1
|
Woodbury BM, Newcomer RL, Leroux MN, Alexandrescu AT, Teschke CM. Templated trimerization of the phage L decoration protein on capsids. Protein Sci 2025; 34:e70089. [PMID: 40100157 PMCID: PMC11917118 DOI: 10.1002/pro.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/20/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
The 134-residue phage L decoration protein (Dec) forms a capsid-stabilizing homotrimer that has an asymmetric tripod-like structure when bound to phage L capsids. The N-termini of the trimer subunits consist of spatially separated globular OB-fold domains that interact with the virions of phage L or the related phage P22. The C-termini of the trimer form a spike structure that accounts for nearly all the interactions that stabilize the trimer. A Dec mutant with the spike residues 99-134 deleted (Dec1-98) was used to demonstrate that the globular OB-fold domain folds independently of the C-terminal residues. However, Dec1-98 was unable to bind phage P22 virions, indicating the C-terminal spike is essential for stable capsid interaction. The full-length Dec trimer is disassembled into monomers by acidification to pH <2. These monomers retain the folded globular OB-fold domain structure, but the spike is unfolded. Increasing the pH of the Dec monomer solution to pH 6 allowed for slow trimer formation in vitro over the course of days. The infectious cycle of phage L is only around an hour, thereby implying Dec trimer assembly in vivo is templated by the phage capsid. The thermodynamic hypothesis holds that protein folding is determined by the amino acid sequence. Dec serves as an unusual example of an oligomeric folding step that is kinetically accelerated by a viral capsid template. The capsid templating mechanism could satisfy the flexibility needed for Dec to adapt to the unusual quasi-symmetric binding site on the mature phage L capsid.
Collapse
Affiliation(s)
- Brianna M. Woodbury
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Rebecca L. Newcomer
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Makayla N. Leroux
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Carolyn M. Teschke
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Department of ChemistryUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
2
|
Orand T, Jensen MR. Binding mechanisms of intrinsically disordered proteins: Insights from experimental studies and structural predictions. Curr Opin Struct Biol 2025; 90:102958. [PMID: 39740355 DOI: 10.1016/j.sbi.2024.102958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025]
Abstract
Advances in the characterization of intrinsically disordered proteins (IDPs) have unveiled a remarkably complex and diverse interaction landscape, including coupled folding and binding, highly dynamic complexes, multivalent interactions, and even interactions between entirely disordered proteins. Here we review recent examples of IDP binding mechanisms elucidated by experimental techniques such as nuclear magnetic resonance spectroscopy, single-molecule Förster resonance energy transfer, and stopped-flow fluorescence. These techniques provide insights into the structural details of transition pathways and complex intermediates, and they capture the dynamics of IDPs within complexes. Furthermore, we discuss the growing role of artificial intelligence, exemplified by AlphaFold, in identifying interaction sites within IDPs and predicting their bound-state structures. Our review highlights the powerful complementarity between experimental methods and artificial intelligence-based approaches in advancing our understanding of the intricate interaction landscape of IDPs.
Collapse
|
3
|
Shokhen M, Albeck A, Borisov V, Israel Y, Levy NS, Levy AP. Conformational analysis of the IQSEC2 protein by statistical thermodynamics. Curr Res Struct Biol 2024; 8:100158. [PMID: 39431217 PMCID: PMC11490877 DOI: 10.1016/j.crstbi.2024.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Mutations in the IQSEC2 gene result in severe intellectual disability, epilepsy and autism. The primary function of IQSEC2 is to serve as a guanine exchange factor (GEF) controlling the activation of ARF6 which in turn mediates membrane trafficking and synaptic connections between neurons. As IQSEC2 is a large intrinsically disordered protein little is known of the structure of the protein and how this influences its function. Understanding this structure and function relationship is critical for the development of novel therapies to treat IQSEC2 disease. We therefore sought to identify IQSEC2 conformers in unfolded and folded states and analyze how conformers differ when binding to ARF6 and thereby influence GEF catalysis. We simulated the folding process of IQSEC2 by accelerated molecular dynamics (aMD). Following the ensemble method of Gibbs, we proposed that the number of microstates in the ensemble replicating a protein macroscopic system is the total number of MD snapshots sampled on the production MD trajectory. We divided the entire range of reaction coordinate into a series of consecutive, non-overlapping bins. Thermal fluctuations of biomolecules in local equilibrium states are Gaussian in form. To predict the free energy and entropy of different conformational states using statistical thermodynamics, the density of states was estimated taking into account how many MD snapshots constitute each conformational state. IQSEC2 dimers derived from the most stable folded and unfolded conformers of IQSEC2 were generated by protein-protein docking and then used to construct IQSEC2-ARF6 encounter complexes. We suggest that IQSEC2 folding and dimerization are two competing processes that may be used by nature to regulate the process of GDP exchange on ARF6 catalyzed by IQSEC2.
Collapse
Affiliation(s)
- Michael Shokhen
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel
| | - Amnon Albeck
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel
| | - Veronika Borisov
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Yonat Israel
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Nina S. Levy
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Andrew P. Levy
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
4
|
Woodbury BM, Newcomer RL, Alexandrescu AT, Teschke CM. Templated trimerization of the phage L decoration protein on capsids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.08.611893. [PMID: 39282432 PMCID: PMC11398494 DOI: 10.1101/2024.09.08.611893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The 134-residue phage L decoration protein (Dec) forms a capsid-stabilizing homotrimer that has an asymmetric tripod-like structure when bound to phage L capsids. The N-termini of the trimer subunits consist of spatially separated globular OB-fold domains that interact with the virions of phage L or the related phage P22. The C-termini of the trimer form a three-stranded intertwined spike structure that accounts for nearly all the interactions that stabilize the trimer. A Dec mutant with the spike residues 99-134 deleted (Dec 1-98 ) was used to demonstrate that the stable globular OB-fold domain folds independently of the C-terminal residues. However, Dec 1-98 was unable to bind phage P22 virions, indicating the C-terminal spike is essential for stable capsid interaction. The full-length Dec trimer is disassembled into monomers by acidification to pH <2. These monomers retain the folded globular OB-fold domain structure, but the spike is unfolded. Increasing the pH of the Dec monomer solution to pH 6 allowed for slow trimer formation in vitro over the course of days. The infectious cycle of phage L is only around an hour, however, implying Dec trimer assembly in vivo is templated by the phage capsid. The Thermodynamic Hypothesis holds that protein folding is determined by the amino acid sequence. Dec serves as an unusual example of an oligomeric folding step that is kinetically accelerated by a viral capsid template. The capsid templating mechanism could satisfy the flexibility needed for Dec to adapt to the unusual quasi-symmetric binding site on the mature phage L capsid.
Collapse
Affiliation(s)
- Brianna M. Woodbury
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Rd, Storrs, CT, 06269-3125, USA
| | - Rebecca L. Newcomer
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Rd, Storrs, CT, 06269-3125, USA
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Rd, Storrs, CT, 06269-3125, USA
| | - Carolyn M. Teschke
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Rd, Storrs, CT, 06269-3125, USA
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Rd, Storrs, CT, 06269-3060, USA
| |
Collapse
|
5
|
Xu Q, Yang M, Ji J, Weng J, Wang W, Xu X. Impact of Nonnative Interactions on the Binding Kinetics of Intrinsically Disordered p53 with MDM2: Insights from All-Atom Simulation and Markov State Model Analysis. J Chem Inf Model 2024; 64:5219-5231. [PMID: 38916177 DOI: 10.1021/acs.jcim.3c01833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Intrinsically disordered proteins (IDPs) lack a well-defined tertiary structure but are essential players in various biological processes. Their ability to undergo a disorder-to-order transition upon binding to their partners, known as the folding-upon-binding process, is crucial for their function. One classical example is the intrinsically disordered transactivation domain (TAD) of the tumor suppressor protein p53, which quickly forms a structured α-helix after binding to its partner MDM2, with clinical significance for cancer treatment. However, the contribution of nonnative interactions between the IDP and its partner to the rapid binding kinetics, as well as their interplay with native interactions, is not well understood at the atomic level. Here, we used molecular dynamics simulation and Markov state model (MSM) analysis to study the folding-upon-binding mechanism between p53-TAD and MDM2. Our results suggest that the system progresses from the nascent encounter complex to the well-structured encounter complex and finally reaches the native complex, following an induced-fit mechanism. We found that nonnative hydrophobic and hydrogen bond interactions, combined with native interactions, effectively stabilize the nascent and well-structured encounter complexes. Among the nonnative interactions, Leu25p53-Leu54MDM2 and Leu25p53-Phe55MDM2 are particularly noteworthy, as their interaction strength is close to the optimum. Evidently, strengthening or weakening these interactions could both adversely affect the binding kinetics. Overall, our findings suggest that nonnative interactions are evolutionarily optimized to accelerate the binding kinetics of IDPs in conjunction with native interactions.
Collapse
Affiliation(s)
- Qianjun Xu
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Maohua Yang
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Jie Ji
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Jingwei Weng
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Wenning Wang
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Xin Xu
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| |
Collapse
|
6
|
Saharkhiz S, Mostafavi M, Birashk A, Karimian S, Khalilollah S, Jaferian S, Yazdani Y, Alipourfard I, Huh YS, Farani MR, Akhavan-Sigari R. The State-of-the-Art Overview to Application of Deep Learning in Accurate Protein Design and Structure Prediction. Top Curr Chem (Cham) 2024; 382:23. [PMID: 38965117 PMCID: PMC11224075 DOI: 10.1007/s41061-024-00469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/09/2024] [Indexed: 07/06/2024]
Abstract
In recent years, there has been a notable increase in the scientific community's interest in rational protein design. The prospect of designing an amino acid sequence that can reliably fold into a desired three-dimensional structure and exhibit the intended function is captivating. However, a major challenge in this endeavor lies in accurately predicting the resulting protein structure. The exponential growth of protein databases has fueled the advancement of the field, while newly developed algorithms have pushed the boundaries of what was previously achievable in structure prediction. In particular, using deep learning methods instead of brute force approaches has emerged as a faster and more accurate strategy. These deep-learning techniques leverage the vast amount of data available in protein databases to extract meaningful patterns and predict protein structures with improved precision. In this article, we explore the recent developments in the field of protein structure prediction. We delve into the newly developed methods that leverage deep learning approaches, highlighting their significance and potential for advancing our understanding of protein design.
Collapse
Affiliation(s)
- Saber Saharkhiz
- Division of Neuroscience, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Mehrnaz Mostafavi
- Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Birashk
- Department of Computer Science, The University of Texas at Dallas, Richardson, TX, USA
| | - Shiva Karimian
- Electrical and Computer Research Center, Sanandaj Azad University, Sanandaj, Iran
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sohrab Jaferian
- Goergen Institute for Data Science, University of Rochester, Rochester, NY, USA
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Yun Suk Huh
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | | | | |
Collapse
|
7
|
Aranda-Anzaldo A, Dent MAR, Segura-Anaya E, Martínez-Gómez A. Protein folding, cellular stress and cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:40-57. [PMID: 38969306 DOI: 10.1016/j.pbiomolbio.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Proteins are acknowledged as the phenotypical manifestation of the genotype, because protein-coding genes carry the information for the strings of amino acids that constitute the proteins. It is widely accepted that protein function depends on the corresponding "native" structure or folding achieved within the cell, and that native protein folding corresponds to the lowest free energy minimum for a given protein. However, protein folding within the cell is a non-deterministic dissipative process that from the same input may produce different outcomes, thus conformational heterogeneity of folded proteins is the rule and not the exception. Local changes in the intracellular environment promote variation in protein folding. Hence protein folding requires "supervision" by a host of chaperones and co-chaperones that help their client proteins to achieve the folding that is most stable according to the local environment. Such environmental influence on protein folding is continuously transduced with the help of the cellular stress responses (CSRs) and this may lead to changes in the rules of engagement between proteins, so that the corresponding protein interactome could be modified by the environment leading to an alternative cellular phenotype. This allows for a phenotypic plasticity useful for adapting to sudden and/or transient environmental changes at the cellular level. Starting from this perspective, hereunder we develop the argument that the presence of sustained cellular stress coupled to efficient CSRs may lead to the selection of an aberrant phenotype as the resulting adaptation of the cellular proteome (and the corresponding interactome) to such stressful conditions, and this can be a common epigenetic pathway to cancer.
Collapse
Affiliation(s)
- Armando Aranda-Anzaldo
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico.
| | - Myrna A R Dent
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico
| | - Edith Segura-Anaya
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico
| | - Alejandro Martínez-Gómez
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico
| |
Collapse
|
8
|
Kim M, McCann JJ, Fortner J, Randall E, Chen C, Chen Y, Yaari Z, Wang Y, Koder RL, Heller DA. Quantum Defect Sensitization via Phase-Changing Supercharged Antibody Fragments. J Am Chem Soc 2024; 146:12454-12462. [PMID: 38687180 PMCID: PMC11498269 DOI: 10.1021/jacs.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Quantum defects in single-walled carbon nanotubes promote exciton localization, which enables potential applications in biodevices and quantum light sources. However, the effects of local electric fields on the emissive energy states of quantum defects and how they can be controlled are unexplored. Here, we investigate quantum defect sensitization by engineering an intrinsically disordered protein to undergo a phase change at a quantum defect site. We designed a supercharged single-chain antibody fragment (scFv) to enable a full ligand-induced folding transition from an intrinsically disordered state to a compact folded state in the presence of a cytokine. The supercharged scFv was conjugated to a quantum defect to induce a substantial local electric change upon ligand binding. Employing the detection of a proinflammatory biomarker, interleukin-6, as a representative model system, supercharged scFv-coupled quantum defects exhibited robust fluorescence wavelength shifts concomitant with the protein folding transition. Quantum chemical simulations suggest that the quantum defects amplify the optical response to the localization of charges produced upon the antigen-induced folding of the proteins, which is difficult to achieve in unmodified nanotubes. These findings portend new approaches to modulate quantum defect emission for biomarker sensing and protein biophysics and to engineer proteins to modulate binding signal transduction.
Collapse
Affiliation(s)
- Mijin Kim
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James J. McCann
- Department of Physics, City College of New York, New York, NY 10031, USA
| | - Jacob Fortner
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Ewelina Randall
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Chen Chen
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-institutional PhD Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Yu Chen
- Department of Physics, City College of New York, New York, NY 10031, USA
| | - Zvi Yaari
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
- School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9190500, Israel
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Ronald L. Koder
- Department of Physics, City College of New York, New York, NY 10031, USA
- Graduate Programs of Physics, Biology, Chemistry, and Biochemistry, The Graduate Center of City College of New York, New York, NY 10016, USA
| | - Daniel A. Heller
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-institutional PhD Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
9
|
Fersht AR. From covalent transition states in chemistry to noncovalent in biology: from β- to Φ-value analysis of protein folding. Q Rev Biophys 2024; 57:e4. [PMID: 38597675 DOI: 10.1017/s0033583523000045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Solving the mechanism of a chemical reaction requires determining the structures of all the ground states on the pathway and the elusive transition states linking them. 2024 is the centenary of Brønsted's landmark paper that introduced the β-value and structure-activity studies as the only experimental means to infer the structures of transition states. It involves making systematic small changes in the covalent structure of the reactants and analysing changes in activation and equilibrium-free energies. Protein engineering was introduced for an analogous procedure, Φ-value analysis, to analyse the noncovalent interactions in proteins central to biological chemistry. The methodology was developed first by analysing noncovalent interactions in transition states in enzyme catalysis. The mature procedure was then applied to study transition states in the pathway of protein folding - 'part (b) of the protein folding problem'. This review describes the development of Φ-value analysis of transition states and compares and contrasts the interpretation of β- and Φ-values and their limitations. Φ-analysis afforded the first description of transition states in protein folding at the level of individual residues. It revealed the nucleation-condensation folding mechanism of protein domains with the transition state as an expanded, distorted native structure, containing little fully formed secondary structure but many weak tertiary interactions. A spectrum of transition states with various degrees of structural polarisation was then uncovered that spanned from nucleation-condensation to the framework mechanism of fully formed secondary structure. Φ-analysis revealed how movement of the expanded transition state on an energy landscape accommodates the transition from framework to nucleation-condensation mechanisms with a malleability of structure as a unifying feature of folding mechanisms. Such movement follows the rubric of analysis of classical covalent chemical mechanisms that began with Brønsted. Φ-values are used to benchmark computer simulation, and Φ and simulation combine to describe folding pathways at atomic resolution.
Collapse
Affiliation(s)
- Alan R Fersht
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Gonville and Caius College, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Dávalos AL, Rivera Echeverri JD, Favaro DC, Junio de Oliveira R, Penteado Battesini Carretero G, Lacerda C, Midea Cuccovia I, Cangussu Cardoso MV, Farah CS, Kopke Salinas R. Uncovering the Association Mechanism between Two Intrinsically Flexible Proteins. ACS Chem Biol 2024; 19:669-686. [PMID: 38486495 DOI: 10.1021/acschembio.3c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The understanding of protein-protein interaction mechanisms is key to the atomistic description of cell signaling pathways and for the development of new drugs. In this context, the mechanism of intrinsically disordered proteins folding upon binding has attracted attention. The VirB9 C-terminal domain (VirB9Ct) and the VirB7 N-terminal motif (VirB7Nt) associate with VirB10 to form the outer membrane core complex of the Type IV Secretion System injectisome. Despite forming a stable and rigid complex, VirB7Nt behaves as a random coil, while VirB9Ct is intrinsically dynamic in the free state. Here we combined NMR, stopped-flow fluorescence, and computer simulations using structure-based models to characterize the VirB9Ct-VirB7Nt coupled folding and binding mechanism. Qualitative data analysis suggested that VirB9Ct preferentially binds to VirB7Nt by way of a conformational selection mechanism at lower temperatures. However, at higher temperatures, energy barriers between different VirB9Ct conformations are more easily surpassed. Under these conditions the formation of non-native initial encounter complexes may provide alternative pathways toward the native complex conformation. These observations highlight the intimate relationship between folding and binding, calling attention to the fact that the two molecular partners must search for the most favored intramolecular and intermolecular interactions on a rugged and funnelled conformational energy landscape, along which multiple intermediates may lead to the final native state.
Collapse
Affiliation(s)
- Angy Liseth Dávalos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | | | - Denize C Favaro
- Department of Organic Chemistry, State University of Campinas, Campinas, 13083-862, Brazil
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York 10031, United States
| | - Ronaldo Junio de Oliveira
- Department of Physics, Institute of Exact, Natural and Educational Sciences, Federal University of Triângulo Mineiro, Uberaba, 38064-200, Brazil
| | | | - Caroline Lacerda
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Iolanda Midea Cuccovia
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | | | - Chuck S Farah
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Roberto Kopke Salinas
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| |
Collapse
|
11
|
Zhang Y, Liu X, Chen J. Coupled binding and folding of disordered SPIN N-terminal region in myeloperoxidase inhibition. Front Mol Biosci 2023; 10:1130189. [PMID: 36845554 PMCID: PMC9948029 DOI: 10.3389/fmolb.2023.1130189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Gram-positive pathogenic bacteria Staphylococcus express and secret staphylococcal peroxidase inhibitor (SPIN) proteins to help evade neutrophil-mediated immunity by inhibiting the activity of the main oxidative-defense player myeloperoxidase (MPO) enzyme. SPIN contains a structured 3-helix bundle C-terminal domain, which can specifically bind to MPO with high affinity, and an intrinsically disordered N-terminal domain (NTD), which folds into a structured β-hairpin and inserts itself into the active site of MPO for inhibition. Mechanistic insights of the coupled folding and binding process are needed in order to better understand how residual structures and/or conformational flexibility of NTD contribute to the different strengths of inhibition of SPIN homologs. In this work, we applied atomistic molecular dynamics simulations on two SPIN homologs, from S. aureus and S. delphini, respectively, which share high sequence identity and similarity, to explore the possible mechanistic basis for their different inhibition efficacies on human MPO. Direct simulations of the unfolding and unbinding processes at 450 K reveal that these two SPIN/MPO complexes systems follow surprisingly different mechanisms of coupled binding and folding. While coupled binding and folding of SPIN-aureus NTD is highly cooperative, SPIN-delphini NTD appears to mainly utilize a conformational selection-like mechanism. These observations are in contrast to an overwhelming prevalence of induced folding-like mechanisms for intrinsically disordered proteins that fold into helical structures upon binding. Further simulations of unbound SPIN NTDs at room temperature reveal that SPIN-delphini NTD has a much stronger propensity of forming β-hairpin like structures, consistent with its preference to fold and then bind. These may help explain why the inhibition strength is not well correlated with binding affinity for different SPIN homologs. Altogether, our work establishes the relationship between the residual conformational stability of SPIN-NTD and their inhibitory function, which can help us develop new strategies towards treating Staphylococcal infections.
Collapse
Affiliation(s)
| | | | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
12
|
SH2 Domains: Folding, Binding and Therapeutical Approaches. Int J Mol Sci 2022; 23:ijms232415944. [PMID: 36555586 PMCID: PMC9783222 DOI: 10.3390/ijms232415944] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
SH2 (Src Homology 2) domains are among the best characterized and most studied protein-protein interaction (PPIs) modules able to bind and recognize sequences presenting a phosphorylated tyrosine. This post-translational modification is a key regulator of a plethora of physiological and molecular pathways in the eukaryotic cell, so SH2 domains possess a fundamental role in cell signaling. Consequently, several pathologies arise from the dysregulation of such SH2-domains mediated PPIs. In this review, we recapitulate the current knowledge about the structural, folding stability, and binding properties of SH2 domains and their roles in molecular pathways and pathogenesis. Moreover, we focus attention on the different strategies employed to modulate/inhibit SH2 domains binding. Altogether, the information gathered points to evidence that pharmacological interest in SH2 domains is highly strategic to developing new therapeutics. Moreover, a deeper understanding of the molecular determinants of the thermodynamic stability as well as of the binding properties of SH2 domains appears to be fundamental in order to improve the possibility of preventing their dysregulated interactions.
Collapse
|
13
|
Tan W, Cheng S, Li Y, Li XY, Lu N, Sun J, Tang G, Yang Y, Cai K, Li X, Ou X, Gao X, Zhao GP, Childers WS, Zhao W. Phase separation modulates the assembly and dynamics of a polarity-related scaffold-signaling hub. Nat Commun 2022; 13:7181. [PMID: 36418326 PMCID: PMC9684454 DOI: 10.1038/s41467-022-35000-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
Asymmetric cell division (ACD) produces morphologically and behaviorally distinct cells and is the primary way to generate cell diversity. In the model bacterium Caulobacter crescentus, the polarization of distinct scaffold-signaling hubs at the swarmer and stalked cell poles constitutes the basis of ACD. However, mechanisms involved in the formation of these hubs remain elusive. Here, we show that a swarmer-cell-pole scaffold, PodJ, forms biomolecular condensates both in vitro and in living cells via phase separation. The coiled-coil 4-6 and the intrinsically disordered regions are the primary domains that contribute to biomolecular condensate generation and signaling protein recruitment in PodJ. Moreover, a negative regulation of PodJ phase separation by the stalked-cell-pole scaffold protein SpmX is revealed. SpmX impedes PodJ cell-pole accumulation and affects its recruitment ability. Together, by modulating the assembly and dynamics of scaffold-signaling hubs, phase separation may serve as a general biophysical mechanism that underlies the regulation of ACD in bacteria and other organisms.
Collapse
Affiliation(s)
- Wei Tan
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Sihua Cheng
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Yingying Li
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Xiao-Yang Li
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China ,grid.256922.80000 0000 9139 560XDepartment of Pharmacy, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Ning Lu
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Jingxian Sun
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Guiyue Tang
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Yujiao Yang
- grid.9227.e0000000119573309CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Kezhu Cai
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China ,grid.263817.90000 0004 1773 1790Department of Materials Science and Engineering, School of Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Xuefei Li
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Xijun Ou
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Xiang Gao
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Guo-Ping Zhao
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China ,grid.9227.e0000000119573309CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443State Key Lab of Genetic Engineering & Institutes of Biomedical Sciences, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - W. Seth Childers
- grid.21925.3d0000 0004 1936 9000Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Wei Zhao
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| |
Collapse
|
14
|
Intrinsically Disordered Proteins: An Overview. Int J Mol Sci 2022; 23:ijms232214050. [PMID: 36430530 PMCID: PMC9693201 DOI: 10.3390/ijms232214050] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Many proteins and protein segments cannot attain a single stable three-dimensional structure under physiological conditions; instead, they adopt multiple interconverting conformational states. Such intrinsically disordered proteins or protein segments are highly abundant across proteomes, and are involved in various effector functions. This review focuses on different aspects of disordered proteins and disordered protein regions, which form the basis of the so-called "Disorder-function paradigm" of proteins. Additionally, various experimental approaches and computational tools used for characterizing disordered regions in proteins are discussed. Finally, the role of disordered proteins in diseases and their utility as potential drug targets are explored.
Collapse
|
15
|
Roterman I, Stapor K, Fabian P, Konieczny L. New insights into disordered proteins and regions according to the FOD-M model. PLoS One 2022; 17:e0275300. [PMID: 36215254 PMCID: PMC9550084 DOI: 10.1371/journal.pone.0275300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
A collection of intrinsically disordered proteins (IDPs) having regions with the status of intrinsically disordered (IDR) according to the Disprot database was analyzed from the point of view of the structure of hydrophobic core in the structural unit (chain / domain). The analysis includes all the Homo Sapiens as well as Mus Musculus proteins present in the DisProt database for which the structure is available. In the analysis, the fuzzy oil drop modified model (FOD-M) was used, taking into account the external force field, modified by the presence of other factors apart from polar water, influencing protein structuring. The paper presents an alternative to secondary-structure-based classification of intrinsically disordered regions (IDR). The basis of our classification is the ordering of hydrophobic core as calculated by the FOD-M model resulting in FOD-ordered or FOD-unordered IDRs.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University, Medical College, Kraków, Poland
| | - Katarzyna Stapor
- Faculty of Automatic, Department of Applied Informatics, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Piotr Fabian
- Faculty of Automatic, Electronics and Computer Science, Department of Algorithmics and Software, Silesian University of Technology, Gliwice, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Jagiellonian University, Medical College, Kraków, Poland
| |
Collapse
|
16
|
Fu ZQ, Sha HL, Sha B. AI-Based Protein Interaction Screening and Identification (AISID). Int J Mol Sci 2022; 23:ijms231911685. [PMID: 36232986 PMCID: PMC9570074 DOI: 10.3390/ijms231911685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/08/2022] Open
Abstract
In this study, we presented an AISID method extending AlphaFold-Multimer's success in structure prediction towards identifying specific protein interactions with an optimized AISIDscore. The method was tested to identify the binding proteins in 18 human TNFSF (Tumor Necrosis Factor superfamily) members for each of 27 human TNFRSF (TNF receptor superfamily) members. For each TNFRSF member, we ranked the AISIDscore among the 18 TNFSF members. The correct pairing resulted in the highest AISIDscore for 13 out of 24 TNFRSF members which have known interactions with TNFSF members. Out of the 33 correct pairing between TNFSF and TNFRSF members, 28 pairs could be found in the top five (including 25 pairs in the top three) seats in the AISIDscore ranking. Surprisingly, the specific interactions between TNFSF10 (TNF-related apoptosis-inducing ligand, TRAIL) and its decoy receptors DcR1 and DcR2 gave the highest AISIDscore in the list, while the structures of DcR1 and DcR2 are unknown. The data strongly suggests that AlphaFold-Multimer might be a useful computational screening tool to find novel specific protein bindings. This AISID method may have broad applications in protein biochemistry, extending the application of AlphaFold far beyond structure predictions.
Collapse
Affiliation(s)
- Zheng-Qing Fu
- SER-CAT, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Correspondence: (Z.-Q.F.); (B.S.)
| | - Hansen L. Sha
- Department of Cell, Developmental and Integrative Biology (CDIB), University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bingdong Sha
- Department of Cell, Developmental and Integrative Biology (CDIB), University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: (Z.-Q.F.); (B.S.)
| |
Collapse
|
17
|
LL-37, a Multi-Faceted Amphipathic Peptide Involved in NETosis. Cells 2022; 11:cells11152463. [PMID: 35954305 PMCID: PMC9368159 DOI: 10.3390/cells11152463] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 12/14/2022] Open
Abstract
Innate immunity responds to infections and inflammatory stimuli through a carefully choreographed set of interactions between cells, stimuli and their specific receptors. Of particular importance are endogenous peptides, which assume roles as defensins or alarmins, growth factors or wound repair inducers. LL-37, a proteolytic fragment of cathelicidin, fulfills the roles of a defensin by inserting into the membranes of bacterial pathogens, functions as alarmin in stimulating chemotaxis of innate immune cells, and alters the structure and efficacy of various cytokines. Here, we draw attention to the direct effect of LL-37 on neutrophils and the release of extracellular traps (NETs), as NETs have been established as mediators of immune defense against pathogens but also as important contributors to chronic disease and tissue pathogenesis. We propose a specific structural basis for LL-37 function, in part by highlighting the structural flexibility of LL-37 and its ability to adapt to distinct microenvironments and interacting counterparts.
Collapse
|
18
|
Mayer G, Shpilt Z, Kowalski H, Tshuva EY, Friedler A. Targeting Protein Interaction Hotspots Using Structured and Disordered Chimeric Peptide Inhibitors. ACS Chem Biol 2022; 17:1811-1823. [PMID: 35758642 DOI: 10.1021/acschembio.2c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The main challenge in inhibiting protein-protein interactions (PPI) for therapeutic purposes is designing molecules that bind specifically to the interaction hotspots. Adding to the complexity, such hotspots can be within both structured and disordered interaction interfaces. To address this, we present a strategy for inhibiting the structured and disordered hotspots of interactions using chimeric peptides that contain both structured and disordered parts. The chimeric peptides we developed are comprised of a cyclic structured part and a disordered part, which target both disordered and structured hotspots. We demonstrate our approach by developing peptide inhibitors for the interactions of the antiapoptotic iASPP protein. First, we developed a structured, α-helical stapled peptide inhibitor, derived from the N-terminal domain of MDM2. The peptide bound two hotspots on iASPP at the low micromolar range and had a cytotoxic effect on A2780 cancer cells with a half-maximal inhibitory concentration (IC50) value of 10 ± 1 μM. We then developed chimeric peptides comprising the structured stapled helical peptide and the disordered p53-derived LinkTer peptide that we previously showed to inhibit iASPP by targeting its disordered RT loop. The chimeric peptide targeted both structured and disordered domains in iASPP with higher affinity compared to the individual structured and disordered peptides and caused cancer cell death. Our strategy overcomes the inherent difficulty in inhibiting the interactions of proteins that possess structured and disordered regions. It does so by using chimeric peptides derived from different interaction partners that together target a much wider interface covering both the structured and disordered domains. This paves the way for developing such inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- Guy Mayer
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Zohar Shpilt
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Hadar Kowalski
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Edit Y Tshuva
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Assaf Friedler
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
19
|
Learte-Aymamí S, Martin-Malpartida P, Roldán-Martín L, Sciortino G, Couceiro JR, Maréchal JD, Macias MJ, Mascareñas JL, Vázquez ME. Controlling oncogenic KRAS signaling pathways with a Palladium-responsive peptide. Commun Chem 2022; 5:75. [PMID: 36697641 PMCID: PMC9814687 DOI: 10.1038/s42004-022-00691-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/10/2022] [Indexed: 01/28/2023] Open
Abstract
RAS oncoproteins are molecular switches associated with critical signaling pathways that regulate cell proliferation and differentiation. Mutations in the RAS family, mainly in the KRAS isoform, are responsible for some of the deadliest cancers, which has made this protein a major target in biomedical research. Here we demonstrate that a designed bis-histidine peptide derived from the αH helix of the cofactor SOS1 binds to KRAS with high affinity upon coordination to Pd(II). NMR spectroscopy and MD studies demonstrate that Pd(II) has a nucleating effect that facilitates the access to the bioactive α-helical conformation. The binding can be suppressed by an external metal chelator and recovered again by the addition of more Pd(II), making this system the first switchable KRAS binder, and demonstrates that folding-upon-binding mechanisms can operate in metal-nucleated peptides. In vitro experiments show that the metallopeptide can efficiently internalize into living cells and inhibit the MAPK kinase cascade.
Collapse
Affiliation(s)
- Soraya Learte-Aymamí
- grid.11794.3a0000000109410645Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15705 Spain
| | - Pau Martin-Malpartida
- grid.473715.30000 0004 6475 7299Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028 Spain
| | - Lorena Roldán-Martín
- grid.7080.f0000 0001 2296 0625Insilichem, Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola, 08193 Spain
| | - Giuseppe Sciortino
- grid.7080.f0000 0001 2296 0625Insilichem, Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola, 08193 Spain ,grid.473715.30000 0004 6475 7299Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Tarragona, 43007 Spain
| | - José R. Couceiro
- grid.11794.3a0000000109410645Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15705 Spain
| | - Jean-Didier Maréchal
- grid.7080.f0000 0001 2296 0625Insilichem, Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola, 08193 Spain
| | - Maria J. Macias
- grid.473715.30000 0004 6475 7299Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028 Spain ,grid.425902.80000 0000 9601 989XInstitució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010 Spain
| | - José L. Mascareñas
- grid.11794.3a0000000109410645Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15705 Spain
| | - M. Eugenio Vázquez
- grid.11794.3a0000000109410645Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15705 Spain
| |
Collapse
|
20
|
Karlsson E, Sorgenfrei FA, Andersson E, Dogan J, Jemth P, Chi CN. The dynamic properties of a nuclear coactivator binding domain are evolutionarily conserved. Commun Biol 2022; 5:286. [PMID: 35354917 PMCID: PMC8967867 DOI: 10.1038/s42003-022-03217-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/02/2022] [Indexed: 12/21/2022] Open
Abstract
Evolution of proteins is constrained by their structure and function. While there is a consensus that the plasticity of intrinsically disordered proteins relaxes the structural constraints on evolution there is a paucity of data on the molecular details of these processes. The Nuclear Coactivator Binding Domain (NCBD) from CREB-binding protein is a protein interaction domain, which contains a hydrophobic core but is not behaving as a typical globular domain, and has been described as 'molten-globule like'. The highly dynamic properties of NCBD makes it an interesting model system for evolutionary structure-function investigation of intrinsically disordered proteins. We have here compared the structure and biophysical properties of an ancient version of NCBD present in a bilaterian animal ancestor living around 600 million years ago with extant human NCBD. Using a combination of NMR spectroscopy, circular dichroism and kinetics we show that although NCBD has increased its thermodynamic stability, it has retained its dynamic biophysical properties in the ligand-free state in the evolutionary lineage leading from the last common bilaterian ancestor to humans. Our findings suggest that the dynamic properties of NCBD have been maintained by purifying selection and thus are important for its function, which includes mediating several distinct protein-protein interactions.
Collapse
Affiliation(s)
- Elin Karlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123, Uppsala, Sweden
| | - Frieda A Sorgenfrei
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123, Uppsala, Sweden.,acib GmbH, Krenngasse 37, 8010 Graz c/o University of Graz, Institute of Chemistry, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123, Uppsala, Sweden
| | - Jakob Dogan
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123, Uppsala, Sweden
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123, Uppsala, Sweden.
| | - Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123, Uppsala, Sweden. .,Department of Pharmaceutical Biosciences, Uppsala University, BMC Box 582, SE-75123, Uppsala, Sweden.
| |
Collapse
|
21
|
Dyakin VV, Uversky VN. Arrow of Time, Entropy, and Protein Folding: Holistic View on Biochirality. Int J Mol Sci 2022; 23:ijms23073687. [PMID: 35409047 PMCID: PMC8998916 DOI: 10.3390/ijms23073687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Chirality is a universal phenomenon, embracing the space–time domains of non-organic and organic nature. The biological time arrow, evident in the aging of proteins and organisms, should be linked to the prevalent biomolecular chirality. This hypothesis drives our exploration of protein aging, in relation to the biological aging of an organism. Recent advances in the chirality discrimination methods and theoretical considerations of the non-equilibrium thermodynamics clarify the fundamental issues, concerning the biphasic, alternative, and stepwise changes in the conformational entropy associated with protein folding. Living cells represent open, non-equilibrium, self-organizing, and dissipative systems. The non-equilibrium thermodynamics of cell biology are determined by utilizing the energy stored, transferred, and released, via adenosine triphosphate (ATP). At the protein level, the synthesis of a homochiral polypeptide chain of L-amino acids (L-AAs) represents the first state in the evolution of the dynamic non-equilibrium state of the system. At the next step the non-equilibrium state of a protein-centric system is supported and amended by a broad set of posttranslational modifications (PTMs). The enzymatic phosphorylation, being the most abundant and ATP-driven form of PTMs, illustrates the principal significance of the energy-coupling, in maintaining and reshaping the system. However, the physiological functions of phosphorylation are under the permanent risk of being compromised by spontaneous racemization. Therefore, the major distinct steps in protein-centric aging include the biosynthesis of a polypeptide chain, protein folding assisted by the system of PTMs, and age-dependent spontaneous protein racemization and degradation. To the best of our knowledge, we are the first to pay attention to the biphasic, alternative, and stepwise changes in the conformational entropy of protein folding. The broader view on protein folding, including the impact of spontaneous racemization, will help in the goal-oriented experimental design in the field of chiral proteomics.
Collapse
Affiliation(s)
- Victor V. Dyakin
- Virtual Reality Perception Lab (VRPL), The Nathan S. Kline Institute for Psychiatric Research (NKI), 140 Old Orangeburg Road, Bldg, 35, Orangeburg, NY 10962, USA
- Correspondence:
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL 33612, USA;
| |
Collapse
|
22
|
Kulkarni P, Leite VBP, Roy S, Bhattacharyya S, Mohanty A, Achuthan S, Singh D, Appadurai R, Rangarajan G, Weninger K, Orban J, Srivastava A, Jolly MK, Onuchic JN, Uversky VN, Salgia R. Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma. BIOPHYSICS REVIEWS 2022; 3:011306. [PMID: 38505224 PMCID: PMC10903413 DOI: 10.1063/5.0080512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 03/21/2024]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that lack rigid 3D structure. Hence, they are often misconceived to present a challenge to Anfinsen's dogma. However, IDPs exist as ensembles that sample a quasi-continuum of rapidly interconverting conformations and, as such, may represent proteins at the extreme limit of the Anfinsen postulate. IDPs play important biological roles and are key components of the cellular protein interaction network (PIN). Many IDPs can interconvert between disordered and ordered states as they bind to appropriate partners. Conformational dynamics of IDPs contribute to conformational noise in the cell. Thus, the dysregulation of IDPs contributes to increased noise and "promiscuous" interactions. This leads to PIN rewiring to output an appropriate response underscoring the critical role of IDPs in cellular decision making. Nonetheless, IDPs are not easily tractable experimentally. Furthermore, in the absence of a reference conformation, discerning the energy landscape representation of the weakly funneled IDPs in terms of reaction coordinates is challenging. To understand conformational dynamics in real time and decipher how IDPs recognize multiple binding partners with high specificity, several sophisticated knowledge-based and physics-based in silico sampling techniques have been developed. Here, using specific examples, we highlight recent advances in energy landscape visualization and molecular dynamics simulations to discern conformational dynamics and discuss how the conformational preferences of IDPs modulate their function, especially in phenotypic switching. Finally, we discuss recent progress in identifying small molecules targeting IDPs underscoring the potential therapeutic value of IDPs. Understanding structure and function of IDPs can not only provide new insight on cellular decision making but may also help to refine and extend Anfinsen's structure/function paradigm.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Vitor B. P. Leite
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Supriyo Bhattacharyya
- Translational Bioinformatics, Center for Informatics, Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Srisairam Achuthan
- Center for Informatics, Division of Research Informatics, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Divyoj Singh
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Rajeswari Appadurai
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jose N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, USA
| | | | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| |
Collapse
|
23
|
Bondos SE, Dunker AK, Uversky VN. Intrinsically disordered proteins play diverse roles in cell signaling. Cell Commun Signal 2022; 20:20. [PMID: 35177069 PMCID: PMC8851865 DOI: 10.1186/s12964-022-00821-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022] Open
Abstract
Signaling pathways allow cells to detect and respond to a wide variety of chemical (e.g. Ca2+ or chemokine proteins) and physical stimuli (e.g., sheer stress, light). Together, these pathways form an extensive communication network that regulates basic cell activities and coordinates the function of multiple cells or tissues. The process of cell signaling imposes many demands on the proteins that comprise these pathways, including the abilities to form active and inactive states, and to engage in multiple protein interactions. Furthermore, successful signaling often requires amplifying the signal, regulating or tuning the response to the signal, combining information sourced from multiple pathways, all while ensuring fidelity of the process. This sensitivity, adaptability, and tunability are possible, in part, due to the inclusion of intrinsically disordered regions in many proteins involved in cell signaling. The goal of this collection is to highlight the many roles of intrinsic disorder in cell signaling. Following an overview of resources that can be used to study intrinsically disordered proteins, this review highlights the critical role of intrinsically disordered proteins for signaling in widely diverse organisms (animals, plants, bacteria, fungi), in every category of cell signaling pathway (autocrine, juxtacrine, intracrine, paracrine, and endocrine) and at each stage (ligand, receptor, transducer, effector, terminator) in the cell signaling process. Thus, a cell signaling pathway cannot be fully described without understanding how intrinsically disordered protein regions contribute to its function. The ubiquitous presence of intrinsic disorder in different stages of diverse cell signaling pathways suggest that more mechanisms by which disorder modulates intra- and inter-cell signals remain to be discovered.
Collapse
Affiliation(s)
- Sarah E. Bondos
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843 USA
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Moscow Region, Russia 142290
| |
Collapse
|
24
|
Heckmeier PJ, Ruf J, Buhrke D, Janković BG, Hamm P. Signal propagation within the MCL-1/BIM protein complex. J Mol Biol 2022; 434:167499. [DOI: 10.1016/j.jmb.2022.167499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022]
|
25
|
Wagner N, Liu H, Rohrs HW, Amarasinghe GK, Gross ML, Leung DW. Nipah Virus V Protein Binding Alters MDA5 Helicase Folding Dynamics. ACS Infect Dis 2022; 8:118-128. [PMID: 35026950 PMCID: PMC8762660 DOI: 10.1021/acsinfecdis.1c00403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 11/29/2022]
Abstract
Nipah virus (NiV) is an emerging and deadly zoonotic paramyxovirus that is responsible for periodic epidemics of acute respiratory illness and encephalitis in humans. Previous studies have shown that the NiV V protein antagonizes host antiviral immunity, but the molecular mechanism is incompletely understood. To address this gap, we biochemically characterized NiV V binding to the host pattern recognition receptor MDA5. We find that the C-terminal domain of NiV V (VCTD) is sufficient to bind the MDA5SF2 domain when recombinantly co-expressed in bacteria. Analysis by hydrogen-deuterium exchange mass spectrometry (HDX-MS) studies revealed that NiV VCTD is conformationally dynamic, and binding to MDA5 reduces the dynamics of VCTD. Our results also suggest that the β-sheet region in between the MDA5 Hel1, Hel2, and Hel2i domains exhibits rapid HDX. Upon VCTD binding, these β-sheet and adjacent residues show significant protection. Collectively, our findings suggest that NiV V binding disrupts the helicase fold and dynamics of MDA5 to antagonize host antiviral immunity.
Collapse
Affiliation(s)
- Nicole
D. Wagner
- Division
of Infectious Diseases, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Hejun Liu
- Division
of Infectious Diseases, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Pathology and Immunology, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Henry W. Rohrs
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Gaya K. Amarasinghe
- Department
of Pathology and Immunology, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Michael L. Gross
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Daisy W. Leung
- Division
of Infectious Diseases, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Pathology and Immunology, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
26
|
Malagrinò F, Diop A, Pagano L, Nardella C, Toto A, Gianni S. Unveiling induced folding of intrinsically disordered proteins - Protein engineering, frustration and emerging themes. Curr Opin Struct Biol 2021; 72:153-160. [PMID: 34902817 DOI: 10.1016/j.sbi.2021.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 01/01/2023]
Abstract
Intrinsically disordered proteins (IDPs) can be generally described as a class of proteins that lack a well-defined ordered structure in isolation at physiological conditions. Upon binding to their physiological ligands, IDPs typically undergo a disorder-to-order transition, which may or may not lead to the complete folding of the IDP. In this short review, we focus on some of the key findings pertaining to the mechanisms of such induced folding. In particular, first we describe the general features of the reaction; then, we discuss some of the most remarkable findings obtained from applying protein engineering in synergy with kinetic studies to induced folding; and finally, we offer a critical view on some of the emerging themes when considering the structural heterogeneity of IDPs vis-à-vis to their inherent frustration.
Collapse
Affiliation(s)
- Francesca Malagrinò
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari Del CNR, Sapienza Università, di Roma, 00185, Rome, Italy
| | - Awa Diop
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari Del CNR, Sapienza Università, di Roma, 00185, Rome, Italy
| | - Livia Pagano
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari Del CNR, Sapienza Università, di Roma, 00185, Rome, Italy
| | - Caterina Nardella
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari Del CNR, Sapienza Università, di Roma, 00185, Rome, Italy
| | - Angelo Toto
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari Del CNR, Sapienza Università, di Roma, 00185, Rome, Italy.
| | - Stefano Gianni
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari Del CNR, Sapienza Università, di Roma, 00185, Rome, Italy.
| |
Collapse
|
27
|
Maula T, Vahvelainen N, Tossavainen H, Koivunen T, T. Pöllänen M, Johansson A, Permi P, Ihalin R. Decreased temperature increases the expression of a disordered bacterial late embryogenesis abundant (LEA) protein that enhances natural transformation. Virulence 2021; 12:1239-1257. [PMID: 33939577 PMCID: PMC8096337 DOI: 10.1080/21505594.2021.1918497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/22/2021] [Accepted: 04/03/2021] [Indexed: 11/02/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are important players in the management of responses to stressful conditions, such as drought, high salinity, and changes in temperature. Many LEA proteins do not have defined three-dimensional structures, so they are intrinsically disordered proteins (IDPs) and are often highly hydrophilic. Although LEA-like sequences have been identified in bacterial genomes, the functions of bacterial LEA proteins have been studied only recently. Sequence analysis of outer membrane interleukin receptor I (BilRI) from the oral pathogen Aggregatibacter actinomycetemcomitans indicated that it shared sequence similarity with group 3/3b/4 LEA proteins. Comprehensive nuclearcgq magnetic resonance (NMR) studies confirmed its IDP nature, and expression studies in A. actinomycetemcomitans harboring a red fluorescence reporter protein-encoding gene revealed that bilRI promoter expression was increased at decreased temperatures. The amino acid backbone of BilRI did not stimulate either the production of reactive oxygen species from human leukocytes or the production of interleukin-6 from human macrophages. Moreover, BilRI-specific IgG antibodies could not be detected in the sera of A. actinomycetemcomitans culture-positive periodontitis patients. Since the bilRI gene is located near genes involved in natural competence (i.e., genes associated with the uptake of extracellular (eDNA) and its incorporation into the genome), we also investigated the role of BilRI in these events. Compared to wild-type cells, the ΔbilRI mutants showed a lower transformation efficiency, which indicates either a direct or indirect role in natural competence. In conclusion, A. actinomycetemcomitans might express BilRI, especially outside the host, to survive under stressful conditions and improve its transmission potential.
Collapse
Affiliation(s)
- Terhi Maula
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Nelli Vahvelainen
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Helena Tossavainen
- Department of Biological and Environmental Sciences, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Tuuli Koivunen
- Department of Life Technologies, University of Turku, Turku, Finland
| | | | - Anders Johansson
- Division of Molecular Periodontology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Perttu Permi
- Department of Biological and Environmental Sciences, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Riikka Ihalin
- Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
28
|
Morris DL, Tjandra N. Inducible fold-switching as a mechanism to fibrillate pro-apoptotic BCL-2 proteins. Biopolymers 2021; 112:e23424. [PMID: 33764501 PMCID: PMC11822676 DOI: 10.1002/bip.23424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases often are associated with cellular dysregulation that results in premature cell death or apoptosis. A common example is the accumulation of amyloid plaques that promotes the excessive expression of p38 mitogen-activated protein kinase. The increased abundance of this enzyme leads to mass phosphorylation and activation of a protein from the B-cell lymphoma 2 (BCL-2) family, BAX. BAX is the central regulatory protein for mitochondrial outer membrane permeabilization (MOMP), a poration process that commits cells to apoptosis by releasing death-propagating factors from the mitochondria. Recent reports identify a naturally occurring peptide, Humanin (HN), that could block amyloid-beta-associated neuronal apoptosis by interacting with BCL-2 proteins. We recently showed humanin interaction leads to the amyloid-like fibrillation of BAX and a second BCL-2 family member, BID. We proposed this as a novel anti-apoptotic mechanism that inhibits pro-apoptotic BCL-2 proteins from initiating MOMP by sequestering them into fibrils, a heretofore unprecedented phenomenon that involves refolding globular BCL-2 proteins rapidly into fibrils where they undergo significant alpha-helix to beta-sheet fold-switching. Here we seek to further characterize the fibrillation and fold-switch in conditions that are known to induce amyloid fibrillation.
Collapse
Affiliation(s)
- Daniel L Morris
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Kolimi N, Pabbathi A, Saikia N, Ding F, Sanabria H, Alper J. Out-of-Equilibrium Biophysical Chemistry: The Case for Multidimensional, Integrated Single-Molecule Approaches. J Phys Chem B 2021; 125:10404-10418. [PMID: 34506140 PMCID: PMC8474109 DOI: 10.1021/acs.jpcb.1c02424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Out-of-equilibrium
processes are ubiquitous across living organisms
and all structural hierarchies of life. At the molecular scale, out-of-equilibrium
processes (for example, enzyme catalysis, gene regulation, and motor
protein functions) cause biological macromolecules to sample an ensemble
of conformations over a wide range of time scales. Quantifying and
conceptualizing the structure–dynamics to function relationship
is challenging because continuously evolving multidimensional energy
landscapes are necessary to describe nonequilibrium biological processes
in biological macromolecules. In this perspective, we explore the
challenges associated with state-of-the-art experimental techniques
to understanding biological macromolecular function. We argue that
it is time to revisit how we probe and model functional out-of-equilibrium
biomolecular dynamics. We suggest that developing integrated single-molecule
multiparametric force–fluorescence instruments and using advanced
molecular dynamics simulations to study out-of-equilibrium biomolecules
will provide a path towards understanding the principles of and mechanisms
behind the structure–dynamics to function paradigm in biological
macromolecules.
Collapse
Affiliation(s)
- Narendar Kolimi
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Ashok Pabbathi
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Nabanita Saikia
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Joshua Alper
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States.,Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
30
|
The sequence-ensemble relationship in fuzzy protein complexes. Proc Natl Acad Sci U S A 2021; 118:2020562118. [PMID: 34504009 DOI: 10.1073/pnas.2020562118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 11/18/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) interact with globular proteins through a variety of mechanisms, resulting in the structurally heterogeneous ensembles known as fuzzy complexes. While there exists a reasonable comprehension on how IDP sequence determines the unbound IDP ensemble, little is known about what shapes the structural characteristics of IDPs bound to their targets. Using a statistical thermodynamic model, we show that the target-bound ensembles are determined by a simple code that combines the IDP sequence and the distribution of IDP-target interaction hotspots. These two parameters define the conformational space of target-bound IDPs and rationalize the observed structural heterogeneity of fuzzy complexes. The presented model successfully reproduces the dynamical signatures of target-bound IDPs from the NMR relaxation experiments as well as the changes of interaction affinity and the IDP helicity induced by mutations. The model explains how the target-bound IDP ensemble adapts to mutations in order to achieve an optimal balance between conformational freedom and interaction energy. Taken together, the presented sequence-ensemble relationship of fuzzy complexes explains the different manifestations of IDP disorder in folding-upon-binding processes.
Collapse
|
31
|
Jensen TMT, Bartling CRO, Karlsson OA, Åberg E, Haugaard-Kedström LM, Strømgaard K, Jemth P. Molecular Details of a Coupled Binding and Folding Reaction between the Amyloid Precursor Protein and a Folded Domain. ACS Chem Biol 2021; 16:1191-1200. [PMID: 34161732 PMCID: PMC8291497 DOI: 10.1021/acschembio.1c00176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Intrinsically disordered
regions in proteins often function as
binding motifs in protein–protein interactions. The mechanistic
aspects and molecular details of such coupled binding and folding
reactions, which involve formation of multiple noncovalent bonds,
have been broadly studied theoretically, but experimental data are
scarce. Here, using a combination of protein semisynthesis to incorporate
phosphorylated amino acids, backbone amide-to-ester modifications,
side chain substitutions, and binding kinetics, we examined the interaction
between the intrinsically disordered motif of amyloid precursor protein
(APP) and the phosphotyrosine binding (PTB) domain of Mint2. We show
that the interaction is regulated by a self-inhibitory segment of
the PTB domain previously termed ARM. The helical ARM linker decreases
the association rate constant 30-fold through a fast pre-equilibrium
between an open and a closed state. Extensive side chain substitutions
combined with kinetic experiments demonstrate that the rate-limiting
transition state for the binding reaction is governed by native and
non-native hydrophobic interactions and hydrogen bonds. Hydrophobic
interactions were found to be particularly important during crossing
of the transition state barrier. Furthermore, linear free energy relationships
show that the overall coupled binding and folding reaction involves
cooperative formation of interactions with roughly 30% native contacts
formed at the transition state. Our data support an emerging picture
of coupled binding and folding reactions following overall chemical
principles similar to those of folding of globular protein domains
but with greater malleability of ground and transition states.
Collapse
Affiliation(s)
- Thomas M. T. Jensen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-75123 Uppsala, Sweden
| | - Christian R. O. Bartling
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - O. Andreas Karlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-75123 Uppsala, Sweden
| | - Emma Åberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-75123 Uppsala, Sweden
| | - Linda M. Haugaard-Kedström
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-75123 Uppsala, Sweden
| |
Collapse
|
32
|
Brunori M. From Kuru to Alzheimer: A personal outlook. Protein Sci 2021; 30:1776-1792. [PMID: 34118168 DOI: 10.1002/pro.4145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 01/02/2023]
Abstract
Seventy years ago, we learned from Chris Anfinsen that the stereochemical code necessary to fold a protein is embedded into its amino acid sequence. In water, protein morphogenesis is a spontaneous reversible process leading from an ensemble of disordered structures to the ordered functionally competent protein; conforming to Aristotle's definition of substance, the synolon of matter and form. The overall process of folding is generally consistent with a two state transition between the native and the denatured protein: not only the denatured state is an ensemble of several structures, but also the native protein populates distinct functionally relevant conformational (sub)states. This two-state view should be revised, given that any globular protein can populate a peculiar third state called amyloid, characterized by an overall architecture that at variance with the native state, is by-and-large independent of the primary structure. In a nut shell, we should accept that beside the folded and unfolded states, any protein can populate a third state called amyloid which gained center stage being the hallmark of incurable neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases as well as others. These fatal diseases are characterized by clear-cut clinical differences, yet display some commonalities such as the presence in the brain of amyloid deposits constituted by one misfolded protein specific for each disease. Some aspects of this complex problem are summarized here as an excursus from the prion's fibrils observed in the brain of aborigines who died of Kuru to the amyloid detectable in the cortex of Alzheimer's patients.
Collapse
Affiliation(s)
- Maurizio Brunori
- Accademia Nazionale dei Lincei and Dipartimento di Scienze Biochimiche "A. Rossi Fanelli,", Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
33
|
Molecular Dynamics Simulations of Human FOXO3 Reveal Intrinsically Disordered Regions Spread Spatially by Intramolecular Electrostatic Repulsion. Biomolecules 2021; 11:biom11060856. [PMID: 34201262 PMCID: PMC8228108 DOI: 10.3390/biom11060856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022] Open
Abstract
The human transcription factor FOXO3 (a member of the 'forkhead' family of transcription factors) controls a variety of cellular functions that make it a highly relevant target for intervention in anti-cancer and anti-aging therapies. FOXO3 is a mostly intrinsically disordered protein (IDP). Absence of knowledge of its structural properties outside the DNA-binding domain constitutes a considerable obstacle to a better understanding of structure/function relationships. Here, I present extensive molecular dynamics (MD) simulation data based on implicit solvation models of the entire FOXO3/DNA complex, and accelerated MD simulations under explicit solvent conditions of a central region of particular structural interest (FOXO3120-530). A new graphical tool for studying and visualizing the structural diversity of IDPs, the Local Compaction Plot (LCP), is introduced. The simulations confirm the highly disordered nature of FOXO3 and distinguish various degrees of folding propensity. Unexpectedly, two 'linker' regions immediately adjacent to the DNA-binding domain are present in a highly extended conformation. This extended conformation is not due to their amino acid composition, but rather is caused by electrostatic repulsion of the domains connected by the linkers. FOXO3 is thus an IDP present in an unusually extended conformation to facilitate interaction with molecular interaction partners.
Collapse
|
34
|
Smith BM, Rowling PJE, Dobson CM, Itzhaki LS. Parallel and Sequential Pathways of Molecular Recognition of a Tandem-Repeat Protein and Its Intrinsically Disordered Binding Partner. Biomolecules 2021; 11:827. [PMID: 34206070 PMCID: PMC8228192 DOI: 10.3390/biom11060827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
The Wnt signalling pathway plays an important role in cell proliferation, differentiation, and fate decisions in embryonic development and the maintenance of adult tissues. The twelve armadillo (ARM) repeat-containing protein β-catenin acts as the signal transducer in this pathway. Here, we investigated the interaction between β-catenin and the intrinsically disordered transcription factor TCF7L2, comprising a very long nanomolar-affinity interface of approximately 4800 Å2 that spans ten of the twelve ARM repeats of β-catenin. First, a fluorescence reporter system for the interaction was engineered and used to determine the kinetic rate constants for the association and dissociation. The association kinetics of TCF7L2 and β-catenin were monophasic and rapid (7.3 ± 0.1 × 107 M-1·s-1), whereas dissociation was biphasic and slow (5.7 ± 0.4 × 10-4 s-1, 15.2 ± 2.8 × 10-4 s-1). This reporter system was then combined with site-directed mutagenesis to investigate the striking variability in the conformation adopted by TCF7L2 in the three different crystal structures of the TCF7L2-β-catenin complex. We found that the mutation had very little effect on the association kinetics, indicating that most interactions form after the rate-limiting barrier for association. Mutations of the N- and C-terminal subdomains of TCF7L2 that adopt relatively fixed conformations in the crystal structures had large effects on the dissociation kinetics, whereas the mutation of the labile sub-domain connecting them had negligible effect. These results point to a two-site avidity mechanism of binding with the linker region forming a "fuzzy" complex involving transient contacts that are not site-specific. Strikingly, the two mutations in the N-terminal subdomain that had the largest effects on the dissociation kinetics showed two additional phases, indicating partial flux through an alternative dissociation pathway that is inaccessible to the wild type. The results presented here provide insights into the kinetics of the molecular recognition of a long intrinsically disordered region with an elongated repeat-protein surface, a process found to involve parallel routes with sequential steps in each.
Collapse
Affiliation(s)
- Ben M. Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK;
| | - Pamela J. E. Rowling
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK;
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK;
| | - Laura S. Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK;
| |
Collapse
|
35
|
Kuang X, Nunn K, Jiang J, Castellano P, Hardikar U, Horgan A, Kong J, Tan Z, Dai W. Structural insight into transmissive mutant huntingtin species by correlative light and electron microscopy and cryo-electron tomography. Biochem Biophys Res Commun 2021; 560:99-104. [PMID: 33984771 DOI: 10.1016/j.bbrc.2021.04.124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Aggregates of mutant huntingtin (mHTT) containing an expanded polyglutamine (polyQ) tract are hallmarks of Huntington's Disease (HD). Studies have shown that mHTT can spread between cells, leading to the propagation of misfolded protein pathology. However, the structure of transmissive mHTT species, and the molecular mechanisms underlying their transmission remain unknown. Using correlative light and electron microscopy (CLEM) and cryo-electron tomography (cryo-ET), we identified two types of aggregation-prone granules in conditioned medium from PC12 cells expressing a mHTT N-terminal fragment: densities enclosed by extracellular vesicles (EVs), and uncoated, amorphous meshworks of heterogeneous oligomers that co-localize with clusters of EVs. In vitro assays confirmed that liposomes induce condensation of polyQ oligomers into higher-order assemblies, resembling the uncoated meshworks observed in PC12 conditioned medium. Our findings provide novel insights into formation and architecture of transmissive mHTT proteins, and highlight the potential role of EVs as both carriers and modulators of transmissive mHTT proteins.
Collapse
Affiliation(s)
- Xuyuan Kuang
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Kyle Nunn
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jennifer Jiang
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Paul Castellano
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Uttara Hardikar
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Arianna Horgan
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Joyce Kong
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Zhiqun Tan
- Department of Anatomy and Neurobiology, University of California Irvine School of Medicine, Irvine, CA, 29697, USA; Institute for Memory Impairment and Neurological Disorders, University of California-Irvine, Irvine, CA, 29697, USA.
| | - Wei Dai
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
36
|
Karlsson E, Paissoni C, Erkelens AM, Tehranizadeh ZA, Sorgenfrei FA, Andersson E, Ye W, Camilloni C, Jemth P. Mapping the transition state for a binding reaction between ancient intrinsically disordered proteins. J Biol Chem 2021; 295:17698-17712. [PMID: 33454008 PMCID: PMC7762952 DOI: 10.1074/jbc.ra120.015645] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/15/2020] [Indexed: 12/24/2022] Open
Abstract
Intrinsically disordered protein domains often have multiple binding partners. It is plausible that the strength of pairing with specific partners evolves from an initial low affinity to a higher affinity. However, little is known about the molecular changes in the binding mechanism that would facilitate such a transition. We previously showed that the interaction between two intrinsically disordered domains, NCBD and CID, likely emerged in an ancestral deuterostome organism as a low-affinity interaction that subsequently evolved into a higher-affinity interaction before the radiation of modern vertebrate groups. Here we map native contacts in the transition states of the low-affinity ancestral and high-affinity human NCBD/CID interactions. We show that the coupled binding and folding mechanism is overall similar but with a higher degree of native hydrophobic contact formation in the transition state of the ancestral complex and more heterogeneous transient interactions, including electrostatic pairings, and an increased disorder for the human complex. Adaptation to new binding partners may be facilitated by this ability to exploit multiple alternative transient interactions while retaining the overall binding and folding pathway.
Collapse
Affiliation(s)
- Elin Karlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Cristina Paissoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Amanda M Erkelens
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Zeinab A Tehranizadeh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Frieda A Sorgenfrei
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Weihua Ye
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy.
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
37
|
Thapa C, Roivas P, Haataja T, Permi P, Pentikäinen U. The Interaction Mechanism of Intrinsically Disordered PP2A Inhibitor Proteins ARPP-16 and ARPP-19 With PP2A. Front Mol Biosci 2021; 8:650881. [PMID: 33842550 PMCID: PMC8032985 DOI: 10.3389/fmolb.2021.650881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 12/01/2022] Open
Abstract
Protein phosphatase 2A (PP2A) activity is critical for maintaining normal physiological cellular functions. PP2A is inhibited by endogenous inhibitor proteins in several pathological conditions including cancer. A PP2A inhibitor protein, ARPP-19, has recently been connected to several human cancer types. Accordingly, the knowledge about ARPP-19—PP2A inhibition mechanism is crucial for the understanding the disease development and the therapeutic targeting of ARPP-19—PP2A. Here, we show the first structural characterization of ARPP-19, and its splice variant ARPP-16 using NMR spectroscopy, and SAXS. The results reveal that both ARPP proteins are intrinsically disordered but contain transient secondary structure elements. The interaction mechanism of ARPP-16/19 with PP2A was investigated using microscale thermophoresis and NMR spectroscopy. Our results suggest that ARPP—PP2A A-subunit interaction is mediated by linear motif and has modest affinity whereas, the interaction of ARPPs with B56-subunit is weak and transient. Like many IDPs, ARPPs are promiscuous binders that transiently interact with PP2A A- and B56 subunits using multiple interaction motifs. In summary, our results provide a good starting point for future studies and development of therapeutics that block ARPP-PP2A interactions.
Collapse
Affiliation(s)
- Chandan Thapa
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland.,Turku BioScience Centre, University of Turku, Turku, Finland
| | - Pekka Roivas
- Institute of Biomedicine, University of Turku, Turku, Finland.,Turku BioScience Centre, University of Turku, Turku, Finland
| | - Tatu Haataja
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland.,Turku BioScience Centre, University of Turku, Turku, Finland
| | - Perttu Permi
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland.,Department of Chemistry and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Ulla Pentikäinen
- Institute of Biomedicine, University of Turku, Turku, Finland.,Turku BioScience Centre, University of Turku, Turku, Finland
| |
Collapse
|
38
|
Rathbone HW, Michie KA, Landsberg MJ, Green BR, Curmi PMG. Scaffolding proteins guide the evolution of algal light harvesting antennas. Nat Commun 2021; 12:1890. [PMID: 33767155 PMCID: PMC7994580 DOI: 10.1038/s41467-021-22128-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/17/2021] [Indexed: 11/19/2022] Open
Abstract
Photosynthetic organisms have developed diverse antennas composed of chromophorylated proteins to increase photon capture. Cryptophyte algae acquired their photosynthetic organelles (plastids) from a red alga by secondary endosymbiosis. Cryptophytes lost the primary red algal antenna, the red algal phycobilisome, replacing it with a unique antenna composed of αβ protomers, where the β subunit originates from the red algal phycobilisome. The origin of the cryptophyte antenna, particularly the unique α subunit, is unknown. Here we show that the cryptophyte antenna evolved from a complex between a red algal scaffolding protein and phycoerythrin β. Published cryo-EM maps for two red algal phycobilisomes contain clusters of unmodelled density homologous to the cryptophyte-αβ protomer. We modelled these densities, identifying a new family of scaffolding proteins related to red algal phycobilisome linker proteins that possess multiple copies of a cryptophyte-α-like domain. These domains bind to, and stabilise, a conserved hydrophobic surface on phycoerythrin β, which is the same binding site for its primary partner in the red algal phycobilisome, phycoerythrin α. We propose that after endosymbiosis these scaffolding proteins outcompeted the primary binding partner of phycoerythrin β, resulting in the demise of the red algal phycobilisome and emergence of the cryptophyte antenna. Cryptophytes acquired plastids from red algae but replaced the light-harvesting phycobilisome with a unique cryptophyte antenna. Here via analysis of phycobilisome cryo-EM structures, Rathbone et al. propose that the α subunit of the cryptophyte antenna originated from phycobilisome linker proteins
Collapse
Affiliation(s)
- Harry W Rathbone
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Katharine A Michie
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia.,Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Beverley R Green
- Botany Department, University of British Columbia, Vancouver, BC, V6N 3T7, Canada
| | - Paul M G Curmi
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
39
|
Freitas FC, Ferreira PHB, Favaro DC, Oliveira RJD. Shedding Light on the Inhibitory Mechanisms of SARS-CoV-1/CoV-2 Spike Proteins by ACE2-Designed Peptides. J Chem Inf Model 2021; 61:1226-1243. [PMID: 33619962 PMCID: PMC7931628 DOI: 10.1021/acs.jcim.0c01320] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 01/07/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the host cellular receptor that locks onto the surface spike protein of the 2002 SARS coronavirus (SARS-CoV-1) and of the novel, highly transmissible and deadly 2019 SARS-CoV-2, responsible for the COVID-19 pandemic. One strategy to avoid the virus infection is to design peptides by extracting the human ACE2 peptidase domain α1-helix, which would bind to the coronavirus surface protein, preventing the virus entry into the host cells. The natural α1-helix peptide has a stronger affinity to SARS-CoV-2 than to SARS-CoV-1. Another peptide was designed by joining α1 with the second portion of ACE2 that is far in the peptidase sequence yet grafted in the spike protein interface with ACE2. Previous studies have shown that, among several α1-based peptides, the hybrid peptidic scaffold is the one with the highest/strongest affinity for SARS-CoV-1, which is comparable to the full-length ACE2 affinity. In this work, binding and folding dynamics of the natural and designed ACE2-based peptides were simulated by the well-known coarse-grained structure-based model, with the computed thermodynamic quantities correlating with the experimental binding affinity data. Furthermore, theoretical kinetic analysis of native contact formation revealed the distinction between these processes in the presence of the different binding partners SARS-CoV-1 and SARS-CoV-2 spike domains. Additionally, our results indicate the existence of a two-state folding mechanism for the designed peptide en route to bind to the spike proteins, in contrast to a downhill mechanism for the natural α1-helix peptides. The presented low-cost simulation protocol demonstrated its efficiency in evaluating binding affinities and identifying the mechanisms involved in the neutralization of spike-ACE2 interaction by designed peptides. Finally, the protocol can be used as a computer-based screening of more potent designed peptides by experimentalists searching for new therapeutics against COVID-19.
Collapse
Affiliation(s)
- Frederico Campos Freitas
- Laboratório de Biofísica Teórica,
Departamento de Física, Instituto de Ciências Exatas, Naturais
e Educação, Universidade Federal do Triângulo
Mineiro, Uberaba, MG 38064-200, Brazil
| | - Paulo Henrique Borges Ferreira
- Laboratório de Biofísica Teórica,
Departamento de Física, Instituto de Ciências Exatas, Naturais
e Educação, Universidade Federal do Triângulo
Mineiro, Uberaba, MG 38064-200, Brazil
| | - Denize Cristina Favaro
- Departamento de Química Orgânica,
Instituto de Química, Universidade Estadual de
Campinas, São Paulo, SP 13083-970, Brazil
| | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica,
Departamento de Física, Instituto de Ciências Exatas, Naturais
e Educação, Universidade Federal do Triângulo
Mineiro, Uberaba, MG 38064-200, Brazil
| |
Collapse
|
40
|
Gianni S, Freiberger MI, Jemth P, Ferreiro DU, Wolynes PG, Fuxreiter M. Fuzziness and Frustration in the Energy Landscape of Protein Folding, Function, and Assembly. Acc Chem Res 2021; 54:1251-1259. [PMID: 33550810 PMCID: PMC8023570 DOI: 10.1021/acs.accounts.0c00813] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 12/20/2022]
Abstract
Are all protein interactions fully optimized? Do suboptimal interactions compromise specificity? What is the functional impact of frustration? Why does evolution not optimize some contacts? Proteins and their complexes are best described as ensembles of states populating an energy landscape. These ensembles vary in breadth from narrow ensembles clustered around a single average X-ray structure to broader ensembles encompassing a few different functional "taxonomic" states on to near continua of rapidly interconverting conformations, which are called "fuzzy" or even "intrinsically disordered". Here we aim to provide a comprehensive framework for confronting the structural and dynamical continuum of protein assemblies by combining the concepts of energetic frustration and interaction fuzziness. The diversity of the protein structural ensemble arises from the frustrated conflicts between the interactions that create the energy landscape. When frustration is minimal after folding, it results in a narrow ensemble, but residual frustrated interactions result in fuzzy ensembles, and this fuzziness allows a versatile repertoire of biological interactions. Here we discuss how fuzziness and frustration play off each other as proteins fold and assemble, viewing their significance from energetic, functional, and evolutionary perspectives.We demonstrate, in particular, that the common physical origin of both concepts is related to the ruggedness of the energy landscapes, intramolecular in the case of frustration and intermolecular in the case of fuzziness. Within this framework, we show that alternative sets of suboptimal contacts may encode specificity without achieving a single structural optimum. Thus, we demonstrate that structured complexes may not be optimized, and energetic frustration is realized via different sets of contacts leading to multiplicity of specific complexes. Furthermore, we propose that these suboptimal, frustrated, or fuzzy interactions are under evolutionary selection and expand the biological repertoire by providing a multiplicity of biological activities. In accord, we show that non-native interactions in folding or interaction landscapes can cooperate to generate diverse functional states, which are essential to facilitate adaptation to different cellular conditions. Thus, we propose that not fully optimized structures may actually be beneficial for biological activities of proteins via an alternative set of suboptimal interactions. The importance of such variability has not been recognized across different areas of biology.This account provides a modern view on folding, function, and assembly across the protein universe. The physical framework presented here is applicable to the structure and dynamics continuum of proteins and opens up new perspectives for drug design involving not fully structured, highly dynamic protein assemblies.
Collapse
Affiliation(s)
- Stefano Gianni
- Istituto
Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli” and Istituto di Biologia e Patologia
Molecolari del CNR, Sapienza Università
di Roma, 00185 Rome, Italy
| | - María Inés Freiberger
- Protein
Physiology Lab, Departamento de Química Biológica, Facultad
de Ciencias Exactas y Naturales, Universidad
de Buenos Aires-CONICET-IQUIBICEN, 1428 Buenos Aires, Argentina
| | - Per Jemth
- Department
of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, SE-75123 Uppsala, Sweden
| | - Diego U. Ferreiro
- Protein
Physiology Lab, Departamento de Química Biológica, Facultad
de Ciencias Exactas y Naturales, Universidad
de Buenos Aires-CONICET-IQUIBICEN, 1428 Buenos Aires, Argentina
| | - Peter G. Wolynes
- Center
for Theoretical Biological Physics, Rice
University, 6500 Main Street, Houston, Texas 77251-1892, United States
| | - Monika Fuxreiter
- MTA-DE
Laboratory of Protein Dynamics, Department of Biochemistry and Molecular
Biology, University of Debrecen, Nagyerdei krt 98, H-4032 Debrecen, Hungary
- Department
of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
41
|
Gruebele M, Pielak GJ. Dynamical spectroscopy and microscopy of proteins in cells. Curr Opin Struct Biol 2021; 70:1-7. [PMID: 33662744 DOI: 10.1016/j.sbi.2021.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/01/2021] [Indexed: 12/31/2022]
Abstract
With a strong understanding of how proteins fold in hand, it is now possible to ask how in-cell environments modulate their folding, binding and function. Studies accessing fast (ns to s) in-cell dynamics have accelerated over the past few years through a combination of in-cell NMR spectroscopy and time-resolved fluorescence microscopies. Here, we discuss this recent work and the emerging picture of protein surfaces as not just hydrophilic coats interfacing the solvent to the protein's core and functional regions, but as critical components in cells controlling protein mobility, function and communication with post-translational modifications.
Collapse
Affiliation(s)
- Martin Gruebele
- Department of Chemistry, Department of Physics, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Gary J Pielak
- Departments of Chemistry, Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
42
|
The road less traveled in protein folding: evidence for multiple pathways. Curr Opin Struct Biol 2020; 66:83-88. [PMID: 33220553 DOI: 10.1016/j.sbi.2020.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/11/2020] [Indexed: 11/23/2022]
Abstract
Free Energy Landscape theory of Protein Folding, introduced over 20 years ago, implies that a protein has many paths to the folded conformation with the lowest free energy. Despite the knowledge in principle, it has been remarkably hard to detect such pathways. The lack of such observations is primarily due to the fact that no one experimental technique can detect many parts of the protein simultaneously with the time resolution necessary to see such differences in paths. However, recent technical developments and employment of multiple experimental probes and folding prompts have illuminated multiple folding pathways in a number of proteins that had all previously been described with a single path.
Collapse
|
43
|
Fuxreiter M. Classifying the Binding Modes of Disordered Proteins. Int J Mol Sci 2020; 21:E8615. [PMID: 33207556 PMCID: PMC7697186 DOI: 10.3390/ijms21228615] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 02/07/2023] Open
Abstract
Disordered proteins often act as interaction hubs in cellular pathways, via the specific recognition of a distinguished set of partners. While disordered regions can adopt a well-defined conformation upon binding, the coupled folding to binding model does not explain how interaction versatility is achieved. Here, I present a classification scheme for the binding modes of disordered protein regions, based on their conformational heterogeneity in the bound state. Binding modes are defined as (i) disorder-to-order transitions leading to a well-defined bound state, (ii) disordered binding leading to a disordered bound state and (iii) fuzzy binding when the degree of disorder in the bound state may vary with the partner or cellular conditions. Fuzzy binding includes polymorphic bound structures, conditional folding and dynamic binding. This classification scheme describes the structural continuum of complexes involving disordered regions as well as their context-dependent interaction behaviors.
Collapse
Affiliation(s)
- Monika Fuxreiter
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
- Laboratory of Protein Dynamics, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
44
|
Capturing the Conformational Ensemble of the Mixed Folded Polyglutamine Protein Ataxin-3. Structure 2020; 29:70-81.e5. [PMID: 33065068 DOI: 10.1016/j.str.2020.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/22/2020] [Accepted: 09/24/2020] [Indexed: 01/31/2023]
Abstract
Ataxin-3 is a deubiquitinase involved in protein quality control and other essential cellular functions. It preferentially interacts with polyubiquitin chains of four or more units attached to proteins delivered to the ubiquitin-proteasome system. Ataxin-3 is composed of an N-terminal Josephin domain and a flexible C terminus that contains two or three ubiquitin-interacting motifs (UIMs) and a polyglutamine tract, which, when expanded beyond a threshold, leads to protein aggregation and misfolding and causes spinocerebellar ataxia type 3. The high-resolution structure of the Josephin domain is available, but the structural and dynamical heterogeneity of ataxin-3 has so far hindered the structural description of the full-length protein. Here, we characterize non-expanded and expanded variants of ataxin-3 in terms of conformational ensembles adopted by the proteins in solution by jointly using experimental data from nuclear magnetic resonance and small-angle X-ray scattering with coarse-grained simulations. Our results pave the way to a molecular understanding of polyubiquitin recognition.
Collapse
|
45
|
Soto AM, Sonnenschein C. Information, programme, signal: dead metaphors that negate the agency of organisms. INTERDISCIPLINARY SCIENCE REVIEWS : ISR 2020; 45:331-343. [PMID: 33100483 PMCID: PMC7577589 DOI: 10.1080/03080188.2020.1794389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The metaphorical adoption of the concepts of information, program and signal introduced into biology the logic and implicit causal structure of the mathematical theories of information; this is inimical to biology. In turn, those metaphors have hindered the development of a theory of organisms by transferring the agency of organisms to natural selection and to DNA. Moreover, those metaphors introduced into biology the dualism software-hardware and a Laplacian causal structure. Instead, we propose to uphold the agency of the living by adopting three foundational principles for a theory of organisms: namely, 1) the principle of biological inertia (i.e., the default state of cells is proliferation and motility), 2) the principle of variation, and 3) the principle of organization.
Collapse
Affiliation(s)
- Ana M. Soto
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
- Centre Cavaillès, École Normale Supérieure, 29, Rue d’Ulm, Paris 75005, France
| | - Carlos Sonnenschein
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
- Centre Cavaillès, École Normale Supérieure, 29, Rue d’Ulm, Paris 75005, France
| |
Collapse
|
46
|
Hernández-Segura T, Pastor N. Identification of an α-MoRF in the Intrinsically Disordered Region of the Escargot Transcription Factor. ACS OMEGA 2020; 5:18331-18341. [PMID: 32743208 PMCID: PMC7392517 DOI: 10.1021/acsomega.0c02051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Molecular recognition features (MoRFs) are common in intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs). MoRFs are in constant order-disorder structural transitions and adopt well-defined structures once they are bound to their targets. Here, we study Escargot (Esg), a transcription factor in Drosophila melanogaster that regulates multiple cellular functions, and consists of a disordered N-terminal domain and a group of zinc fingers at its C-terminal domain. We analyzed the N-terminal domain of Esg with disorder predictors and identified a region of 45 amino acids with high probability to form ordered structures, which we named S2. Through 54 μs of molecular dynamics (MD) simulations using CHARMM36 and implicit solvent (generalized Born/surface area (GBSA)), we characterized the conformational landscape of S2 and found an α-MoRF of ∼16 amino acids stabilized by key contacts within the helix. To test the importance of these contacts in the stability of the α-MoRF, we evaluated the effect of point mutations that would impair these interactions, running 24 μs of MD for each mutation. The mutations had mild effects on the MoRF, and in some cases, led to gain of residual structure through long-range contacts of the α-MoRF and the rest of the S2 region. As this could be an effect of the force field and solvent model we used, we benchmarked our simulation protocol by carrying out 32 μs of MD for the (AAQAA)3 peptide. The results of the benchmark indicate that the global amount of helix in shorter peptides like (AAQAA)3 is reasonably predicted. Careful analysis of the runs of S2 and its mutants suggests that the mutation to hydrophobic residues may have nucleated long-range hydrophobic and aromatic interactions that stabilize the MoRF. Finally, we have identified a set of residues that stabilize an α-MoRF in a region still without functional annotations in Esg.
Collapse
Affiliation(s)
- Teresa Hernández-Segura
- Laboratorio
de Dinámica de Proteínas, Centro de Investigación
en Dinámica Celular-IICBA, Universidad
Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, México
- Doctorado
en Ciencias CIDC-IICBA, Universidad Autónoma
del Estado de Morelos, Cuernavaca 62209, Morelos, México
| | - Nina Pastor
- Laboratorio
de Dinámica de Proteínas, Centro de Investigación
en Dinámica Celular-IICBA, Universidad
Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, México
| |
Collapse
|
47
|
de Brevern AG. Analysis of Protein Disorder Predictions in the Light of a Protein Structural Alphabet. Biomolecules 2020; 10:biom10071080. [PMID: 32698546 PMCID: PMC7408373 DOI: 10.3390/biom10071080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/30/2022] Open
Abstract
Intrinsically-disordered protein (IDP) characterization was an amazing change of paradigm in our classical sequence-structure-function theory. Moreover, IDPs are over-represented in major disease pathways and are now often targeted using small molecules for therapeutic purposes. This has had created a complex continuum from order-that encompasses rigid and flexible regions-to disorder regions; the latter being not accessible through classical crystallographic methodologies. In X-ray structures, the notion of order is dictated by access to resolved atom positions, providing rigidity and flexibility information with low and high experimental B-factors, while disorder is associated with the missing (non-resolved) residues. Nonetheless, some rigid regions can be found in disorder regions. Using ensembles of IDPs, their local conformations were analyzed in the light of a structural alphabet. An entropy index derived from this structural alphabet allowed us to propose a continuum of states from rigidity to flexibility and finally disorder. In this study, the analysis was extended to comparing these results to disorder predictions, underlying a limited correlation, and so opening new ideas to characterize and predict disorder.
Collapse
Affiliation(s)
- Alexandre G de Brevern
- INSERM, UMR_S 1134, DSIMB, Univ Paris, INTS, Laboratoire d'Excellence GR-Ex, 75015 Paris, France
| |
Collapse
|
48
|
Malagrinò F, Visconti L, Pagano L, Toto A, Troilo F, Gianni S. Understanding the Binding Induced Folding of Intrinsically Disordered Proteins by Protein Engineering: Caveats and Pitfalls. Int J Mol Sci 2020; 21:ijms21103484. [PMID: 32429036 PMCID: PMC7279032 DOI: 10.3390/ijms21103484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Many proteins lack a well-defined three-dimensional structure in isolation. These proteins, typically denoted as intrinsically disordered proteins (IDPs), may display a characteristic disorder-to-order transition when binding their physiological partner(s). From an experimental perspective, it is of great importance to establish the general grounds to understand how such folding processes may be explored. Here we discuss the caveats and the pitfalls arising when applying to IDPs one of the key techniques to characterize the folding of globular proteins, the Φ value analysis. This method is based on measurements of the free energy changes of transition and native states upon conservative, non-disrupting, mutations. On the basis of available data, we reinforce the validity of Φ value analysis in the study of IDPs and suggest future experiments to further validate this powerful experimental method.
Collapse
|