1
|
Li Z, Wang Y, Zhao X, Meng Q, Ma G, Xie L, Jiang X, Liu Y, Huang D. Advances in bacterial glycoprotein engineering: A critical review of current technologies, emerging challenges, and future directions. Biotechnol Adv 2025; 79:108514. [PMID: 39755221 DOI: 10.1016/j.biotechadv.2024.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Protein glycosylation, which involves the addition of carbohydrate chains to amino acid side chains, imparts essential properties to proteins, offering immense potential in synthetic biology applications. Despite its importance, natural glycosylation pathways present several limitations, highlighting the need for new tools to better understand glycan structures, recognition, metabolism, and biosynthesis, and to facilitate the production of biologically relevant glycoproteins. The field of bacterial glycoengineering has gained significant attention due to the ongoing discovery and study of bacterial glycosylation systems. By utilizing protein glycan coupling technology, a wide range of valuable glycoproteins for clinical and diagnostic purposes have been successfully engineered. This review outlines the recent advances in bacterial protein glycosylation from the perspective of synthetic biology and metabolic engineering, focusing on the development of new glycoprotein therapeutics and vaccines. We provide an overview of the production of high-value, customized glycoproteins using prokaryotic glycosylation platforms, with particular emphasis on four key elements: (i) glycosyltransferases, (ii) carrier proteins, (iii) glycosyl donors, and (iv) host bacteria. Optimization of these elements enables precise control over glycosylation patterns, thus enhancing the potential of the resulting products. Finally, we discuss the challenges and future prospects of leveraging synthetic biology technologies to develop microbial glyco-factories and cell-free systems for efficient glycoprotein production.
Collapse
Affiliation(s)
- Ziyu Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| | - Yujie Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| | - Xiaojing Zhao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| | - Qing Meng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Guozhen Ma
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Lijie Xie
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Xiaolong Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China.
| |
Collapse
|
2
|
Cohen EJ, Drobnič T, Ribardo DA, Yoshioka A, Umrekar T, Guo X, Fernandez JJ, Brock EE, Wilson L, Nakane D, Hendrixson DR, Beeby M. Evolution of a large periplasmic disk in Campylobacterota flagella enables both efficient motility and autoagglutination. Dev Cell 2024; 59:3306-3321.e5. [PMID: 39362219 PMCID: PMC11652260 DOI: 10.1016/j.devcel.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/10/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024]
Abstract
The flagellar motors of Campylobacter jejuni (C. jejuni) and related Campylobacterota (previously epsilonproteobacteria) feature 100-nm-wide periplasmic "basal disks" that have been implicated in scaffolding a wider ring of additional motor proteins to increase torque, but the size of these disks is excessive for a role solely in scaffolding motor proteins. Here, we show that the basal disk is a flange that braces the flagellar motor during disentanglement of its flagellar filament from interactions with the cell body and other filaments. We show that motor output is unaffected when we shrink or displace the basal disk, and suppressor mutations of debilitated motors occur in flagellar-filament or cell-surface glycosylation pathways, thus sidestepping the need for a flange to overcome the interactions between two flagellar filaments and between flagellar filaments and the cell body. Our results identify unanticipated co-dependencies in the evolution of flagellar motor structure and cell-surface properties in the Campylobacterota.
Collapse
Affiliation(s)
- Eli J Cohen
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | - Tina Drobnič
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Deborah A Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aoba Yoshioka
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Trishant Umrekar
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Xuefei Guo
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Jose-Jesus Fernandez
- Spanish National Research Council (CINN-CSIC), Health Research Institute of Asturias (ISPA), Av Hospital Universitario s/n, Oviedo 33011, Spain
| | - Emma E Brock
- Department of Physics, School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK
| | - Laurence Wilson
- Department of Physics, School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK
| | - Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - David R Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
3
|
Marihonnaiah S, Belur Shivappa GK. Site-Specific N-Glycoprofiling of Immunoglobulin G Subtypes from Donkey Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26547-26557. [PMID: 39557633 DOI: 10.1021/acs.jafc.4c07168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Donkey milk IgG was probed for the site-specific N-glycosylation pattern through RP-UHPLC-MS/MS. The affinity-purified milk IgG was subjected to SDS-PAGE and proteomic analysis, which revealed the presence of subtypes. Multiple N-glycopeptides arising from the predicted donkey IgG1, IgG2, IgG3, IgG5, IgG6, and IgG7 subtypes' heavy-chain constant region were shown to contain glycans at the highly conserved glycosylation site NST in the CH2 domain. Differences in the peptide backbone with the NST site among subtypes generated after trypsin digestion resulted in the evaluation of the subtype-specific glycan pattern. Glycan sequence analysis indicated predominantly biantennary complex types with core fucosylation at the site NST. Interestingly, an additional site NQT in the CH1 domain of the heavy-chain constant region of IgG5 was found to possess mainly sialylated biantennary complex glycans with NeuAc and NeuGc. Structural diversity of glycans was mainly observed in the predicted donkey IgG1, IgG5, and IgG7, whereas IgG2, IgG3, and IgG6 resulted in the glycopeptides that are of low abundance in the analyzed samples. These findings would pave the way for a better understanding of donkey milk functional properties.
Collapse
Affiliation(s)
- Sudarshan Marihonnaiah
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gnanesh Kumar Belur Shivappa
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Onigbinde S, Gutierrez Reyes CD, Sandilya V, Chukwubueze F, Oluokun O, Sahioun S, Oluokun A, Mechref Y. Optimization of glycopeptide enrichment techniques for the identification of clinical biomarkers. Expert Rev Proteomics 2024; 21:431-462. [PMID: 39439029 PMCID: PMC11877277 DOI: 10.1080/14789450.2024.2418491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION The identification and characterization of glycopeptides through LC-MS/MS and advanced enrichment techniques are crucial for advancing clinical glycoproteomics, significantly impacting the discovery of disease biomarkers and therapeutic targets. Despite progress in enrichment methods like Lectin Affinity Chromatography (LAC), Hydrophilic Interaction Liquid Chromatography (HILIC), and Electrostatic Repulsion Hydrophilic Interaction Chromatography (ERLIC), issues with specificity, efficiency, and scalability remain, impeding thorough analysis of complex glycosylation patterns crucial for disease understanding. AREAS COVERED This review explores the current challenges and innovative solutions in glycopeptide enrichment and mass spectrometry analysis, highlighting the importance of novel materials and computational advances for improving sensitivity and specificity. It outlines the potential future directions of these technologies in clinical glycoproteomics, emphasizing their transformative impact on medical diagnostics and therapeutic strategies. EXPERT OPINION The application of innovative materials such as Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), functional nanomaterials, and online enrichment shows promise in addressing challenges associated with glycoproteomics analysis by providing more selective and robust enrichment platforms. Moreover, the integration of artificial intelligence and machine learning is revolutionizing glycoproteomics by enhancing the processing and interpretation of extensive data from LC-MS/MS, boosting biomarker discovery, and improving predictive accuracy, thus supporting personalized medicine.
Collapse
Affiliation(s)
- Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | | | - Vishal Sandilya
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Favour Chukwubueze
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Odunayo Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Sarah Sahioun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ayobami Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
5
|
Nakagawa S, Sakai HD, Shimamura S, Takamatsu Y, Kato S, Yagi H, Yanaka S, Yagi-Utsumi M, Kurosawa N, Ohkuma M, Kato K, Takai K. N-linked protein glycosylation in Nanobdellati (formerly DPANN) archaea and their hosts. J Bacteriol 2024; 206:e0020524. [PMID: 39194224 PMCID: PMC11411935 DOI: 10.1128/jb.00205-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Members of the kingdom Nanobdellati, previously known as DPANN archaea, are characterized by ultrasmall cell sizes and reduced genomes. They primarily thrive through ectosymbiotic interactions with specific hosts in diverse environments. Recent successful cultivations have emphasized the importance of adhesion to host cells for understanding the ecophysiology of Nanobdellati. Cell adhesion is often mediated by cell surface carbohydrates, and in archaea, this may be facilitated by the glycosylated S-layer protein that typically coats their cell surface. In this study, we conducted glycoproteomic analyses on two co-cultures of Nanobdellati with their host archaea, as well as on pure cultures of both host and non-host archaea. Nanobdellati exhibited various glycoproteins, including archaellins and hypothetical proteins, with glycans that were structurally distinct from those of their hosts. This indicated that Nanobdellati autonomously synthesize their glycans for protein modifications probably using host-derived substrates, despite the high energy cost. Glycan modifications on Nanobdellati proteins consistently occurred on asparagine residues within the N-X-S/T sequon, consistent with patterns observed across archaea, bacteria, and eukaryotes. In both host and non-host archaea, S-layer proteins were commonly modified with hexose, N-acetylhexosamine, and sulfonated deoxyhexose. However, the N-glycan structures of host archaea, characterized by distinct sugars such as deoxyhexose, nonulosonate sugar, and pentose at the nonreducing ends, were implicated in enabling Nanobdellati to differentiate between host and non-host cells. Interestingly, the specific sugar, xylose, was eliminated from the N-glycan in a host archaeon when co-cultured with Nanobdella. These findings enhance our understanding of the role of protein glycosylation in archaeal interactions.IMPORTANCENanobdellati archaea, formerly known as DPANN, are phylogenetically diverse, widely distributed, and obligately ectosymbiotic. The molecular mechanisms by which Nanobdellati recognize and adhere to their specific hosts remain largely unexplored. Protein glycosylation, a fundamental biological mechanism observed across all domains of life, is often crucial for various cell-cell interactions. This study provides the first insights into the glycoproteome of Nanobdellati and their host and non-host archaea. We discovered that Nanobdellati autonomously synthesize glycans for protein modifications, probably utilizing substrates derived from their hosts. Additionally, we identified distinctive glycosylation patterns that suggest mechanisms through which Nanobdellati differentiate between host and non-host cells. This research significantly advances our understanding of the molecular basis of microbial interactions in extreme environments.
Collapse
Affiliation(s)
- Satoshi Nakagawa
- Division of Applied Biosciences, Laboratory of Marine Environmental Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
| | - Hiroyuki D. Sakai
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Hachioji, Tokyo, Japan
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Shigeru Shimamura
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yoshiki Takamatsu
- Division of Applied Biosciences, Laboratory of Marine Environmental Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Hirokazu Yagi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Norio Kurosawa
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Ken Takai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Aichi, Japan
| |
Collapse
|
6
|
Nakagawa S, Imachi H, Shimamura S, Yanaka S, Yagi H, Yagi-Utsumi M, Sakai H, Kato S, Ohkuma M, Kato K, Takai K. Characterization of protein glycosylation in an Asgard archaeon. BBA ADVANCES 2024; 6:100118. [PMID: 39081798 PMCID: PMC11284389 DOI: 10.1016/j.bbadva.2024.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Archaeal cells are typically enveloped by glycosylated S-layer proteins. Archaeal protein glycosylation provides valuable insights not only into their adaptation to their niches but also into their evolutionary trajectory. Notably, thermophilic Thermoproteota modify proteins with N-glycans that include two GlcNAc units at the reducing end, resembling the "core structure" preserved across eukaryotes. Recently, Asgard archaea, now classified as members of the phylum Promethearchaeota, have offered unprecedented opportunities for understanding the role of archaea in eukaryogenesis. Despite the presence of genes indicative of protein N-glycosylation in this archaeal group, these have not been experimentally investigated. Here we performed a glycoproteome analysis of the firstly isolated Asgard archaeon Promethearchaeum syntrophicum. Over 700 different proteins were identified through high-resolution LC-MS/MS analysis, however, there was no evidence of either the presence or glycosylation of putative S-layer proteins. Instead, N-glycosylation in this archaeon was primarily observed in an extracellular solute-binding protein, possibly related to chemoreception or transmembrane transport of oligopeptides. The glycan modification occurred on an asparagine residue located within the conserved N-X-S/T sequon, consistent with the pattern found in other archaea, bacteria, and eukaryotes. Unexpectedly, three structurally different N-glycans lacking the conventional core structure were identified in this archaeon, presenting unique compositions that included atypical sugars. Notably, one of these sugars was likely HexNAc modified with a threonine residue, similar to modifications previously observed in mesophilic methanogens within the Methanobacteriati. Our findings advance our understanding of Asgard archaea physiology and evolutionary dynamics.
Collapse
Affiliation(s)
- Satoshi Nakagawa
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 273-0061, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Hiroyuki Imachi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 273-0061, Japan
| | - Shigeru Shimamura
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 273-0061, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya 467-8603, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Hirokazu Yagi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya 467-8603, Japan
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya 467-8603, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Hiroyuki Sakai
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Submarine Resources Research Center, JAMSTEC, Yokosuka 273-0061, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuhoku, Nagoya 467-8603, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 273-0061, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
7
|
Tkalec KI, Hayes AJ, Lim KS, Lewis JM, Davies MR, Scott NE. Glycan-Tailored Glycoproteomic Analysis Reveals Serine is the Sole Residue Subjected to O-Linked Glycosylation in Acinetobacter baumannii. J Proteome Res 2024; 23:2474-2494. [PMID: 38850255 DOI: 10.1021/acs.jproteome.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
Protein glycosylation is a ubiquitous process observed across all domains of life. Within the human pathogen Acinetobacter baumannii, O-linked glycosylation is required for virulence; however, the targets and conservation of glycosylation events remain poorly defined. In this work, we expand our understanding of the breadth and site specificity of glycosylation within A. baumannii by demonstrating the value of strain specific glycan electron-transfer/higher-energy collision dissociation (EThcD) triggering for bacterial glycoproteomics. By coupling tailored EThcD-triggering regimes to complementary glycopeptide enrichment approaches, we assessed the observable glycoproteome of three A. baumannii strains (ATCC19606, BAL062, and D1279779). Combining glycopeptide enrichment techniques including ion mobility (FAIMS), metal oxide affinity chromatography (titanium dioxide), and hydrophilic interaction liquid chromatography (ZIC-HILIC), as well as the use of multiple proteases (trypsin, GluC, pepsin, and thermolysis), we expand the known A. baumannii glycoproteome to 33 unique glycoproteins containing 42 glycosylation sites. We demonstrate that serine is the sole residue subjected to glycosylation with the substitution of serine for threonine abolishing glycosylation in model glycoproteins. An A. baumannii pan-genome built from 576 reference genomes identified that serine glycosylation sites are highly conserved. Combined this work expands our knowledge of the conservation and site specificity of A. baumannii O-linked glycosylation.
Collapse
Affiliation(s)
- Kristian I Tkalec
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Andrew J Hayes
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Kataleen S Lim
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Jessica M Lewis
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| |
Collapse
|
8
|
Hadjineophytou C, Loh E, Koomey M, Scott NE. Combining FAIMS based glycoproteomics and DIA proteomics reveals widespread proteome alterations in response to glycosylation occupancy changes in Neisseria gonorrhoeae. Proteomics 2024; 24:e2300496. [PMID: 38361220 DOI: 10.1002/pmic.202300496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Protein glycosylation is increasingly recognized as a common protein modification across bacterial species. Within the Neisseria genus O-linked protein glycosylation is conserved yet closely related Neisseria species express O-oligosaccharyltransferases (PglOs) with distinct targeting activities. Within this work, we explore the targeting capacity of different PglOs using Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) fractionation and Data-Independent Acquisition (DIA) to allow the characterization of the impact of changes in glycosylation on the proteome of Neisseria gonorrhoeae. We demonstrate FAIMS expands the known glycoproteome of wild type N. gonorrhoeae MS11 and enables differences in glycosylation to be assessed across strains expressing different pglO allelic chimeras with unique substrate targeting activities. Combining glycoproteomic insights with DIA proteomics, we demonstrate that alterations within pglO alleles have widespread impacts on the proteome of N. gonorrhoeae. Examination of peptides known to be targeted by glycosylation using DIA analysis supports alterations in glycosylation occupancy occurs independently of changes in protein levels and that the occupancy of glycosylation is generally low on most glycoproteins. This work thus expands our understanding of the N. gonorrhoeae glycoproteome and the roles that pglO allelic variation may play in governing genus-level protein glycosylation.
Collapse
Affiliation(s)
- Chris Hadjineophytou
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
- Clinical Microbiology, BioClinicum, Karolinska University Hospital, Solna, Sweden
| | - Edmund Loh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
- Clinical Microbiology, BioClinicum, Karolinska University Hospital, Solna, Sweden
| | - Michael Koomey
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
9
|
Lewis JM, Jebeli L, Coulon PML, Lay CE, Scott NE. Glycoproteomic and proteomic analysis of Burkholderia cenocepacia reveals glycosylation events within FliF and MotB are dispensable for motility. Microbiol Spectr 2024; 12:e0034624. [PMID: 38709084 PMCID: PMC11237607 DOI: 10.1128/spectrum.00346-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Across the Burkholderia genus O-linked protein glycosylation is highly conserved. While the inhibition of glycosylation has been shown to be detrimental for virulence in Burkholderia cepacia complex species, such as Burkholderia cenocepacia, little is known about how specific glycosylation sites impact protein functionality. Within this study, we sought to improve our understanding of the breadth, dynamics, and requirement for glycosylation across the B. cenocepacia O-glycoproteome. Assessing the B. cenocepacia glycoproteome across different culture media using complementary glycoproteomic approaches, we increase the known glycoproteome to 141 glycoproteins. Leveraging this repertoire of glycoproteins, we quantitively assessed the glycoproteome of B. cenocepacia using Data-Independent Acquisition (DIA) revealing the B. cenocepacia glycoproteome is largely stable across conditions with most glycoproteins constitutively expressed. Examination of how the absence of glycosylation impacts the glycoproteome reveals that the protein abundance of only five glycoproteins (BCAL1086, BCAL2974, BCAL0525, BCAM0505, and BCAL0127) are altered by the loss of glycosylation. Assessing ΔfliF (ΔBCAL0525), ΔmotB (ΔBCAL0127), and ΔBCAM0505 strains, we demonstrate the loss of FliF, and to a lesser extent MotB, mirror the proteomic effects observed in the absence of glycosylation in ΔpglL. While both MotB and FliF are essential for motility, we find loss of glycosylation sites in MotB or FliF does not impact motility supporting these sites are dispensable for function. Combined this work broadens our understanding of the B. cenocepacia glycoproteome supporting that the loss of glycoproteins in the absence of glycosylation is not an indicator of the requirement for glycosylation for protein function. IMPORTANCE Burkholderia cenocepacia is an opportunistic pathogen of concern within the Cystic Fibrosis community. Despite a greater appreciation of the unique physiology of B. cenocepacia gained over the last 20 years a complete understanding of the proteome and especially the O-glycoproteome, is lacking. In this study, we utilize systems biology approaches to expand the known B. cenocepacia glycoproteome as well as track the dynamics of glycoproteins across growth phases, culturing media and in response to the loss of glycosylation. We show that the glycoproteome of B. cenocepacia is largely stable across conditions and that the loss of glycosylation only impacts five glycoproteins including the motility associated proteins FliF and MotB. Examination of MotB and FliF shows, while these proteins are essential for motility, glycosylation is dispensable. Combined this work supports that B. cenocepacia glycosylation can be dispensable for protein function and may influence protein properties beyond stability.
Collapse
Affiliation(s)
- Jessica M Lewis
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Leila Jebeli
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Pauline M L Coulon
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Catrina E Lay
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
10
|
Gao Y, Kim H, Kitata RB, Lin TT, Swensen AC, Shi T, Liu T. Multiplexed quantitative proteomics in prostate cancer biomarker development. Adv Cancer Res 2024; 161:31-69. [PMID: 39032952 PMCID: PMC11987045 DOI: 10.1016/bs.acr.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer (PCa) is the most common non-skin cancer among men in the United States. However, the widely used protein biomarker in PCa, prostate-specific antigen (PSA), while useful for initial detection, its use alone cannot detect aggressive PCa and can lead to overtreatment. This chapter provides an overview of PCa protein biomarker development. It reviews the state-of-the-art liquid chromatography-mass spectrometry-based proteomics technologies for PCa biomarker development, such as enhancing the detection sensitivity of low-abundance proteins through antibody-based or antibody-independent protein/peptide enrichment, enriching post-translational modifications such as glycosylation as well as information-rich extracellular vesicles, and increasing accuracy and throughput using advanced data acquisition methodologies. This chapter also summarizes recent PCa biomarker validation studies that applied those techniques in diverse specimen types, including cell lines, tissues, proximal fluids, urine, and blood, developing novel protein biomarkers for various clinical applications, including early detection and diagnosis, prognosis, and therapeutic intervention of PCa.
Collapse
Affiliation(s)
- Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Hyeyoon Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Reta Birhanu Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tai-Tu Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States.
| |
Collapse
|
11
|
Nilsson J, Rimkute I, Sihlbom C, Tenge VR, Lin SC, Atmar RL, Estes MK, Larson G. N-glycoproteomic analyses of human intestinal enteroids, varying in histo-blood group geno- and phenotypes, reveal a wide repertoire of fucosylated glycoproteins. Glycobiology 2024; 34:cwae029. [PMID: 38590172 PMCID: PMC11041853 DOI: 10.1093/glycob/cwae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024] Open
Abstract
Human noroviruses, globally the main cause of viral gastroenteritis, show strain specific affinity for histo-blood group antigens (HBGA) and can successfully be propagated ex vivo in human intestinal enteroids (HIEs). HIEs established from jejunal stem cells of individuals with different ABO, Lewis and secretor geno- and phenotypes, show varying susceptibility to such infections. Using bottom-up glycoproteomic approaches we have defined and compared the N-linked glycans of glycoproteins of seven jejunal HIEs. Membrane proteins were extracted, trypsin digested, and glycopeptides enriched by hydrophilic interaction liquid chromatography and analyzed by nanoLC-MS/MS. The Byonic software was used for glycopeptide identification followed by hands-on verifications and interpretations. Glycan structures and attachment sites were identified from MS2 spectra obtained by higher-energy collision dissociation through analysis of diagnostic saccharide oxonium ions (B-ions), stepwise glycosidic fragmentation of the glycans (Y-ions), and peptide sequence ions (b- and y-ions). Altogether 694 unique glycopeptides from 93 glycoproteins were identified. The N-glycans encompassed pauci- and oligomannose, hybrid- and complex-type structures. Notably, polyfucosylated HBGA-containing glycopeptides of the four glycoproteins tetraspanin-8, carcinoembryonic antigen-related cell adhesion molecule 5, sucrose-isomaltase and aminopeptidase N were especially prominent and were characterized in detail and related to donor ABO, Lewis and secretor types of each HIE. Virtually no sialylated N-glycans were identified for these glycoproteins suggesting that terminal sialylation was infrequent compared to fucosylation and HBGA biosynthesis. This approach gives unique site-specific information on the structural complexity of N-linked glycans of glycoproteins of human HIEs and provides a platform for future studies on the role of host glycoproteins in gastrointestinal infectious diseases.
Collapse
Affiliation(s)
- Jonas Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, Bruna Stråket 16, SE 413 45, Gothenburg, Sweden
- Department of Clinical Chemistry, Region Västra Götaland, Sahlgrenska University Hospital, Bruna Stråket 16, SE 413 45, Gothenburg, Sweden
- Proteomics Core Facilities, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 9E, SE 413 90, Gothenburg, Sweden
| | - Inga Rimkute
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, Bruna Stråket 16, SE 413 45, Gothenburg, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 7A, SE 413 90, Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facilities, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 9E, SE 413 90, Gothenburg, Sweden
| | - Victoria R Tenge
- Department of Molecular Virology, Baylor College School of Medicine, One Baylor Plaza, Houston, TX 770 30, United States
| | - Shih-Ching Lin
- Department of Molecular Virology, Baylor College School of Medicine, One Baylor Plaza, Houston, TX 770 30, United States
- Present address: Department of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Robert L Atmar
- Department of Molecular Virology, Baylor College School of Medicine, One Baylor Plaza, Houston, TX 770 30, United States
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 770 30, United States
| | - Mary K Estes
- Department of Molecular Virology, Baylor College School of Medicine, One Baylor Plaza, Houston, TX 770 30, United States
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 770 30, United States
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, Bruna Stråket 16, SE 413 45, Gothenburg, Sweden
- Department of Clinical Chemistry, Region Västra Götaland, Sahlgrenska University Hospital, Bruna Stråket 16, SE 413 45, Gothenburg, Sweden
| |
Collapse
|
12
|
Kang T, Budhraja R, Kim J, Joshi N, Garapati K, Pandey A. Global O-glycoproteome enrichment and analysis enabled by a combinatorial enzymatic workflow. CELL REPORTS METHODS 2024; 4:100744. [PMID: 38582075 PMCID: PMC11046030 DOI: 10.1016/j.crmeth.2024.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/25/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
A comprehensive analysis of site-specific protein O-glycosylation is hindered by the absence of a consensus O-glycosylation motif, the diversity of O-glycan structures, and the lack of a universal enzyme that cleaves attached O-glycans. Here, we report the development of a robust O-glycoproteomic workflow for analyzing complex biological samples by combining four different strategies: removal of N-glycans, complementary digestion using O-glycoprotease (IMPa) with/without another protease, glycopeptide enrichment, and mass spectrometry with fragmentation of glycopeptides using stepped collision energy. Using this workflow, we cataloged 474 O-glycopeptides on 189 O-glycosites derived from 79 O-glycoproteins from human plasma. These data revealed O-glycosylation of several abundant proteins that have not been previously reported. Because many of the proteins that contained unannotated O-glycosylation sites have been extensively studied, we wished to confirm glycosylation at these sites in a targeted fashion. Thus, we analyzed selected purified proteins (kininogen-1, fetuin-A, fibrinogen, apolipoprotein E, and plasminogen) in independent experiments and validated the previously unknown O-glycosites.
Collapse
Affiliation(s)
- Taewook Kang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jinyong Kim
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Neha Joshi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kishore Garapati
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India; Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
13
|
Hevér H, Xue A, Nagy K, Komka K, Vékey K, Drahos L, Révész Á. Can We Boost N-Glycopeptide Identification Confidence? Smart Collision Energy Choice Taking into Account Structure and Search Engine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:333-343. [PMID: 38286027 PMCID: PMC10853973 DOI: 10.1021/jasms.3c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024]
Abstract
High confidence and reproducibility are still challenges in bottom-up mass spectrometric N-glycopeptide identification. The collision energy used in the MS/MS measurements and the database search engine used to identify the species are perhaps the two most decisive factors. We investigated how the structural features of N-glycopeptides and the choice of the search engine influence the optimal collision energy, delivering the highest identification confidence. We carried out LC-MS/MS measurements using a series of collision energies on a large set of N-glycopeptides with both the glycan and peptide part varied and studied the behavior of Byonic, pGlyco, and GlycoQuest scores. We found that search engines show a range of behavior between peptide-centric and glycan-centric, which manifests itself already in the dependence of optimal collision energy on m/z. Using classical statistical and machine learning methods, we revealed that peptide hydrophobicity, glycan and peptide masses, and the number of mobile protons also have significant and search-engine-dependent influence, as opposed to a series of other parameters we probed. We envisioned an MS/MS workflow making a smart collision energy choice based on online available features such as the hydrophobicity (described by retention time) and glycan mass (potentially available from a scout MS/MS). Our assessment suggests that this workflow can lead to a significant gain (up to 100%) in the identification confidence, particularly for low-scoring hits close to the filtering limit, which has the potential to enhance reproducibility of N-glycopeptide analyses. Data are available via MassIVE (MSV000093110).
Collapse
Affiliation(s)
- Helga Hevér
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest H-1117, Hungary
| | - Andrea Xue
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest H-1117, Hungary
| | - Kinga Nagy
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest H-1117, Hungary
- Faculty
of Science, Institute of Chemistry, Hevesy György PhD School
of Chemistry, Eötvös Loránd
University, Pázmány
Péter sétány 1/A, Budapest H-1117, Hungary
| | - Kinga Komka
- Department
of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | - Károly Vékey
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest H-1117, Hungary
| | - László Drahos
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest H-1117, Hungary
| | - Ágnes Révész
- MS
Proteomics Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest H-1117, Hungary
| |
Collapse
|
14
|
Dang J, Shu J, Wang R, Yu H, Chen Z, Yan W, Zhao B, Ding L, Wang Y, Hu H, Li Z. The glycopatterns of Pseudomonas aeruginosa as a potential biomarker for its carbapenem resistance. Microbiol Spectr 2023; 11:e0200123. [PMID: 37861315 PMCID: PMC10714932 DOI: 10.1128/spectrum.02001-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023] Open
Abstract
Bacterial surface glycans are an attractive therapeutic target in response to antibiotics; however, current knowledge of the corresponding mechanisms is rather limited. Antimicrobial susceptibility testing, genome sequencing, and MALDI-TOF MS, commonly used in recent years to analyze bacterial resistance, are unable to rapidly and efficiently establish associations between glycans and resistance. The discovery of new antimicrobial strategies still requires the introduction of promising analytical methods. In this study, we applied lectin microarray technology and a machine-learning model to screen for important glycan structures associated with carbapenem-resistant P. aeruginosa. This work highlights that specific glycopatterns can be important biomarkers associated with bacterial antibiotic resistance, which promises to provide a rapid entry point for exploring new resistance mechanisms in pathogens.
Collapse
Affiliation(s)
- Jing Dang
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Jian Shu
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Ruiying Wang
- Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi, China
| | - Hanjie Yu
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Zhuo Chen
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Wenbo Yan
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Bingxiang Zhao
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Li Ding
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yuzi Wang
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Huizheng Hu
- Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi, China
| | - Zheng Li
- Laboratory of Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
15
|
Downs M, Curran J, Zaia J, Sethi MK. Analysis of complex proteoglycans using serial proteolysis and EThcD provides deep N- and O-glycoproteomic coverage. Anal Bioanal Chem 2023; 415:6995-7009. [PMID: 37728749 PMCID: PMC10865727 DOI: 10.1007/s00216-023-04934-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Proteoglycans are a small but diverse family of proteins that play a wide variety of roles at the cell surface and in the extracellular matrix. In addition to their glycosaminoglycan (GAG) chains, they are N- and O-glycosylated. All of these types of glycosylation are crucial to their function but present a considerable analytical challenge. We describe the combination of serial proteolysis followed by the application of higher-energy collisional dissociation (HCD) and electron transfer/higher-energy collisional dissociation (EThcD) to optimize protein sequence coverage and glycopeptide identification from proteoglycans. In many cases, the use of HCD alone allows the identification of more glycopeptides. However, the localization of glycoforms on multiply glycosylated peptides has remained elusive. We demonstrate the use of EThcD for the confident assignment of glycan compositions on multiply glycosylated peptides. Dense glycosylation on proteoglycans is key to their biological function; thus, developing tools to identify and quantify doubly glycosylated peptides is of interest. Additionally, glycoproteomics searches identify glycopeptides in otherwise poorly covered regions of proteoglycans. The development of these and other analytical tools may permit glycoproteomic similarity comparisons in biological samples.
Collapse
Affiliation(s)
- Margaret Downs
- Department of Biochemistry and Cell Biology, Center for Biomedical Mass Spectrometry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Jillian Curran
- Department of Biochemistry and Cell Biology, Center for Biomedical Mass Spectrometry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Joseph Zaia
- Department of Biochemistry and Cell Biology, Center for Biomedical Mass Spectrometry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Manveen K Sethi
- Department of Biochemistry and Cell Biology, Center for Biomedical Mass Spectrometry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
16
|
Bozkurt EU, Çağıl İN, Şahin Kehribar E, Işılak ME, Şeker UÖŞ. Glycosylation Circuit Enables Improved Catalytic Properties for Recombinant Alkaline Phosphatase. ACS OMEGA 2023; 8:36218-36227. [PMID: 37810695 PMCID: PMC10552120 DOI: 10.1021/acsomega.3c04669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023]
Abstract
Protein glycosylation is one of the most crucial and common post-translational modifications. It plays a fate-determining role and can alter many properties of proteins. Here, we engineered a Campylobacter jejuni N-linked glycosylation machinery by overexpressing one of the core glycosylation-related enzymes, PgIB, to increase the glycosylation rate. It has been previously shown that by utilizing N-linked glycosylation, certain recombinant proteins have been furnished with improved features, such as stability and solubility. We utilized N-linked glycosylation using an engineered glycosylation pathway to glycosylate a model enzyme, the alkaline phosphatase (ALP) enzyme in Escherichia coli. We have investigated the effects of glycosylation on enzyme properties. Considering the glycosylation mechanism is highly dependent on accessibility of the glycosylation tag, ALP constructs carrying the glycosylation tag at different locations of the gene have been constructed, and glycosylation rates have been calculated. Our results showed that, upon glycosylation, ALP features in terms of thermostability, proteolytic stability, tolerance to suboptimal pH, and denaturing conditions are dramatically improved. The results indicated that the N-linked glycosylation mechanism can be employed for protein manipulation for industrial applications.
Collapse
Affiliation(s)
- Eray Ulaş Bozkurt
- UNAM- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - İrem Niran Çağıl
- UNAM- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Ebru Şahin Kehribar
- UNAM- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Musa Efe Işılak
- UNAM- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
17
|
Abouelhadid S, Atkins ER, Kay EJ, Passmore IJ, North SJ, Lehri B, Hitchen P, Bakke E, Rahman M, Bossé JT, Li Y, Terra VS, Langford PR, Dell A, Wren BW, Cuccui J. Development of a novel glycoengineering platform for the rapid production of conjugate vaccines. Microb Cell Fact 2023; 22:159. [PMID: 37596672 PMCID: PMC10436394 DOI: 10.1186/s12934-023-02125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/10/2023] [Indexed: 08/20/2023] Open
Abstract
Conjugate vaccines produced either by chemical or biologically conjugation have been demonstrated to be safe and efficacious in protection against several deadly bacterial diseases. However, conjugate vaccine assembly and production have several shortcomings which hinders their wider availability. Here, we developed a tool, Mobile-element Assisted Glycoconjugation by Insertion on Chromosome, MAGIC, a novel biotechnological platform that overcomes the limitations of the current conjugate vaccine design method(s). As a model, we focused our design on a leading bioconjugation method using N-oligosaccharyltransferase (OTase), PglB. The installation of MAGIC led to at least twofold increase in glycoconjugate yield via MAGIC when compared to conventional N-OTase based bioconjugation method(s). Then, we improved MAGIC to (a) allow rapid installation of glycoengineering component(s), (b) omit the usage of antibiotics, (c) reduce the dependence on protein induction agents. Furthermore, we show the modularity of the MAGIC platform in performing glycoengineering in bacterial species that are less genetically tractable than the commonly used Escherichia coli. The MAGIC system promises a rapid, robust and versatile method to develop vaccines against serious bacterial pathogens. We anticipate the utility of the MAGIC platform could enhance vaccines production due to its compatibility with virtually any bioconjugation method, thus expanding vaccine biopreparedness toolbox.
Collapse
Affiliation(s)
- Sherif Abouelhadid
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Elizabeth R Atkins
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Emily J Kay
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Ian J Passmore
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Simon J North
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Burhan Lehri
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Paul Hitchen
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Eirik Bakke
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Mohammed Rahman
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Janine T Bossé
- Department of Infectious Diseases, Imperial College London, London, W2 1NY, UK
| | - Yanwen Li
- Department of Infectious Diseases, Imperial College London, London, W2 1NY, UK
| | - Vanessa S Terra
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Paul R Langford
- Department of Infectious Diseases, Imperial College London, London, W2 1NY, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Jon Cuccui
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
18
|
Lewis J, Scott NE. CRISPRi-Mediated Silencing of Burkholderia O-Linked Glycosylation Systems Enables the Depletion of Glycosylation Yet Results in Modest Proteome Impacts. J Proteome Res 2023; 22:1762-1778. [PMID: 36995114 PMCID: PMC10243306 DOI: 10.1021/acs.jproteome.2c00790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Indexed: 03/31/2023]
Abstract
The process of O-linked protein glycosylation is highly conserved across the Burkholderia genus and mediated by the oligosaccharyltransferase PglL. While our understanding of Burkholderia glycoproteomes has increased in recent years, little is known about how Burkholderia species respond to modulations in glycosylation. Utilizing CRISPR interference (CRISPRi), we explored the impact of silencing of O-linked glycosylation across four species of Burkholderia; Burkholderia cenocepacia K56-2, Burkholderia diffusa MSMB375, Burkholderia multivorans ATCC17616, and Burkholderia thailandensis E264. Proteomic and glycoproteomic analyses revealed that while CRISPRi enabled inducible silencing of PglL, this did not abolish glycosylation, nor recapitulate phenotypes such as proteome changes or alterations in motility that are associated with glycosylation null strains, despite inhibition of glycosylation by nearly 90%. Importantly, this work also demonstrated that CRISPRi induction with high levels of rhamnose leads to extensive impacts on the Burkholderia proteomes, which without appropriate controls mask the impacts specifically driven by CRISPRi guides. Combined, this work revealed that while CRISPRi allows the modulation of O-linked glycosylation with reductions up to 90% at a phenotypic and proteome levels, Burkholderia appears to demonstrate a robust tolerance to fluctuations in glycosylation capacity.
Collapse
Affiliation(s)
- Jessica
M. Lewis
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute
for Infection and Immunity, Melbourne 3000, Australia
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute
for Infection and Immunity, Melbourne 3000, Australia
| |
Collapse
|
19
|
Toul M, Slonkova V, Mican J, Urminsky A, Tomkova M, Sedlak E, Bednar D, Damborsky J, Hernychova L, Prokop Z. Identification, characterization, and engineering of glycosylation in thrombolyticsa. Biotechnol Adv 2023; 66:108174. [PMID: 37182613 DOI: 10.1016/j.biotechadv.2023.108174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Cardiovascular diseases, such as myocardial infarction, ischemic stroke, and pulmonary embolism, are the most common causes of disability and death worldwide. Blood clot hydrolysis by thrombolytic enzymes and thrombectomy are key clinical interventions. The most widely used thrombolytic enzyme is alteplase, which has been used in clinical practice since 1986. Another clinically used thrombolytic protein is tenecteplase, which has modified epitopes and engineered glycosylation sites, suggesting that carbohydrate modification in thrombolytic enzymes is a viable strategy for their improvement. This comprehensive review summarizes current knowledge on computational and experimental identification of glycosylation sites and glycan identity, together with methods used for their reengineering. Practical examples from previous studies focus on modification of glycosylations in thrombolytics, e.g., alteplase, tenecteplase, reteplase, urokinase, saruplase, and desmoteplase. Collected clinical data on these glycoproteins demonstrate the great potential of this engineering strategy. Outstanding combinatorics originating from multiple glycosylation sites and the vast variety of covalently attached glycan species can be addressed by directed evolution or rational design. Directed evolution pipelines would benefit from more efficient cell-free expression and high-throughput screening assays, while rational design must employ structure prediction by machine learning and in silico characterization by supercomputing. Perspectives on challenges and opportunities for improvement of thrombolytic enzymes by engineering and evolution of protein glycosylation are provided.
Collapse
Affiliation(s)
- Martin Toul
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Veronika Slonkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jan Mican
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Adam Urminsky
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Maria Tomkova
- Center for Interdisciplinary Biosciences, P. J. Safarik University in Kosice, Jesenna 5, 04154 Kosice, Slovakia
| | - Erik Sedlak
- Center for Interdisciplinary Biosciences, P. J. Safarik University in Kosice, Jesenna 5, 04154 Kosice, Slovakia
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
20
|
McDonald JB, Scott NE, Underwood GJ, Andrews DM, Van TTH, Moore RJ. Characterisation of N-linked protein glycosylation in the bacterial pathogen Campylobacter hepaticus. Sci Rep 2023; 13:227. [PMID: 36604449 PMCID: PMC9816155 DOI: 10.1038/s41598-022-26532-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Campylobacter hepaticus is an important pathogen which causes Spotty Liver Disease (SLD) in layer chickens. SLD results in an increase in mortality and a significant decrease in egg production and therefore is an important economic concern of the global poultry industry. The human pathogen Campylobacter jejuni encodes an N-linked glycosylation system that plays fundamental roles in host colonization and pathogenicity. While N-linked glycosylation has been extensively studied in C. jejuni and is now known to occur in a range of Campylobacter species, little is known about C. hepaticus glycosylation. In this study glycoproteomic analysis was used to confirm the functionality of the C. hepaticus N-glycosylation system. It was shown that C. hepaticus HV10T modifies > 35 proteins with an N-linked heptasaccharide glycan. C. hepaticus shares highly conserved glycoproteins with C. jejuni that are involved in host colonisation and also possesses unique glycoproteins which may contribute to its ability to survive in challenging host environments. C. hepaticus N-glycosylation may function as an important virulence factor, providing an opportunity to investigate and develop a better understanding the system's role in poultry infection.
Collapse
Affiliation(s)
- Jamieson B McDonald
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Greg J Underwood
- Bioproperties Pty Ltd, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Daniel M Andrews
- Bioproperties Pty Ltd, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia.
| |
Collapse
|
21
|
Chang D, Zaia J. Methods to improve quantitative glycoprotein coverage from bottom-up LC-MS data. MASS SPECTROMETRY REVIEWS 2022; 41:922-937. [PMID: 33764573 DOI: 10.1002/mas.21692] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/24/2020] [Accepted: 03/11/2021] [Indexed: 05/18/2023]
Abstract
Advances in mass spectrometry instrumentation, methods development, and bioinformatics have greatly improved the ease and accuracy of site-specific, quantitative glycoproteomics analysis. Data-dependent acquisition is the most popular method for identification and quantification of glycopeptides; however, complete coverage of glycosylation site glycoforms remains elusive with this method. Targeted acquisition methods improve the precision and accuracy of quantification, but at the cost of throughput and discoverability. Data-independent acquisition (DIA) holds great promise for more complete and highly quantitative site-specific glycoproteomics analysis, while maintaining the ability to discover novel glycopeptides without prior knowledge. We review additional features that can be used to increase selectivity and coverage to the DIA workflow: retention time modeling, which would simplify the interpretation of complex tandem mass spectra, and ion mobility separation, which would maximize the sampling of all precursors at a giving chromatographic retention time. The instrumentation and bioinformatics to incorporate these features into glycoproteomics analysis exist. These improvements in quantitative, site-specific analysis will enable researchers to assess glycosylation similarity in related biological systems, answering new questions about the interplay between glycosylation state and biological function.
Collapse
Affiliation(s)
- Deborah Chang
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Joseph Zaia
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Mackay S, Hitefield NL, Oduor IO, Roberts AB, Burch TC, Lance RS, Cunningham TD, Troyer DA, Semmes OJ, Nyalwidhe JO. Site-Specific Intact N-Linked Glycopeptide Characterization of Prostate-Specific Membrane Antigen from Metastatic Prostate Cancer Cells. ACS OMEGA 2022; 7:29714-29727. [PMID: 36061737 PMCID: PMC9435049 DOI: 10.1021/acsomega.2c02265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The composition of N-linked glycans that are conjugated to the prostate-specific membrane antigen (PSMA) and their functional significance in prostate cancer progression have not been fully characterized. PSMA was isolated from two metastatic prostate cancer cell lines, LNCaP and MDAPCa2b, which have different tissue tropism and localization. Isolated PSMA was trypsin-digested, and intact glycopeptides were subjected to LC-HCD-EThcD-MS/MS analysis on a Tribrid Orbitrap Fusion Lumos mass spectrometer. Differential qualitative and quantitative analysis of site-specific N-glycopeptides was performed using Byonic and Byologic software. Comparative quantitative analysis demonstrates that multiple glycopeptides at asparagine residues 51, 76, 121, 195, 336, 459, 476, and 638 were in significantly different abundance in the two cell lines (p < 0.05). Biochemical analysis using endoglycosidase treatment and lectin capture confirm the MS and site occupancy data. The data demonstrate the effectiveness of the strategy for comprehensive analysis of PSMA glycopeptides. This approach will form the basis of ongoing experiments to identify site-specific glycan changes in PSMA isolated from disease-stratified clinical samples to uncover targets that may be associated with disease progression and metastatic phenotypes.
Collapse
Affiliation(s)
- Stephen Mackay
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
- University
of North Carolina, Chapel Hill, North Carolina 27516, United States
| | - Naomi L. Hitefield
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
- University
of Georgia, Athens, Georgia 30602, United
States
| | - Ian O. Oduor
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Autumn B. Roberts
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Tanya C. Burch
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Raymond S. Lance
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Spokane
Urology, Spokane, Washington 99202, United States
| | - Tina D. Cunningham
- School of
Health Professions, Eastern Virginia Medical
School, Norfolk, Virginia 23507, United States
| | - Dean A. Troyer
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Oliver J. Semmes
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Julius O. Nyalwidhe
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| |
Collapse
|
23
|
Wong HTK, Chen X, Zhang S, Lui TY, Hu D, Chan TWD. Tandem Mass Spectrometry for Structural Characterization of Doubly-Charged N-Linked Glycopeptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1458-1464. [PMID: 35762588 DOI: 10.1021/jasms.2c00143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Three dissociation methods, including collision-induced dissociation (CID), electron capture dissociation (ECD), and electronic excitation dissociation (EED), were systematically compared for structural characterization of doubly charged glycopeptide. CID produced distinctively different tandem mass spectra for glycopeptide adducted with different charge carriers. Protonated species produced mainly glycosidic cleavages in high abundance. CID of magnesiated glycopeptide formed more cross-ring cleavages, whereas doubly sodiated species produced cleavages at both glycan and peptide moieties. The effect of charge carriers on the fragmentation in ECD and EED was lower than that in CID. ECD produced mainly peptide backbone cleavages but limited cleavages at the glycan moiety, whereas EED of glycopeptide resulted in extensive fragmentation throughout the molecular ion regardless of the charge carriers. Magnesiated species gave, however, more cross-ring cleavages than other charge carriers did. These results demonstrated that EED of magnesiated species could be used as a one-step dissociation method for comprehensive structural analysis of glycopeptides.
Collapse
Affiliation(s)
- H-T Kitty Wong
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, P. R. China
| | - Xiangfeng Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, P. R. China
- School of Pharmaceutical Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, P. R. China
| | - Simin Zhang
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, P. R. China
| | - T-Y Lui
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, P. R. China
| | - D Hu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, P. R. China
| | - T-W Dominic Chan
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region, P. R. China
| |
Collapse
|
24
|
Pu C, Biyuan, Xu K, Zhao Y. Glycosylation and its research progress in endometrial cancer. Clin Transl Oncol 2022; 24:1865-1880. [PMID: 35752750 PMCID: PMC9418304 DOI: 10.1007/s12094-022-02858-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
Endometrial cancer (EC) is one of the most common tumors in the female reproductive system, which seriously threatens women's health, particularly in developed countries. 13% of the patients with EC have a poor prognosis due to recurrence and metastasis. Therefore, identifying good predictive biomarkers and therapeutic targets is critical to enable the early detection of metastasis and improve the prognosis. For decades, extensive studies had focused on glycans and glycoproteins in the progression of cancer. The types of glycans that are covalently attached to the polypeptide backbone, usually via nitrogen or oxygen linkages, are known as N‑glycans or O‑glycans, respectively. The degree of protein glycosylation and the aberrant changes in the carbohydrate structures have been implicated in the extent of tumorigenesis and reported to play a critical role in regulating tumor invasion, metabolism, and immunity. This review summarizes the essential biological role of glycosylation in EC, with a focus on the recent advances in glycomics and glycosylation markers, highlighting their implications in the diagnosis and treatment of EC.
Collapse
Affiliation(s)
- Congli Pu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Biyuan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kai Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yingchao Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
25
|
Kay EJ, Mauri M, Willcocks SJ, Scott TA, Cuccui J, Wren BW. Engineering a suite of E. coli strains for enhanced expression of bacterial polysaccharides and glycoconjugate vaccines. Microb Cell Fact 2022; 21:66. [PMID: 35449016 PMCID: PMC9026721 DOI: 10.1186/s12934-022-01792-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glycoengineering, in the biotechnology workhorse bacterium, Escherichia coli, is a rapidly evolving field, particularly for the production of glycoconjugate vaccine candidates (bioconjugation). Efficient production of glycoconjugates requires the coordinated expression within the bacterial cell of three components: a carrier protein, a glycan antigen and a coupling enzyme, in a timely fashion. Thus, the choice of a suitable E. coli host cell is of paramount importance. Microbial chassis engineering has long been used to improve yields of chemicals and biopolymers, but its application to vaccine production is sparse. RESULTS In this study we have engineered a family of 11 E. coli strains by the removal and/or addition of components rationally selected for enhanced expression of Streptococcus pneumoniae capsular polysaccharides with the scope of increasing yield of pneumococcal conjugate vaccines. Importantly, all strains express a detoxified version of endotoxin, a concerning contaminant of therapeutics produced in bacterial cells. The genomic background of each strain was altered using CRISPR in an iterative fashion to generate strains without antibiotic markers or scar sequences. CONCLUSIONS Amongst the 11 modified strains generated in this study, E. coli Falcon, Peregrine and Sparrowhawk all showed increased production of S. pneumoniae serotype 4 capsule. Eagle (a strain without enterobacterial common antigen, containing a GalNAc epimerase and PglB expressed from the chromosome) and Sparrowhawk (a strain without enterobacterial common antigen, O-antigen ligase and chain length determinant, containing a GalNAc epimerase and chain length regulators from Streptococcus pneumoniae) respectively produced an AcrA-SP4 conjugate with 4 × and 14 × more glycan than that produced in the base strain, W3110. Beyond their application to the production of pneumococcal vaccine candidates, the bank of 11 new strains will be an invaluable resource for the glycoengineering community.
Collapse
Affiliation(s)
- Emily J Kay
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Marta Mauri
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Sam J Willcocks
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Timothy A Scott
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Jon Cuccui
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
26
|
Banahene N, Kavunja HW, Swarts BM. Chemical Reporters for Bacterial Glycans: Development and Applications. Chem Rev 2022; 122:3336-3413. [PMID: 34905344 PMCID: PMC8958928 DOI: 10.1021/acs.chemrev.1c00729] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacteria possess an extraordinary repertoire of cell envelope glycans that have critical physiological functions. Pathogenic bacteria have glycans that are essential for growth and virulence but are absent from humans, making them high-priority targets for antibiotic, vaccine, and diagnostic development. The advent of metabolic labeling with bioorthogonal chemical reporters and small-molecule fluorescent reporters has enabled the investigation and targeting of specific bacterial glycans in their native environments. These tools have opened the door to imaging glycan dynamics, assaying and inhibiting glycan biosynthesis, profiling glycoproteins and glycan-binding proteins, and targeting pathogens with diagnostic and therapeutic payload. These capabilities have been wielded in diverse commensal and pathogenic Gram-positive, Gram-negative, and mycobacterial species─including within live host organisms. Here, we review the development and applications of chemical reporters for bacterial glycans, including peptidoglycan, lipopolysaccharide, glycoproteins, teichoic acids, and capsular polysaccharides, as well as mycobacterial glycans, including trehalose glycolipids and arabinan-containing glycoconjugates. We cover in detail how bacteria-targeting chemical reporters are designed, synthesized, and evaluated, how they operate from a mechanistic standpoint, and how this information informs their judicious and innovative application. We also provide a perspective on the current state and future directions of the field, underscoring the need for interdisciplinary teams to create novel tools and extend existing tools to support fundamental and translational research on bacterial glycans.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | - Herbert W. Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | | |
Collapse
|
27
|
Oxidative desulfurization pathway for complete catabolism of sulfoquinovose by bacteria. Proc Natl Acad Sci U S A 2022; 119:2116022119. [PMID: 35074914 PMCID: PMC8795539 DOI: 10.1073/pnas.2116022119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 12/31/2022] Open
Abstract
Sulfoquinovose, a sulfosugar derivative of glucose, is produced by most photosynthetic organisms and contains up to half of all sulfur in the biosphere. Several pathways for its breakdown are known, though they provide access to only half of the carbon in sulfoquinovose and none of its sulfur. Here, we describe a fundamentally different pathway within the plant pathogen Agrobacterium tumefaciens that features oxidative desulfurization of sulfoquinovose to access all carbon and sulfur within the molecule. Biochemical and structural analyses of the pathway’s key proteins provided insights how the sulfosugar is recognized and degraded. Genes encoding this sulfoquinovose monooxygenase pathway are present in many plant pathogens and symbionts, alluding to a possible role for sulfoquinovose in plant host–bacteria interactions. Catabolism of sulfoquinovose (SQ; 6-deoxy-6-sulfoglucose), the ubiquitous sulfosugar produced by photosynthetic organisms, is an important component of the biogeochemical carbon and sulfur cycles. Here, we describe a pathway for SQ degradation that involves oxidative desulfurization to release sulfite and enable utilization of the entire carbon skeleton of the sugar to support the growth of the plant pathogen Agrobacterium tumefaciens. SQ or its glycoside sulfoquinovosyl glycerol are imported into the cell by an ATP-binding cassette transporter system with an associated SQ binding protein. A sulfoquinovosidase hydrolyzes the SQ glycoside and the liberated SQ is acted on by a flavin mononucleotide-dependent sulfoquinovose monooxygenase, in concert with an NADH-dependent flavin reductase, to release sulfite and 6-oxo-glucose. An NAD(P)H-dependent oxidoreductase reduces the 6-oxo-glucose to glucose, enabling entry into primary metabolic pathways. Structural and biochemical studies provide detailed insights into the recognition of key metabolites by proteins in this pathway. Bioinformatic analyses reveal that the sulfoquinovose monooxygenase pathway is distributed across Alpha- and Betaproteobacteria and is especially prevalent within the Rhizobiales order. This strategy for SQ catabolism is distinct from previously described pathways because it enables the complete utilization of all carbons within SQ by a single organism with concomitant production of inorganic sulfite.
Collapse
|
28
|
Scott NE. Glycopeptide-Centric Approaches for the Characterization of Microbial Glycoproteomes. Methods Mol Biol 2022; 2456:153-171. [PMID: 35612741 DOI: 10.1007/978-1-0716-2124-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Protein glycosylation is increasingly recognized as a common class of modifications within microbial species that can shape protein functions and the proteome at large. Due to this, there is an increasing need for robust analytical methods, which allow for the identification and characterization of microbial glycopeptides from proteome samples in a high-throughput manner. Using affinity-based enrichment (either hydrophilicity or antibody-based approaches) glycopeptides can easily be separated from non-glycosylated peptides and analyzed using mass spectrometry. By utilizing multiple mass spectrometry fragmentation approaches and open searching-based bioinformatic techniques, novel glycopeptides can be identified and characterized without prior knowledge of the glycans used for glycosylation. Using these approaches, glycopeptides within samples can rapidly be identified as well as quantified to understand how glycosylation changes in response to stimuli or how changes in glycosylation systems impact the glycoproteome. This chapter outlines a set of robust protocols for the initial preparation, enrichment, and analysis of microbial glycopeptides for both qualitative and quantitative glycoproteomic studies. Using these approaches, glycosylation events can be easily identified by researchers without the need for extensive manual analysis of proteomic datasets.
Collapse
Affiliation(s)
- Nichollas E Scott
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
29
|
Nothaft H, Perez-Muñoz ME, Yang T, Murugan AVM, Miller M, Kolarich D, Plastow GS, Walter J, Szymanski CM. Improving Chicken Responses to Glycoconjugate Vaccination Against Campylobacter jejuni. Front Microbiol 2021; 12:734526. [PMID: 34867850 PMCID: PMC8637857 DOI: 10.3389/fmicb.2021.734526] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/04/2021] [Indexed: 01/03/2023] Open
Abstract
Campylobacter jejuni is a common cause of diarrheal disease worldwide. Human infection typically occurs through the ingestion of contaminated poultry products. We previously demonstrated that an attenuated Escherichia coli live vaccine strain expressing the C. jejuni N-glycan on its surface reduced the Campylobacter load in more than 50% of vaccinated leghorn and broiler birds to undetectable levels (responder birds), whereas the remainder of the animals was still colonized (non-responders). To understand the underlying mechanism, we conducted three vaccination and challenge studies using 135 broiler birds and found a similar responder/non-responder effect. Subsequent genome-wide association studies (GWAS), analyses of bird sex and levels of vaccine-induced IgY responses did not correlate with the responder versus non-responder phenotype. In contrast, antibodies isolated from responder birds displayed a higher Campylobacter-opsonophagocytic activity when compared to antisera from non-responder birds. No differences in the N-glycome of the sera could be detected, although minor changes in IgY glycosylation warrant further investigation. As reported before, the composition of the microbiota, particularly levels of OTU classified as Clostridium spp., Ruminococcaceae and Lachnospiraceae are associated with the response. Transplantation of the cecal microbiota of responder birds into new birds in combination with vaccination resulted in further increases in vaccine-induced antigen-specific IgY responses when compared to birds that did not receive microbiota transplants. Our work suggests that the IgY effector function and microbiota contribute to the efficacy of the E. coli live vaccine, information that could form the basis for the development of improved vaccines targeted at the elimination of C. jejuni from poultry.
Collapse
Affiliation(s)
- Harald Nothaft
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Maria Elisa Perez-Muñoz
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Tianfu Yang
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Abarna V M Murugan
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | | | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, Griffith University, Southport, QLD, Australia
| | - Graham S Plastow
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Livestock Gentec, Edmonton, AB, Canada
| | - Jens Walter
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Christine M Szymanski
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
30
|
Nothaft H, Bian X, Shajahan A, Miller WG, Bolick DT, Guerrant RL, Azadi P, Ng KKS, Szymanski CM. Detecting Glucose Fluctuations in the Campylobacter jejuni N-Glycan Structure. ACS Chem Biol 2021; 16:2690-2701. [PMID: 34726367 DOI: 10.1021/acschembio.1c00498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Campylobacter jejuni is a significant cause of human gastroenteritis worldwide, and all strains express an N-glycan that is added to at least 80 different proteins. We characterized 98 C. jejuni isolates from infants from 7 low- and middle-income countries and identified 4 isolates unreactive with our N-glycan-specific antiserum that was raised against the C. jejuni heptasaccharide composed of GalNAc-GalNAc-GalNAc(Glc)-GalNAc-GalNAc-diNAcBac. Mass spectrometric analyses indicated these isolates express a hexasaccharide lacking the glucose branch. Although all 4 strains encode the PglI glucosyltransferase (GlcTF), one aspartate in the DXDD motif was missing, an alteration also present in ∼4% of all available PglI sequences. Deleting this residue from an active PglI resulted in a nonfunctional GlcTF when the protein glycosylation system was reconstituted in E. coli, while replacement with Glu/Ala was not deleterious. Molecular modeling proposed a mechanism for how the DXDD residues and the structure/length beyond the motif influence activity. Mouse vaccination with an E. coli strain expressing the full-length heptasaccharide produced N-glycan-specific antibodies and a corresponding reduction in Campylobacter colonization and weight loss following challenge. However, the antibodies did not recognize the hexasaccharide and were unable to opsonize C. jejuni isolates lacking glucose, suggesting this should be considered when designing N-glycan-based vaccines to prevent campylobacteriosis.
Collapse
Affiliation(s)
- Harald Nothaft
- Department of Medical Microbiology and Immunology, University of Alberta, Katz Group Centre, Edmonton, Alberta T6G 2E9, Canada
| | - Xiaoming Bian
- Department of Microbiology, University of Georgia, 527 Biological Sciences Building, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - William G. Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - David T. Bolick
- Center for Global Health Equity, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Richard L. Guerrant
- Center for Global Health Equity, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Kenneth K. S. Ng
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Christine M. Szymanski
- Department of Medical Microbiology and Immunology, University of Alberta, Katz Group Centre, Edmonton, Alberta T6G 2E9, Canada
- Department of Microbiology, University of Georgia, 527 Biological Sciences Building, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
31
|
Gong Y, Qin S, Dai L, Tian Z. The glycosylation in SARS-CoV-2 and its receptor ACE2. Signal Transduct Target Ther 2021; 6:396. [PMID: 34782609 PMCID: PMC8591162 DOI: 10.1038/s41392-021-00809-8] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/10/2021] [Accepted: 10/24/2021] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 235 million individuals and led to more than 4.8 million deaths worldwide as of October 5 2021. Cryo-electron microscopy and topology show that the SARS-CoV-2 genome encodes lots of highly glycosylated proteins, such as spike (S), envelope (E), membrane (M), and ORF3a proteins, which are responsible for host recognition, penetration, binding, recycling and pathogenesis. Here we reviewed the detections, substrates, biological functions of the glycosylation in SARS-CoV-2 proteins as well as the human receptor ACE2, and also summarized the approved and undergoing SARS-CoV-2 therapeutics associated with glycosylation. This review may not only broad the understanding of viral glycobiology, but also provide key clues for the development of new preventive and therapeutic methodologies against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China
| | - Suideng Qin
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China.
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
32
|
Zheng J, Liu L, Wei C, Liu B, Jin Q. Characterization of O-mannosylated proteins profiling in bacillus Calmette-Guérin via gel-based and gel-free approaches. IUBMB Life 2021; 74:221-234. [PMID: 34773437 DOI: 10.1002/iub.2578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 11/08/2022]
Abstract
Posttranslational modifications (PTMs) could influence many aspects of protein behavior and function in organisms. Protein glycosylation is one of the major PTMs observed in bacteria, which is crucial for functional regulations of many prokaryotic and eukaryotic organisms. Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine has been recognized as an indispensable tool in the global fight against tuberculosis (TB) worldwide over several decades. Nevertheless, analysis of glycoprotein profiles of BCG has not been clearly investigated. In this study, we performed O-mannosylated protein analysis in BCG bacteria using gel-based and gel-free approaches. In total, 1,670 hexosylated peptides derived from 754 mannosylated proteins were identified. Furthermore, 20 novel protein products supported by 78 unique peptides not annotated in the BCG database were detected. Additionally, the translational start sites of 384 proteins were confirmed, and 78 proteins were validated through the extension of translational start sites based on N-terminus-derived peptides. The bioinformatic analysis of the O-mannosylated proteins was performed and the expression profiles of four randomly selected proteins were validated through Western blotting. A number of proteins involved in metabolic pathways, including the tricarboxylic acid cycle, glycolysis, oxidative phosphorylation, and two-component system, are discussed. Taken together, these results offer the first O-mannosylated protein analysis of a member of mycobacteria reported to date by using complementary gel-based and gel-free approaches. Some of the proteins identified in this study have important roles involved in metabolic pathways, which could provide insight into the immune molecular mechanisms of this recognized vaccine strain.
Collapse
Affiliation(s)
- Jianhua Zheng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liguo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Candong Wei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
33
|
Cain JA, Dale AL, Cordwell SJ. Exploiting pglB Oligosaccharyltransferase-Positive and -Negative Campylobacter jejuni and a Multiprotease Digestion Strategy to Identify Novel Sites Modified by N-Linked Protein Glycosylation. J Proteome Res 2021; 20:4995-5009. [PMID: 34677046 DOI: 10.1021/acs.jproteome.1c00482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Campylobacter jejuni is a bacterial pathogen encoding a unique N-linked glycosylation (pgl) system that mediates attachment of a heptasaccharide to N-sequon-containing membrane proteins by the PglB oligosaccharyltransferase (OST). Many targets of PglB are known, yet only a fraction of sequons are experimentally confirmed, and site occupancy remains elusive. We exploited pglB-positive (wild-type; WT) and -negative (ΔpglB) proteomes to identify potential glycosites. The nonglycosylated forms of known glycopeptides were typically increased in protein normalized abundance in ΔpglB relative to WT and restored by pglB reintroduction (ΔpglB::pglB). Sequon-containing peptide abundances were thus consistent with significant site occupancy in the presence of the OST. Peptides with novel sequons were either unaltered (likely not glycosylated) or showed abundance consistent with known glycopeptides. Topology analysis revealed that unaltered sequons often displayed cytoplasmic localization, despite originating from membrane proteins. Novel glycosites were confirmed using parallel multiprotease digestion, LC-MS/MS, and FAIMS-MS to define the glycoproteomes of WT and ΔpglB::pglB C. jejuni. We identified 142 glycosites, of which 32 were novel, and 83% of sites predicted by proteomics were validated. There are now 166 experimentally verified C. jejuni glycosites and evidence for occupancy or nonoccupancy of 31 additional sites. This study serves as a model for the use of OST-negative cells and proteomics for highlighting novel glycosites and determining occupancy in a range of organisms.
Collapse
Affiliation(s)
- Joel A Cain
- Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney 2006, Australia
| | - Ashleigh L Dale
- Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney 2006, Australia
| | - Stuart J Cordwell
- Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney 2006, Australia.,Sydney Mass Spectrometry, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
34
|
Pratama F, Linton D, Dixon N. Genetic and process engineering strategies for enhanced recombinant N-glycoprotein production in bacteria. Microb Cell Fact 2021; 20:198. [PMID: 34649588 PMCID: PMC8518210 DOI: 10.1186/s12934-021-01689-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/25/2021] [Indexed: 11/28/2022] Open
Abstract
Background The production of N-linked glycoproteins in genetically amenable bacterial hosts offers great potential for reduced cost, faster/simpler bioprocesses, greater customisation, and utility for distributed manufacturing of glycoconjugate vaccines and glycoprotein therapeutics. Efforts to optimize production hosts have included heterologous expression of glycosylation enzymes, metabolic engineering, use of alternative secretion pathways, and attenuation of gene expression. However, a major bottleneck to enhance glycosylation efficiency, which limits the utility of the other improvements, is the impact of target protein sequon accessibility during glycosylation. Results Here, we explore a series of genetic and process engineering strategies to increase recombinant N-linked glycosylation, mediated by the Campylobacter-derived PglB oligosaccharyltransferase in Escherichia coli. Strategies include increasing membrane residency time of the target protein by modifying the cleavage site of its secretion signal, and modulating protein folding in the periplasm by use of oxygen limitation or strains with compromised oxidoreductase or disulphide-bond isomerase activity. These approaches achieve up to twofold improvement in glycosylation efficiency. Furthermore, we also demonstrate that supplementation with the chemical oxidant cystine enhances the titre of glycoprotein in an oxidoreductase knockout strain by improving total protein production and cell fitness, while at the same time maintaining higher levels of glycosylation efficiency. Conclusions In this study, we demonstrate that improved protein glycosylation in the heterologous host could be achieved by mimicking the coordination between protein translocation, folding and glycosylation observed in native host such as Campylobacter jejuni and mammalian cells. Furthermore, it provides insight into strain engineering and bioprocess strategies, to improve glycoprotein yield and titre, and to avoid physiological burden of unfolded protein stress upon cell growth. The process and genetic strategies identified herein will inform further optimisation and scale-up of heterologous recombinant N-glycoprotein production. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01689-x.
Collapse
Affiliation(s)
- Fenryco Pratama
- Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, M1 7DN, UK.,Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.,Microbial Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Dennis Linton
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M1 7DN, UK
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, M1 7DN, UK. .,Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
35
|
Mauri M, Sannasiddappa TH, Vohra P, Corona-Torres R, Smith AA, Chintoan-Uta C, Bremner A, Terra VS, Abouelhadid S, Stevens MP, Grant AJ, Cuccui J, Wren BW. Multivalent poultry vaccine development using Protein Glycan Coupling Technology. Microb Cell Fact 2021; 20:193. [PMID: 34600535 PMCID: PMC8487346 DOI: 10.1186/s12934-021-01682-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Poultry is the world's most popular animal-based food and global production has tripled in the past 20 years alone. Low-cost vaccines that can be combined to protect poultry against multiple infections are a current global imperative. Glycoconjugate vaccines, which consist of an immunogenic protein covalently coupled to glycan antigens of the targeted pathogen, have a proven track record in human vaccinology, but have yet to be used for livestock due to prohibitively high manufacturing costs. To overcome this, we use Protein Glycan Coupling Technology (PGCT), which enables the production of glycoconjugates in bacterial cells at considerably reduced costs, to generate a candidate glycan-based live vaccine intended to simultaneously protect against Campylobacter jejuni, avian pathogenic Escherichia coli (APEC) and Clostridium perfringens. Campylobacter is the most common cause of food poisoning, whereas colibacillosis and necrotic enteritis are widespread and devastating infectious diseases in poultry. RESULTS We demonstrate the functional transfer of C. jejuni protein glycosylation (pgl) locus into the genome of APEC χ7122 serotype O78:H9. The integration caused mild attenuation of the χ7122 strain following oral inoculation of chickens without impairing its ability to colonise the respiratory tract. We exploit the χ7122 pgl integrant as bacterial vectors delivering a glycoprotein decorated with the C. jejuni heptasaccharide glycan antigen. To this end we engineered χ7122 pgl to express glycosylated NetB toxoid from C. perfringens and tested its ability to reduce caecal colonisation of chickens by C. jejuni and protect against intra-air sac challenge with the homologous APEC strain. CONCLUSIONS We generated a candidate glycan-based multivalent live vaccine with the potential to induce protection against key avian and zoonotic pathogens (C. jejuni, APEC, C. perfringens). The live vaccine failed to significantly reduce Campylobacter colonisation under the conditions tested but was protective against homologous APEC challenge. Nevertheless, we present a strategy towards the production of low-cost "live-attenuated multivalent vaccine factories" with the ability to express glycoconjugates in poultry.
Collapse
Affiliation(s)
- Marta Mauri
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Thippeswamy H Sannasiddappa
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, Cambridgeshire, UK
| | - Prerna Vohra
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh, EH25 9RG, UK
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Ricardo Corona-Torres
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh, EH25 9RG, UK
| | - Alexander A Smith
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, Cambridgeshire, UK
| | - Cosmin Chintoan-Uta
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh, EH25 9RG, UK
| | - Abi Bremner
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh, EH25 9RG, UK
| | - Vanessa S Terra
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Sherif Abouelhadid
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Mark P Stevens
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh, EH25 9RG, UK.
| | - Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, Cambridgeshire, UK.
| | - Jon Cuccui
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
36
|
Hayes AJ, Lewis JM, Davies MR, Scott NE. Burkholderia PglL enzymes are Serine preferring oligosaccharyltransferases which target conserved proteins across the Burkholderia genus. Commun Biol 2021; 4:1045. [PMID: 34493791 PMCID: PMC8423747 DOI: 10.1038/s42003-021-02588-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Glycosylation is increasingly recognised as a common protein modification within bacterial proteomes. While great strides have been made in identifying species that contain glycosylation systems, our understanding of the proteins and sites targeted by these systems is far more limited. Within this work we explore the conservation of glycoproteins and glycosylation sites across the pan-Burkholderia glycoproteome. Using a multi-protease glycoproteomic approach, we generate high-confidence glycoproteomes in two widely utilized B. cenocepacia strains, K56-2 and H111. This resource reveals glycosylation occurs exclusively at Serine residues and that glycoproteins/glycosylation sites are highly conserved across B. cenocepacia isolates. This preference for glycosylation at Serine residues is observed across at least 9 Burkholderia glycoproteomes, supporting that Serine is the dominant residue targeted by PglL-mediated glycosylation across the Burkholderia genus. Combined, this work demonstrates that PglL enzymes of the Burkholderia genus are Serine-preferring oligosaccharyltransferases that target conserved and shared protein substrates. Hayes et al provide a glycosylation site focused analysis of the glycoproteome of two widely utilized B. cenocepacia strains, K56-2 and H111. This team demonstrates that within these glycoproteomes Serine is the sole residue targeted for protein glycosylation and that glycoproteins/glycosylation sites are highly conserved across B. cenocepacia isolates.
Collapse
Affiliation(s)
- Andrew J Hayes
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jessica M Lewis
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
37
|
Oliveira T, Thaysen-Andersen M, Packer NH, Kolarich D. The Hitchhiker's guide to glycoproteomics. Biochem Soc Trans 2021; 49:1643-1662. [PMID: 34282822 PMCID: PMC8421054 DOI: 10.1042/bst20200879] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Protein glycosylation is one of the most common post-translational modifications that are essential for cell function across all domains of life. Changes in glycosylation are considered a hallmark of many diseases, thus making glycoproteins important diagnostic and prognostic biomarker candidates and therapeutic targets. Glycoproteomics, the study of glycans and their carrier proteins in a system-wide context, is becoming a powerful tool in glycobiology that enables the functional analysis of protein glycosylation. This 'Hitchhiker's guide to glycoproteomics' is intended as a starting point for anyone who wants to explore the emerging world of glycoproteomics. The review moves from the techniques that have been developed for the characterisation of single glycoproteins to technologies that may be used for a successful complex glycoproteome characterisation. Examples of the variety of approaches, methodologies, and technologies currently used in the field are given. This review introduces the common strategies to capture glycoprotein-specific and system-wide glycoproteome data from tissues, body fluids, or cells, and a perspective on how integration into a multi-omics workflow enables a deep identification and characterisation of glycoproteins - a class of biomolecules essential in regulating cell function.
Collapse
Affiliation(s)
- Tiago Oliveira
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | | | - Nicolle H. Packer
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, Griffith University, QLD and Macquarie University, NSW, Australia
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, Griffith University, QLD and Macquarie University, NSW, Australia
| |
Collapse
|
38
|
Integrated mass spectrometry-based multi-omics for elucidating mechanisms of bacterial virulence. Biochem Soc Trans 2021; 49:1905-1926. [PMID: 34374408 DOI: 10.1042/bst20191088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022]
Abstract
Despite being considered the simplest form of life, bacteria remain enigmatic, particularly in light of pathogenesis and evolving antimicrobial resistance. After three decades of genomics, we remain some way from understanding these organisms, and a substantial proportion of genes remain functionally unknown. Methodological advances, principally mass spectrometry (MS), are paving the way for parallel analysis of the proteome, metabolome and lipidome. Each provides a global, complementary assay, in addition to genomics, and the ability to better comprehend how pathogens respond to changes in their internal (e.g. mutation) and external environments consistent with infection-like conditions. Such responses include accessing necessary nutrients for survival in a hostile environment where co-colonizing bacteria and normal flora are acclimated to the prevailing conditions. Multi-omics can be harnessed across temporal and spatial (sub-cellular) dimensions to understand adaptation at the molecular level. Gene deletion libraries, in conjunction with large-scale approaches and evolving bioinformatics integration, will greatly facilitate next-generation vaccines and antimicrobial interventions by highlighting novel targets and pathogen-specific pathways. MS is also central in phenotypic characterization of surface biomolecules such as lipid A, as well as aiding in the determination of protein interactions and complexes. There is increasing evidence that bacteria are capable of widespread post-translational modification, including phosphorylation, glycosylation and acetylation; with each contributing to virulence. This review focuses on the bacterial genotype to phenotype transition and surveys the recent literature showing how the genome can be validated at the proteome, metabolome and lipidome levels to provide an integrated view of organism response to host conditions.
Collapse
|
39
|
The structure of an archaeal oligosaccharyltransferase provides insight into the strict exclusion of proline from the N-glycosylation sequon. Commun Biol 2021; 4:941. [PMID: 34354228 PMCID: PMC8342417 DOI: 10.1038/s42003-021-02473-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Oligosaccharyltransferase (OST) catalyzes oligosaccharide transfer to the Asn residue in the N-glycosylation sequon, Asn-X-Ser/Thr, where Pro is strictly excluded at position X. Considering the unique structural properties of proline, this exclusion may not be surprising, but the structural basis for the rejection of Pro residues should be explained explicitly. Here we determined the crystal structure of an archaeal OST in a complex with a sequon-containing peptide and dolichol-phosphate to a 2.7 Å resolution. The sequon part in the peptide forms two inter-chain hydrogen bonds with a conserved amino acid motif, TIXE. We confirmed the essential role of the TIXE motif and the adjacent regions by extensive alanine-scanning of the external loop 5. A Ramachandran plot revealed that the ring structure of the Pro side chain is incompatible with the ϕ backbone dihedral angle around -150° in the rigid sequon-TIXE structure. The present structure clearly provides the structural basis for the exclusion of Pro residues from the N-glycosylation sequon.
Collapse
|
40
|
Cain JA, Dale AL, Sumer-Bayraktar Z, Solis N, Cordwell SJ. Identifying the targets and functions of N-linked protein glycosylation in Campylobacter jejuni. Mol Omics 2021; 16:287-304. [PMID: 32347268 DOI: 10.1039/d0mo00032a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Campylobacter jejuni is a major cause of bacterial gastroenteritis in humans that is primarily associated with the consumption of inadequately prepared poultry products, since the organism is generally thought to be asymptomatic in avian species. Unlike many other microorganisms, C. jejuni is capable of performing extensive post-translational modification (PTM) of proteins by N- and O-linked glycosylation, both of which are required for optimal chicken colonization and human virulence. The biosynthesis and attachment of N-glycans to C. jejuni proteins is encoded by the pgl (protein glycosylation) locus, with the PglB oligosaccharyltransferase (OST) enabling en bloc transfer of a heptasaccharide N-glycan from a lipid carrier in the inner membrane to proteins exposed within the periplasm. Seventy-eight C. jejuni glycoproteins (represented by 134 sites of experimentally verified N-glycosylation) have now been identified, and include inner and outer membrane proteins, periplasmic proteins and lipoproteins, which are generally of poorly defined or unknown function. Despite our extensive knowledge of the targets of this apparently widespread process, we still do not fully understand the role N-glycosylation plays biologically, although several phenotypes, including wild-type stress resistance, biofilm formation, motility and chemotaxis have been related to a functional pgl system. Recent work has described enzymatic processes (nitrate reductase NapAB) and antibiotic efflux (CmeABC) as major targets requiring N-glycan attachment for optimal function, and experimental evidence also points to roles in cell binding via glycan-glycan interactions, protein complex formation and protein stability by conferring protection against host and bacterial proteolytic activity. Here we examine the biochemistry of the N-linked glycosylation system, define its currently known protein targets and discuss evidence for the structural and functional roles of this PTM in individual proteins and globally in C. jejuni pathogenesis.
Collapse
Affiliation(s)
- Joel A Cain
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia and Charles Perkins Centre, The University of Sydney, Level 4 East, The Hub Building (D17), 2006, Australia.
| | - Ashleigh L Dale
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia and Charles Perkins Centre, The University of Sydney, Level 4 East, The Hub Building (D17), 2006, Australia.
| | - Zeynep Sumer-Bayraktar
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia and Charles Perkins Centre, The University of Sydney, Level 4 East, The Hub Building (D17), 2006, Australia.
| | - Nestor Solis
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia
| | - Stuart J Cordwell
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia and Charles Perkins Centre, The University of Sydney, Level 4 East, The Hub Building (D17), 2006, Australia. and Discipline of Pathology, School of Medical Sciences, The University of Sydney, 2006, Australia and Sydney Mass Spectrometry, The University of Sydney, 2006, Australia
| |
Collapse
|
41
|
Bryan L, Clynes M, Meleady P. The emerging role of cellular post-translational modifications in modulating growth and productivity of recombinant Chinese hamster ovary cells. Biotechnol Adv 2021; 49:107757. [PMID: 33895332 DOI: 10.1016/j.biotechadv.2021.107757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Chinese hamster ovary (CHO) cells are one of the most commonly used host cell lines used for the production human therapeutic proteins. Much research over the past two decades has focussed on improving the growth, titre and cell specific productivity of CHO cells and in turn lowering the costs associated with production of recombinant proteins. CHO cell engineering has become of particular interest in recent years following the publication of the CHO cell genome and the availability of data relating to the proteome, transcriptome and metabolome of CHO cells. However, data relating to the cellular post-translational modification (PTMs) which can affect the functionality of CHO cellular proteins has only begun to be presented in recent years. PTMs are important to many cellular processes and can further alter proteins by increasing the complexity of proteins and their interactions. In this review, we describe the research presented from CHO cells to date related on three of the most important PTMs; glycosylation, phosphorylation and ubiquitination.
Collapse
Affiliation(s)
- Laura Bryan
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
42
|
Deliyannis G, Wong CY, McQuilten HA, Bachem A, Clarke M, Jia X, Horrocks K, Zeng W, Girkin J, Scott NE, Londrigan SL, Reading PC, Bartlett NW, Kedzierska K, Brown LE, Mercuri F, Demaison C, Jackson DC, Chua BY. TLR2-mediated activation of innate responses in the upper airways confers antiviral protection of the lungs. JCI Insight 2021; 6:140267. [PMID: 33561017 PMCID: PMC8021123 DOI: 10.1172/jci.insight.140267] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
The impact of respiratory virus infections on global health is felt not just during a pandemic, but endemic seasonal infections pose an equal and ongoing risk of severe disease. Moreover, vaccines and antiviral drugs are not always effective or available for many respiratory viruses. We investigated how induction of effective and appropriate antigen-independent innate immunity in the upper airways can prevent the spread of respiratory virus infection to the vulnerable lower airways. Activation of TLR2, when restricted to the nasal turbinates, resulted in prompt induction of innate immune-driven antiviral responses through action of cytokines, chemokines, and cellular activity in the upper but not the lower airways. We have defined how nasal epithelial cells and recruitment of macrophages work in concert and play pivotal roles to limit progression of influenza virus to the lungs and sustain protection for up to 7 days. These results reveal underlying mechanisms of how control of viral infection in the upper airways can occur and support the implementation of strategies that can activate TLR2 in nasal passages to provide rapid protection, especially for at-risk populations, against severe respiratory infection when vaccines and antiviral drugs are not always effective or available.
Collapse
Affiliation(s)
- Georgia Deliyannis
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Chinn Yi Wong
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hayley A. McQuilten
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Annabell Bachem
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michele Clarke
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kylie Horrocks
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Weiguang Zeng
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jason Girkin
- Viral Immunology and Respiratory Disease group, School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sarah L. Londrigan
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Patrick C. Reading
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Nathan W. Bartlett
- Viral Immunology and Respiratory Disease group, School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lorena E. Brown
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | | | - David C. Jackson
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Brendon Y. Chua
- Department of Microbiology and Immunology, the University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Cioce A, Malaker SA, Schumann B. Generating orthogonal glycosyltransferase and nucleotide sugar pairs as next-generation glycobiology tools. Curr Opin Chem Biol 2021; 60:66-78. [PMID: 33125942 PMCID: PMC7955280 DOI: 10.1016/j.cbpa.2020.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Protein glycosylation fundamentally impacts biological processes. Nontemplated biosynthesis introduces unparalleled complexity into glycans that needs tools to understand their roles in physiology. The era of quantitative biology is a great opportunity to unravel these roles, especially by mass spectrometry glycoproteomics. However, with high sensitivity come stringent requirements on tool specificity. Bioorthogonal metabolic labeling reagents have been fundamental to studying the cell surface glycoproteome but typically enter a range of different glycans and are thus of limited specificity. Here, we discuss the generation of metabolic 'precision tools' to study particular subtypes of the glycome. A chemical biology tactic termed bump-and-hole engineering generates mutant glycosyltransferases that specifically accommodate bioorthogonal monosaccharides as an enabling technique of glycobiology. We review the groundbreaking discoveries that have led to applying the tactic in the living cell and the implications in the context of current developments in mass spectrometry glycoproteomics.
Collapse
Affiliation(s)
- Anna Cioce
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom; Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom
| | - Stacy A Malaker
- Department of Chemistry, Stanford University, 290 Jane Stanford Way, Stanford, CA, 94305, USA; Department of Chemistry, Yale University, 275 Prospect Street, New Haven, CT, 06511, USA.
| | - Benjamin Schumann
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom; Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom.
| |
Collapse
|
44
|
Ferreira JA, Relvas-Santos M, Peixoto A, M N Silva A, Lara Santos L. Glycoproteogenomics: Setting the Course for Next-generation Cancer Neoantigen Discovery for Cancer Vaccines. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 19:25-43. [PMID: 34118464 PMCID: PMC8498922 DOI: 10.1016/j.gpb.2021.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/25/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
Molecular-assisted precision oncology gained tremendous ground with high-throughput next-generation sequencing (NGS), supported by robust bioinformatics. The quest for genomics-based cancer medicine set the foundations for improved patient stratification, while unveiling a wide array of neoantigens for immunotherapy. Upfront pre-clinical and clinical studies have successfully used tumor-specific peptides in vaccines with minimal off-target effects. However, the low mutational burden presented by many lesions challenges the generalization of these solutions, requiring the diversification of neoantigen sources. Oncoproteogenomics utilizing customized databases for protein annotation by mass spectrometry (MS) is a powerful tool toward this end. Expanding the concept toward exploring proteoforms originated from post-translational modifications (PTMs) will be decisive to improve molecular subtyping and provide potentially targetable functional nodes with increased cancer specificity. Walking through the path of systems biology, we highlight that alterations in protein glycosylation at the cell surface not only have functional impact on cancer progression and dissemination but also originate unique molecular fingerprints for targeted therapeutics. Moreover, we discuss the outstanding challenges required to accommodate glycoproteomics in oncoproteogenomics platforms. We envisage that such rationale may flag a rather neglected research field, generating novel paradigms for precision oncology and immunotherapy.
Collapse
Affiliation(s)
- José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto 4200-072, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto 4050-313, Portugal; Porto Comprehensive Cancer Center (P.ccc), Porto 4200-072, Portugal.
| | - Marta Relvas-Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto 4200-072, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto 4050-313, Portugal; REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto 4169-007, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto 4200-072, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto 4050-313, Portugal
| | - André M N Silva
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto 4169-007, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto 4200-072, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto 4050-313, Portugal; Porto Comprehensive Cancer Center (P.ccc), Porto 4200-072, Portugal
| |
Collapse
|
45
|
Cioce A, Malaker SA, Schumann B. Generating orthogonal glycosyltransferase and nucleotide sugar pairs as next-generation glycobiology tools. Curr Opin Chem Biol 2021. [PMID: 33125942 DOI: 10.1016/jcbpa.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Protein glycosylation fundamentally impacts biological processes. Nontemplated biosynthesis introduces unparalleled complexity into glycans that needs tools to understand their roles in physiology. The era of quantitative biology is a great opportunity to unravel these roles, especially by mass spectrometry glycoproteomics. However, with high sensitivity come stringent requirements on tool specificity. Bioorthogonal metabolic labeling reagents have been fundamental to studying the cell surface glycoproteome but typically enter a range of different glycans and are thus of limited specificity. Here, we discuss the generation of metabolic 'precision tools' to study particular subtypes of the glycome. A chemical biology tactic termed bump-and-hole engineering generates mutant glycosyltransferases that specifically accommodate bioorthogonal monosaccharides as an enabling technique of glycobiology. We review the groundbreaking discoveries that have led to applying the tactic in the living cell and the implications in the context of current developments in mass spectrometry glycoproteomics.
Collapse
Affiliation(s)
- Anna Cioce
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom; Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom
| | - Stacy A Malaker
- Department of Chemistry, Stanford University, 290 Jane Stanford Way, Stanford, CA, 94305, USA; Department of Chemistry, Yale University, 275 Prospect Street, New Haven, CT, 06511, USA.
| | - Benjamin Schumann
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom; Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom.
| |
Collapse
|
46
|
Riley NM, Bertozzi CR, Pitteri SJ. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Mol Cell Proteomics 2020; 20:100029. [PMID: 33583771 PMCID: PMC8724846 DOI: 10.1074/mcp.r120.002277] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is a prevalent, yet heterogeneous modification with a broad range of implications in molecular biology. This heterogeneity precludes enrichment strategies that can be universally beneficial for all glycan classes. Thus, choice of enrichment strategy has profound implications on experimental outcomes. Here we review common enrichment strategies used in modern mass spectrometry-based glycoproteomic experiments, including lectins and other affinity chromatographies, hydrophilic interaction chromatography and its derivatives, porous graphitic carbon, reversible and irreversible chemical coupling strategies, and chemical biology tools that often leverage bioorthogonal handles. Interest in glycoproteomics continues to surge as mass spectrometry instrumentation and software improve, so this review aims to help equip researchers with the necessary information to choose appropriate enrichment strategies that best complement these efforts.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford, California, USA.
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford, California, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, USA.
| |
Collapse
|
47
|
Guérin A, Sulaeman S, Coquet L, Ménard A, Barloy-Hubler F, Dé E, Tresse O. Membrane Proteocomplexome of Campylobacter jejuni Using 2-D Blue Native/SDS-PAGE Combined to Bioinformatics Analysis. Front Microbiol 2020; 11:530906. [PMID: 33329413 PMCID: PMC7717971 DOI: 10.3389/fmicb.2020.530906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022] Open
Abstract
Campylobacter is the leading cause of the human bacterial foodborne infections in the developed countries. The perception cues from biotic or abiotic environments by the bacteria are often related to bacterial surface and membrane proteins that mediate the cellular response for the adaptation of Campylobacter jejuni to the environment. These proteins function rarely as a unique entity, they are often organized in functional complexes. In C. jejuni, these complexes are not fully identified and some of them remain unknown. To identify putative functional multi-subunit entities at the membrane subproteome level of C. jejuni, a holistic non a priori method was addressed using two-dimensional blue native/Sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) in strain C. jejuni 81-176. Couples of acrylamide gradient/migration-time, membrane detergent concentration and hand-made strips were optimized to obtain reproducible extraction and separation of intact membrane protein complexes (MPCs). The MPCs were subsequently denatured using SDS-PAGE and each spot from each MPCs was identified by mass spectrometry. Altogether, 21 MPCs could be detected including multi homo-oligomeric and multi hetero-oligomeric complexes distributed in both inner and outer membranes. The function, the conservation and the regulation of the MPCs across C. jejuni strains were inspected by functional and genomic comparison analyses. In this study, relatedness between subunits of two efflux pumps, CmeABC and MacABputC was observed. In addition, a consensus sequence CosR-binding box in promoter regions of MacABputC was present in C. jejuni but not in Campylobacter coli. The MPCs identified in C. jejuni 81-176 membrane are involved in protein folding, molecule trafficking, oxidative phosphorylation, membrane structuration, peptidoglycan biosynthesis, motility and chemotaxis, stress signaling, efflux pumps and virulence.
Collapse
Affiliation(s)
| | | | - Laurent Coquet
- UMR 6270 Laboratoire Polymères Biopolymères Surfaces, UNIROUEN, INSA Rouen, CNRS, Normandie Université, Rouen, France
- UNIROUEN, Plateforme PISSARO, IRIB, Normandie Université, Mont-Saint-Aignan, France
| | - Armelle Ménard
- INSERM, UMR 1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Frédérique Barloy-Hubler
- UMR 6290, CNRS, Institut de Génétique et Développement de Rennes, University of Rennes, Rennes, France
| | - Emmanuelle Dé
- UMR 6270 Laboratoire Polymères Biopolymères Surfaces, UNIROUEN, INSA Rouen, CNRS, Normandie Université, Rouen, France
| | | |
Collapse
|
48
|
Characterization of Posttranslationally Modified Multidrug Efflux Pumps Reveals an Unexpected Link between Glycosylation and Antimicrobial Resistance. mBio 2020; 11:mBio.02604-20. [PMID: 33203757 PMCID: PMC7683400 DOI: 10.1128/mbio.02604-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The substantial rise in multidrug-resistant bacterial infections is a current global imperative. Cumulative efforts to characterize antimicrobial resistance in bacteria has demonstrated the spread of six families of multidrug efflux pumps, of which resistance-nodulation-cell division (RND) is the major mechanism of multidrug resistance in Gram-negative bacteria. RND is composed of a tripartite protein assembly and confers resistance to a range of unrelated compounds. In the major enteric pathogen Campylobacter jejuni, the three protein components of RND are posttranslationally modified with N-linked glycans. The direct role of N-linked glycans in C. jejuni and other bacteria has long been elusive. Here, we present the first detailed account of the role of N-linked glycans and the link between N-glycosylation and antimicrobial resistance in C. jejuni We demonstrate the multifunctional role of N-linked glycans in enhancing protein thermostability, stabilizing protein complexes and the promotion of protein-protein interaction, thus mediating antimicrobial resistance via enhancing multidrug efflux pump activity. This affirms that glycosylation is critical for multidrug efflux pump assembly. We present a generalized strategy that could be used to investigate general glycosylation system in Campylobacter genus and a potential target to develop antimicrobials against multidrug-resistant pathogens.IMPORTANCE Nearly all bacterial species have at least a single glycosylation system, but the direct effects of these posttranslational protein modifications are unresolved. Glycoproteome-wide analysis of several bacterial pathogens has revealed general glycan modifications of virulence factors and protein assemblies. Using Campylobacter jejuni as a model organism, we have studied the role of general N-linked glycans in the multidrug efflux pump commonly found in Gram-negative bacteria. We show, for the first time, the direct link between N-linked glycans and multidrug efflux pump activity. At the protein level, we demonstrate that N-linked glycans play a role in enhancing protein thermostability and mediating the assembly of the multidrug efflux pump to promote antimicrobial resistance, highlighting the importance of this posttranslational modification in bacterial physiology. Similar roles for glycans are expected to be found in other Gram-negative pathogens that possess general protein glycosylation systems.
Collapse
|
49
|
Ahmad Izaham AR, Ang CS, Nie S, Bird LE, Williamson NA, Scott NE. What Are We Missing by Using Hydrophilic Enrichment? Improving Bacterial Glycoproteome Coverage Using Total Proteome and FAIMS Analyses. J Proteome Res 2020; 20:599-612. [PMID: 33125241 DOI: 10.1021/acs.jproteome.0c00565] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrophilic interaction liquid chromatography (HILIC) glycopeptide enrichment is an indispensable tool for the high-throughput characterization of glycoproteomes. Despite its utility, HILIC enrichment is associated with a number of shortcomings, including requiring large amounts of starting materials, potentially introducing chemical artifacts such as formylation when high concentrations of formic acid are used, and biasing/undersampling specific classes of glycopeptides. Here, we investigate HILIC enrichment-independent approaches for the study of bacterial glycoproteomes. Using three Burkholderia species (Burkholderia cenocepacia, Burkholderia Dolosa, and Burkholderia ubonensis), we demonstrate that short aliphatic O-linked glycopeptides are typically absent from HILIC enrichments, yet are readily identified in whole proteome samples. Using high-field asymmetric waveform ion mobility spectrometry (FAIMS) fractionation, we show that at high compensation voltages (CVs), short aliphatic glycopeptides can be enriched from complex samples, providing an alternative means to identify glycopeptide recalcitrant to hydrophilic-based enrichment. Combining whole proteome and FAIMS analyses, we show that the observable glycoproteome of these Burkholderia species is at least 25% larger than what was initially thought. Excitingly, the ability to enrich glycopeptides using FAIMS appears generally applicable, with the N-linked glycopeptides of Campylobacter fetus subsp. fetus also being enrichable at high FAIMS CVs. Taken together, these results demonstrate that FAIMS provides an alternative means to access glycopeptides and is a valuable tool for glycoproteomic analysis.
Collapse
Affiliation(s)
- Ameera Raudah Ahmad Izaham
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Ching-Seng Ang
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lauren E Bird
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Nicholas A Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| |
Collapse
|
50
|
Hu Y, Pan J, Shah P, Ao M, Thomas SN, Liu Y, Chen L, Schnaubelt M, Clark DJ, Rodriguez H, Boja ES, Hiltke T, Kinsinger CR, Rodland KD, Li QK, Qian J, Zhang Z, Chan DW, Zhang H. Integrated Proteomic and Glycoproteomic Characterization of Human High-Grade Serous Ovarian Carcinoma. Cell Rep 2020; 33:108276. [PMID: 33086064 PMCID: PMC7970828 DOI: 10.1016/j.celrep.2020.108276] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/18/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Many gene products exhibit great structural heterogeneity because of an array of modifications. These modifications are not directly encoded in the genomic template but often affect the functionality of proteins. Protein glycosylation plays a vital role in proper protein functions. However, the analysis of glycoproteins has been challenging compared with other protein modifications, such as phosphorylation. Here, we perform an integrated proteomic and glycoproteomic analysis of 83 prospectively collected high-grade serous ovarian carcinoma (HGSC) and 23 non-tumor tissues. Integration of the expression data from global proteomics and glycoproteomics reveals tumor-specific glycosylation, uncovers different glycosylation associated with three tumor clusters, and identifies glycosylation enzymes that were correlated with the altered glycosylation. In addition to providing a valuable resource, these results provide insights into the potential roles of glycosylation in the pathogenesis of HGSC, with the possibility of distinguishing pathological outcomes of ovarian tumors from non-tumors, as well as classifying tumor clusters.
Collapse
Affiliation(s)
- Yingwei Hu
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
| | - Jianbo Pan
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
| | - Punit Shah
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
| | - Minghui Ao
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
| | - Stefani N Thomas
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
| | - Yang Liu
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
| | - David J Clark
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Qing Kay Li
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
| | - Zhen Zhang
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA.
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|