1
|
Knight KM, Krumm BE, Kapolka NJ, Ludlam WG, Cui M, Mani S, Prytkova I, Obarow EG, Lefevre TJ, Wei W, Ma N, Huang XP, Fay JF, Vaidehi N, Smrcka AV, Slesinger PA, Logothetis DE, Martemyanov KA, Roth BL, Dohlman HG. A neurodevelopmental disorder mutation locks G proteins in the transitory pre-activated state. Nat Commun 2024; 15:6643. [PMID: 39103320 PMCID: PMC11300612 DOI: 10.1038/s41467-024-50964-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/25/2024] [Indexed: 08/07/2024] Open
Abstract
Many neurotransmitter receptors activate G proteins through exchange of GDP for GTP. The intermediate nucleotide-free state has eluded characterization, due largely to its inherent instability. Here we characterize a G protein variant associated with a rare neurological disorder in humans. GαoK46E has a charge reversal that clashes with the phosphate groups of GDP and GTP. As anticipated, the purified protein binds poorly to guanine nucleotides yet retains wild-type affinity for G protein βγ subunits. In cells with physiological concentrations of nucleotide, GαoK46E forms a stable complex with receptors and Gβγ, impeding effector activation. Further, we demonstrate that the mutant can be easily purified in complex with dopamine-bound D2 receptors, and use cryo-electron microscopy to determine the structure, including both domains of Gαo, without nucleotide or stabilizing nanobodies. These findings reveal the molecular basis for the first committed step of G protein activation, establish a mechanistic basis for a neurological disorder, provide a simplified strategy to determine receptor-G protein structures, and a method to detect high affinity agonist binding in cells.
Collapse
Affiliation(s)
- Kevin M Knight
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Brian E Krumm
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholas J Kapolka
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - W Grant Ludlam
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Meng Cui
- Department of Pharmaceutical Sciences Northeastern University, Boston, MA, USA
| | - Sepehr Mani
- Department of Pharmaceutical Sciences Northeastern University, Boston, MA, USA
| | - Iya Prytkova
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elizabeth G Obarow
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tyler J Lefevre
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Wenyuan Wei
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan F Fay
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Alan V Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Paul A Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Kirill A Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Henrik G Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Rajkumar RP. Potassium channels in animal models of post-traumatic stress disorder: mechanistic and therapeutic implications. Front Cell Neurosci 2024; 18:1441514. [PMID: 39139400 PMCID: PMC11319181 DOI: 10.3389/fncel.2024.1441514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Affiliation(s)
- Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| |
Collapse
|
3
|
Nguyen H, Glaaser IW, Slesinger PA. Direct modulation of G protein-gated inwardly rectifying potassium (GIRK) channels. Front Physiol 2024; 15:1386645. [PMID: 38903913 PMCID: PMC11187414 DOI: 10.3389/fphys.2024.1386645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/08/2024] [Indexed: 06/22/2024] Open
Abstract
Ion channels play a pivotal role in regulating cellular excitability and signal transduction processes. Among the various ion channels, G-protein-coupled inwardly rectifying potassium (GIRK) channels serve as key mediators of neurotransmission and cellular responses to extracellular signals. GIRK channels are members of the larger family of inwardly-rectifying potassium (Kir) channels. Typically, GIRK channels are activated via the direct binding of G-protein βγ subunits upon the activation of G-protein-coupled receptors (GPCRs). GIRK channel activation requires the presence of the lipid signaling molecule, phosphatidylinositol 4,5-bisphosphate (PIP2). GIRK channels are also modulated by endogenous proteins and other molecules, including RGS proteins, cholesterol, and SNX27 as well as exogenous compounds, such as alcohol. In the last decade or so, several groups have developed novel drugs and small molecules, such as ML297, GAT1508 and GiGA1, that activate GIRK channels in a G-protein independent manner. Here, we aim to provide a comprehensive overview focusing on the direct modulation of GIRK channels by G-proteins, PIP2, cholesterol, and novel modulatory compounds. These studies offer valuable insights into the underlying molecular mechanisms of channel function, and have potential implications for both basic research and therapeutic development.
Collapse
Affiliation(s)
| | | | - Paul A. Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
4
|
Chen IS, Yasuda J, Notomi T, Nakamura TY. Licorice metabolite 18β-glycyrrhetinic acid activates G protein-gated inwardly rectifying K + channels. Br J Pharmacol 2024; 181:447-463. [PMID: 37642133 DOI: 10.1111/bph.16228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Licorice (liquorice) is a common food additive and is used in Chinese medicine. Excess licorice intake can induce atrial fibrillation. Patients with atrial fibrillation possess constitutively activated G protein-gated inwardly rectifying K+ (GIRK) channels. Whether licorice affects GIRK channel activity is unknown. We aimed to clarify the effects of licorice ingredients on GIRK current and the mechanism of action. EXPERIMENTAL APPROACH A major component of licorice, glycyrrhizic acid (GA), and its metabolite, 18β-glycyrrhetinic acid (18β-GA), were tested. We performed electrophysiological recordings in Xenopus oocytes to examine the effects of GA and 18β-GA on various GIRK subunits (Kir 3.1-Kir 3.4), mutagenesis analyses to identify the crucial residues for drug action and motion analysis in cultured rat atrial myocytes to clarify effects of 18β-GA on atrial functions. KEY RESULTS GA inhibited Kir 3.1-containing channels, while 18β-GA activated all Kir 3.x subunits. A pore helix residue Phe137 in Kir 3.1 was critical for GA-mediated inhibition, and the corresponding Ser148 in Kir 3.2 was critical for 18β-GA-mediated activation. 18β-GA activated GIRK channel in a Gβγ -independent manner, whereas phosphatidylinositol 4,5-bisphosphate (PIP2 ) was essential for activation. Glu236 located at the cytoplasmic pore of Kir 3.2 appeared to be important to interactions with 18β-GA. In rat atrial myocytes, 18β-GA suppressed spontaneous beating via activation of GIRK channels. CONCLUSION AND IMPLICATIONS GA acts as a novel GIRK inhibitor, and 18β-GA acts as a novel GIRK activator. 18β-GA alters atrial function via activation of GIRK channels. This study elucidates the pharmacological activity of licorice ingredients and provides information for drug design.
Collapse
Affiliation(s)
- I-Shan Chen
- Department of Pharmacology, Faculty of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Jumpei Yasuda
- Department of Pharmacology, Faculty of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takuya Notomi
- Department of Pharmacology, Faculty of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Tomoe Y Nakamura
- Department of Pharmacology, Faculty of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
5
|
Pitsillou E, Logothetis ANO, Liang JJ, El-Osta A, Hung A, AbuMaziad AS, Karagiannis TC. Identification of Potential Modulators of a Pathogenic G Protein-Gated Inwardly Rectifying K + Channel 4 Mutant: In Silico Investigation in the Context of Drug Discovery for Hypertension. Molecules 2023; 28:7946. [PMID: 38138436 PMCID: PMC10745636 DOI: 10.3390/molecules28247946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Genetic abnormalities have been associated with primary aldosteronism, a major cause of secondary hypertension. This includes mutations in the KCNJ5 gene, which encodes G protein-gated inwardly rectifying K+ channel 4 (GIRK4). For example, the substitution of glycine with glutamic acid gives rise to the pathogenic GIRK4G151E mutation, which alters channel selectivity, making it more permeable to Na+ and Ca2+. While tertiapin and tertiapin-Q are well-known peptide inhibitors of the GIRK4WT channel, clinically, there is a need for the development of selective modulators of mutated channels, including GIRK4G151E. Using in silico methods, including homology modeling, protein-peptide docking, ligand-binding site prediction, and molecular docking, we aimed to explore potential modulators of GIRK4WT and GIRK4G151E. Firstly, protein-peptide docking was performed to characterize the binding site of tertiapin and its derivative to the GIRK4 channels. In accordance with previous studies, the peptide inhibitors preferentially bind to the GIRK4WT channel selectivity filter compared to GIRK4G151E. A ligand-binding site analysis was subsequently performed, resulting in the identification of two potential regions of interest: the central cavity and G-loop gate. Utilizing curated chemical libraries, we screened over 700 small molecules against the central cavity of the GIRK4 channels. Flavonoids, including luteolin-7-O-rutinoside and rutin, and the macrolides rapamycin and troleandomycin bound strongly to the GIRK4 channels. Similarly, xanthophylls, particularly luteoxanthin, bound to the central cavity with a strong preference towards the mutated GIRK4G151E channel compared to GIRK4WT. Overall, our findings suggest potential lead compounds for further investigation, particularly luteoxanthin, that may selectively modulate GIRK4 channels.
Collapse
Affiliation(s)
- Eleni Pitsillou
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Alexander N. O. Logothetis
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Julia J. Liang
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, 3/F Lui Che Woo Clinical Sciences Building, 30-32 Ngan Shing Street, Sha Tin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
- Biomedical Laboratory Science, Department of Technology, Faculty of Health, University College Copenhagen, 1799 Copenhagen, Denmark
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Asmaa S. AbuMaziad
- Department of Pediatrics, College of Medicine Tucson, The University of Arizona, Tucson, AZ 85724, USA
| | - Tom C. Karagiannis
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
6
|
Gada KD, Kamuene JM, Chandrashekar A, Kissell RC, Yauch AK, Plant LD. PI(4,5)P2 regulates the gating of NaV1.4 channels. J Gen Physiol 2023; 155:e202213255. [PMID: 37043561 PMCID: PMC10103707 DOI: 10.1085/jgp.202213255] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/22/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Voltage-gated sodium (NaV) channels are densely expressed in most excitable cells and activate in response to depolarization, causing a rapid influx of Na+ ions that initiates the action potential. The voltage-dependent activation of NaV channels is followed almost instantaneously by fast inactivation, setting the refractory period of excitable tissues. The gating cycle of NaV channels is subject to tight regulation, with perturbations leading to a range of pathophysiological states. The gating properties of most ion channels are regulated by the membrane phospholipid, phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2). However, it is not known whether PI(4,5)P2 modulates the activity of NaV channels. Here, we utilize optogenetics to activate specific, membrane-associated phosphoinositide (PI)-phosphatases that dephosphorylate PI(4,5)P2 while simultaneously recording NaV1.4 channel currents. We show that dephosphorylating PI(4,5)P2 left-shifts the voltage-dependent gating of NaV1.4 to more hyperpolarized membrane potentials, augments the late current that persists after fast inactivation, and speeds the rate at which channels recover from fast inactivation. These effects are opposed by exogenous diC8PI(4,5)P2. We provide evidence that PI(4,5)P2 is a negative regulator that tunes the gating behavior of NaV1.4 channels.
Collapse
Affiliation(s)
- Kirin D. Gada
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Jordie M. Kamuene
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Aishwarya Chandrashekar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - R. Charles Kissell
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Anne K. Yauch
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Leigh D. Plant
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| |
Collapse
|
7
|
Gada KD, Chang M, Chandrashekar A, Plant LD, Noujaim SF, Logothetis DE. Mechanism of PKCε regulation of cardiac GIRK channel gating. Proc Natl Acad Sci U S A 2023; 120:e2212325120. [PMID: 36584301 PMCID: PMC9910474 DOI: 10.1073/pnas.2212325120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/09/2022] [Indexed: 12/31/2022] Open
Abstract
G-protein-gated inwardly rectifying potassium (GIRK) channel activity is regulated by the membrane phospholipid, phosphatidylinositol-4,5-bisphosphate (PI 4,5P2). Constitutive activity of cardiac GIRK channels in atrial myocytes, that is implicated in atrial fibrillation (AF), is mediated via a protein kinase C-ε (PKCε)-dependent mechanism. The novel PKC isoform, PKCε, is reported to enhance the activity of cardiac GIRK channels. Here, we report that PKCε stimulation leads to activation of GIRK channels in mouse atria and in human stem cell-derived atrial cardiomyocytes (iPSCs). We identified residue GIRK4(S418) which when mutated to Ala abolished, or to Glu, mimicked the effects of PKCε on GIRK currents. PKCε strengthened the interactions of the cardiac GIRK isoforms, GIRK4 and GIRK1/4 with PIP2, an effect that was reversed in the GIRK4(S418A) mutant. This mechanistic insight into the PKCε-mediated increase in channel activity because of GIRK4(S418) phosphorylation, provides a precise druggable target to reverse AF-related pathologies due to GIRK overactivity.
Collapse
Affiliation(s)
- Kirin D. Gada
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, MA02115
| | - Mengmeng Chang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL33602
| | - Aishwarya Chandrashekar
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, MA02115
| | - Leigh D. Plant
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, MA02115
- Center for Drug Discovery, Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, MA02115
| | - Sami F. Noujaim
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL33602
| | - Diomedes E. Logothetis
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, MA02115
- Center for Drug Discovery, Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, MA02115
- Department of Chemistry and Chemical Biology, Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, MA02115
| |
Collapse
|
8
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
9
|
Gazgalis D, Cantwell L, Xu Y, Thakur GA, Cui M, Guarnieri F, Logothetis DE. Use of a Molecular Switch Probe to Activate or Inhibit GIRK1 Heteromers In Silico Reveals a Novel Gating Mechanism. Int J Mol Sci 2022; 23:ijms231810820. [PMID: 36142730 PMCID: PMC9502415 DOI: 10.3390/ijms231810820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/16/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
G protein-gated inwardly rectifying K+ (GIRK) channels form highly active heterotetramers in the body, such as in neurons (GIRK1/GIRK2 or GIRK1/2) and heart (GIRK1/GIRK4 or GIRK1/4). Based on three-dimensional atomic resolution structures for GIRK2 homotetramers, we built heterotetrameric GIRK1/2 and GIRK1/4 models in a lipid bilayer environment. By employing a urea-based activator ML297 and its molecular switch, the inhibitor GAT1587, we captured channel gating transitions and K+ ion permeation in sub-microsecond molecular dynamics (MD) simulations. This allowed us to monitor the dynamics of the two channel gates (one transmembrane and one cytosolic) as well as their control by the required phosphatidylinositol bis 4-5-phosphate (PIP2). By comparing differences in the two trajectories, we identify three hydrophobic residues in the transmembrane domain 1 (TM1) of GIRK1, namely, F87, Y91, and W95, which form a hydrophobic wire induced by ML297 and de-induced by GAT1587 to orchestrate channel gating. This includes bending of the TM2 and alignment of a dipole of two acidic GIRK1 residues (E141 and D173) in the permeation pathway to facilitate K+ ion conduction. Moreover, the TM movements drive the movement of the Slide Helix relative to TM1 to adjust interactions of the CD-loop that controls the gating of the cytosolic gate. The simulations reveal that a key basic residue that coordinates PIP2 to stabilize the pre-open and open states of the transmembrane gate flips in the inhibited state to form a direct salt-bridge interaction with the cytosolic gate and destabilize its open state.
Collapse
Affiliation(s)
- Dimitrios Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Boston, MA 02115, USA
| | - Lucas Cantwell
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Boston, MA 02115, USA
| | - Yu Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Boston, MA 02115, USA
| | - Ganesh A. Thakur
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Boston, MA 02115, USA
| | - Meng Cui
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Boston, MA 02115, USA
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Frank Guarnieri
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Diomedes E. Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Boston, MA 02115, USA
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
- Department of Chemistry and Chemical Biology, College of Science, Boston, MA 02115, USA
- Roux Institute, Northeastern University, Portland, ME 04101, USA
- Correspondence:
| |
Collapse
|
10
|
Xu Y, Yang Y, Chandrashekar A, Gada KD, Masotti M, Baggetta AM, Connolly JG, Kawano T, Plant LD. Hypoxia inhibits the cardiac I K1 current through SUMO targeting Kir2.1 activation by PIP 2. iScience 2022; 25:104969. [PMID: 36060074 PMCID: PMC9437851 DOI: 10.1016/j.isci.2022.104969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/07/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Cardiovascular diseases remain the leading cause of death worldwide. Most deaths are sudden and occur secondary to the occlusion of coronary arteries resulting in a rapid decrease in cellular oxygen levels. Acute hypoxia is proarrhythmic, leading to disordered electrical signals, conduction block, and uncoordinated beating of the myocardium. Although acute hypoxia is recognized to perturb the electrophysiology of heart muscle, the mechanistic basis for the effect has remained elusive, hampering the development of targeted therapeutic interventions. Here, we show that acute hypoxia activates the redox-sensitive SUMO pathway in cardiomyocytes, causing rapid inhibition of the inward-rectifying K+ channel, Kir2.1. We find that SUMOylation decreases the activation of Kir2.1 channels by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). These data provide a mechanistic basis for the proarrhythmic effects of acute hypoxia and offer a framework for understanding the central role of PIP2 in mediating the sequelae of hypoxia and SUMOylation in cardiovascular disease.
Collapse
Affiliation(s)
- Yu Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Yuchen Yang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Aishwarya Chandrashekar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Kirin D. Gada
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Meghan Masotti
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Austin M. Baggetta
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Jenna G. Connolly
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Takeharu Kawano
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Leigh D. Plant
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| |
Collapse
|
11
|
Luo H, Marron Fernandez de Velasco E, Wickman K. Neuronal G protein-gated K + channels. Am J Physiol Cell Physiol 2022; 323:C439-C460. [PMID: 35704701 PMCID: PMC9362898 DOI: 10.1152/ajpcell.00102.2022] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels exert a critical inhibitory influence on neurons. Neuronal GIRK channels mediate the G protein-dependent, direct/postsynaptic inhibitory effect of many neurotransmitters including γ-aminobutyric acid (GABA), serotonin, dopamine, adenosine, somatostatin, and enkephalin. In addition to their complex regulation by G proteins, neuronal GIRK channel activity is sensitive to PIP2, phosphorylation, regulator of G protein signaling (RGS) proteins, intracellular Na+ and Ca2+, and cholesterol. The application of genetic and viral manipulations in rodent models, together with recent progress in the development of GIRK channel modulators, has increased our understanding of the physiological and behavioral impact of neuronal GIRK channels. Work in rodent models has also revealed that neuronal GIRK channel activity is modified, transiently or persistently, by various stimuli including exposure drugs of abuse, changes in neuronal activity patterns, and aversive experience. A growing body of preclinical and clinical evidence suggests that dysregulation of GIRK channel activity contributes to neurological diseases and disorders. The primary goals of this review are to highlight fundamental principles of neuronal GIRK channel biology, mechanisms of GIRK channel regulation and plasticity, the nascent landscape of GIRK channel pharmacology, and the potential relevance of GIRK channels to the pathophysiology and treatment of neurological diseases and disorders.
Collapse
Affiliation(s)
- Haichang Luo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
12
|
Cui M, Xu K, Gada K, Shalomov B, Ban M, Eptaminitaki GC, Kawano T, Plant LD, Dascal N, Logothetis DE. A novel small molecule selective activator of homomeric GIRK4 channels. J Biol Chem 2022; 298:102009. [PMID: 35525275 PMCID: PMC9194863 DOI: 10.1016/j.jbc.2022.102009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022] Open
Abstract
G protein–sensitive inwardly rectifying potassium (GIRK) channels are important pharmaceutical targets for neuronal, cardiac, and endocrine diseases. Although a number of GIRK channel modulators have been discovered in recent years, most lack selectivity. GIRK channels function as either homomeric (i.e., GIRK2 and GIRK4) or heteromeric (e.g., GIRK1/2, GIRK1/4, and GIRK2/3) tetramers. Activators, such as ML297, ivermectin, and GAT1508, have been shown to activate heteromeric GIRK1/2 channels better than GIRK1/4 channels with varying degrees of selectivity but not homomeric GIRK2 and GIRK4 channels. In addition, VU0529331 was discovered as the first homomeric GIRK channel activator, but it shows weak selectivity for GIRK2 over GIRK4 (or G4) homomeric channels. Here, we report the first highly selective small-molecule activator targeting GIRK4 homomeric channels, 3hi2one-G4 (3-[2-(3,4-dimethoxyphenyl)-2-oxoethyl]-3-hydroxy-1-(1-naphthylmethyl)-1,3-dihydro-2H-indol-2-one). We show that 3hi2one-G4 does not activate GIRK2, GIRK1/2, or GIRK1/4 channels. Using molecular modeling, mutagenesis, and electrophysiology, we analyzed the binding site of 3hi2one-G4 formed by the transmembrane 1, transmembrane 2, and slide helix regions of the GIRK4 channel, near the phosphatidylinositol-4,5-bisphosphate binding site, and show that it causes channel activation by strengthening channel–phosphatidylinositol-4,5-bisphosphate interactions. We also identify slide helix residue L77 in GIRK4, corresponding to residue I82 in GIRK2, as a major determinant of isoform-specific selectivity. We propose that 3hi2one-G4 could serve as a useful pharmaceutical probe in studying GIRK4 channel function and may also be pursued in drug optimization studies to tackle GIRK4-related diseases such as primary aldosteronism and late-onset obesity.
Collapse
Affiliation(s)
- Meng Cui
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, 02115, USA; Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA.
| | - Keman Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, 02115, USA
| | - Kirin Gada
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, 02115, USA
| | - Boris Shalomov
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Michelle Ban
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, 02115, USA
| | - Giasemi C Eptaminitaki
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, 02115, USA
| | - Takeharu Kawano
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, 02115, USA
| | - Leigh D Plant
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, 02115, USA; Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Nathan Dascal
- Department of Physiology and Pharmacology and Sagol School of Neuroscience, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, 02115, USA; Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA 02115, USA; Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Gada KD, Kawano T, Plant LD, Logothetis DE. An optogenetic tool to recruit individual PKC isozymes to the cell surface and promote specific phosphorylation of membrane proteins. J Biol Chem 2022; 298:101893. [PMID: 35367414 PMCID: PMC9062429 DOI: 10.1016/j.jbc.2022.101893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 12/30/2022] Open
Abstract
The PKC family consists of several closely related kinases. These enzymes regulate the function of proteins through the phosphorylation of hydroxyl groups on serines and/or threonines. The selective activation of individual PKC isozymes has proven challenging because of a lack of specific activator molecules. Here, we developed an optogenetic blue light-activated PKC isozyme that harnesses a plant-based dimerization system between the photosensitive cryptochrome-2 (CRY2) and the N terminus of the transcription factor calcium and integrin-binding protein 1 (CIB1) (N-terminal region of the CRY2-binding domain of CIB1). We show that tagging CRY2 with the catalytic domain of PKC isozymes can efficiently promote its translocation to the cell surface upon blue light exposure. We demonstrate this system using PKCε and show that this leads to robust activation of a K+ channel (G protein-gated inwardly rectifying K+ channels 1 and 4), previously shown to be activated by PKCε. We anticipate that this approach can be utilized for other PKC isoforms to provide a reliable and direct stimulus for targeted membrane protein phosphorylation by the relevant PKCs.
Collapse
Affiliation(s)
- Kirin D Gada
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, Massachusetts, USA
| | - Takeharu Kawano
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, Massachusetts, USA
| | - Leigh D Plant
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, Massachusetts, USA; Center for Drug Discovery, Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, Massachusetts, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, Massachusetts, USA; Center for Drug Discovery, Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, Massachusetts, USA; Department of Chemistry and Chemical Biology, Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, Massachusetts, USA.
| |
Collapse
|
14
|
Ferré S, Ciruela F, Dessauer CW, González-Maeso J, Hébert TE, Jockers R, Logothetis DE, Pardo L. G protein-coupled receptor-effector macromolecular membrane assemblies (GEMMAs). Pharmacol Ther 2022; 231:107977. [PMID: 34480967 PMCID: PMC9375844 DOI: 10.1016/j.pharmthera.2021.107977] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest group of receptors involved in cellular signaling across the plasma membrane and a major class of drug targets. The canonical model for GPCR signaling involves three components - the GPCR, a heterotrimeric G protein and a proximal plasma membrane effector - that have been generally thought to be freely mobile molecules able to interact by 'collision coupling'. Here, we synthesize evidence that supports the existence of GPCR-effector macromolecular membrane assemblies (GEMMAs) comprised of specific GPCRs, G proteins, plasma membrane effector molecules and other associated transmembrane proteins that are pre-assembled prior to receptor activation by agonists, which then leads to subsequent rearrangement of the GEMMA components. The GEMMA concept offers an alternative and complementary model to the canonical collision-coupling model, allowing more efficient interactions between specific signaling components, as well as the integration of the concept of GPCR oligomerization as well as GPCR interactions with orphan receptors, truncated GPCRs and other membrane-localized GPCR-associated proteins. Collision-coupling and pre-assembled mechanisms are not exclusive and likely both operate in the cell, providing a spectrum of signaling modalities which explains the differential properties of a multitude of GPCRs in their different cellular environments. Here, we explore the unique pharmacological characteristics of individual GEMMAs, which could provide new opportunities to therapeutically modulate GPCR signaling.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Addiction, Intramural Research Program, NIH, DHHS, Baltimore, MD, USA.
| | - Francisco Ciruela
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBELL, University of Barcelona, L’Hospitalet de Llobregat, Spain
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Terence E. Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec
| | - Ralf Jockers
- University of Paris, Institute Cochin, INSERM, CNRS, Paris, France
| | - Diomedes E. Logothetis
- Laboratory of Electrophysiology, Departments of Pharmaceutical Sciences, Chemistry and Chemical Biology and Center for Drug Discovery, School of Pharmacy at the Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, Massachusetts, USA
| | - Leonardo Pardo
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| |
Collapse
|
15
|
AsKC11, a Kunitz Peptide from Anemonia sulcata, Is a Novel Activator of G Protein-Coupled Inward-Rectifier Potassium Channels. Mar Drugs 2022; 20:md20020140. [PMID: 35200669 PMCID: PMC8876855 DOI: 10.3390/md20020140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: G protein-coupled inward-rectifier potassium (GIRK) channels, especially neuronal GIRK1/2 channels, have been the focus of intense research interest for developing drugs against brain diseases. In this context, venom peptides that selectively activate GIRK channels can be seen as a new source for drug development. Here, we report on the identification and electrophysiological characterization of a novel activator of GIRK1/2 channels, AsKC11, found in the venom of the sea anemone Anemonia sulcata. (2) Methods: AsKC11 was purified from the sea anemone venom by reverse-phase chromatography and the sequence was identified by mass spectrometry. Using the two-electrode voltage-clamp technique, the activity of AsKC11 on GIRK1/2 channels was studied and its selectivity for other potassium channels was investigated. (3) Results: AsKC11, a Kunitz peptide found in the venom of A. sulcata, is the first peptide shown to directly activate neuronal GIRK1/2 channels independent from Gi/o protein activity, without affecting the inward-rectifier potassium channel (IRK1) and with only a minor effect on KV1.6 channels. Thus, AsKC11 is a novel activator of GIRK channels resulting in larger K+ currents because of an increased chord conductance. (4) Conclusions: These discoveries provide new insights into a novel class of GIRK activators.
Collapse
|
16
|
Anderson A, Vo BN, Marron Fernandez de Velasco E, Hopkins CR, Weaver CD, Wickman K. Characterization of VU0468554, a New Selective Inhibitor of Cardiac G Protein-Gated Inwardly Rectifying K + Channels. Mol Pharmacol 2021; 100:540-547. [PMID: 34503975 PMCID: PMC8626782 DOI: 10.1124/molpharm.121.000311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022] Open
Abstract
G protein-gated inwardly rectifying K+ (GIRK) channels are critical mediators of excitability in the heart and brain. Enhanced GIRK-channel activity has been implicated in the pathogenesis of supraventricular arrhythmias, including atrial fibrillation. The lack of selective pharmacological tools has impeded efforts to investigate the therapeutic potential of cardiac GIRK-channel interventions in arrhythmias. Here, we characterize a recently identified GIRK-channel inhibitor, VU0468554. Using whole-cell electrophysiological approaches and primary cultures of sinoatrial nodal cells and hippocampal neurons, we show that VU0468554 more effectively inhibits the cardiac GIRK channel than the neuronal GIRK channel. Concentration-response experiments suggest that VU0468554 inhibits Gβγ-activated GIRK channels in noncompetitive and potentially uncompetitive fashion. In contrast, VU0468554 competitively inhibits GIRK-channel activation by ML297, a GIRK-channel activator containing the same chemical scaffold as VU0468554. In the isolated heart model, VU0468554 partially reversed carbachol-induced bradycardia in hearts from wild-type mice but not Girk4-/- mice. Collectively, these data suggest that VU0468554 represents a promising new pharmacological tool for targeting cardiac GIRK channels with therapeutic implications for relevant cardiac arrhythmias. SIGNIFICANCE STATEMENT: Although cardiac GIRK-channel inhibition shows promise for the treatment of supraventricular arrhythmias, the absence of subtype-selective channel inhibitors has hindered exploration into this therapeutic strategy. This study utilizes whole-cell patch-clamp electrophysiology to characterize the new GIRK-channel inhibitor VU0468554 in human embryonic kidney 293T cells and primary cultures. We report that VU0468554 exhibits a favorable pharmacodynamic profile for cardiac over neuronal GIRK channels and partially reverses GIRK-mediated bradycardia in the isolated mouse heart model.
Collapse
Affiliation(s)
- Allison Anderson
- Graduate Program in Pharmacology (A.A., B.N.V.) and Department of Pharmacology (E.M.F.d.V., K.W.), University of Minnesota, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.); and Departments of Pharmacology and Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (C.D.W.)
| | - Baovi N Vo
- Graduate Program in Pharmacology (A.A., B.N.V.) and Department of Pharmacology (E.M.F.d.V., K.W.), University of Minnesota, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.); and Departments of Pharmacology and Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (C.D.W.)
| | - Ezequiel Marron Fernandez de Velasco
- Graduate Program in Pharmacology (A.A., B.N.V.) and Department of Pharmacology (E.M.F.d.V., K.W.), University of Minnesota, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.); and Departments of Pharmacology and Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (C.D.W.)
| | - Corey R Hopkins
- Graduate Program in Pharmacology (A.A., B.N.V.) and Department of Pharmacology (E.M.F.d.V., K.W.), University of Minnesota, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.); and Departments of Pharmacology and Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (C.D.W.)
| | - C David Weaver
- Graduate Program in Pharmacology (A.A., B.N.V.) and Department of Pharmacology (E.M.F.d.V., K.W.), University of Minnesota, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.); and Departments of Pharmacology and Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (C.D.W.)
| | - Kevin Wickman
- Graduate Program in Pharmacology (A.A., B.N.V.) and Department of Pharmacology (E.M.F.d.V., K.W.), University of Minnesota, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.); and Departments of Pharmacology and Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (C.D.W.)
| |
Collapse
|
17
|
Sharma S, Lesiak L, Aretz CD, Du Y, Kumar S, Gautam N, Alnouti Y, Dhuria NV, Chhonker YS, Weaver CD, Hopkins CR. Discovery, synthesis and biological characterization of a series of N-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1 H-pyrazol-5-yl)acetamide ethers as novel GIRK1/2 potassium channel activators. RSC Med Chem 2021; 12:1366-1373. [PMID: 34458739 PMCID: PMC8372201 DOI: 10.1039/d1md00129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023] Open
Abstract
The present study describes the discovery and characterization of a series of N-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1H-pyrazol-5-yl)acetamide ethers as G protein-gated inwardly-rectifying potassium (GIRK) channel activators. From our previous lead optimization efforts, we have identified a new ether-based scaffold and paired this with a novel sulfone-based head group to identify a potent and selective GIRK1/2 activator. In addition, we evaluated the compounds in tier 1 DMPK assays and have identified compounds that display nanomolar potency as GIRK1/2 activators with improved metabolic stability over the prototypical urea-based compounds.
Collapse
Affiliation(s)
- Swagat Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Lauren Lesiak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Christopher D Aretz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Yu Du
- Department of Pharmacology, Vanderbilt University School of Medicine Nashville TN 37232 USA
| | - Sushil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Nikilesh V Dhuria
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - C David Weaver
- Department of Pharmacology, Vanderbilt University School of Medicine Nashville TN 37232 USA
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| |
Collapse
|
18
|
Kir Channel Molecular Physiology, Pharmacology, and Therapeutic Implications. Handb Exp Pharmacol 2021; 267:277-356. [PMID: 34345939 DOI: 10.1007/164_2021_501] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
For the past two decades several scholarly reviews have appeared on the inwardly rectifying potassium (Kir) channels. We would like to highlight two efforts in particular, which have provided comprehensive reviews of the literature up to 2010 (Hibino et al., Physiol Rev 90(1):291-366, 2010; Stanfield et al., Rev Physiol Biochem Pharmacol 145:47-179, 2002). In the past decade, great insights into the 3-D atomic resolution structures of Kir channels have begun to provide the molecular basis for their functional properties. More recently, computational studies are beginning to close the time domain gap between in silico dynamic and patch-clamp functional studies. The pharmacology of these channels has also been expanding and the dynamic structural studies provide hope that we are heading toward successful structure-based drug design for this family of K+ channels. In the present review we focus on placing the physiology and pharmacology of this K+ channel family in the context of atomic resolution structures and in providing a glimpse of the promising future of therapeutic opportunities.
Collapse
|
19
|
Ningoo M, Plant LD, Greka A, Logothetis DE. PIP 2 regulation of TRPC5 channel activation and desensitization. J Biol Chem 2021; 296:100726. [PMID: 33933453 PMCID: PMC8191310 DOI: 10.1016/j.jbc.2021.100726] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 10/27/2022] Open
Abstract
Transient receptor potential canonical type 5 (TRPC5) ion channels are expressed in the brain and kidney and have been identified as promising therapeutic targets whose selective inhibition can protect against diseases driven by a leaky kidney filter, such as focal segmental glomerular sclerosis. TRPC5 channels are activated not only by elevated levels of extracellular Ca2+or lanthanide ions but also by G protein (Gq/11) stimulation. Phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis by phospholipase C enzymes leads to PKC-mediated phosphorylation of TRPC5 channels and their subsequent desensitization. However, the roles of PIP2 in activation and maintenance of TRPC5 channel activity via its hydrolysis product diacyl glycerol (DAG), as well as the mechanism of desensitization of TRPC5 activity by DAG-stimulated PKC activity, remain unclear. Here, we designed experiments to distinguish between the processes underlying channel activation and inhibition. Employing whole-cell patch-clamp, we used an optogenetic tool to dephosphorylate PIP2 and assess channel-PIP2 interactions influenced by activators, such as DAG, or inhibitors, such as PKC phosphorylation. Using total internal reflection microscopy, we assessed channel cell surface density. We show that PIP2 controls both the PKC-mediated inhibition and the DAG- and lanthanide-mediated activation of TRPC5 currents via control of gating rather than channel cell surface density. These mechanistic insights promise to aid in the development of more selective and precise inhibitors to block TRPC5 channel activity and illuminate new opportunities for targeted therapies for a group of chronic kidney diseases for which there is currently a great unmet need.
Collapse
Affiliation(s)
- Mehek Ningoo
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Leigh D Plant
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA; Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA
| | - Anna Greka
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA; Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA; Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, Massachusetts, USA.
| |
Collapse
|
20
|
Weaver CD, Denton JS. Next-generation inward rectifier potassium channel modulators: discovery and molecular pharmacology. Am J Physiol Cell Physiol 2021; 320:C1125-C1140. [PMID: 33826405 DOI: 10.1152/ajpcell.00548.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inward rectifying potassium (Kir) channels play important roles in both excitable and nonexcitable cells of various organ systems and could represent valuable new drug targets for cardiovascular, metabolic, immune, and neurological diseases. In nonexcitable epithelial cells of the kidney tubule, for example, Kir1.1 (KCNJ1) and Kir4.1 (KCNJ10) are linked to sodium reabsorption in the thick ascending limb of Henle's loop and distal convoluted tubule, respectively, and have been explored as novel-mechanism diuretic targets for managing hypertension and edema. G protein-coupled Kir channels (Kir3) channels expressed in the central nervous system are critical effectors of numerous signal transduction pathways underlying analgesia, addiction, and respiratory-depressive effects of opioids. The historical dearth of pharmacological tool compounds for exploring the therapeutic potential of Kir channels has led to a molecular target-based approach using high-throughput screen (HTS) of small-molecule libraries and medicinal chemistry to develop "next-generation" Kir channel modulators that are both potent and specific for their targets. In this article, we review recent efforts focused specifically on discovery and improvement of target-selective molecular probes. The reader is introduced to fluorescence-based thallium flux assays that have enabled much of this work and then provided with an overview of progress made toward developing modulators of Kir1.1 (VU590, VU591), Kir2.x (ML133), Kir3.X (ML297, GAT1508, GiGA1, VU059331), Kir4.1 (VU0134992), and Kir7.1 (ML418). We discuss what is known about the small molecules' molecular mechanisms of action, in vitro and in vivo pharmacology, and then close with our view of what critical work remains to be done.
Collapse
Affiliation(s)
- C David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee.,Department of Chemistry, Vanderbilt University, Nashville, Tennessee.,Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee
| | - Jerod S Denton
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee.,Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee.,Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
21
|
Therapeutic potential of targeting G protein-gated inwardly rectifying potassium (GIRK) channels in the central nervous system. Pharmacol Ther 2021; 223:107808. [PMID: 33476640 DOI: 10.1016/j.pharmthera.2021.107808] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
G protein-gated inwardly rectifying potassium channels (Kir3/GirK) are important for maintaining resting membrane potential, cell excitability and inhibitory neurotransmission. Coupled to numerous G protein-coupled receptors (GPCRs), they mediate the effects of many neurotransmitters, neuromodulators and hormones contributing to the general homeostasis and particular synaptic plasticity processes, learning, memory and pain signaling. A growing number of behavioral and genetic studies suggest a critical role for the appropriate functioning of the central nervous system, as well as their involvement in many neurologic and psychiatric conditions, such as neurodegenerative diseases, mood disorders, attention deficit hyperactivity disorder, schizophrenia, epilepsy, alcoholism and drug addiction. Hence, GirK channels emerge as a very promising tool to be targeted in the current scenario where these conditions already are or will become a global public health problem. This review examines recent findings on the physiology, function, dysfunction, and pharmacology of GirK channels in the central nervous system and highlights the relevance of GirK channels as a worthful potential target to improve therapies for related diseases.
Collapse
|
22
|
Zhao Y, Gameiro-Ros I, Glaaser IW, Slesinger PA. Advances in Targeting GIRK Channels in Disease. Trends Pharmacol Sci 2021; 42:203-215. [PMID: 33468322 DOI: 10.1016/j.tips.2020.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
G protein-gated inwardly rectifying potassium (GIRK) channels are essential regulators of cell excitability in the brain. While they are implicated in a variety of neurological diseases in both human and animal model studies, their therapeutic potential has been largely untapped. Here, we review recent advances in the development of small molecule compounds that specifically modulate GIRK channels and compare them with first-generation compounds that exhibit off-target activity. We describe the method of discovery of these small molecule modulators, their chemical features, and their effects in vivo. These studies provide a promising outlook on the future development of subunit-specific GIRK modulators to regulate neuronal excitability in a brain region-specific manner.
Collapse
Affiliation(s)
- Yulin Zhao
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Isabel Gameiro-Ros
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ian W Glaaser
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paul A Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
23
|
Cui M, Alhamshari Y, Cantwell L, Ei-Haou S, Eptaminitaki GC, Chang M, Abou-Assali O, Tan H, Xu K, Masotti M, Plant LD, Thakur GA, Noujaim SF, Milnes J, Logothetis DE. A benzopyran with antiarrhythmic activity is an inhibitor of Kir3.1-containing potassium channels. J Biol Chem 2021; 296:100535. [PMID: 33713702 PMCID: PMC8086025 DOI: 10.1016/j.jbc.2021.100535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 01/20/2023] Open
Abstract
Atrial fibrillation (AF) is the most commonly diagnosed cardiac arrhythmia and is associated with increased morbidity and mortality. Currently approved AF antiarrhythmic drugs have limited efficacy and/or carry the risk of ventricular proarrhythmia. The cardiac acetylcholine activated inwardly rectifying K+ current (IKACh), composed of Kir3.1/Kir3.4 heterotetrameric and Kir3.4 homotetrameric channel subunits, is one of the best validated atrial-specific ion channels. Previous research pointed to a series of benzopyran derivatives with potential for treatment of arrhythmias, but their mechanism of action was not defined. Here, we characterize one of these compounds termed Benzopyran-G1 (BP-G1) and report that it selectively inhibits the Kir3.1 (GIRK1 or G1) subunit of the KACh channel. Homology modeling, molecular docking, and molecular dynamics simulations predicted that BP-G1 inhibits the IKACh channel by blocking the central cavity pore. We identified the unique F137 residue of Kir3.1 as the critical determinant for the IKACh-selective response to BP-G1. The compound interacts with Kir3.1 residues E141 and D173 through hydrogen bonds that proved critical for its inhibitory activity. BP-G1 effectively blocked the IKACh channel response to carbachol in an in vivo rodent model and displayed good selectivity and pharmacokinetic properties. Thus, BP-G1 is a potent and selective small-molecule inhibitor targeting Kir3.1-containing channels and is a useful tool for investigating the role of Kir3.1 heteromeric channels in vivo. The mechanism reported here could provide the molecular basis for future discovery of novel, selective IKACh channel blockers to treat atrial fibrillation with minimal side effects.
Collapse
Affiliation(s)
- Meng Cui
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA.
| | - Yaser Alhamshari
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Lucas Cantwell
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Said Ei-Haou
- Department of Cardiac Biology, Xention Ltd, Cambridge, UK
| | - Giasemi C Eptaminitaki
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Mengmeng Chang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Obada Abou-Assali
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Haozhou Tan
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Keman Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Meghan Masotti
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Leigh D Plant
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA; Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Sami F Noujaim
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - James Milnes
- Department of Cardiac Biology, Xention Ltd, Cambridge, UK
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA; Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, Massachusetts, USA; Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
| |
Collapse
|