanced disease states, reinforcing the need to identify and inhibit Dox resistance mechanisms. In this context, we report on the identification and inhibition of a novel Dox resistance mechanism. This mechanism is characterized by the Dox-induced activation of the oncogenic TrkAIII alternative splice variant, resulting in increased Dox resistance, and is blocked by lestaurtinib, entrectinib, and crizotinib tyrosine kinase and LY294002 IP3-K inhibitors. Using time lapse live cell imaging, conventional and co-immunoprecipitation Western blots, RT-PCR, and inhibitor studies, we report that the Dox-induced TrkAIII activation correlates with proliferation inhibition and is CDK1- and Ca2+-uniporter-independent. It is mediated by ryanodine receptors; involves Ca2+-dependent interactions between TrkAIII, calmodulin and Hsp90; requires oxygen and oxidation; occurs within assembled ERGICs; and does not occur with fully spliced TrkA. The inhibitory effects of lestaurtinib, entrectinib, crizotinib, and LY294002 on the Dox-induced TrkAIII and Akt phosphorylation and resistance confirm roles for TrkAIII and IP3-K consistent with Dox-induced, TrkAIII-mediated pro-survival IP3K/Akt signaling. This mechanism has the potential to select resistant dormant TrkAIII-expressing NB cells, supporting the use of Trk inhibitors during Dox therapy in TrkAIII-expressing NBs.
Collapse
|
26
|
Lv C, Sun Y, Zhang ZY, Aboelela Z, Qiu X, Meng ZX. β-cell dynamics in type 2 diabetes and in dietary and exercise interventions. J Mol Cell Biol 2022; 14:6656373. [PMID: 35929791 PMCID: PMC9710517 DOI: 10.1093/jmcb/mjac046] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/07/2022] [Accepted: 08/03/2022] [Indexed: 01/14/2023] Open
Abstract
Pancreatic β-cell dysfunction and insulin resistance are two of the major causes of type 2 diabetes (T2D). Recent clinical and experimental studies have suggested that the functional capacity of β-cells, particularly in the first phase of insulin secretion, is a primary contributor to the progression of T2D and its associated complications. Pancreatic β-cells undergo dynamic compensation and decompensation processes during the development of T2D, in which metabolic stresses such as endoplasmic reticulum stress, oxidative stress, and inflammatory signals are key regulators of β-cell dynamics. Dietary and exercise interventions have been shown to be effective approaches for the treatment of obesity and T2D, especially in the early stages. Whilst the targeted tissues and underlying mechanisms of dietary and exercise interventions remain somewhat vague, accumulating evidence has implicated the improvement of β-cell functional capacity. In this review, we summarize recent advances in the understanding of the dynamic adaptations of β-cell function in T2D progression and clarify the effects and mechanisms of dietary and exercise interventions on β-cell dysfunction in T2D. This review provides molecular insights into the therapeutic effects of dietary and exercise interventions on T2D, and more importantly, it paves the way for future research on the related underlying mechanisms for developing precision prevention and treatment of T2D.
Collapse
Affiliation(s)
- Chengan Lv
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuchen Sun
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China,Zhejiang University–University of Edinburgh Institute (ZJE), Zhejiang University, Haining 314400, China
| | - Zhe Yu Zhang
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zeyad Aboelela
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China,Bachelors of Surgery, Bachelors of Medicine (MBBS), Zhejiang University School of Medicine, Hangzhou 310003, China
| | | | | |
Collapse
|
27
|
Endoplasmic reticulum stress promotes nuclear translocation of calmodulin, which activates phenotypic switching of vascular smooth muscle cells. Biochem Biophys Res Commun 2022; 628:155-162. [DOI: 10.1016/j.bbrc.2022.08.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022]
|
28
|
Harvey KE, LaVigne EK, Dar MS, Salyer AE, Pratt EPS, Sample PA, Aryal UK, Gowher H, Hockerman GH. RyR2/IRBIT regulates insulin gene transcript, insulin content, and secretion in the insulinoma cell line INS-1. Sci Rep 2022; 12:7713. [PMID: 35562179 PMCID: PMC9095623 DOI: 10.1038/s41598-022-11276-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
The role of ER Ca2+ release via ryanodine receptors (RyR) in pancreatic β-cell function is not well defined. Deletion of RyR2 from the rat insulinoma INS-1 (RyR2KO) enhanced IP3 receptor activity stimulated by 7.5 mM glucose, coincident with reduced levels of the protein IP3 Receptor Binding protein released with Inositol 1,4,5 Trisphosphate (IRBIT). Insulin content, basal (2.5 mM glucose) and 7.5 mM glucose-stimulated insulin secretion were reduced in RyR2KO and IRBITKO cells compared to controls. INS2 mRNA levels were reduced in both RyR2KO and IRBITKO cells, but INS1 mRNA levels were specifically decreased in RyR2KO cells. Nuclear localization of S-adenosylhomocysteinase (AHCY) was increased in RyR2KO and IRBITKO cells. DNA methylation of the INS1 and INS2 gene promotor regions was very low, and not different among RyR2KO, IRBITKO, and controls, but exon 2 of the INS1 and INS2 genes was more extensively methylated in RyR2KO and IRBITKO cells. Exploratory proteomic analysis revealed that deletion of RyR2 or IRBIT resulted in differential regulation of 314 and 137 proteins, respectively, with 41 in common. These results suggest that RyR2 regulates IRBIT levels and activity in INS-1 cells, and together maintain insulin content and secretion, and regulate the proteome, perhaps via DNA methylation.
Collapse
Affiliation(s)
- Kyle E Harvey
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Emily K LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
- Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, IN, USA
| | - Mohd Saleem Dar
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Amy E Salyer
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Evan P S Pratt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
- Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, IN, USA
| | - Paxton A Sample
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Uma K Aryal
- Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Gregory H Hockerman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
29
|
Maida CD, Daidone M, Pacinella G, Norrito RL, Pinto A, Tuttolomondo A. Diabetes and Ischemic Stroke: An Old and New Relationship an Overview of the Close Interaction between These Diseases. Int J Mol Sci 2022; 23:2397. [PMID: 35216512 PMCID: PMC8877605 DOI: 10.3390/ijms23042397] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is a comprehensive expression to identify a condition of chronic hyperglycemia whose causes derive from different metabolic disorders characterized by altered insulin secretion or faulty insulin effect on its targets or often both mechanisms. Diabetes and atherosclerosis are, from the point of view of cardio- and cerebrovascular risk, two complementary diseases. Beyond shared aspects such as inflammation and oxidative stress, there are multiple molecular mechanisms by which they feed off each other: chronic hyperglycemia and advanced glycosylation end-products (AGE) promote 'accelerated atherosclerosis' through the induction of endothelial damage and cellular dysfunction. These diseases impact the vascular system and, therefore, the risk of developing cardio- and cerebrovascular events is now evident, but the observation of this significant correlation has its roots in past decades. Cerebrovascular complications make diabetic patients 2-6 times more susceptible to a stroke event and this risk is magnified in younger individuals and in patients with hypertension and complications in other vascular beds. In addition, when patients with diabetes and hyperglycemia experience an acute ischemic stroke, they are more likely to die or be severely disabled and less likely to benefit from the one FDA-approved therapy, intravenous tissue plasminogen activator. Experimental stroke models have revealed that chronic hyperglycemia leads to deficits in cerebrovascular structure and function that may explain some of the clinical observations. Increased edema, neovascularization, and protease expression as well as altered vascular reactivity and tone may be involved and point to potential therapeutic targets. Further study is needed to fully understand this complex disease state and the breadth of its manifestation in the cerebrovasculature.
Collapse
Affiliation(s)
- Carlo Domenico Maida
- Molecular and Clinical Medicine PhD Programme, University of Palermo, 90127 Palermo, Italy; (C.D.M.); (A.T.)
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (G.P.); (R.L.N.); (A.P.)
| | - Mario Daidone
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (G.P.); (R.L.N.); (A.P.)
| | - Gaetano Pacinella
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (G.P.); (R.L.N.); (A.P.)
| | - Rosario Luca Norrito
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (G.P.); (R.L.N.); (A.P.)
| | - Antonio Pinto
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (G.P.); (R.L.N.); (A.P.)
| | - Antonino Tuttolomondo
- Molecular and Clinical Medicine PhD Programme, University of Palermo, 90127 Palermo, Italy; (C.D.M.); (A.T.)
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (G.P.); (R.L.N.); (A.P.)
| |
Collapse
|
30
|
Masvekar R, Kosa P, Barbour C, Milstein JL, Bielekova B. Drug library screen identifies inhibitors of toxic astrogliosis. Mult Scler Relat Disord 2022; 58:103499. [PMID: 35030368 PMCID: PMC8926038 DOI: 10.1016/j.msard.2022.103499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 12/09/2021] [Accepted: 01/02/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic neuroinflammatory disorder, in which activated immune cells directly or indirectly induce demyelination and axonal degradation. Inflammatory stimuli also change the phenotype of astrocytes, making them neurotoxic. The resulting 'toxic astrocyte' phenotype has been observed in animal models of neuroinflammation and in MS lesions. Proteins secreted by toxic astrocytes are elevated in the cerebrospinal fluid (CSF) of MS patients and reproducibly correlate with the rates of accumulation of neurological disability and brain atrophy. This suggests a pathogenic role for neurotoxic astrocytes in MS. METHODS Here, we applied a commercially available library of small molecules that are either Food and Drug Administration-approved or in clinical development to an in vitro model of toxic astrogliosis to identify drugs and signaling pathways that inhibit inflammatory transformation of astrocytes to a neurotoxic phenotype. RESULTS Inhibitors of three pathways related to the endoplasmic reticulum stress: (1) proteasome, (2) heat shock protein 90 and (3) mammalian target of rapamycin reproducibly decreased inflammation-induced conversion of astrocytes to toxic phenotype. Dantrolene, an anti-spasticity drug that inhibits calcium release through ryanodine receptors expressed in the endoplasmic reticulum of central nervous system cells, also exerted inhibitory effect at in vivo achievable concentrations. Finally, we established CSF SERPINA3 as a relevant pharmacodynamic marker for inhibiting toxic astrocytes in clinical trials. CONCLUSION Drug library screening provides mechanistic insight into the generation of toxic astrocytes and identifies candidates for immediate proof-of-principle clinical trial(s).
Collapse
Affiliation(s)
- Ruturaj Masvekar
- National Institute of Allergy and Infectious Diseases(NIAID), Neuroimmunological Diseases Section (NDS), National Institutes of Health(NIH), Building 10, Room 5N248, 10 Center Drive, MSC1444, Bethesda, MD 20892, USA.
| | - Peter Kosa
- National Institute of Allergy and Infectious Diseases(NIAID), Neuroimmunological Diseases Section (NDS), National Institutes of Health(NIH), Building 10, Room 5N248, 10 Center Drive, MSC1444, Bethesda, MD 20892, USA.
| | - Christopher Barbour
- National Institute of Allergy and Infectious Diseases(NIAID), Neuroimmunological Diseases Section (NDS), National Institutes of Health(NIH), Building 10, Room 5N248, 10 Center Drive, MSC1444, Bethesda, MD 20892, USA
| | - Joshua L Milstein
- National Institute of Allergy and Infectious Diseases(NIAID), Neuroimmunological Diseases Section (NDS), National Institutes of Health(NIH), Building 10, Room 5N248, 10 Center Drive, MSC1444, Bethesda, MD 20892, USA
| | - Bibiana Bielekova
- National Institute of Allergy and Infectious Diseases(NIAID), Neuroimmunological Diseases Section (NDS), National Institutes of Health(NIH), Building 10, Room 5N248, 10 Center Drive, MSC1444, Bethesda, MD 20892, USA.
| |
Collapse
|
31
|
Sleiman Y, Lacampagne A, Meli AC. "Ryanopathies" and RyR2 dysfunctions: can we further decipher them using in vitro human disease models? Cell Death Dis 2021; 12:1041. [PMID: 34725342 PMCID: PMC8560800 DOI: 10.1038/s41419-021-04337-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/23/2022]
Abstract
The regulation of intracellular calcium (Ca2+) homeostasis is fundamental to maintain normal functions in many cell types. The ryanodine receptor (RyR), the largest intracellular calcium release channel located on the sarco/endoplasmic reticulum (SR/ER), plays a key role in the intracellular Ca2+ handling. Abnormal type 2 ryanodine receptor (RyR2) function, associated to mutations (ryanopathies) or pathological remodeling, has been reported, not only in cardiac diseases, but also in neuronal and pancreatic disorders. While animal models and in vitro studies provided valuable contributions to our knowledge on RyR2 dysfunctions, the human cell models derived from patients’ cells offer new hope for improving our understanding of human clinical diseases and enrich the development of great medical advances. We here discuss the current knowledge on RyR2 dysfunctions associated with mutations and post-translational remodeling. We then reviewed the novel human cellular technologies allowing the correlation of patient’s genome with their cellular environment and providing approaches for personalized RyR-targeted therapeutics.
Collapse
Affiliation(s)
- Yvonne Sleiman
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Albano C Meli
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.
| |
Collapse
|
32
|
Calcium as a reliable marker for the quantitative assessment of endoplasmic reticulum stress in live cells. J Biol Chem 2021; 296:100779. [PMID: 34000299 PMCID: PMC8191341 DOI: 10.1016/j.jbc.2021.100779] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/01/2021] [Accepted: 05/11/2021] [Indexed: 11/20/2022] Open
Abstract
Calcium (Ca2+) is an essential mineral of endoplasmic reticulum (ER) luminal biochemistry because of the Ca2+ dependence of ER-resident chaperones charged with folding de novo proteins that transit this cellular compartment. ER Ca2+ depletion reduces the ability of chaperones to properly fold the proteins entering the ER, thus leading to an accumulation of misfolded proteins and the onset of a state known as ER stress. However, not all conditions that cause ER stress do so in a manner dependent on ER Ca2+ depletion. Agents such as tunicamycin inhibit the glycosylation of de novo polypeptides, a key step in the maturation process of newly synthesized proteins. Despite this established effect of tunicamycin, our understanding of how such conditions modulate ER Ca2+ levels is still limited. In the present study, we report that a variety of ER stress–inducing agents that have not been known to directly alter ER Ca2+ homeostasis can also cause a marked reduction in ER Ca2+ levels. Consistent with these observations, protecting against ER stress using small chemical chaperones, such as 4-phenylbutyrate and tauroursodeoxycholic acid, also attenuated ER Ca2+ depletion caused by these agents. We also describe a novel high-throughput and low-cost assay for the rapid quantification of ER stress using ER Ca2+ levels as a surrogate marker. This report builds on our understanding of ER Ca2+ levels in the context of ER stress and also provides the scientific community with a new, reliable tool to study this important cellular process in vitro.
Collapse
|
33
|
Peck Justice S, McCracken NA, Victorino JF, Qi GD, Wijeratne AB, Mosley AL. Boosting Detection of Low-Abundance Proteins in Thermal Proteome Profiling Experiments by Addition of an Isobaric Trigger Channel to TMT Multiplexes. Anal Chem 2021; 93:7000-7010. [PMID: 33908254 PMCID: PMC8153406 DOI: 10.1021/acs.analchem.1c00012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
The study of low-abundance proteins is a challenge to discovery-based proteomics. Mass spectrometry (MS) applications, such as thermal proteome profiling (TPP), face specific challenges in the detection of the whole proteome as a consequence of the use of nondenaturing extraction buffers. TPP is a powerful method for the study of protein thermal stability, but quantitative accuracy is highly dependent on consistent detection. Therefore, TPP can be limited in its amenability to study low-abundance proteins that tend to have stochastic or poor detection by MS. To address this challenge, we incorporated an affinity-purified protein complex sample at submolar concentrations as an isobaric trigger channel into a mutant TPP (mTPP) workflow to provide reproducible detection and quantitation of the low-abundance subunits of the cleavage and polyadenylation factor (CPF) complex. The inclusion of an isobaric protein complex trigger channel increased detection an average of 40× for previously detected subunits and facilitated detection of CPF subunits that were previously below the limit of detection. Importantly, these gains in CPF detection did not cause large changes in melt temperature (Tm) calculations for other unrelated proteins in the samples, with a high positive correlation between Tm estimates in samples with and without isobaric trigger channel addition. Overall, the incorporation of an affinity-purified protein complex as an isobaric trigger channel within a tandem mass tag (TMT) multiplex for mTPP experiments is an effective and reproducible way to gather thermal profiling data on proteins that are not readily detected using the original TPP or mTPP protocols.
Collapse
Affiliation(s)
| | - Neil A. McCracken
- Department of Biochemistry
and Molecular Biology, Indiana University
School of Medicine, Indianapolis, Indiana 46202, United States
| | | | - Guihong D. Qi
- Department of Biochemistry
and Molecular Biology, Indiana University
School of Medicine, Indianapolis, Indiana 46202, United States
| | - Aruna B. Wijeratne
- Department of Biochemistry
and Molecular Biology, Indiana University
School of Medicine, Indianapolis, Indiana 46202, United States
| | - Amber L. Mosley
- Department of Biochemistry
and Molecular Biology, Indiana University
School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
34
|
Mackay-Sim A. Hereditary Spastic Paraplegia: From Genes, Cells and Networks to Novel Pathways for Drug Discovery. Brain Sci 2021; 11:brainsci11030403. [PMID: 33810178 PMCID: PMC8004882 DOI: 10.3390/brainsci11030403] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a diverse group of Mendelian genetic disorders affecting the upper motor neurons, specifically degeneration of their distal axons in the corticospinal tract. Currently, there are 80 genes or genomic loci (genomic regions for which the causative gene has not been identified) associated with HSP diagnosis. HSP is therefore genetically very heterogeneous. Finding treatments for the HSPs is a daunting task: a rare disease made rarer by so many causative genes and many potential mutations in those genes in individual patients. Personalized medicine through genetic correction may be possible, but impractical as a generalized treatment strategy. The ideal treatments would be small molecules that are effective for people with different causative mutations. This requires identification of disease-associated cell dysfunctions shared across genotypes despite the large number of HSP genes that suggest a wide diversity of molecular and cellular mechanisms. This review highlights the shared dysfunctional phenotypes in patient-derived cells from patients with different causative mutations and uses bioinformatic analyses of the HSP genes to identify novel cell functions as potential targets for future drug treatments for multiple genotypes.
Collapse
Affiliation(s)
- Alan Mackay-Sim
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
35
|
Doud EH, Shetty T, Abt M, Mosley AL, Corson TW, Mehta A, Yeh ES. NF-κB Signaling Is Regulated by Fucosylation in Metastatic Breast Cancer Cells. Biomedicines 2020; 8:biomedicines8120600. [PMID: 33322811 PMCID: PMC7763959 DOI: 10.3390/biomedicines8120600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 02/03/2023] Open
Abstract
A growing body of evidence indicates that the levels of fucosylation correlate with breast cancer progression and contribute to metastatic disease. However, very little is known about the signaling and functional outcomes that are driven by fucosylation. We performed a global proteomic analysis of 4T1 metastatic mammary tumor cells in the presence and absence of a fucosylation inhibitor, 2-fluorofucose (2FF). Of significant interest, pathway analysis based on our results revealed a reduction in the NF-κB and TNF signaling pathways, which regulate the inflammatory response. NF-κB is a transcription factor that is pro-tumorigenic and a prime target in human cancer. We validated our results, confirming that treatment of 4T1 cells with 2FF led to a decrease in NF-κB activity through increased IκBα. Based on these observations, we conclude that fucosylation is an important post-translational modification that governs breast cancer cell signaling.
Collapse
Affiliation(s)
- Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (E.H.D.); (A.L.M.); (T.W.C.)
| | - Trupti Shetty
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Melissa Abt
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (E.H.D.); (A.L.M.); (T.W.C.)
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Timothy W. Corson
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (E.H.D.); (A.L.M.); (T.W.C.)
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anand Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Elizabeth S. Yeh
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence:
| |
Collapse
|
36
|
Wu W, He S, Shen Y, Zhang J, Wan Y, Tang X, Liu S, Yao X. Natural Product Luteolin Rescues THAP-Induced Pancreatic β-Cell Dysfunction through HNF4α Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1435-1454. [PMID: 32907363 DOI: 10.1142/s0192415x20500706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Endoplasmic reticulum stress (ER stress) plays a main role in pancreatic [Formula: see text]-cell dysfunction and death because of intracellular Ca[Formula: see text] turbulence and inflammation activation. Although several drugs are targeting pancreatic [Formula: see text]-cell to improve [Formula: see text]-cell function, there still lacks agents to alleviate [Formula: see text]-cell ER stress conditions. Therefore we used thapsigargin (THAP) or high glucose (HG) to induce ER stress in [Formula: see text]-cell and aimed to screen natural molecules against ER stress-induced [Formula: see text]-cell dysfunction. Through screening the Traditional Chinese drug library ([Formula: see text] molecules), luteolin was finally discovered to improve [Formula: see text]-cell function. Cellular viability results indicated luteolin reduced the THAP or HG-induced [Formula: see text]-cell death and apoptosis through MTT and flow cytometry assay. Moreover, luteolin improved [Formula: see text]-cell insulin secretion ability under ER stress conditions. Also ER stress-induced intracellular Ca[Formula: see text] turbulence and inflammation activation were inhibited by luteolin treatment. Mechanically, luteolin inhibited HNF4[Formula: see text] signaling, which was induced by ER stress. Moreover, luteolin reduced the transcriptional level of HNF4[Formula: see text] downstream gene, such as Asnk4b and HNF1[Formula: see text]. Conversely HNF4[Formula: see text] knockdown abolished the effect of luteolin on [Formula: see text]-cell using siRNA. These results suggested the protective effect of luteolin on [Formula: see text]-cell was through HNF4[Formula: see text]/Asnk4b pathway. In conclusion, our study discovered that luteolin improved [Formula: see text]-cell function and disclosed the underlying mechanism of luteolin on [Formula: see text]-cell, suggesting luteolin is a promising agent against pancreatic dysfunction.
Collapse
Affiliation(s)
- Wenyu Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Shijun He
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern, Medical University, Guangzhou 510515, P. R. China
| | - Yuli Shen
- Nephrology Department, Longgang District People's Hospital of Shenzhen, Shenzhen 518172, P. R. China
| | - Jiawen Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern, Medical University, Guangzhou 510515, P. R. China
| | - Yihong Wan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern, Medical University, Guangzhou 510515, P. R. China
| | - Xiaodong Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern, Medical University, Guangzhou 510515, P. R. China
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern, Medical University, Guangzhou 510515, P. R. China.,Center of Pharmacy, Nanhai Hospital, Southern Medical University, Foshan 510080, P. R. China
| | - Xingang Yao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern, Medical University, Guangzhou 510515, P. R. China.,Center of Clinical Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
37
|
Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci 2020; 21:ijms21176275. [PMID: 32872570 PMCID: PMC7503727 DOI: 10.3390/ijms21176275] [Citation(s) in RCA: 1285] [Impact Index Per Article: 257.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2DM), one of the most common metabolic disorders, is caused by a combination of two primary factors: defective insulin secretion by pancreatic β-cells and the inability of insulin-sensitive tissues to respond appropriately to insulin. Because insulin release and activity are essential processes for glucose homeostasis, the molecular mechanisms involved in the synthesis and release of insulin, as well as in its detection are tightly regulated. Defects in any of the mechanisms involved in these processes can lead to a metabolic imbalance responsible for the development of the disease. This review analyzes the key aspects of T2DM, as well as the molecular mechanisms and pathways implicated in insulin metabolism leading to T2DM and insulin resistance. For that purpose, we summarize the data gathered up until now, focusing especially on insulin synthesis, insulin release, insulin sensing and on the downstream effects on individual insulin-sensitive organs. The review also covers the pathological conditions perpetuating T2DM such as nutritional factors, physical activity, gut dysbiosis and metabolic memory. Additionally, because T2DM is associated with accelerated atherosclerosis development, we review here some of the molecular mechanisms that link T2DM and insulin resistance (IR) as well as cardiovascular risk as one of the most important complications in T2DM.
Collapse
|
38
|
Augusto L, Martynowicz J, Amin PH, Alakhras NS, Kaplan MH, Wek RC, Sullivan WJ. Toxoplasma gondii Co-opts the Unfolded Protein Response To Enhance Migration and Dissemination of Infected Host Cells. mBio 2020; 11:e00915-20. [PMID: 32636244 PMCID: PMC7343987 DOI: 10.1128/mbio.00915-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/03/2020] [Indexed: 01/04/2023] Open
Abstract
Toxoplasma gondii is an intracellular parasite that reconfigures its host cell to promote pathogenesis. One consequence of Toxoplasma parasitism is increased migratory activity of host cells, which facilitates dissemination. Here, we show that Toxoplasma triggers the unfolded protein response (UPR) in host cells through calcium release from the endoplasmic reticulum (ER). We further identify a novel role for the host ER stress sensor protein IRE1 in Toxoplasma pathogenesis. Upon infection, Toxoplasma activates IRE1, engaging its noncanonical role in actin remodeling through the binding of filamin A. By inducing cytoskeletal remodeling via IRE1 oligomerization in host cells, Toxoplasma enhances host cell migration in vitro and dissemination of the parasite to host organs in vivo Our study has identified novel mechanisms used by Toxoplasma to induce dissemination of infected cells, providing new insights into strategies for treatment of toxoplasmosis.IMPORTANCE Cells that are infected with the parasite Toxoplasma gondii exhibit heightened migratory activity, which facilitates dissemination of the infection throughout the body. In this report, we identify a new mechanism used by Toxoplasma to hijack its host cell and increase its mobility. We further show that the ability of Toxoplasma to increase host cell migration involves not the enzymatic activity of IRE1 but rather IRE1 engagement with actin cytoskeletal remodeling. Depletion of IRE1 from infected host cells reduces their migration in vitro and significantly hinders dissemination of Toxoplasma in vivo Our findings reveal a new mechanism underlying host-pathogen interactions, demonstrating how host cells are co-opted to spread a persistent infection around the body.
Collapse
Affiliation(s)
- Leonardo Augusto
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jennifer Martynowicz
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Parth H Amin
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nada S Alakhras
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark H Kaplan
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ronald C Wek
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - William J Sullivan
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
39
|
Kaul Z, Mookherjee D, Das S, Chatterjee D, Chakrabarti S, Chakrabarti O. Loss of tumor susceptibility gene 101 (TSG101) perturbs endoplasmic reticulum structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118741. [PMID: 32422153 DOI: 10.1016/j.bbamcr.2020.118741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022]
Abstract
Tumor susceptibility gene 101 (TSG101), an ESCRT-I protein, is implicated in multiple cellular processes and its functional depletion can lead to blocked lysosomal degradation, cell cycle arrest, demyelination and neurodegeneration. Here, we show that loss of TSG101 results in endoplasmic reticulum (ER) stress and this causes ER membrane remodelling (EMR). This correlates with an expansion of ER, increased vacuolation, altered relative distribution of the rough and smooth ER and disruption of three-way junctions. Blocked lysosomal degradation due to TSG101 depletion leads to ER stress and Ca2+ leakage from ER stores, causing destabilization of actin cytoskeleton. Inhibiting Ca2+ release from the ER by blocking ryanodine receptors (RYRs) with Dantrolene partially rescues the ER stress phenotypes. Hence, in this study we have identified the involvement of TSG101 in modulating ER stress mediated remodelling by engaging the actin cytoskeleton. This is significant because functional depletion of TSG101 effectuates ER-stress, perturbs the structure, mobility and function of the ER, all aspects closely associated with neurodegenerative diseases. SUMMARY STATEMENT: We show that tumor susceptibility gene (TSG) 101 regulates endoplasmic reticulum (ER) stress and its membrane remodelling. Loss of TSG101 perturbs structure, mobility and function of the ER as a consequence of actin destabilization.
Collapse
Affiliation(s)
- Zenia Kaul
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA..
| | - Debdatto Mookherjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Subhrangshu Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, CN 6, Sector V, Salt Lake, Kolkata 700091, India
| | - Debmita Chatterjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, CN 6, Sector V, Salt Lake, Kolkata 700091, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India.
| |
Collapse
|
40
|
Zhang IX, Ren J, Vadrevu S, Raghavan M, Satin LS. ER stress increases store-operated Ca 2+ entry (SOCE) and augments basal insulin secretion in pancreatic beta cells. J Biol Chem 2020; 295:5685-5700. [PMID: 32179650 PMCID: PMC7186166 DOI: 10.1074/jbc.ra120.012721] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by impaired glucose-stimulated insulin secretion and increased peripheral insulin resistance. Unremitting endoplasmic reticulum (ER) stress can lead to beta-cell apoptosis and has been linked to type 2 diabetes. Although many studies have attempted to link ER stress and T2DM, the specific effects of ER stress on beta-cell function remain incompletely understood. To determine the interrelationship between ER stress and beta-cell function, here we treated insulin-secreting INS-1(832/13) cells or isolated mouse islets with the ER stress-inducer tunicamycin (TM). TM induced ER stress as expected, as evidenced by activation of the unfolded protein response. Beta cells treated with TM also exhibited concomitant alterations in their electrical activity and cytosolic free Ca2+ oscillations. As ER stress is known to reduce ER Ca2+ levels, we tested the hypothesis that the observed increase in Ca2+ oscillations occurred because of reduced ER Ca2+ levels and, in turn, increased store-operated Ca2+ entry. TM-induced cytosolic Ca2+ and membrane electrical oscillations were acutely inhibited by YM58483, which blocks store-operated Ca2+ channels. Significantly, TM-treated cells secreted increased insulin under conditions normally associated with only minimal release, e.g. 5 mm glucose, and YM58483 blocked this secretion. Taken together, these results support a critical role for ER Ca2+ depletion-activated Ca2+ current in mediating Ca2+-induced insulin secretion in response to ER stress.
Collapse
Affiliation(s)
- Irina X Zhang
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Jianhua Ren
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | | | - Malini Raghavan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Leslie S Satin
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan 48105.
| |
Collapse
|
41
|
Reissaus CA, Day KH, Mirmira RG, Dunn KW, Pavalko FM, Day RN. PIE-FLIM Measurements of Two Different FRET-Based Biosensor Activities in the Same Living Cells. Biophys J 2020; 118:1820-1829. [PMID: 32191861 DOI: 10.1016/j.bpj.2020.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
We report the use of pulsed interleaved excitation (PIE)-fluorescence lifetime imaging microscopy (FLIM) to measure the activities of two different biosensor probes simultaneously in single living cells. Many genetically encoded biosensors rely on the measurement of Förster resonance energy transfer (FRET) to detect changes in biosensor conformation that accompany the targeted cell signaling event. One of the most robust ways of quantifying FRET is to measure changes in the fluorescence lifetime of the donor fluorophore using FLIM. The study of complex signaling networks in living cells demands the ability to track more than one of these cellular events at the same time. Here, we demonstrate how PIE-FLIM can separate and quantify the signals from different FRET-based biosensors to simultaneously measure changes in the activity of two cell signaling pathways in the same living cells in tissues. The imaging system described here uses selectable laser wavelengths and synchronized detection gating that can be tailored and optimized for each FRET pair. Proof-of-principle studies showing simultaneous measurement of cytosolic calcium and protein kinase A activity are shown, but the PIE-FLIM approach is broadly applicable to other signaling pathways.
Collapse
Affiliation(s)
- Christopher A Reissaus
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kathleen H Day
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Raghavendra G Mirmira
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kenneth W Dunn
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana; Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Fredrick M Pavalko
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana; The Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
| | - Richard N Day
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
42
|
Idevall-Hagren O, Tengholm A. Metabolic regulation of calcium signaling in beta cells. Semin Cell Dev Biol 2020; 103:20-30. [PMID: 32085965 DOI: 10.1016/j.semcdb.2020.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/10/2020] [Accepted: 01/28/2020] [Indexed: 12/22/2022]
Abstract
The cytoplasmic Ca2+ concentration ([Ca2+]cyt) regulates a vast number of cellular functions, including insulin secretion from beta cells. The major physiological insulin secretagogue, glucose, triggers [Ca2+]cyt oscillations in beta cells. Synchronization of the oscillations among the beta cells within an islet underlies the generation of pulsatile insulin secretion. This review describes the mechanisms generating [Ca2+]cyt oscillations, the interactions between [Ca2+]cyt and cell metabolism, as well as the contribution of various organelles to the shaping of [Ca2+]cyt signals and insulin secretion. It also discusses how Ca2+ signals are coordinated and spread throughout the islets and data indicating that altered Ca2+ signaling is associated with beta cell dysfunction and development of type 2 diabetes.
Collapse
Affiliation(s)
- Olof Idevall-Hagren
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23 Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
43
|
Zhang IX, Raghavan M, Satin LS. The Endoplasmic Reticulum and Calcium Homeostasis in Pancreatic Beta Cells. Endocrinology 2020; 161:bqz028. [PMID: 31796960 PMCID: PMC7028010 DOI: 10.1210/endocr/bqz028] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) mediates the first steps of protein assembly within the secretory pathway and is the site where protein folding and quality control are initiated. The storage and release of Ca2+ are critical physiological functions of the ER. Disrupted ER homeostasis activates the unfolded protein response (UPR), a pathway which attempts to restore cellular equilibrium in the face of ER stress. Unremitting ER stress, and insufficient compensation for it results in beta-cell apoptosis, a process that has been linked to both type 1 diabetes (T1D) and type 2 diabetes (T2D). Both types are characterized by progressive beta-cell failure and a loss of beta-cell mass, although the underlying causes are different. The reduction of mass occurs secondary to apoptosis in the case of T2D, while beta cells undergo autoimmune destruction in T1D. In this review, we examine recent findings that link the UPR pathway and ER Ca2+ to beta cell dysfunction. We also discuss how UPR activation in beta cells favors cell survival versus apoptosis and death, and how ER protein chaperones are involved in regulating ER Ca2+ levels. Abbreviations: BiP, Binding immunoglobulin Protein ER; endoplasmic reticulum; ERAD, ER-associated protein degradation; IFN, interferon; IL, interleukin; JNK, c-Jun N-terminal kinase; KHE, proton-K+ exchanger; MODY, maturity-onset diabetes of young; PERK, PRKR-like ER kinase; SERCA, Sarco/Endoplasmic Reticulum Ca2+-ATPases; T1D, type 1 diabetes; T2D, type 2 diabetes; TNF, tumor necrosis factor; UPR, unfolded protein response; WRS, Wolcott-Rallison syndrome.
Collapse
Affiliation(s)
- Irina X Zhang
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan, Ann Arbor, MI
| | - Malini Raghavan
- Department of Microbiology and Immunology Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Leslie S Satin
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
44
|
Tomas A, Jones B, Leech C. New Insights into Beta-Cell GLP-1 Receptor and cAMP Signaling. J Mol Biol 2019; 432:1347-1366. [PMID: 31446075 DOI: 10.1016/j.jmb.2019.08.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Harnessing the translational potential of the GLP-1/GLP-1R system in pancreatic beta cells has led to the development of established GLP-1R-based therapies for the long-term preservation of beta cell function. In this review, we discuss recent advances in the current research on the GLP-1/GLP-1R system in beta cells, including the regulation of signaling by endocytic trafficking as well as the application of concepts such as signal bias, allosteric modulation, dual agonism, polymorphic receptor variants, spatial compartmentalization of cAMP signaling and new downstream signaling targets involved in the control of beta cell function.
Collapse
Affiliation(s)
- Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Ben Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Colin Leech
- Department of Surgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
45
|
Tian CJ, Zhen Z. Reactive Carbonyl Species: Diabetic Complication in the Heart and Lungs. Trends Endocrinol Metab 2019; 30:546-556. [PMID: 31253519 DOI: 10.1016/j.tem.2019.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 12/28/2022]
Abstract
Abnormal chemical reactions in hyperglycemia alter normal metabolic processes in diabetes, which is a key process in the production of reactive carbonyls species (RCS). Increasing the concentration of RCS may result in carbonyl/oxidative stress in both the diabetic heart and lung. Ryanodine receptors (RyRs) not only play a key role in heart contraction, including rhythmic contraction and relaxation of the heart, but they are also important for controlling the airway smooth muscle. RCS modifies RyRs, resulting in RyRs dysfunction, which is involved in important mechanisms in diabetic complications. Very little is known about the mechanistic relationship between the heart and lung in diabetes. This review highlights new findings on the pathophysiological mechanisms and discusses potential approaches to treatment for these complications.
Collapse
Affiliation(s)
- Cheng-Ju Tian
- College of Rehabilitation and Sports Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| | - Zhong Zhen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|