1
|
Silva-Portela RDCB, Minnicelli CF, Freitas JF, Fonseca MMB, Lima Silva DFD, Silva-Barbalho KK, Falcão RM, Bruce T, Cavalcante JVF, Dalmolin RJS, Agnez-Lima LF. Unlocking the transcriptional profiles of an oily waste-degrading bacterial consortium. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136866. [PMID: 39694004 DOI: 10.1016/j.jhazmat.2024.136866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
This study investigates the transcriptional profile of a novel oil-degrading microbial consortium (MC1) composed of four bacterial isolates from Brazilian oil reservoirs: Acinetobacter baumannii subsp. oleum ficedula, Bacillus velezensis, Enterobacter asburiae, and Klebsiella pneumoniae. Genomic analysis revealed an enrichment of genes associated with xenobiotic degradation, particularly for aminobenzoate, atrazine, and aromatic compounds, compared to reference genomes. The consortium demonstrated superior growth and complete oil degradation relative to individual strains. Transcriptional profiling during growth on oil indicated that key subsystems involved membrane transport, stress response, and dehydrogenase complexes, crucial for hydrocarbon uptake. Notably, genes for degrading aromatics, naphthalene, and chloroalkanes were significantly expressed during the initial oil growth phase. The dominant gene expressed was alkane 1-monooxygenase, particularly in the late growth phase. While A. baumannii exhibited the highest transcriptional activity, B. velezensis showed lower activity despite possessing numerous hydrocarbon degradation genes. The synergistic interactions among strains, confirmed by complementary gene expression patterns, position MC1 as a promising bioremediation agent for hydrocarbon-contaminated environments. However, more than collaboration, competition for nutrient uptake and resistance to stress drive gene expression and adaptation in the presence of oil as the carbon source.
Collapse
Affiliation(s)
| | | | - Júlia Firme Freitas
- Department of Cell Biology and Genetics, Federal University of Rio Grande do Norte, Natal 59078900, Brazil
| | | | | | | | - Raul Maia Falcão
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal 59078900, Brazil
| | - Thiago Bruce
- Department of Cell Biology and Genetics, Federal University of Rio Grande do Norte, Natal 59078900, Brazil
| | | | - Rodrigo Juliani Siqueira Dalmolin
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal 59078900, Brazil; Department of Biochemistry, Federal University of Rio Grande do Norte, Natal 59078900, Brazil
| | | |
Collapse
|
2
|
Basharat Z, Foster LJ, Abbas S, Yasmin A. Comparative Proteomics of Bacteria Under Stress Conditions. Methods Mol Biol 2025; 2859:129-162. [PMID: 39436600 DOI: 10.1007/978-1-0716-4152-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Bacteria are unicellular organisms with the ability to exist in the harshest of climate and cope with sub-optimal fluctuating environmental conditions. They accomplish this by modification of their internal cellular environment. When external conditions are varied, change in the cell is triggered at the transcriptional level, which usually leads to proteolysis and rewiring of the proteome. Changes in cellular homeostasis, modifications in proteome, and dynamics of such survival mechanisms can be studied using various scientific techniques. Our focus in this chapter would be on comparative proteomics of bacteria under stress conditions using approaches like 2D electrophoresis accompanied by N-terminal sequencing and recently, mass spectrometry. More than 170 such studies on bacteria have been accomplished till to date and involve analysis of whole cells as well as that of cellular fractions, i.e., outer membrane, inner membrane, cell envelope, cytoplasm, thylakoid, lipid bodies, etc. Similar studies conducted on gram-negative and gram-positive model organism, i.e., Escherichia coli and Bacillus subtilis, respectively, have been summarized. Vital information, hypothesis about conservation of stress-specific proteome, and conclusions are also presented in the light of research conducted over the last decades.
Collapse
Affiliation(s)
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Labs, University of British Columbia, Vancouver, BC, Canada
| | - Sidra Abbas
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Azra Yasmin
- Microbiology & Biotechnology Research Lab, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan.
| |
Collapse
|
3
|
Nazaret F, Farajzadeh D, Mejias J, Pacoud M, Cosi A, Frendo P, Alloing G, Mandon K. SydR, a redox-sensing MarR-type regulator of Sinorhizobium meliloti, is crucial for symbiotic infection of Medicago truncatula roots. mBio 2024; 15:e0227524. [PMID: 39480079 PMCID: PMC11633110 DOI: 10.1128/mbio.02275-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024] Open
Abstract
Rhizobia associate with legumes and induce the formation of nitrogen-fixing nodules. The regulation of bacterial redox state plays a major role in symbiosis, and reactive oxygen species produced by the plant are known to activate signaling pathways. However, only a few redox-sensing transcriptional regulators (TRs) have been characterized in the microsymbiont. Here, we describe SydR, a novel redox-sensing TR of Sinorhizobium meliloti that is essential for the establishment of symbiosis with Medicago truncatula. SydR, a MarR-type TR, represses the expression of the adjacent gene SMa2023 in growing cultures, and this repression is alleviated by NaOCl, tert-butyl hydroperoxide, or H2O2 treatment. Transcriptional psydR-gfp and pSMa2023-gfp fusions, as well as gel shift assays, showed that SydR binds two independent sites of the sydR-SMa2023 intergenic region. This binding is redox-dependent, and site-directed mutagenesis demonstrated that the conserved C16 is essential for SydR redox sensing. The inactivation of sydR did not alter the sensitivity of S. meliloti to NaOCl, tert-butyl hydroperoxide, or H2O2, nor did it affect the response to oxidants of the roGFP2-Orp1 redox biosensor expressed within bacteria. However, in planta, ΔsydR mutation impaired the formation of root nodules. Microscopic observations and analyses of plant marker gene expression showed that the ΔsydR mutant is defective at an early stage of the bacterial infection process. Altogether, these results demonstrated that SydR is a redox-sensing MarR-type TR that plays a key role in the regulation of nitrogen-fixing symbiosis with M. truncatula.IMPORTANCEThe nitrogen-fixing symbiosis between rhizobia and legumes has an important ecological role in the nitrogen cycle, contributes to nitrogen enrichment of soils, and can improve plant growth in agriculture. This interaction is initiated in the rhizosphere by a molecular dialog between the two partners, resulting in plant root infection and the formation of root nodules, where bacteria reduce the atmospheric nitrogen into ammonium. This symbiosis involves modifications of the bacterial redox state in response to reactive oxygen species produced by the plant partner. Here, we show that SydR, a transcriptional regulator of the Medicago symbiont Sinorhizobium meliloti, acts as a redox-responsive repressor that is crucial for the development of root nodules and contributes to the regulation of bacterial infection in S. meliloti/Medicago truncatula symbiotic interaction.
Collapse
Affiliation(s)
- Fanny Nazaret
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| | | | - Joffrey Mejias
- IRD, CIRAD, Université Montpellier, Plant Health Institute, Montpellier, France
| | - Marie Pacoud
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| | - Anthony Cosi
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| | - Pierre Frendo
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| | | | - Karine Mandon
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| |
Collapse
|
4
|
Pal S, Yuvaraj R, Krishnan H, Venkatraman B, Abraham J, Gopinathan A. Unraveling radiation resistance strategies in two bacterial strains from the high background radiation area of Chavara-Neendakara: A comprehensive whole genome analysis. PLoS One 2024; 19:e0304810. [PMID: 38857267 PMCID: PMC11164402 DOI: 10.1371/journal.pone.0304810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/18/2024] [Indexed: 06/12/2024] Open
Abstract
This paper reports the results of gamma irradiation experiments and whole genome sequencing (WGS) performed on vegetative cells of two radiation resistant bacterial strains, Metabacillus halosaccharovorans (VITHBRA001) and Bacillus paralicheniformis (VITHBRA024) (D10 values 2.32 kGy and 1.42 kGy, respectively), inhabiting the top-ranking high background radiation area (HBRA) of Chavara-Neendakara placer deposit (Kerala, India). The present investigation has been carried out in the context that information on strategies of bacteria having mid-range resistance for gamma radiation is inadequate. WGS, annotation, COG and KEGG analyses and manual curation of genes helped us address the possible pathways involved in the major domains of radiation resistance, involving recombination repair, base excision repair, nucleotide excision repair and mismatch repair, and the antioxidant genes, which the candidate could activate to survive under ionizing radiation. Additionally, with the help of these data, we could compare the candidate strains with that of the extremely radiation resistant model bacterium Deinococccus radiodurans, so as to find the commonalities existing in their strategies of resistance on the one hand, and also the rationale behind the difference in D10, on the other. Genomic analysis of VITHBRA001 and VITHBRA024 has further helped us ascertain the difference in capability of radiation resistance between the two strains. Significantly, the genes such as uvsE (NER), frnE (protein protection), ppk1 and ppx (non-enzymatic metabolite production) and those for carotenoid biosynthesis, are endogenous to VITHBRA001, but absent in VITHBRA024, which could explain the former's better radiation resistance. Further, this is the first-time study performed on any bacterial population inhabiting an HBRA. This study also brings forward the two species whose radiation resistance has not been reported thus far, and add to the knowledge on radiation resistant capabilities of the phylum Firmicutes which are abundantly observed in extreme environment.
Collapse
Affiliation(s)
- Sowptika Pal
- Molecular Endocrinology Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ramani Yuvaraj
- Radiological and Environmental Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
| | - Hari Krishnan
- Radiological and Environmental Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
| | - Balasubramanian Venkatraman
- Radiological and Environmental Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
| | - Jayanthi Abraham
- Microbial Biotechnology Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anilkumar Gopinathan
- Molecular Endocrinology Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
5
|
Xuan G, Xun L, Xia Y. MarR family proteins sense sulfane sulfur in bacteria. MLIFE 2024; 3:231-239. [PMID: 38948149 PMCID: PMC11211675 DOI: 10.1002/mlf2.12109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 12/24/2023] [Indexed: 07/02/2024]
Abstract
Members of the multiple antibiotic resistance regulator (MarR) protein family are ubiquitous in bacteria and play critical roles in regulating cellular metabolism and antibiotic resistance. MarR family proteins function as repressors, and their interactions with modulators induce the expression of controlled genes. The previously characterized modulators are insufficient to explain the activities of certain MarR family proteins. However, recently, several MarR family proteins have been reported to sense sulfane sulfur, including zero-valent sulfur, persulfide (R-SSH), and polysulfide (R-SnH, n ≥ 2). Sulfane sulfur is a common cellular component in bacteria whose levels vary during bacterial growth. The changing levels of sulfane sulfur affect the expression of many MarR-controlled genes. Sulfane sulfur reacts with the cysteine thiols of MarR family proteins, causing the formation of protein thiol persulfide, disulfide bonds, and other modifications. Several MarR family proteins that respond to reactive oxygen species (ROS) also sense sulfane sulfur, as both sulfane sulfur and ROS induce the formation of disulfide bonds. This review focused on MarR family proteins that sense sulfane sulfur. However, the sensing mechanisms reviewed here may also apply to other proteins that detect sulfane sulfur, which is emerging as a modulator of gene regulation.
Collapse
Affiliation(s)
- Guanhua Xuan
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
- State Key Laboratory of Marine Food Processing & Safety ControlOcean University of ChinaQingdaoChina
| | - Luying Xun
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
- School of Molecular BiosciencesWashington State UniversityPullmanWashingtonUSA
| | - Yongzhen Xia
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| |
Collapse
|
6
|
Tossounian MA, Zhao Y, Yu BYK, Markey SA, Malanchuk O, Zhu Y, Cain A, Gout I. Low-molecular-weight thiol transferases in redox regulation and antioxidant defence. Redox Biol 2024; 71:103094. [PMID: 38479221 PMCID: PMC10950700 DOI: 10.1016/j.redox.2024.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 03/24/2024] Open
Abstract
Low-molecular-weight (LMW) thiols are produced in all living cells in different forms and concentrations. Glutathione (GSH), coenzyme A (CoA), bacillithiol (BSH), mycothiol (MSH), ergothioneine (ET) and trypanothione T(SH)2 are the main LMW thiols in eukaryotes and prokaryotes. LMW thiols serve as electron donors for thiol-dependent enzymes in redox-mediated metabolic and signaling processes, protect cellular macromolecules from oxidative and xenobiotic stress, and participate in the reduction of oxidative modifications. The level and function of LMW thiols, their oxidized disulfides and mixed disulfide conjugates in cells and tissues is tightly controlled by dedicated oxidoreductases, such as peroxiredoxins, glutaredoxins, disulfide reductases and LMW thiol transferases. This review provides the first summary of the current knowledge of structural and functional diversity of transferases for LMW thiols, including GSH, BSH, MSH and T(SH)2. Their role in maintaining redox homeostasis in single-cell and multicellular organisms is discussed, focusing in particular on the conjugation of specific thiols to exogenous and endogenous electrophiles, or oxidized protein substrates. Advances in the development of new research tools, analytical methodologies, and genetic models for the analysis of known LMW thiol transferases will expand our knowledge and understanding of their function in cell growth and survival under oxidative stress, nutrient deprivation, and during the detoxification of xenobiotics and harmful metabolites. The antioxidant function of CoA has been recently discovered and the breakthrough in defining the identity and functional characteristics of CoA S-transferase(s) is soon expected.
Collapse
Affiliation(s)
- Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Yuhan Zhao
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Samuel A Markey
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Oksana Malanchuk
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom; Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, 143, Ukraine
| | - Yuejia Zhu
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Amanda Cain
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom; Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, 143, Ukraine.
| |
Collapse
|
7
|
Bin Hafeez A, Pełka K, Worobo R, Szweda P. In Silico Safety Assessment of Bacillus Isolated from Polish Bee Pollen and Bee Bread as Novel Probiotic Candidates. Int J Mol Sci 2024; 25:666. [PMID: 38203838 PMCID: PMC10780176 DOI: 10.3390/ijms25010666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Bacillus species isolated from Polish bee pollen (BP) and bee bread (BB) were characterized for in silico probiotic and safety attributes. A probiogenomics approach was used, and in-depth genomic analysis was performed using a wide array of bioinformatics tools to investigate the presence of virulence and antibiotic resistance properties, mobile genetic elements, and secondary metabolites. Functional annotation and Carbohydrate-Active enZYmes (CAZYme) profiling revealed the presence of genes and a repertoire of probiotics properties promoting enzymes. The isolates BB10.1, BP20.15 (isolated from bee bread), and PY2.3 (isolated from bee pollen) genome mining revealed the presence of several genes encoding acid, heat, cold, and other stress tolerance mechanisms, adhesion proteins required to survive and colonize harsh gastrointestinal environments, enzymes involved in the metabolism of dietary molecules, antioxidant activity, and genes associated with the synthesis of vitamins. In addition, genes responsible for the production of biogenic amines (BAs) and D-/L-lactate, hemolytic activity, and other toxic compounds were also analyzed. Pan-genome analyses were performed with 180 Bacillus subtilis and 204 Bacillus velezensis genomes to mine for any novel genes present in the genomes of our isolates. Moreover, all three isolates also consisted of gene clusters encoding secondary metabolites.
Collapse
Affiliation(s)
- Ahmer Bin Hafeez
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| | - Karolina Pełka
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| | - Randy Worobo
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA;
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| |
Collapse
|
8
|
Tikhomirova A, Rahman MM, Kidd SP, Ferrero RL, Roujeinikova A. Cysteine and resistance to oxidative stress: implications for virulence and antibiotic resistance. Trends Microbiol 2024; 32:93-104. [PMID: 37479622 DOI: 10.1016/j.tim.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/23/2023]
Abstract
Reactive oxygen species (ROS), including the superoxide radical anion (O2•-), hydrogen peroxide (H2O2), and the hydroxyl radical (•HO), are inherent components of bacterial metabolism in an aerobic environment. Bacteria also encounter exogenous ROS, such as those produced by the host cells during the respiratory burst. As ROS have the capacity to damage bacterial DNA, proteins, and lipids, detoxification of ROS is critical for bacterial survival. It has been recently recognised that low-molecular-weight (LMW) thiols play a central role in this process. Here, we review the emerging role of cysteine in bacterial resistance to ROS with a link to broader elements of bacterial lifestyle closely associated with cysteine-mediated oxidative stress response, including virulence and antibiotic resistance.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
| | - Mohammad M Rahman
- University of Kentucky, Department of Microbiology, Immunology and Molecular Genetics, Lexington, KY, USA
| | - Stephen P Kidd
- University of Adelaide, Department of Molecular and Biomedical Sciences, School of Biological Sciences, Adelaide, SA 5005, Australia; University of Adelaide, Research Centre for Infectious Disease (RCID) and Australian Centre for Antimicrobial Resistance Ecology (ACARE), Adelaide, SA 5005, Australia
| | - Richard L Ferrero
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia; Hudson Institute of Medical Research, Centre for Innate Immunity and Infectious Diseases, Melbourne, VIC 3168, Australia; Monash University, Department of Molecular and Translational Science, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
| | - Anna Roujeinikova
- Monash University, Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia; Monash University, Department of Biochemistry and Molecular Biology, Melbourne, VIC 3800, Australia.
| |
Collapse
|
9
|
Loi VV, Busche T, Schnaufer F, Kalinowski J, Antelmann H. The neutrophil oxidant hypothiocyanous acid causes a thiol-specific stress response and an oxidative shift of the bacillithiol redox potential in Staphylococcus aureus. Microbiol Spectr 2023; 11:e0325223. [PMID: 37930020 PMCID: PMC10715087 DOI: 10.1128/spectrum.03252-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Staphylococcus aureus colonizes the skin and the airways but can also lead to life-threatening systemic and chronic infections. During colonization and phagocytosis by immune cells, S. aureus encounters the thiol-reactive oxidant HOSCN. The understanding of the adaptation mechanisms of S. aureus toward HOSCN stress is important to identify novel drug targets to combat multi-resistant S. aureus isolates. As a defense mechanism, S. aureus uses the flavin disulfide reductase MerA, which functions as HOSCN reductase and protects against HOSCN stress. Moreover, MerA homologs have conserved functions in HOSCN detoxification in other bacteria, including intestinal and respiratory pathogens. In this work, we studied the comprehensive thiol-reactive mode of action of HOSCN and its effect on the reversible shift of the E BSH to discover new defense mechanisms against the neutrophil oxidant. These findings provide new leads for future drug design to fight the pathogen at the sites of colonization and infections.
Collapse
Affiliation(s)
- Vu Van Loi
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Franziska Schnaufer
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Haike Antelmann
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
10
|
Loi VV, Busche T, Kuropka B, Müller S, Methling K, Lalk M, Kalinowski J, Antelmann H. Staphylococcus aureus adapts to the immunometabolite itaconic acid by inducing acid and oxidative stress responses including S-bacillithiolations and S-itaconations. Free Radic Biol Med 2023; 208:859-876. [PMID: 37793500 DOI: 10.1016/j.freeradbiomed.2023.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Staphylococcus aureus is a major pathogen, which has to defend against reactive oxygen and electrophilic species encountered during infections. Activated macrophages produce the immunometabolite itaconate as potent electrophile and antimicrobial upon pathogen infection. In this work, we used transcriptomics, metabolomics and shotgun redox proteomics to investigate the specific stress responses, metabolic changes and redox modifications caused by sublethal concentrations of itaconic acid in S. aureus. In the RNA-seq transcriptome, itaconic acid caused the induction of the GlnR, KdpDE, CidR, SigB, GraRS, PerR, CtsR and HrcA regulons and the urease-encoding operon, revealing an acid and oxidative stress response and impaired proteostasis. Neutralization using external urea as ammonium source improved the growth and decreased the expression of the glutamine synthetase-controlling GlnR regulon, indicating that S. aureus experienced ammonium starvation upon itaconic acid stress. In the extracellular metabolome, the amounts of acetate and formate were decreased, while secretion of pyruvate and the neutral product acetoin were strongly enhanced to avoid intracellular acidification. Exposure to itaconic acid affected the amino acid uptake and metabolism as revealed by the strong intracellular accumulation of lysine, threonine, histidine, aspartate, alanine, valine, leucine, isoleucine, cysteine and methionine. In the proteome, itaconic acid caused widespread S-bacillithiolation and S-itaconation of redox-sensitive antioxidant and metabolic enzymes, ribosomal proteins and translation factors in S. aureus, supporting its oxidative and electrophilic mode of action in S. aureus. In phenotype analyses, the catalase KatA, the low molecular weight thiol bacillithiol and the urease provided protection against itaconic acid-induced oxidative and acid stress in S. aureus. Altogether, our results revealed that under physiological infection conditions, such as in the acidic phagolysome, itaconic acid is a highly effective antimicrobial against multi-resistant S. aureus isolates, which acts as weak acid causing an acid, oxidative and electrophilic stress response, leading to S-bacillithiolation and itaconation.
Collapse
Affiliation(s)
- Vu Van Loi
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, D-33615, Bielefeld, Germany
| | - Benno Kuropka
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, D-14195, Berlin, Germany
| | - Susanne Müller
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany
| | - Karen Methling
- Department of Cellular Biochemistry and Metabolomics, University of Greifswald, 17487, Greifswald, Germany
| | - Michael Lalk
- Department of Cellular Biochemistry and Metabolomics, University of Greifswald, 17487, Greifswald, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, D-33615, Bielefeld, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany.
| |
Collapse
|
11
|
Tossounian MA, Baczynska M, Dalton W, Peak-Chew SY, Undzenas K, Korza G, Filonenko V, Skehel M, Setlow P, Gout I. Bacillus subtilis YtpP and Thioredoxin A Are New Players in the Coenzyme-A-Mediated Defense Mechanism against Cellular Stress. Antioxidants (Basel) 2023; 12:antiox12040938. [PMID: 37107313 PMCID: PMC10136147 DOI: 10.3390/antiox12040938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Coenzyme A (CoA) is an important cellular metabolite that is critical for metabolic processes and the regulation of gene expression. Recent discovery of the antioxidant function of CoA has highlighted its protective role that leads to the formation of a mixed disulfide bond with protein cysteines, which is termed protein CoAlation. To date, more than 2000 CoAlated bacterial and mammalian proteins have been identified in cellular responses to oxidative stress, with the majority being involved in metabolic pathways (60%). Studies have shown that protein CoAlation is a widespread post-translational modification which modulates the activity and conformation of the modified proteins. The induction of protein CoAlation by oxidative stress was found to be rapidly reversed after the removal of oxidizing agents from the medium of cultured cells. In this study, we developed an enzyme-linked immunosorbent assay (ELISA)-based deCoAlation assay to detect deCoAlation activity from Bacillus subtilis and Bacillus megaterium lysates. We then used a combination of ELISA-based assay and purification strategies to show that deCoAlation is an enzyme-driven mechanism. Using mass-spectrometry and deCoAlation assays, we identified B. subtilis YtpP (thioredoxin-like protein) and thioredoxin A (TrxA) as enzymes that can remove CoA from different substrates. With mutagenesis studies, we identified YtpP and TrxA catalytic cysteine residues and proposed a possible deCoAlation mechanism for CoAlated methionine sulfoxide reducatse A (MsrA) and peroxiredoxin 5 (PRDX5) proteins, which results in the release of both CoA and the reduced form of MsrA or PRDX5. Overall, this paper reveals the deCoAlation activity of YtpP and TrxA and opens doors to future studies on the CoA-mediated redox regulation of CoAlated proteins under various cellular stress conditions.
Collapse
Affiliation(s)
| | - Maria Baczynska
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - William Dalton
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Sew Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Kipras Undzenas
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - George Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine
| | - Mark Skehel
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine
| |
Collapse
|
12
|
Fritsch VN, Linzner N, Busche T, Said N, Weise C, Kalinowski J, Wahl MC, Antelmann H. The MerR-family regulator NmlR is involved in the defense against oxidative stress in Streptococcus pneumoniae. Mol Microbiol 2023; 119:191-207. [PMID: 36349475 DOI: 10.1111/mmi.14999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Streptococcus pneumoniae has to cope with the strong oxidant hypochlorous acid (HOCl), during host-pathogen interactions. Thus, we analyzed the global gene expression profile of S. pneumoniae D39 towards HOCl stress. In the RNA-seq transcriptome, the NmlR, SifR, CtsR, HrcA, SczA and CopY regulons and the etrx1-ccdA1-msrAB2 operon were most strongly induced under HOCl stress, which participate in the oxidative, electrophile and metal stress response in S. pneumoniae. The MerR-family regulator NmlR harbors a conserved Cys52 and controls the alcohol dehydrogenase-encoding adhC gene under carbonyl and NO stress. We demonstrated that NmlR senses also HOCl stress to activate transcription of the nmlR-adhC operon. HOCl-induced transcription of adhC required Cys52 of NmlR in vivo. Using mass spectrometry, NmlR was shown to be oxidized to intersubunit disulfides or S-glutathionylated under oxidative stress in vitro. A broccoli-FLAP-based assay further showed that both NmlR disulfides significantly increased transcription initiation at the nmlR promoter by RNAP in vitro, which depends on Cys52. Phenotype analyses revealed that NmlR functions in the defense against oxidative stress and promotes survival of S. pneumoniae during macrophage infections. In conclusion, NmlR was characterized as HOCl-sensing transcriptional regulator, which activates transcription of adhC under oxidative stress by thiol switches in S. pneumoniae.
Collapse
Affiliation(s)
| | - Nico Linzner
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Tobias Busche
- Center for Biotechnology, University Bielefeld, Bielefeld, Germany.,NGS Core Facility, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Nelly Said
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, University Bielefeld, Bielefeld, Germany
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany.,Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Haike Antelmann
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
13
|
Fritsch VN, Loi VV, Kuropka B, Gruhlke M, Weise C, Antelmann H. The MarR/DUF24-Family QsrR Repressor Senses Quinones and Oxidants by Thiol Switch Mechanisms in Staphylococcus aureus. Antioxid Redox Signal 2022; 38:877-895. [PMID: 36242097 DOI: 10.1089/ars.2022.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aims: The MarR/DUF24-family QsrR and YodB repressors control quinone detoxification pathways in Staphylococcus aureus and Bacillus subtilis. In S. aureus, the QsrR regulon also confers resistance to antimicrobial compounds with quinone-like elements, such as rifampicin, ciprofloxacin, and pyocyanin. Although QsrR was shown to be inhibited by thiol-S-alkylation of its conserved Cys4 residue by 1,4-benzoquinone, YodB senses quinones and diamide by the formation of reversible intermolecular disulfides. In this study, we aimed at further investigating the redox-regulation of QsrR and the role of its Cys4, Cys29, and Cys32 residues under quinone and oxidative stress in S. aureus. Results: The QsrR regulon was strongly induced by quinones and oxidants, such as diamide, allicin, hypochlorous acid (HOCl), and AGXX® in S. aureus. Transcriptional induction of catE2 by quinones and oxidants required Cys4 and either Cys29' or Cys32' of QsrR for redox sensing in vivo. DNA-binding assays revealed that QsrR is reversibly inactivated by quinones and oxidants, depending on Cys4. Using mass spectrometry, QsrR was shown to sense diamide by an intermolecular thiol-disulfide switch, involving Cys4 and Cys29' of opposing subunits in vitro. In contrast, allicin caused S-thioallylation of all three Cys residues in QsrR, leading to its dissociation from the operator sequence. Further, the QsrR regulon confers resistance against quinones and oxidants, depending on Cys4 and either Cys29' or Cys32'. Conclusion and Innovation: QsrR was characterized as a two-Cys-type redox-sensing regulator, which senses the oxidative mode of quinones and strong oxidants, such as diamide, HOCl, and the antimicrobial compound allicin via different thiol switch mechanisms.
Collapse
Affiliation(s)
| | - Vu Van Loi
- Institute of Biology-Microbiology; Berlin, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry; Freie Universität Berlin, Berlin, Germany
| | - Martin Gruhlke
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry; Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
14
|
M S, N RP, Rajendrasozhan S. Bacterial redox response factors in the management of environmental oxidative stress. World J Microbiol Biotechnol 2022; 39:11. [PMID: 36369499 DOI: 10.1007/s11274-022-03456-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Bacteria evolved to survive in the available environmental chemosphere via several cellular mechanisms. A rich pool of antioxidants and stress regulators plays a significant role in the survival of bacteria in unfavorable environmental conditions. Most of the microbes exhibit resistant phenomena in toxic environment niches. Naturally, bacteria possess efficient thioredoxin reductase, glutaredoxin, and peroxiredoxin redox systems to handle environmental oxidative stress. Further, an array of transcriptional regulators senses the oxidative stress conditions. Transcription regulators, such as OxyR, SoxRS, PerR, UspA, SsrB, MarA, OhrR, SarZ, etc., sense and transduce bacterial oxidative stress responses. The redox-sensitive transcription regulators continuously recycle the utilized antioxidant enzymes during oxidative stress. These regulators promote the expression of antioxidant enzymes such as superoxide dismutase, catalase, and peroxides that overcome oxidative insults. Therefore, the transcriptional regulations maintain steady-state activities of antioxidant enzymes representing the resistance against host cell/environmental oxidative insults. Further, the redox system provides reducing equivalents to synthesize biomolecules, thereby contributing to cellular repair mechanisms. The inactive transcriptional regulators in the undisturbed cells are activated by oxidative stress. The oxidized transcriptional regulators modulate the expression of antioxidant and cellular repair enzymes to survive in extreme environmental conditions. Therefore, targeting these antioxidant systems and response regulators could alter cellular redox homeostasis. This review presents the mechanisms of different redox systems that favor bacterial survival in extreme environmental oxidative stress conditions.
Collapse
Affiliation(s)
- Sudharsan M
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, 608 002, India
| | - Rajendra Prasad N
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, 608 002, India.
| | | |
Collapse
|
15
|
Scirè A, Cianfruglia L, Minnelli C, Romaldi B, Laudadio E, Galeazzi R, Antognelli C, Armeni T. Glyoxalase 2: Towards a Broader View of the Second Player of the Glyoxalase System. Antioxidants (Basel) 2022; 11:2131. [PMID: 36358501 PMCID: PMC9686547 DOI: 10.3390/antiox11112131] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Glyoxalase 2 is a mitochondrial and cytoplasmic protein belonging to the metallo-β-lactamase family encoded by the hydroxyacylglutathione hydrolase (HAGH) gene. This enzyme is the second enzyme of the glyoxalase system that is responsible for detoxification of the α-ketothaldehyde methylglyoxal in cells. The two enzymes glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2) form the complete glyoxalase pathway, which utilizes glutathione as cofactor in eukaryotic cells. The importance of Glo2 is highlighted by its ubiquitous distribution in prokaryotic and eukaryotic organisms. Its function in the system has been well defined, but in recent years, additional roles are emerging, especially those related to oxidative stress. This review focuses on Glo2 by considering its genetics, molecular and structural properties, its involvement in post-translational modifications and its interaction with specific metabolic pathways. The purpose of this review is to focus attention on an enzyme that, from the most recent studies, appears to play a role in multiple regulatory pathways that may be important in certain diseases such as cancer or oxidative stress-related diseases.
Collapse
Affiliation(s)
- Andrea Scirè
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Laura Cianfruglia
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Cristina Minnelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Brenda Romaldi
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Emiliano Laudadio
- Department of Science and Engineering of Materials, Environment and Urban Planning, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Cinzia Antognelli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Tatiana Armeni
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| |
Collapse
|
16
|
Aherne O, Ortiz R, Fazli MM, Davies JR. Effects of stabilized hypochlorous acid on oral biofilm bacteria. BMC Oral Health 2022; 22:415. [PMID: 36127658 PMCID: PMC9487106 DOI: 10.1186/s12903-022-02453-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Background Caries and periodontitis are amongst the most prevalent diseases worldwide, leading to pain and loss of oral function for those affected. Prevention relies heavily on mechanical removal of dental plaque biofilms but for populations where this is not achievable, alternative plaque control methods are required. With concerns over undesirable side-effects and potential bacterial resistance due to the use of chlorhexidine gluconate (CHX), new antimicrobial substances for oral use are greatly needed. Here we have investigated the antimicrobial effect of hypochlorous acid (HOCl), stabilized with acetic acid (HAc), on oral biofilms and compared it to that of CHX. Possible adverse effects of stabilized HOCl on hydroxyapatite surfaces were also examined. Methods Single- and mixed-species biofilms of six common oral bacteria (Streptococcus mutans, Streptococcus gordonii, Actinomyces odontolyticus, Veillonella parvula, Parvimonas micra and Porphyromonas gingivalis) within a flow-cell model were exposed to HOCl stabilized with 0.14% or 2% HAc, pH 4.6, as well as HOCl or HAc alone. Biofilm viability was assessed in situ using confocal laser scanning microscopy following LIVE/DEAD® BacLight™ staining. In-situ quartz crystal microbalance with dissipation (QCM-D) was used to study erosion of hydroxyapatite (HA) surfaces by stabilized HOCl.
Results Low concentrations of HOCl (5 ppm), stabilized with 0.14% or 2% HAc, significantly reduced viability in multi-species biofilms representing supra- and sub-gingival oral communities, after 5 min, without causing erosion of HA surfaces. No equivalent antimicrobial effect was seen for CHX. Gram-positive and Gram-negative bacteria showed no significant differential suceptibility to stabilized HOCl. Conclusions At low concentrations and with exposure times which could be achieved through oral rinsing, HOCl stabilized with HAc had a robust antimicrobial activity on oral biofilms, without causing erosion of HA surfaces or affecting viability of oral keratinocytes. This substance thus appears to offer potential for prevention and/or treatment of oral biofilm-mediated diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02453-2.
Collapse
Affiliation(s)
- Olivia Aherne
- Section for Oral Biology and Pathology, Faculty of Odontology and Biofilms Research Center for Biointerfaces, Malmö University, 205 06, Malmö, Sweden.,CR Competence, Naturvetarvägen 14, 223 62, Lund, Sweden
| | - Roberto Ortiz
- CR Competence, Naturvetarvägen 14, 223 62, Lund, Sweden
| | - Magnus M Fazli
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,SoftOx Solutions AS, Copenhagen, Denmark
| | - Julia R Davies
- Section for Oral Biology and Pathology, Faculty of Odontology and Biofilms Research Center for Biointerfaces, Malmö University, 205 06, Malmö, Sweden.
| |
Collapse
|
17
|
Abstract
Oxidative stress causes cellular damage, including DNA mutations, protein dysfunction, and loss of membrane integrity. Here, we discovered that a TrmB (transcription regulator of mal operon) family protein (Pfam PF01978) composed of a single winged-helix DNA binding domain (InterPro IPR002831) can function as thiol-based transcriptional regulator of oxidative stress response. Using the archaeon Haloferax volcanii as a model system, we demonstrate that the TrmB-like OxsR is important for recovery of cells from hypochlorite stress. OxsR is shown to bind specific regions of genomic DNA, particularly during hypochlorite stress. OxsR-bound intergenic regions were found proximal to oxidative stress operons, including genes associated with thiol relay and low molecular weight thiol biosynthesis. Further analysis of a subset of these sites revealed OxsR to function during hypochlorite stress as a transcriptional activator and repressor. OxsR was shown to require a conserved cysteine (C24) for function and to use a CG-rich motif upstream of conserved BRE/TATA box promoter elements for transcriptional activation. Protein modeling suggested the C24 is located at a homodimer interface formed by antiparallel α helices, and that oxidation of this cysteine would result in the formation of an intersubunit disulfide bond. This covalent linkage may promote stabilization of an OxsR homodimer with the enhanced DNA binding properties observed in the presence of hypochlorite stress. The phylogenetic distribution TrmB family proteins, like OxsR, that have a single winged-helix DNA binding domain and conserved cysteine residue suggests this type of redox signaling mechanism is widespread in Archaea.
Collapse
|
18
|
Tossounian MA, Baczynska M, Dalton W, Newell C, Ma Y, Das S, Semelak JA, Estrin DA, Filonenko V, Trujillo M, Peak-Chew SY, Skehel M, Fraternali F, Orengo C, Gout I. Profiling the Site of Protein CoAlation and Coenzyme A Stabilization Interactions. Antioxidants (Basel) 2022; 11:antiox11071362. [PMID: 35883853 PMCID: PMC9312308 DOI: 10.3390/antiox11071362] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 11/30/2022] Open
Abstract
Coenzyme A (CoA) is a key cellular metabolite known for its diverse functions in metabolism and regulation of gene expression. CoA was recently shown to play an important antioxidant role under various cellular stress conditions by forming a disulfide bond with proteins, termed CoAlation. Using anti-CoA antibodies and liquid chromatography tandem mass spectrometry (LC-MS/MS) methodologies, CoAlated proteins were identified from various organisms/tissues/cell-lines under stress conditions. In this study, we integrated currently known CoAlated proteins into mammalian and bacterial datasets (CoAlomes), resulting in a total of 2093 CoAlated proteins (2862 CoAlation sites). Functional classification of these proteins showed that CoAlation is widespread among proteins involved in cellular metabolism, stress response and protein synthesis. Using 35 published CoAlated protein structures, we studied the stabilization interactions of each CoA segment (adenosine diphosphate (ADP) moiety and pantetheine tail) within the microenvironment of the modified cysteines. Alternating polar-non-polar residues, positively charged residues and hydrophobic interactions mainly stabilize the pantetheine tail, phosphate groups and the ADP moiety, respectively. A flexible nature of CoA is observed in examined structures, allowing it to adapt its conformation through interactions with residues surrounding the CoAlation site. Based on these findings, we propose three modes of CoA binding to proteins. Overall, this study summarizes currently available knowledge on CoAlated proteins, their functional distribution and CoA-protein stabilization interactions.
Collapse
Affiliation(s)
- Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Maria Baczynska
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - William Dalton
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Charlie Newell
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Yilin Ma
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Sayoni Das
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Jonathan Alexis Semelak
- Departmento de Química Inorgánica Analítica y Química Física, INQUIMAE-CONICET, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; (J.A.S.); (D.A.E.)
| | - Dario Ariel Estrin
- Departmento de Química Inorgánica Analítica y Química Física, INQUIMAE-CONICET, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; (J.A.S.); (D.A.E.)
| | - Valeriy Filonenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sew Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
| | - Mark Skehel
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK;
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London WC2R 2LS, UK;
| | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
- Correspondence:
| |
Collapse
|
19
|
Gupta V, Shekhawat SS, Kulshreshtha NM, Gupta AB. A systematic review on chlorine tolerance among bacteria and standardization of their assessment protocol in wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:261-291. [PMID: 35906907 DOI: 10.2166/wst.2022.206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Though chlorine is a cost-effective disinfectant for water and wastewaters, the bacteria surviving after chlorination pose serious public health and environmental problems. This review critically assesses the mechanism of chlorine disinfection as described by various researchers; factors affecting chlorination efficacy; and the re-growth potential of microbial contaminations in treated wastewater post chlorination to arrive at meaningful doses for ensuring health safety. Literature analysis shows procedural inconsistencies in the assessment of chlorine tolerant bacteria, making it extremely difficult to compare the tolerance characteristics of different reported tolerant bacteria. A comparison of logarithmic reduction after chlorination and the concentration-time values for prominent pathogens led to the generation of a standard protocol for the assessment of chlorine tolerance. The factors that need to be critically monitored include applied chlorine doses, contact time, determination of chlorine demands of the medium, and the consideration of bacterial counts immediately after chlorination and in post chlorinated samples (regrowth). The protocol devised here appropriately assesses the chlorine-tolerant bacteria and urges the scientific community to report the regrowth characteristics as well. This would increase the confidence in data interpretation that can provide a better understanding of chlorine tolerance in bacteria and aid in formulating strategies for effective chlorination.
Collapse
Affiliation(s)
- Vinayak Gupta
- Alumnus, Department of Civil and Environmental Engineering, National University of Singapore, Singapore; School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan
| | - Sandeep Singh Shekhawat
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India E-mail: ; School of Life and Basic Sciences, SIILAS Campus, Jaipur National University Jaipur, India
| | - Niha Mohan Kulshreshtha
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India E-mail:
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India E-mail:
| |
Collapse
|
20
|
Meireles DA, da Silva Neto JF, Domingos RM, Alegria TGP, Santos LCM, Netto LES. Ohr - OhrR, a neglected and highly efficient antioxidant system: Structure, catalysis, phylogeny, regulation, and physiological roles. Free Radic Biol Med 2022; 185:6-24. [PMID: 35452809 DOI: 10.1016/j.freeradbiomed.2022.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/09/2022] [Accepted: 04/02/2022] [Indexed: 12/24/2022]
Abstract
Ohrs (organic hydroperoxide resistance proteins) are antioxidant enzymes that play central roles in the response of microorganisms to organic peroxides. Here, we describe recent advances in the structure, catalysis, phylogeny, regulation, and physiological roles of Ohr proteins and of its transcriptional regulator, OhrR, highlighting their unique features. Ohr is extremely efficient in reducing fatty acid peroxides and peroxynitrite, two oxidants relevant in host-pathogen interactions. The highly reactive Cys residue of Ohr, named peroxidatic Cys (Cp), composes together with an arginine and a glutamate the catalytic triad. The catalytic cycle of Ohrs involves a condensation between a sulfenic acid (Cp-SOH) and the thiol of the second conserved Cys, leading to the formation of an intra-subunit disulfide bond, which is then reduced by dihydrolipoamide or lipoylated proteins. A structural switch takes place during catalysis, with the opening and closure of the active site by the so-called Arg-loop. Ohr is part of the Ohr/OsmC super-family that also comprises OsmC and Ohr-like proteins. Members of the Ohr, OsmC and Ohr-like subgroups present low sequence similarities among themselves, but share a high structural conservation, presenting two Cys residues in their active site. The pattern of gene expression is also distinct among members of the Ohr/OsmC subfamilies. The expression of ohr genes increases upon organic hydroperoxides treatment, whereas the signals for the upregulation of osmC are entry into the stationary phase and/or osmotic stress. For many ohr genes, the upregulation by organic hydroperoxides is mediated by OhrR, a Cys-based transcriptional regulator that only binds to its target DNAs in its reduced state. Since Ohrs and OhrRs are involved in virulence of some microorganisms and are absent in vertebrate and vascular plants, they may represent targets for novel therapeutic approaches based on the disruption of this key bacterial organic peroxide defense system.
Collapse
Affiliation(s)
- Diogo A Meireles
- Laboratório de Fisiologia e Bioquímica de Microrganismos (LFBM) da Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - José F da Silva Neto
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Brazil
| | | | - Thiago G P Alegria
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Lene Clara M Santos
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Luis Eduardo S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil.
| |
Collapse
|
21
|
Matavacas J, von Wachenfeldt C. Update on the Protein Homeostasis Network in Bacillus subtilis. Front Microbiol 2022; 13:865141. [PMID: 35350626 PMCID: PMC8957991 DOI: 10.3389/fmicb.2022.865141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Protein homeostasis is fundamental to cell function and survival. It relies on an interconnected network of processes involving protein synthesis, folding, post-translational modification and degradation as well as regulators of these processes. Here we provide an update on the roles, regulation and subcellular localization of the protein homeostasis machinery in the Gram-positive model organism Bacillus subtilis. We discuss emerging ideas and current research gaps in the field that, if tackled, increase our understanding of how Gram-positive bacteria, including several human pathogens, maintain protein homeostasis and cope with stressful conditions that challenge their survival.
Collapse
|
22
|
Lakshmi SA, Prasath KG, Tamilmuhilan K, Srivathsan A, Shafreen RMB, Kasthuri T, Pandian SK. Suppression of Thiol-Dependent Antioxidant System and Stress Response in Methicillin-Resistant Staphylococcus aureus by Docosanol: Explication Through Proteome Investigation. Mol Biotechnol 2022; 64:575-589. [PMID: 35018617 DOI: 10.1007/s12033-021-00434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022]
Abstract
The present study was aimed to investigate the effect of docosanol on the protein expression profile of methicillin-resistant Staphylococcus aureus (MRSA). Thus, two-dimensional gel electrophoresis coupled with MALDI-TOF MS technique was utilized to identify the differentially regulated proteins in the presence of docosanol. A total of 947 protein spots were identified from the intracellular proteome of both control and docosanol treated samples among which 40 spots were differentially regulated with a fold change greater than 1.0. Prominently, the thiol-dependent antioxidant system and stress response proteins are downregulated in MRSA, which are critical for survival during oxidative stress. In particular, docosanol downregulated the expression of Tpx, AhpC, BshC, BrxA, and YceI with a fold change of 1.4 (p = 0.02), 1.4 (p = 0.01), 1.6 (p = 0.002), 4.9 (p = 0.02), and 1.4 (p = 0.02), respectively. In addition, docosanol reduced the expression of proteins involved in purine metabolic pathways, biofilm growth cycle, and virulence factor production. Altogether, these findings suggest that docosanol could efficiently target the antioxidant pathway by reducing the expression of bacillithiol and stress-associated proteins.
Collapse
Affiliation(s)
- Selvaraj Alagu Lakshmi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Krishnan Ganesh Prasath
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, Tamil Nadu, 602117, India
| | - Kannapiran Tamilmuhilan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Adimoolam Srivathsan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Raja Mohamed Beema Shafreen
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
- Department of Biotechnology, Dr. Umayal Ramanathan College for Women, Alagappapuram, Karaikudi, Tamil Nadu, 630003, India
| | - Thirupathi Kasthuri
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | | |
Collapse
|
23
|
Van Loi V, Busche T, Fritsch VN, Weise C, Gruhlke MCH, Slusarenko AJ, Kalinowski J, Antelmann H. The two-Cys-type TetR repressor GbaA confers resistance under disulfide and electrophile stress in Staphylococcus aureus. Free Radic Biol Med 2021; 177:120-131. [PMID: 34678418 PMCID: PMC8693949 DOI: 10.1016/j.freeradbiomed.2021.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus has to cope with oxidative and electrophile stress during host-pathogen interactions. The TetR-family repressor GbaA was shown to sense electrophiles, such as N-ethylmaleimide (NEM) via monothiol mechanisms of the two conserved Cys55 or Cys104 residues in vitro. In this study, we further investigated the regulation and function of the GbaA repressor and its Cys residues in S. aureus COL. The GbaA-controlled gbaAB-SACOL2595-97 and SACOL2592-nmrA-2590 operons were shown to respond only weakly 3-10-fold to oxidants, electrophiles or antibiotics in S. aureus COL, but are 57-734-fold derepressed in the gbaA deletion mutant, indicating that the physiological inducer is still unknown. Moreover, the gbaA mutant remained responsive to disulfide and electrophile stress, pointing to additional redox control mechanisms of both operons. Thiol-stress induction of the GbaA regulon was strongly diminished in both single Cys mutants, supporting that both Cys residues are required for redox-sensing in vivo. While GbaA and the single Cys mutants are reversible oxidized under diamide and allicin stress, these thiol switches did not affect the DNA binding activity. The repressor activity of GbaA could be only partially inhibited with NEM in vitro. Survival assays revealed that the gbaA mutant confers resistance under diamide, allicin, NEM and methylglyoxal stress, which was mediated by the SACOL2592-90 operon encoding for a putative glyoxalase and oxidoreductase. Altogether, our results support that the GbaA repressor functions in the defense against oxidative and electrophile stress in S. aureus. GbaA represents a 2-Cys-type redox sensor, which requires another redox-sensing regulator and an unknown thiol-reactive ligand for full derepression of the GbaA regulon genes.
Collapse
Affiliation(s)
- Vu Van Loi
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany
| | - Tobias Busche
- Center for Biotechnology, Bielefeld University, D-33594, Bielefeld, Germany
| | - Verena Nadin Fritsch
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany
| | - Christoph Weise
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, D-14195, Berlin, Germany
| | | | - Alan John Slusarenko
- Department of Plant Physiology, RWTH Aachen University, D-52056, Aachen, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, D-33594, Bielefeld, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany.
| |
Collapse
|
24
|
Hamitouche F, Gaillard JC, Schmitt P, Armengaud J, Duport C, Dedieu L. Redox proteomic study of Bacillus cereus thiol proteome during fermentative anaerobic growth. BMC Genomics 2021; 22:648. [PMID: 34493209 PMCID: PMC8425097 DOI: 10.1186/s12864-021-07962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/05/2021] [Indexed: 11/15/2022] Open
Abstract
Background Bacillus cereus is a notorious foodborne pathogen, which can grow under anoxic conditions. Anoxic growth is supported by endogenous redox metabolism, for which the thiol redox proteome serves as an interface. Here, we studied the cysteine (Cys) proteome dynamics of B. cereus ATCC 14579 cells grown under fermentative anoxic conditions. We used a quantitative thiol trapping method combined with proteomics profiling. Results In total, we identified 153 reactive Cys residues in 117 proteins participating in various cellular processes and metabolic pathways, including translation, carbohydrate metabolism, and stress response. Of these reactive Cys, 72 were detected as reduced Cys. The B. cereus Cys proteome evolved during growth both in terms of the number of reduced Cys and the Cys-containing proteins identified, reflecting its growth-phase-dependence. Interestingly, the reduced status of the B. cereus thiol proteome increased during growth, concomitantly to the decrease of extracellular oxidoreduction potential. Conclusions Taken together, our data show that the B. cereus Cys proteome during unstressed fermentative anaerobic growth is a dynamic entity and provide an important foundation for future redox proteomic studies in B. cereus and other organisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07962-y.
Collapse
Affiliation(s)
- Fella Hamitouche
- Avignon Université, INRAE, UMR SQPOV, Site Agroparc, F-84914, Avignon Cedex 9, France
| | - Jean-Charles Gaillard
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Philippe Schmitt
- Avignon Université, INRAE, UMR SQPOV, Site Agroparc, F-84914, Avignon Cedex 9, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Catherine Duport
- Avignon Université, INRAE, UMR SQPOV, Site Agroparc, F-84914, Avignon Cedex 9, France
| | - Luc Dedieu
- Avignon Université, INRAE, UMR SQPOV, Site Agroparc, F-84914, Avignon Cedex 9, France.
| |
Collapse
|
25
|
Quach NT, Vu THN, Nguyen NA, Nguyen VT, Bui TL, Ky SC, Le TL, Hoang H, Ngo CC, Le TTM, Nguyen TN, Chu HH, Phi QT. Phenotypic features and analysis of genes supporting probiotic action unravel underlying perspectives of Bacillus velezensis VTX9 as a potential feed additive for swine. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-021-01646-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Purpose
To date, a total of 13 probiotic Bacillus species are considered as a Generally Recognized as Safe organism (GRAS) approved by the US Federal Food, Drug, and Cosmetic Act (FDCA), which are used for food and feed additives. However, Bacillus velezensis is not considered as a probiotic candidate in swine farming due to a lack of genetic basis of probiotic action-related traits. Therefore, the present study was undertaken to exploit the genetic basis underlying the probiotic traits of B. velezensis VTX9.
Methods
The genome sequencing of B. velezensis VTX9 was performed on a PacBio Sequel platform. The probiotic properties including biosafety, antioxidative capacity, and riboflavin and exopolysaccharide production were evaluated by using genotypic and phenotypic analysis. The secondary metabolite potentials were also predicted.
Results
Strain VTX9 isolated from swine feces proved some probiotic properties including resistance to 3 mM H2O2, 0.6 mM bile salt, low pH, and antipathogenic activity. The complete genome of B. velezensis VTX9 consists of a 3,985,800 bp chromosome that housed 3736 protein-coding genes and 5 plasmids with the size ranging from 7261 to 20,007 bp. Genome analysis revealed no functional genes encoding enterotoxins and transferable antibiotic resistance, which confirmed the safety of VTX9. A total of 82 genes involved in gastrointestinal stress tolerance were predicted, which has not been reported previously. The maximum production of riboflavin reached 769 ± 7.5 ng/ml in LB medium after 72 h, which was in agreement with the complete de novo riboflavin biosynthetic pathway exploited for the first time in the B. velezensis genome. Antagonistic activity against pathogenic bacteria was attributed to 10 secondary metabolites clusters. The presence of a large gene cluster involved in biosynthesis of exopolysaccharides underscored further the adhesion and biofilm-forming capabilities of VTX9 in swine intestines.
Conclusion
Our results revealed for the first time that B. velezensis VTX9 has the potential to be a probiotic candidate. The information provided here on the genome of B. velezensis VTX9 opens new opportunities for using B. velezensis as a feed additive for swine farming in the future.
Collapse
|
26
|
Anaya-Sanchez A, Feng Y, Berude JC, Portnoy DA. Detoxification of methylglyoxal by the glyoxalase system is required for glutathione availability and virulence activation in Listeria monocytogenes. PLoS Pathog 2021; 17:e1009819. [PMID: 34407151 PMCID: PMC8372916 DOI: 10.1371/journal.ppat.1009819] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/21/2021] [Indexed: 01/02/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive, food-borne pathogen that lives a biphasic lifestyle, cycling between the environment and as a facultative intracellular pathogen of mammals. Upon entry into host cells, L. monocytogenes upregulates expression of glutathione synthase (GshF) and its product, glutathione (GSH), which is an allosteric activator of the master virulence regulator PrfA. Although gshF mutants are highly attenuated for virulence in mice and form very small plaques in host cell monolayers, these virulence defects can be fully rescued by mutations that lock PrfA in its active conformation, referred to as PrfA*. While PrfA activation can be recapitulated in vitro by the addition of reducing agents, the precise biological cue(s) experienced by L. monocytogenes that lead to PrfA activation are not known. Here we performed a genetic screen to identify additional small-plaque mutants that were rescued by PrfA* and identified gloA, which encodes glyoxalase A, a component of a GSH-dependent methylglyoxal (MG) detoxification system. MG is a toxic byproduct of metabolism produced by both the host and pathogen, which if accumulated, causes DNA damage and protein glycation. As a facultative intracellular pathogen, L. monocytogenes must protect itself from MG produced by its own metabolic processes and that of its host. We report that gloA mutants grow normally in broth, are sensitive to exogenous MG and severely attenuated upon IV infection in mice, but are fully rescued for virulence in a PrfA* background. We demonstrate that transcriptional activation of gshF increased upon MG challenge in vitro, and while this resulted in higher levels of GSH for wild-type L. monocytogenes, the glyoxalase mutants had decreased levels of GSH, presumably due to the accumulation of the GSH-MG hemithioacetal adduct. These data suggest that MG acts as a host cue that leads to GSH production and activation of PrfA.
Collapse
Affiliation(s)
- Andrea Anaya-Sanchez
- Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California, United States of America
| | - Ying Feng
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - John C. Berude
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
27
|
Baković J, Yu BYK, Silva D, Baczynska M, Peak-Chew SY, Switzer A, Burchell L, Wigneshweraraj S, Vandanashree M, Gopal B, Filonenko V, Skehel M, Gout I. Redox Regulation of the Quorum-sensing Transcription Factor AgrA by Coenzyme A. Antioxidants (Basel) 2021; 10:antiox10060841. [PMID: 34070323 PMCID: PMC8228455 DOI: 10.3390/antiox10060841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is an aggressive opportunistic pathogen of prominent virulence and antibiotic resistance. These characteristics are due in part to the accessory gene regulator (agr) quorum-sensing system, which allows for the rapid adaptation of S. aureus to environmental changes and thus promotes virulence and the development of pathogenesis. AgrA is the agr system response regulator that binds to the P2 and P3 promoters and upregulates agr expression. In this study, we reveal that S. aureus AgrA is modified by covalent binding of CoA (CoAlation) in response to oxidative or metabolic stress. The sites of CoAlation were mapped by liquid chromatography tandem mass spectrometry (LC-MS/MS) and revealed that oxidation-sensing Cys199 is modified by CoA. Surface plasmon resonance (SPR) analysis showed an inhibitory effect of CoAlation on the DNA-binding activity, as CoAlated AgrA had significantly lower affinity towards the P2 and P3 promoters than non-CoAlated AgrA. Overall, this study provides novel insights into the mode of transcriptional regulation in S. aureus and further elucidates the link between the quorum-sensing and oxidation-sensing roles of the agr system.
Collapse
Affiliation(s)
- Jovana Baković
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (J.B.); (B.Y.K.Y.); (D.S.); (M.B.)
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (J.B.); (B.Y.K.Y.); (D.S.); (M.B.)
| | - Daniel Silva
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (J.B.); (B.Y.K.Y.); (D.S.); (M.B.)
| | - Maria Baczynska
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (J.B.); (B.Y.K.Y.); (D.S.); (M.B.)
| | - Sew Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK; (S.Y.P.-C.); (M.S.)
| | - Amy Switzer
- Section of Microbiology, Faculty of Medicine and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK; (A.S.); (L.B.); (S.W.)
| | - Lynn Burchell
- Section of Microbiology, Faculty of Medicine and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK; (A.S.); (L.B.); (S.W.)
| | - Sivaramesh Wigneshweraraj
- Section of Microbiology, Faculty of Medicine and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK; (A.S.); (L.B.); (S.W.)
| | | | - Balasubramanian Gopal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India; (M.V.); (B.G.)
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, 143 Kyiv, Ukraine;
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK; (S.Y.P.-C.); (M.S.)
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (J.B.); (B.Y.K.Y.); (D.S.); (M.B.)
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, 143 Kyiv, Ukraine;
- Correspondence: ; Tel.: +0044-2076794482; Fax: +0044-2076797193
| |
Collapse
|
28
|
A Major Facilitator Superfamily (MFS) Efflux Pump, SCO4121, from Streptomyces coelicolor with Roles in Multidrug Resistance and Oxidative Stress Tolerance and Its Regulation by a MarR Regulator. Appl Environ Microbiol 2021; 87:AEM.02238-20. [PMID: 33483304 DOI: 10.1128/aem.02238-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Overexpression of efflux pumps is one of the major determinants of resistance in bacteria. Streptomyces species harbor a large array of efflux pumps that are transcriptionally silenced under laboratory conditions. However, their dissemination results in multidrug resistance in different clinical pathogens. In this study, we have identified an efflux pump from Streptomyces coelicolor, SCO4121, belonging to the major facilitator superfamily (MFS) family of transporters and characterized its role in antibiotic resistance. SCO4121 provided resistance to multiple dissimilar drugs upon overexpression in both native and heterologous hosts. Further, deletion of SCO4121 resulted in increased sensitivity toward ciprofloxacin and chloramphenicol, suggesting the pump to be a major transporter of these substrates. Apart from providing multidrug resistance, SCO4121 imparted increased tolerance against the strong oxidant HOCl. In wild-type Streptomyces coelicolor cells, these drugs were found to transcriptionally regulate the pump in a concentration-dependent manner. Additionally, we identified SCO4122, a MarR regulator that positively regulates SCO4121 in response to various drugs and the oxidant HOCl. Thus, through these studies we present the multiple roles of SCO4121 in S. coelicolor and highlight the intricate mechanisms via which it is regulated in response to antibiotics and oxidative stress.IMPORTANCE One of the key mechanisms of drug resistance in bacteria is overexpression of efflux pumps. Streptomyces species are a reservoir of a large number of efflux pumps, potentially to provide resistance to both endogenous and nonendogenous antibiotics. While many of these pumps are not expressed under standard laboratory conditions, they result in resistance to multiple drugs when spread to other bacterial pathogens through horizontal gene transfer. In this study, we have identified a widely conserved efflux pump SCO4121 from Streptomyces coelicolor with roles in both multidrug resistance and oxidative stress tolerance. We also report the presence of an adjacent MarR regulator, SCO4122, which positively regulates SCO4121 in the presence of diverse substrates in a redox-responsive manner. This study highlights that soil bacteria such as Streptomyces can reveal novel mechanisms of antibiotic resistance that may potentially emerge in clinically important bacteria.
Collapse
|
29
|
Gaballa A, Su TT, Helmann JD. The Bacillus subtilis monothiol bacilliredoxin BrxC (YtxJ) and the Bdr (YpdA) disulfide reductase reduce S-bacillithiolated proteins. Redox Biol 2021; 42:101935. [PMID: 33722570 PMCID: PMC8113031 DOI: 10.1016/j.redox.2021.101935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/30/2021] [Accepted: 03/02/2021] [Indexed: 12/03/2022] Open
Abstract
The bacterial cytosol is generally a reducing environment with protein cysteine residues maintained in their thiol form. The low molecular weight thiol bacillithiol (BSH) serves as a general thiol reductant, analogous to glutathione, in a wide range of bacterial species. Proteins modified by disulfide bond formation with BSH (S-bacillithiolation) are reduced by the action of bacilliredoxins, BrxA and BrxB. Here, the YtxJ protein is identified as a monothiol bacilliredoxin, renamed BrxC, and is implicated in BSH removal from oxidized cytosolic proteins, including the glyceraldehyde 3-phosphate dehydrogenases GapA and GapB. BrxC can also debacillithiolate the mixed disulfide form of the bacilliredoxin BrxB. Bdr is a thioredoxin reductase-like flavoprotein with bacillithiol-disulfide (BSSB) reductase activity. Here, Bdr is shown to additionally function as a bacilliredoxin reductase. Bdr and BrxB function cooperatively to debacillithiolate OhrR, a transcription factor regulated by S-bacillithiolation on its sole cysteine residue. Collectively, these results expand our understanding of the BSH redox network comprised of three bacilliredoxins and a BSSB reductase that serve to counter the widespread protein S-bacillithiolation that results from conditions of disulfide stress. Bacillithiol is the major low molecular weight thiol in Bacillus subtilis. Oxidative stress leads to protein S-bacillithiolation. BrxC functions as a monothiol class bacilliredoxin. The Bdr bacillithiol disulfide reductase is also a bacilliredoxin.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| | - Tina Tianjiao Su
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
30
|
Overview of structurally homologous flavoprotein oxidoreductases containing the low M r thioredoxin reductase-like fold - A functionally diverse group. Arch Biochem Biophys 2021; 702:108826. [PMID: 33684359 DOI: 10.1016/j.abb.2021.108826] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 01/12/2023]
Abstract
Structural studies show that enzymes have a limited number of unique folds, although structurally related enzymes have evolved to perform a large variety of functions. In this review, we have focused on enzymes containing the low molecular weight thioredoxin reductase (low Mr TrxR) fold. This fold consists of two domains, both containing a three-layer ββα sandwich Rossmann-like fold, serving as flavin adenine dinucleotide (FAD) and, in most cases, pyridine nucleotide (NAD(P)H) binding-domains. Based on a search of the Protein Data Bank for all published structures containing the low Mr TrxR-like fold, we here present a comprehensive overview of enzymes with this structural architecture. These range from TrxR-like ferredoxin/flavodoxin NAD(P)+ oxidoreductases, through glutathione reductase, to NADH peroxidase. Some enzymes are solely composed of the low Mr TrxR-like fold, while others contain one or two additional domains. In this review, we give a detailed description of selected enzymes containing only the low Mr TrxR-like fold, however, catalyzing a diversity of chemical reactions. Our overview of this structurally similar, yet functionally distinct group of flavoprotein oxidoreductases highlights the fascinating and increasing number of studies describing the diversity among these enzymes, especially during the last decade(s).
Collapse
|
31
|
Richts B, Commichau FM. Underground metabolism facilitates the evolution of novel pathways for vitamin B6 biosynthesis. Appl Microbiol Biotechnol 2021; 105:2297-2305. [PMID: 33665688 PMCID: PMC7954711 DOI: 10.1007/s00253-021-11199-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 11/29/2022]
Abstract
Abstract The term vitamin B6 is a designation for the vitamers pyridoxal, pyridoxamine, pyridoxine and the respective phosphate esters pyridoxal-5′-phosphate (PLP), pyridoxamine-5′-phosphate and pyridoxine-5′-phosphate. Animals and humans are unable to synthesise vitamin B6. These organisms have to take up vitamin B6 with their diet. Therefore, vitamin B6 is of commercial interest as a food additive and for applications in the pharmaceutical industry. As yet, two naturally occurring routes for de novo synthesis of PLP are known. Both routes have been genetically engineered to obtain bacteria overproducing vitamin B6. Still, major genetic engineering efforts using the existing pathways are required for developing fermentation processes that could outcompete the chemical synthesis of vitamin B6. Recent suppressor screens using mutants of the Gram-negative and Gram-positive model bacteria Escherichia coli and Bacillus subtilis, respectively, carrying mutations in the native pathways or heterologous genes uncovered novel routes for PLP biosynthesis. These pathways consist of promiscuous enzymes and enzymes that are already involved in vitamin B6 biosynthesis. Thus, E. coli and B. subtilis contain multiple promiscuous enzymes causing a so-called underground metabolism allowing the bacteria to bypass disrupted vitamin B6 biosynthetic pathways. The suppressor screens also show the genomic plasticity of the bacteria to suppress a genetic lesion. We discuss the potential of the serendipitous pathways to serve as a starting point for the development of bacteria overproducing vitamin B6. Key points • Known vitamin B6 routes have been genetically engineered. • Underground metabolism facilitates the emergence of novel vitamin B6 biosynthetic pathways. • These pathways may be suitable to engineer bacteria overproducing vitamin B6.
Collapse
Affiliation(s)
- Björn Richts
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, Grisebachstrasse 8, 37077, Göttingen, Germany
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Universitätsplatz 1, 01968, Senftenberg, Germany.
| |
Collapse
|
32
|
Tran HT, Bonilla CY. SigB-regulated antioxidant functions in gram‐positive bacteria. World J Microbiol Biotechnol 2021; 37:38. [DOI: 10.1007/s11274-021-03004-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
|
33
|
McCausland JW, Yang X, Squyres GR, Lyu Z, Bruce KE, Lamanna MM, Söderström B, Garner EC, Winkler ME, Xiao J, Liu J. Treadmilling FtsZ polymers drive the directional movement of sPG-synthesis enzymes via a Brownian ratchet mechanism. Nat Commun 2021; 12:609. [PMID: 33504807 PMCID: PMC7840769 DOI: 10.1038/s41467-020-20873-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/15/2020] [Indexed: 01/30/2023] Open
Abstract
The FtsZ protein is a central component of the bacterial cell division machinery. It polymerizes at mid-cell and recruits more than 30 proteins to assemble into a macromolecular complex to direct cell wall constriction. FtsZ polymers exhibit treadmilling dynamics, driving the processive movement of enzymes that synthesize septal peptidoglycan (sPG). Here, we combine theoretical modelling with single-molecule imaging of live bacterial cells to show that FtsZ's treadmilling drives the directional movement of sPG enzymes via a Brownian ratchet mechanism. The processivity of the directional movement depends on the binding potential between FtsZ and the sPG enzyme, and on a balance between the enzyme's diffusion and FtsZ's treadmilling speed. We propose that this interplay may provide a mechanism to control the spatiotemporal distribution of active sPG enzymes, explaining the distinct roles of FtsZ treadmilling in modulating cell wall constriction rate observed in different bacteria.
Collapse
Affiliation(s)
- Joshua W McCausland
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Xinxing Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Georgia R Squyres
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Zhixin Lyu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Kevin E Bruce
- Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Melissa M Lamanna
- Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Bill Söderström
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| | - Jian Liu
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
34
|
Ulfig A, Leichert LI. The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens. Cell Mol Life Sci 2021; 78:385-414. [PMID: 32661559 PMCID: PMC7873122 DOI: 10.1007/s00018-020-03591-y] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022]
Abstract
Neutrophils are predominant immune cells that protect the human body against infections by deploying sophisticated antimicrobial strategies including phagocytosis of bacteria and neutrophil extracellular trap (NET) formation. Here, we provide an overview of the mechanisms by which neutrophils kill exogenous pathogens before we focus on one particular weapon in their arsenal: the generation of the oxidizing hypohalous acids HOCl, HOBr and HOSCN during the so-called oxidative burst by the enzyme myeloperoxidase. We look at the effects of these hypohalous acids on biological systems in general and proteins in particular and turn our attention to bacterial strategies to survive HOCl stress. HOCl is a strong inducer of protein aggregation, which bacteria can counteract by chaperone-like holdases that bind unfolding proteins without the need for energy in the form of ATP. These chaperones are activated by HOCl through thiol oxidation (Hsp33) or N-chlorination of basic amino acid side-chains (RidA and CnoX) and contribute to bacterial survival during HOCl stress. However, neutrophil-generated hypohalous acids also affect the host system. Recent studies have shown that plasma proteins act not only as sinks for HOCl, but get actively transformed into modulators of the cellular immune response through N-chlorination. N-chlorinated serum albumin can prevent aggregation of proteins, stimulate immune cells, and act as a pro-survival factor for immune cells in the presence of cytotoxic antigens. Finally, we take a look at the emerging role of HOCl as a potential signaling molecule, particularly its role in neutrophil extracellular trap formation.
Collapse
Affiliation(s)
- Agnes Ulfig
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry-Microbial Biochemistry, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry-Microbial Biochemistry, Universitätsstrasse 150, 44780, Bochum, Germany.
| |
Collapse
|
35
|
Response of Pseudomonas aeruginosa to the Innate Immune System-Derived Oxidants Hypochlorous Acid and Hypothiocyanous Acid. J Bacteriol 2020; 203:JB.00300-20. [PMID: 33106346 PMCID: PMC7950407 DOI: 10.1128/jb.00300-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/08/2020] [Indexed: 01/06/2023] Open
Abstract
The bacterial pathogen Pseudomonas aeruginosa causes devastating infections in immunocompromised hosts, including chronic lung infections in cystic fibrosis patients. To combat infection, the host’s immune system produces the antimicrobial oxidants hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN). Little is known about how P. aeruginosa responds to and survives attack from these oxidants. To address this, we carried out two approaches: a mutant screen and transcriptional study. We identified the P. aeruginosa transcriptional regulator, RclR, which responds specifically to HOCl and HOSCN stress and is essential for protection against both oxidants. We uncovered a link between the P. aeruginosa transcriptional response to these oxidants and physiological processes associated with pathogenicity, including antibiotic resistance and the type 3 secretion system. Pseudomonas aeruginosa is a significant nosocomial pathogen and is associated with lung infections in cystic fibrosis (CF). Once established, P. aeruginosa infections persist and are rarely eradicated despite host immune cells producing antimicrobial oxidants, including hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN). There is limited knowledge as to how P. aeruginosa senses, responds to, and protects itself against HOCl and HOSCN and the contribution of such responses to its success as a CF pathogen. To investigate the P. aeruginosa response to these oxidants, we screened 707 transposon mutants, with mutations in regulatory genes, for altered growth following HOCl exposure. We identified regulators of antibiotic resistance, methionine biosynthesis, catabolite repression, and PA14_07340, the homologue of the Escherichia coli HOCl-sensor RclR (30% identical), which are required for protection against HOCl. We have shown that RclR (PA14_07340) protects specifically against HOCl and HOSCN stress and responds to both oxidants by upregulating the expression of a putative peroxiredoxin, rclX (PA14_07355). Transcriptional analysis revealed that while there was specificity in the response to HOCl (231 genes upregulated) and HOSCN (105 genes upregulated), there was considerable overlap, with 74 genes upregulated by both oxidants. These included genes encoding the type 3 secretion system, sulfur and taurine transport, and the MexEF-OprN efflux pump. RclR coordinates part of the response to both oxidants, including upregulation of pyocyanin biosynthesis genes, and, in the presence of HOSCN, downregulation of chaperone genes. These data indicate that the P. aeruginosa response to HOCl and HOSCN is multifaceted, with RclR playing an essential role. IMPORTANCE The bacterial pathogen Pseudomonas aeruginosa causes devastating infections in immunocompromised hosts, including chronic lung infections in cystic fibrosis patients. To combat infection, the host’s immune system produces the antimicrobial oxidants hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN). Little is known about how P. aeruginosa responds to and survives attack from these oxidants. To address this, we carried out two approaches: a mutant screen and transcriptional study. We identified the P. aeruginosa transcriptional regulator, RclR, which responds specifically to HOCl and HOSCN stress and is essential for protection against both oxidants. We uncovered a link between the P. aeruginosa transcriptional response to these oxidants and physiological processes associated with pathogenicity, including antibiotic resistance and the type 3 secretion system.
Collapse
|
36
|
Hammerstad M, Gudim I, Hersleth HP. The Crystal Structures of Bacillithiol Disulfide Reductase Bdr (YpdA) Provide Structural and Functional Insight into a New Type of FAD-Containing NADPH-Dependent Oxidoreductase. Biochemistry 2020; 59:4793-4798. [PMID: 33326741 PMCID: PMC7774306 DOI: 10.1021/acs.biochem.0c00745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Low
G+C Gram-positive Firmicutes, such as the clinically important
pathogens Staphylococcus aureus and Bacillus
cereus, use the low-molecular weight thiol bacillithiol (BSH)
as a defense mechanism to buffer the intracellular redox environment
and counteract oxidative stress encountered by human neutrophils during
infections. The protein YpdA has recently been shown to function as
an essential NADPH-dependent reductase of oxidized bacillithiol disulfide
(BSSB) resulting from stress responses and is crucial for maintaining
the reduced pool of BSH and cellular redox balance. In this work,
we present the first crystallographic structures of YpdAs, namely,
those from S. aureus and B. cereus. Our analyses reveal a uniquely organized biological tetramer; however,
the structure of the monomeric subunit is highly similar to those
of other flavoprotein disulfide reductases. The absence of a redox
active cysteine in the vicinity of the FAD isoalloxazine ring implies
a new direct disulfide reduction mechanism, which is backed by the
presence of a potentially gated channel, serving as a putative binding
site for BSSB in the proximity of the FAD cofactor. We also report
enzymatic activities for both YpdAs, which along with the structures
presented in this work provide important structural and functional
insight into a new class of FAD-containing NADPH-dependent oxidoreductases,
related to the emerging fight against pathogenic bacteria.
Collapse
Affiliation(s)
- Marta Hammerstad
- Department of Biosciences, University of Oslo, Section for Biochemistry and Molecular Biology, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Ingvild Gudim
- Department of Biosciences, University of Oslo, Section for Biochemistry and Molecular Biology, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Hans-Petter Hersleth
- Department of Biosciences, University of Oslo, Section for Biochemistry and Molecular Biology, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway.,Department of Chemistry, University of Oslo, Section for Chemical Life Sciences, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| |
Collapse
|
37
|
Tossounian MA, Zhang B, Gout I. The Writers, Readers, and Erasers in Redox Regulation of GAPDH. Antioxidants (Basel) 2020; 9:antiox9121288. [PMID: 33339386 PMCID: PMC7765867 DOI: 10.3390/antiox9121288] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/28/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Glyceraldehyde 3–phosphate dehydrogenase (GAPDH) is a key glycolytic enzyme, which is crucial for the breakdown of glucose to provide cellular energy. Over the past decade, GAPDH has been reported to be one of the most prominent cellular targets of post-translational modifications (PTMs), which divert GAPDH toward different non-glycolytic functions. Hence, it is termed a moonlighting protein. During metabolic and oxidative stress, GAPDH is a target of different oxidative PTMs (oxPTM), e.g., sulfenylation, S-thiolation, nitrosylation, and sulfhydration. These modifications alter the enzyme’s conformation, subcellular localization, and regulatory interactions with downstream partners, which impact its glycolytic and non-glycolytic functions. In this review, we discuss the redox regulation of GAPDH by different redox writers, which introduce the oxPTM code on GAPDH to instruct a redox response; the GAPDH readers, which decipher the oxPTM code through regulatory interactions and coordinate cellular response via the formation of multi-enzyme signaling complexes; and the redox erasers, which are the reducing systems that regenerate the GAPDH catalytic activity. Human pathologies associated with the oxidation-induced dysregulation of GAPDH are also discussed, featuring the importance of the redox regulation of GAPDH in neurodegeneration and metabolic disorders.
Collapse
|
38
|
Mechanisms and consequences of protein cysteine oxidation: the role of the initial short-lived intermediates. Essays Biochem 2020; 64:55-66. [PMID: 31919496 DOI: 10.1042/ebc20190053] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022]
Abstract
Thiol groups in protein cysteine (Cys) residues can undergo one- and two-electron oxidation reactions leading to the formation of thiyl radicals or sulfenic acids, respectively. In this mini-review we summarize the mechanisms and kinetics of the formation of these species by biologically relevant oxidants. Most of the latter react with the deprotonated form of the thiol. Since the pKa of the thiols in protein cysteines are usually close to physiological pH, the thermodynamics and the kinetics of their oxidation in vivo are affected by the acidity of the thiol. Moreover, the protein microenvironment has pronounced effects on cysteine residue reactivity, which in the case of the oxidation mediated by hydroperoxides, is known to confer specificity to particular protein cysteines. Despite their elusive nature, both thiyl radicals and sulfenic acids are involved in the catalytic mechanism of several enzymes and in the redox regulation of protein function and/or signaling pathways. They are usually short-lived species that undergo further reactions that converge in the formation of different stable products, resulting in several post-translational modifications of the protein. Some of these can be reversed through the action of specific cellular reduction systems. Others damage the proteins irreversibly, and can make them more prone to aggregation or degradation.
Collapse
|
39
|
Linzner N, Loi VV, Fritsch VN, Antelmann H. Thiol-based redox switches in the major pathogen Staphylococcus aureus. Biol Chem 2020; 402:333-361. [PMID: 33544504 DOI: 10.1515/hsz-2020-0272] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022]
Abstract
Staphylococcus aureus is a major human pathogen, which encounters reactive oxygen, nitrogen, chlorine, electrophile and sulfur species (ROS, RNS, RCS, RES and RSS) by the host immune system, during cellular metabolism or antibiotics treatments. To defend against redox active species and antibiotics, S. aureus is equipped with redox sensing regulators that often use thiol switches to control the expression of specific detoxification pathways. In addition, the maintenance of the redox balance is crucial for survival of S. aureus under redox stress during infections, which is accomplished by the low molecular weight (LMW) thiol bacillithiol (BSH) and the associated bacilliredoxin (Brx)/BSH/bacillithiol disulfide reductase (YpdA)/NADPH pathway. Here, we present an overview of thiol-based redox sensors, its associated enzymatic detoxification systems and BSH-related regulatory mechanisms in S. aureus, which are important for the defense under redox stress conditions. Application of the novel Brx-roGFP2 biosensor provides new insights on the impact of these systems on the BSH redox potential. These thiol switches of S. aureus function in protection against redox active desinfectants and antimicrobials, including HOCl, the AGXX® antimicrobial surface coating, allicin from garlic and the naphthoquinone lapachol. Thus, thiol switches could be novel drug targets for the development of alternative redox-based therapies to combat multi-drug resistant S. aureus isolates.
Collapse
Affiliation(s)
- Nico Linzner
- Freie Universität Berlin, Institute of Biology-Microbiology, Königin-Luise-Straße 12-16, D-14195Berlin, Germany
| | - Vu Van Loi
- Freie Universität Berlin, Institute of Biology-Microbiology, Königin-Luise-Straße 12-16, D-14195Berlin, Germany
| | - Verena Nadin Fritsch
- Freie Universität Berlin, Institute of Biology-Microbiology, Königin-Luise-Straße 12-16, D-14195Berlin, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute of Biology-Microbiology, Königin-Luise-Straße 12-16, D-14195Berlin, Germany
| |
Collapse
|
40
|
Ethanol in Combination with Oxidative Stress Significantly Impacts Mycobacterial Physiology. J Bacteriol 2020; 202:JB.00222-20. [PMID: 32928928 DOI: 10.1128/jb.00222-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/02/2020] [Indexed: 11/20/2022] Open
Abstract
Here, we investigate the mycobacterial response to the combined stress of an organic oxidant (cumene hydroperoxide [CHP]) and a solvent (ethanol). To understand the interaction between the two stressors, we treated Mycobacterium smegmatis cells to a range of ethanol concentrations (2.5% to 10% [vol/vol]) in combination with a subinhibitory concentration of 1 mM CHP. It was observed that the presence of CHP increases the efficacy of ethanol in inducing rapid cell death. The data further suggest that ethanol reacts with the alkoxy radicals to produce ethanol-derived peroxides. These radicals induce significant membrane damage and lead to cell lysis. The ethanol-derived radicals were primarily recognized by the cells as organic radicals, as was evident by the differential upregulation of the ohr-ohrR genes that function in cells treated with the combination of ethanol and CHP. The role of organic peroxide reductase, Ohr, was further confirmed by the significantly higher sensitivity of the deletion mutant to CHP and the combined stress treatment of CHP and ethanol. Moreover, we also observed the sigma factor σB to be important for the cells treated with ethanol alone as well as the aforementioned combination. A ΔsigB mutant strain had significantly higher susceptibility to the stress conditions. This finding was correlated with the σB-dependent transcriptional regulation of ohr and ohrR In summary, our data indicate that the combination of low levels of ethanol and organic peroxides induce ethanol-derived organic radicals that lead to significant oxidative stress on the cells in a concentration-dependent manner.IMPORTANCE Bacterial response to a combination of stresses can be unexpected and very different compared with that of an individual stress treatment. This study explores the physiological and transcriptional response of mycobacteria in response to the combinatorial treatment of an oxidant with the commonly used solvent ethanol. The presence of a subinhibitory concentration of organic peroxide increases the effectiveness of ethanol by inducing reactive peroxides that destroy the membrane integrity of cells in a significantly short time span. Our work elucidates a mechanism of targeting the complex mycobacterial membrane, which is its primary source of intrinsic resistance. Furthermore, it also demonstrates the importance of exploring the effect of various stress conditions on inducing bacterial clearance.
Collapse
|
41
|
Bonilla CY. Generally Stressed Out Bacteria: Environmental Stress Response Mechanisms in Gram-Positive Bacteria. Integr Comp Biol 2020; 60:126-133. [PMID: 32044998 DOI: 10.1093/icb/icaa002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ability to monitor the environment for toxic chemical and physical disturbances is essential for bacteria that live in dynamic environments. The fundamental sensing mechanisms and physiological responses that allow bacteria to thrive are conserved even if the molecular components of these pathways are not. The bacterial general stress response (GSR) represents a conceptual model for how one pathway integrates a wide range of environmental signals, and how a generalized system with broad molecular responses is coordinated to promote survival likely through complementary pathways. Environmental stress signals such as heat, osmotic stress, and pH changes are received by sensor proteins that through a signaling cascade activate the sigma factor, SigB, to regulate over 200 genes. Additionally, the GSR plays an important role in stress priming that increases bacterial fitness to unrelated subsequent stressors such as oxidative compounds. While the GSR response is implicated during oxidative stress, the reason for its activation remains unknown and suggests crosstalk between environmental and oxidative stress sensors and responses to coordinate antioxidant functions. Systems levels studies of cellular responses such as transcriptomes, proteomes, and metabolomes of stressed bacteria and single-cell analysis could shed light into the regulated functions that protect, remediate, and minimize damage during dynamic environments. This perspective will focus on fundamental stress sensing mechanisms and responses in Gram-positive bacterial species to illustrate their commonalities at the molecular and physiological levels; summarize exciting directions; and highlight how system-level approaches can help us understand bacterial physiology.
Collapse
Affiliation(s)
- Carla Y Bonilla
- Biology Department, Gonzaga University, 502 East Boone Avenue, Spokane, WA 99258, USA
| |
Collapse
|
42
|
Si M, Chen C, Zhong J, Li X, Liu Y, Su T, Yang G. MsrR is a thiol-based oxidation-sensing regulator of the XRE family that modulates C. glutamicum oxidative stress resistance. Microb Cell Fact 2020; 19:189. [PMID: 33008408 PMCID: PMC7532634 DOI: 10.1186/s12934-020-01444-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/25/2020] [Indexed: 11/10/2022] Open
Abstract
Background Corynebacterium glutamicum thrives under oxidative stress caused by the inevitably extreme environment during fermentation as it harbors antioxidative stress genes. Antioxidant genes are controlled by pathway-specific sensors that act in response to growth conditions. Although many families of oxidation-sensing regulators in C. glutamicum have been well described, members of the xenobiotic-response element (XRE) family, involved in oxidative stress, remain elusive. Results In this study, we report a novel redox-sensitive member of the XER family, MsrR (multiple stress resistance regulator). MsrR is encoded as part of the msrR-3-mst (3-mercaptopyruvate sulfurtransferase) operon; msrR-3-mst is divergent from multidrug efflux protein MFS. MsrR was demonstrated to bind to the intergenic region between msrR-3-mst and mfs. This binding was prevented by an MsrR oxidation-mediated increase in MsrR dimerization. MsrR was shown to use Cys62 oxidation to sense oxidative stress, resulting in its dissociation from the promoter. Elevated expression of msrR-3-mst and mfs was observed under stress. Furthermore, a ΔmsrR mutant strain displayed significantly enhanced growth, while the growth of strains lacking either 3-mst or mfs was significantly inhibited under stress. Conclusion This report is the first to demonstrate the critical role of MsrR-3-MST-MFS in bacterial stress resistance.
Collapse
Affiliation(s)
- Meiru Si
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China.
| | - Can Chen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Jingyi Zhong
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Xiaona Li
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Yang Liu
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Tao Su
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Ge Yang
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China.
| |
Collapse
|
43
|
Linzner N, Fritsch VN, Busche T, Tung QN, Loi VV, Bernhardt J, Kalinowski J, Antelmann H. The plant-derived naphthoquinone lapachol causes an oxidative stress response in Staphylococcus aureus. Free Radic Biol Med 2020; 158:126-136. [PMID: 32712193 DOI: 10.1016/j.freeradbiomed.2020.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/28/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is a major human pathogen, which causes life-threatening systemic and chronic infections and rapidly acquires resistance to multiple antibiotics. Thus, new antimicrobial compounds are required to combat infections with drug resistant S. aureus isolates. The 2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone lapachol was previously shown to exert antimicrobial effects. In this study, we investigated the antimicrobial mode of action of lapachol in S. aureus using RNAseq transcriptomics, redox biosensor measurements, S-bacillithiolation assays and phenotype analyses of mutants. In the RNA-seq transcriptome, lapachol caused an oxidative and quinone stress response as well as protein damage as revealed by induction of the PerR, HypR, QsrR, MhqR, CtsR and HrcA regulons. Lapachol treatment further resulted in up-regulation of the SigB and GraRS regulons, which is indicative for cell wall and general stress responses. The redox-cycling mode of action of lapachol was supported by an elevated bacillithiol (BSH) redox potential (EBSH), higher endogenous ROS levels, a faster H2O2 detoxification capacity and increased thiol-oxidation of GapDH and the HypR repressor in vivo. The ROS scavenger N-acetyl cysteine and microaerophilic growth conditions improved the survival of lapachol-treated S. aureus cells. Phenotype analyses revealed an involvement of the catalase KatA and the Brx/BSH/YpdA pathway in protection against lapachol-induced ROS-formation in S. aureus. However, no evidence for irreversible protein alkylation and aggregation was found in lapachol-treated S. aureus cells. Thus, the antimicrobial mode of action of lapachol in S. aureus is mainly caused by ROS formation resulting in an oxidative stress response, an oxidative shift of the EBSH and increased protein thiol-oxidation. As ROS-generating compound, lapachol is an attractive alternative antimicrobial to combat multi-resistant S. aureus isolates.
Collapse
Affiliation(s)
- Nico Linzner
- Freie Universität Berlin, Institute of Biology-Microbiology, 14195, Berlin, Germany
| | - Verena Nadin Fritsch
- Freie Universität Berlin, Institute of Biology-Microbiology, 14195, Berlin, Germany
| | - Tobias Busche
- Freie Universität Berlin, Institute of Biology-Microbiology, 14195, Berlin, Germany; Center for Biotechnology, University Bielefeld, 33615, Bielefeld, Germany
| | - Quach Ngoc Tung
- Freie Universität Berlin, Institute of Biology-Microbiology, 14195, Berlin, Germany
| | - Vu Van Loi
- Freie Universität Berlin, Institute of Biology-Microbiology, 14195, Berlin, Germany
| | - Jörg Bernhardt
- Institute for Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, University Bielefeld, 33615, Bielefeld, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute of Biology-Microbiology, 14195, Berlin, Germany.
| |
Collapse
|
44
|
Roles of RcsA, an AhpD Family Protein, in Reactive Chlorine Stress Resistance and Virulence in Pseudomonas aeruginosa. Appl Environ Microbiol 2020; 86:AEM.01480-20. [PMID: 32801171 DOI: 10.1128/aem.01480-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/03/2020] [Indexed: 11/20/2022] Open
Abstract
Reactive chlorine species (RCS), particularly hypochlorous acid (HOCl), are powerful antimicrobial oxidants generated by biological pathways and chemical syntheses. Pseudomonas aeruginosa is an important opportunistic pathogen that has adapted mechanisms for protection and survival in harsh environments, including RCS exposure. Based on previous transcriptomic studies of HOCl exposure in P. aeruginosa, we found that the expression of PA0565, or rcsA, which encodes an alkyl hydroperoxidase D-like protein, exhibited the highest induction among the RCS-induced genes. In this study, rcsA expression was dominant under HOCl stress and greatly increased under HOCl-related stress conditions. Functional analysis of RcsA showed that the distinguishing core amino acid residues Cys60, Cys63, and His67 were required for the degradation of sodium hypochlorite (NaOCl), suggesting an extended motif in the AhpD family. After allelic exchange mutagenesis in the P. aeruginosa rcsA, the P. aeruginosa rcsA deletion mutant showed significantly decreased HOCl resistance. Ectopic expression of P. aeruginosa rcsA led to significantly increased NaOCl resistance in Escherichia coli Moreover, the pathogenicity of the rcsA mutant decreased dramatically in both Caenorhabditis elegans and Drosophila melanogaster host model systems compared to the wild type (WT). Finally, the Cys60, Cys63, and His67 variants of RcsA were unsuccessful at complementing phenotypes of the rcsA mutant. Overall, our data indicate the importance of P. aeruginosa RcsA in defense against HOCl stress under disinfections and during infections of hosts, which involves the catalytic Cys60, Cys63, and His67 residues.IMPORTANCE Pseudomonas aeruginosa is a common pathogen that is a major cause of serious infections in many hosts. Hypochlorous acid (HOCl) is a potent antimicrobial agent found in household bleach and is a widely used disinfectant. P. aeruginosa has evolved adaptive mechanisms for protection and survival during HOCl exposure. We identified P. aeruginosa rcsA as a HOCl-responsive gene encoding an antioxidant protein that may be involved in HOCl degradation. RcsA has a distinguishing core motif containing functional Cys60, Cys63, and His67 residues. P. aeruginosa rcsA plays an important role in bleach tolerance, with expression of P. aeruginosa rcsA in Escherichia coli also conferring HOCl resistance. Interestingly, RcsA is required for full virulence in worm and fruit fly infection models, indicating a correlation between mechanisms of bleach toxicity and host immunity during infection. This provides new insights into the mechanisms used by P. aeruginosa to persist in harsh environments such as hospitals.
Collapse
|
45
|
Rath H, Sappa PK, Hoffmann T, Gesell Salazar M, Reder A, Steil L, Hecker M, Bremer E, Mäder U, Völker U. Impact of high salinity and the compatible solute glycine betaine on gene expression of Bacillus subtilis. Environ Microbiol 2020; 22:3266-3286. [PMID: 32419322 DOI: 10.1111/1462-2920.15087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/30/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Abstract
The Gram-positive bacterium Bacillus subtilis is frequently exposed to hyperosmotic conditions. In addition to the induction of genes involved in the accumulation of compatible solutes, high salinity exerts widespread effects on B. subtilis physiology, including changes in cell wall metabolism, induction of an iron limitation response, reduced motility and suppression of sporulation. We performed a combined whole-transcriptome and proteome analysis of B. subtilis 168 cells continuously cultivated at low or high (1.2 M NaCl) salinity. Our study revealed significant changes in the expression of more than one-fourth of the protein-coding genes and of numerous non-coding RNAs. New aspects in understanding the impact of high salinity on B. subtilis include a sustained low-level induction of the SigB-dependent general stress response and strong repression of biofilm formation under high-salinity conditions. The accumulation of compatible solutes such as glycine betaine aids the cells to cope with water stress by maintaining physiologically adequate levels of turgor and also affects multiple cellular processes through interactions with cellular components. Therefore, we additionally analysed the global effects of glycine betaine on the transcriptome and proteome of B. subtilis and revealed that it influences gene expression not only under high-salinity, but also under standard growth conditions.
Collapse
Affiliation(s)
- Hermann Rath
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Praveen K Sappa
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Tamara Hoffmann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Reder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Leif Steil
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Michael Hecker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
| |
Collapse
|
46
|
Mourenza Á, Gil JA, Mateos LM, Letek M. Oxidative Stress-Generating Antimicrobials, a Novel Strategy to Overcome Antibacterial Resistance. Antioxidants (Basel) 2020; 9:antiox9050361. [PMID: 32357394 PMCID: PMC7278815 DOI: 10.3390/antiox9050361] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance is becoming one of the most important human health issues. Accordingly, the research focused on finding new antibiotherapeutic strategies is again becoming a priority for governments and major funding bodies. The development of treatments based on the generation of oxidative stress with the aim to disrupt the redox defenses of bacterial pathogens is an important strategy that has gained interest in recent years. This approach is allowing the identification of antimicrobials with repurposing potential that could be part of combinatorial chemotherapies designed to treat infections caused by recalcitrant bacterial pathogens. In addition, there have been important advances in the identification of novel plant and bacterial secondary metabolites that may generate oxidative stress as part of their antibacterial mechanism of action. Here, we revised the current status of this emerging field, focusing in particular on novel oxidative stress-generating compounds with the potential to treat infections caused by intracellular bacterial pathogens.
Collapse
|
47
|
Hiraide Y, Yamamoto H, Kawajiri Y, Yamakawa H, Wada K, Fujita Y. Super-activator variants of the cyanobacterial transcriptional regulator ChlR essential for tetrapyrrole biosynthesis under low oxygen conditions. Biosci Biotechnol Biochem 2020; 84:481-490. [DOI: 10.1080/09168451.2019.1687281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
ABSTRACT
ChlR is a MarR-type transcriptional regulator that activates the transcription of the chlAII-ho2-hemN operon in response to low oxygen conditions in the cyanobacterium Synechocystis sp. PCC 6803. Upon exposure to low oxygen conditions, ChlR activates transcription of the operon that encodes enzymes critical to tetrapyrrole biosynthesis under low oxygen conditions. We previously identified a super-activator variant, D35H, of ChlR that constitutively activates transcription of the operon. To gain insight into the low-oxygen induced activation of ChlR, we obtained eight additional super-activator variants of ChlR including D35H from pseudorevertants of a chlAI-disrupted mutant. Most substitutions were located in the N-terminal region of ChlR. Mapping of the substituted amino acid residues provided valuable structural insights that uncovered the activation mechanism of ChlR.
Collapse
Affiliation(s)
- Yuto Hiraide
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yasushi Kawajiri
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hisanori Yamakawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
48
|
Tung QN, Busche T, Van Loi V, Kalinowski J, Antelmann H. The redox-sensing MarR-type repressor HypS controls hypochlorite and antimicrobial resistance in Mycobacterium smegmatis. Free Radic Biol Med 2020; 147:252-261. [PMID: 31887453 DOI: 10.1016/j.freeradbiomed.2019.12.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/16/2022]
Abstract
MarR-family transcription factors often control antioxidant enzymes, multidrug efflux pumps or virulence factors in bacterial pathogens and confer resistance towards oxidative stress and antibiotics. In this study, we have characterized the function and redox-regulatory mechanism of the MarR-type regulator HypS in Mycobacterium smegmatis. RNA-seq transcriptomics and qRT-PCR analyses of the hypS mutant revealed that hypS is autoregulated and represses transcription of the co-transcribed hypO gene which encodes a multidrug efflux pump. DNA binding activity of HypS to the 8-5-8 bp inverted repeat sequence upstream of the hypSO operon was inhibited under NaOCl stress. However, the HypSC58S mutant protein was not impaired in DNA-binding under NaOCl stress in vitro, indicating an important role of Cys58 in redox sensing of NaOCl stress. HypS was shown to be inactivated by Cys58-Cys58' intersubunit disulfide formation under HOCl stress, resulting in derepression of hypO transcription. Phenotype results revealed that the HypS regulon confers resistance towards HOCl, rifampicin and erythromycin stress. In conclusion, HypS was identified as a novel redox-sensitive repressor that contributes to mycobacterial resistance towards HOCl stress and antibiotics.
Collapse
Affiliation(s)
- Quach Ngoc Tung
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Tobias Busche
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany; Center for Biotechnology (CeBiTec), Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Vu Van Loi
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany.
| |
Collapse
|
49
|
The Disulfide Stress Response and Protein S-thioallylation Caused by Allicin and Diallyl Polysulfanes in Bacillus subtilis as Revealed by Transcriptomics and Proteomics. Antioxidants (Basel) 2019; 8:antiox8120605. [PMID: 31795512 PMCID: PMC6943732 DOI: 10.3390/antiox8120605] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Garlic plants (Allium sativum L.) produce antimicrobial compounds, such as diallyl thiosulfinate (allicin) and diallyl polysulfanes. Here, we investigated the transcriptome and protein S-thioallylomes under allicin and diallyl tetrasulfane (DAS4) exposure in the Gram-positive bacterium Bacillus subtilis. Allicin and DAS4 caused a similar thiol-specific oxidative stress response, protein and DNA damage as revealed by the induction of the OhrR, PerR, Spx, YodB, CatR, HypR, AdhR, HxlR, LexA, CymR, CtsR, and HrcA regulons in the transcriptome. At the proteome level, we identified, in total, 108 S-thioallylated proteins under allicin and/or DAS4 stress. The S-thioallylome includes enzymes involved in the biosynthesis of surfactin (SrfAA, SrfAB), amino acids (SerA, MetE, YxjG, YitJ, CysJ, GlnA, YwaA), nucleotides (PurB, PurC, PyrAB, GuaB), translation factors (EF-Tu, EF-Ts, EF-G), antioxidant enzymes (AhpC, MsrB), as well as redox-sensitive MarR/OhrR and DUF24-family regulators (OhrR, HypR, YodB, CatR). Growth phenotype analysis revealed that the low molecular weight thiol bacillithiol, as well as the OhrR, Spx, and HypR regulons, confer protection against allicin and DAS4 stress. Altogether, we show here that allicin and DAS4 cause a strong oxidative, disulfide and sulfur stress response in the transcriptome and widespread S-thioallylation of redox-sensitive proteins in B. subtilis. The results further reveal that allicin and polysulfanes have similar modes of actions and thiol-reactivities and modify a similar set of redox-sensitive proteins by S-thioallylation.
Collapse
|
50
|
Wüllner D, Haupt A, Prochnow P, Leontiev R, Slusarenko AJ, Bandow JE. Interspecies Comparison of the Bacterial Response to Allicin Reveals Species-Specific Defense Strategies. Proteomics 2019; 19:e1900064. [PMID: 31622046 DOI: 10.1002/pmic.201900064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 09/16/2019] [Indexed: 12/22/2022]
Abstract
Allicin, a broad-spectrum antimicrobial agent from garlic, disrupts thiol and redox homeostasis, proteostasis, and cell membrane integrity. Since medicine demands antimicrobials with so far unexploited mechanisms, allicin is a promising lead structure. While progress is being made in unraveling its mode of action, little is known on bacterial adaptation strategies. Some isolates of Pseudomonas aeruginosa and Escherichia coli withstand exposure to high allicin concentrations due to as yet unknown mechanisms. To elucidate resistance and sensitivity-conferring cellular processes, the acute proteomic responses of a resistant P. aeruginosa strain and the sensitive species Bacillus subtilis are compared to the published proteomic response of E. coli to allicin treatment. The cellular defense strategies share functional features: proteins involved in translation and maintenance of protein quality, redox homeostasis, and cell envelope modification are upregulated. In both Gram-negative species, protein synthesis of the majority of proteins is downregulated while the Gram-positive B. subtilis responded by upregulation of multiple regulons. A comparison of the B. subtilis proteomic response to a library of responses to antibiotic treatment reveals 30 proteins specifically upregulated by allicin. Upregulated oxidative stress proteins are shared with nitrofurantoin and diamide. Microscopy-based assays further indicate that in B. subtilis cell wall integrity is impaired.
Collapse
Affiliation(s)
- Dominik Wüllner
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Annika Haupt
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Pascal Prochnow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Roman Leontiev
- Department of Plant Physiology (Bio III), RWTH Aachen University, 52056, Aachen, Germany.,Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, 66041, Saarbrücken, Germany
| | - Alan J Slusarenko
- Department of Plant Physiology (Bio III), RWTH Aachen University, 52056, Aachen, Germany
| | - Julia E Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| |
Collapse
|