1
|
Siff TE, Allen PE, Armistead DL, Hunt JR, Rolland SJ, Agaisse H, Carlyon JA. Orientia tsutsugamushi Modulates RIPK3 Cellular Levels but Does Not Inhibit Necroptosis. Pathogens 2025; 14:478. [PMID: 40430799 PMCID: PMC12114526 DOI: 10.3390/pathogens14050478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/06/2025] [Accepted: 05/11/2025] [Indexed: 05/29/2025] Open
Abstract
Scrub typhus is an emerging chigger-borne disease caused by the obligate intracellular bacterium Orientia tsutsugamushi. Necroptosis is a form of programmed cell death (PCD) mediated by RIPK3 (serine/threonine kinase receptor interacting protein 3) and its downstream effector MLKL (mixed-lineage kinase domain-like). While O. tsutsugamushi modulates apoptosis, another form of PCD, its interplay with necroptosis is unknown. Much of Orientia pathobiology is linked to its ankyrin repeat (AR)-containing effectors (Anks). Two of these, Ank1 and Ank6, share similarities with the cowpox AR protein, vIRD (viral inducer of RIPK3 degradation) that prevents necroptosis. Here, we show that Ank1 and Ank6 reduce RIPK3 cellular levels although not as robustly as and mechanistically distinct from vIRD. Orientia infection lowers RIPK3 amounts and does not elicit necroptosis in endothelial cells. In HeLa cells ectopically expressing RIPK3, Orientia fails to inhibit RIPK3 and MLKL phosphorylation as well as cell death. MLKL colocalization with Orientia or Listeria monocytogenes, another intracytoplasmic pathogen, was not observed. Thus, O. tsutsugamushi reduces cellular levels of RIPK3 and does not elicit necroptosis but cannot inhibit this PCD pathway once it is induced. This study is a first step toward understanding how the relationship between Orientia and necroptosis contributes to scrub typhus pathogenesis.
Collapse
Affiliation(s)
- Thomas E. Siff
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA; (T.E.S.); (P.E.A.); (D.L.A.); (J.R.H.)
| | - Paige E. Allen
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA; (T.E.S.); (P.E.A.); (D.L.A.); (J.R.H.)
| | - David L. Armistead
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA; (T.E.S.); (P.E.A.); (D.L.A.); (J.R.H.)
| | - Jason R. Hunt
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA; (T.E.S.); (P.E.A.); (D.L.A.); (J.R.H.)
| | - Steven J. Rolland
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.J.R.); (H.A.)
| | - Hervé Agaisse
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.J.R.); (H.A.)
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA; (T.E.S.); (P.E.A.); (D.L.A.); (J.R.H.)
| |
Collapse
|
2
|
Morgan MJ, Kim YS. RIPK3 in necroptosis and cancer. Mol Cells 2025; 48:100199. [PMID: 40010643 PMCID: PMC11938148 DOI: 10.1016/j.mocell.2025.100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
Receptor-interacting protein kinase-3 is essential for the cell death pathway called necroptosis. Necroptosis is activated by the death receptor ligands and pattern recognition receptors of the innate immune system, leading to significant consequences in inflammation and in diseases, particularly cancer. Necroptosis is highly proinflammatory compared with other modes of cell death because cell membrane integrity is lost, resulting in releases of cytokines and damage-associated molecular patterns that potentiate inflammation and activate the immune system. We discuss various ways that necroptosis is triggered along with its potential role in cancer and therapy.
Collapse
Affiliation(s)
- Michael J Morgan
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK 74464, USA.
| | - You-Sun Kim
- Department of Biochemistry, Ajou University School of Medicine, Ajou University, Suwon 16499, Korea; Department of Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
3
|
Baskin A, Soudah N, Gilad N, Halevi N, Darlyuk-Saadon I, Schoffman H, Engelberg D. All intrinsically active Erk1/2 mutants autophosphorylate threonine207/188, a plausible regulator of the TEY motif phosphorylation. J Biol Chem 2025; 301:108509. [PMID: 40222547 DOI: 10.1016/j.jbc.2025.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/19/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025] Open
Abstract
The extracellular-activated kinases 1 & 2 (Erk1/2) are catalytically active when dually phosphorylated on a TEY motif located at the activation loop. In human patients with cardiac hypertrophy, Erk1/2 are phosphorylated on yet another activation loop's residue, T207/188. Intrinsically active variants of Erk1/2, mutated at R84/65, are also (auto)phosphorylated on T207/188. It is not known whether T207/188 phosphorylation is restricted to these cases, nor how it affects Erks' activity. We report that T207/188 phosphorylation is not rare, as we found that: 1) All known auto-activated Erk1/2 variants are phosphorylated on T207/188. 2) It occurs in various cell lines and mouse tissues. 3) It is extremely high in patients with skeletal muscle atrophies or myopathies. We propose that T207/188 controls the permissiveness of the TEY motif for phosphorylation because T207/188-mutated Erk1/2 and the yeast Erk/Mpk1 were efficiently dually phosphorylated when expressed in HEK293 or yeast cells, respectively. The T207/188-mutated Mpk1 was not TEY-phosphorylated in cells knocked out for MEKs, suggesting that its enhanced phosphorylation in wild-type cells is MEK-dependent. Thus, as T207/188-mutated Erk1/2 and Mpk1 recruit MEKs, the role of T207/188 is to impede MEKs' ability to phosphorylate Erks. T207/188 also impedes autophosphorylation as recombinant Erk2 mutated at T188 is spontaneously autophosphorylated, although exclusively on Y185. The role of T207/188 in regulating activation loop phosphorylation may be common to most Ser/Thr kinases, as 86% of them (in the human kinome) possess T207/188 orthologs, and 160 of them were already reported to be phosphorylated on this residue.
Collapse
Affiliation(s)
- Alexey Baskin
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nadine Soudah
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nechama Gilad
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel; Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore
| | - Neriya Halevi
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilona Darlyuk-Saadon
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore
| | - Hanan Schoffman
- Stein Family Mass Spectrometry Unit, The Research Infrastructure Center, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Engelberg
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel; Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
4
|
St-Cyr G, Garneau D, Gévry N, Blouin R. Quantitative phosphoproteomics reveals that nestin is a downstream target of dual leucine zipper kinase during retinoic acid-induced neuronal differentiation of Neuro-2a cells. BMC Mol Cell Biol 2025; 26:10. [PMID: 40140778 PMCID: PMC11938613 DOI: 10.1186/s12860-025-00535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/20/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Dual leucine zipper kinase (DLK) is critical for neurite outgrowth in the developing nervous system and during nerve regeneration, but the underlying mechanisms remain largely unknown. To address this issue, we generated stable shRNA-mediated DLK-depleted Neuro-2a cell lines and analyzed their phosphoproteome after induction of neuronal differentiation by retinoic acid (RA). RESULTS Here, we report the identification of 32 phosphopeptides that exhibited significant differences in relative abundance between control and DLK-depleted cells. Two of the most downregulated phosphopeptides identified after DLK depletion were derived from nestin, a type VI intermediate filament (IF) protein typically expressed in neural progenitor cells. The reduced abundance of these phosphopeptides in response to DLK knockdown was validated using parallel reaction monitoring (PRM)-based quantitative proteomics and paired with a concomitant reduction in nestin mRNA and protein expression, indicating that the decrease in nestin phosphorylation was due to a decrease in total nestin in DLK-depleted cells compared to control cells. This DLK-mediated regulation of nestin expression had no apparent effect on neurite formation because nestin knockdown alone was not sufficient to impair RA-induced neurite extension in parental Neuro-2a cells, and nestin overexpression failed to rescue the neurite outgrowth defect observed in DLK-depleted Neuro-2a cells. CONCLUSIONS Together, these results demonstrate that nestin is a novel downstream target of DLK signaling but not a mediator of its ability to promote neurite outgrowth during neuronal differentiation.
Collapse
Affiliation(s)
- Guillaume St-Cyr
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Daniel Garneau
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nicolas Gévry
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Richard Blouin
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
5
|
Li T, Lin S, Zhu Y, Ye D, Rong X, Wang L. Basic biology and roles of CEBPD in cardiovascular disease. Cell Death Discov 2025; 11:102. [PMID: 40087290 PMCID: PMC11909146 DOI: 10.1038/s41420-025-02357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/25/2025] [Accepted: 02/12/2025] [Indexed: 03/17/2025] Open
Abstract
CCAAT/enhancer-binding protein delta (CEBPD), as an evolutionarily conserved protein in mammals, belongs to the CEBP transcription factor family, which modulates many biological processes. The diversity of CEBPD functions partly depends on the cell type and cellular context. Aberrant CEBPD expression and activity are associated with multiple organ diseases, including cardiovascular diseases. In this review, we describe the basic molecular biology of CEBPD to understand its expression regulation, modifications, and functions. Here, we summarize the recent advances in genetically modified animals with CEBPD. Finally, we discuss the contribution of CEBPD to cardiovascular diseases and highlight the strategies for developing novel therapies targeting CEBPD.
Collapse
Affiliation(s)
- Tongjun Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Shaoling Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Yingyin Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
6
|
Pajares MÁ. Posttranslational Regulation of Mammalian Sulfur Amino Acid Metabolism. Int J Mol Sci 2025; 26:2488. [PMID: 40141131 PMCID: PMC11942099 DOI: 10.3390/ijms26062488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Metabolism of the mammalian proteinogenic sulfur amino acids methionine and cysteine includes the methionine cycle and reverse transsulfuration pathway, establishing many connections with other important metabolic routes. The main source of these amino acids is the diet, which also provides B vitamins required as cofactors for several enzymes of the metabolism of these amino acids. While methionine is considered an essential amino acid, cysteine can be produced from methionine in a series of reactions that also generate homocysteine, a non-proteinogenic amino acid linking reverse transsulfuration with the methionine and folate cycles. These pathways produce key metabolites that participate in synthesizing a large variety of compounds and important regulatory processes (e.g., epigenetic methylations). The impairment of sulfur amino acid metabolism manifests in many pathological processes, mostly correlated with oxidative stress and alterations in glutathione levels that also depend on this part of the cellular metabolism. This review analyzes the current knowledge on the posttranslational regulation of mammalian sulfur amino acid metabolism, highlighting the large number of modification sites reported through high-throughput studies and the surprisingly limited knowledge of their functional impact.
Collapse
Affiliation(s)
- María Ángeles Pajares
- Department of Molecular and Cellular Biosciences, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
7
|
Uzungil V, Luza S, Opazo CM, Mees I, Li S, Ang CS, Williamson NA, Bush AI, Hannan AJ, Renoir T. Phosphoproteomics implicates glutamatergic and dopaminergic signalling in the antidepressant-like properties of the iron chelator deferiprone. Neuropharmacology 2024; 246:109837. [PMID: 38184274 DOI: 10.1016/j.neuropharm.2024.109837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
BACKGROUND Current antidepressants have limitations due to insufficient efficacy and delay before improvement in symptoms. Polymorphisms of the serotonin transporter (5-HTT) gene have been linked to depression (when combined with stressful life events) and altered response to selective serotonergic reuptake inhibitors. We have previously revealed the antidepressant-like properties of the iron chelator deferiprone in the 5-HTT knock-out (KO) mouse model of depression. Furthermore, deferiprone was found to alter neural activity in the prefrontal cortex of both wild-type (WT) and 5-HTT KO mice. METHODS In the current study, we examined the molecular effects of acute deferiprone treatment in the prefrontal cortex of both genotypes via phosphoproteomics analysis. RESULTS In WT mice treated with deferiprone, there were 22 differentially expressed phosphosites, with gene ontology analysis implicating cytoskeletal proteins. In 5-HTT KO mice treated with deferiprone, we found 33 differentially expressed phosphosites. Gene ontology analyses revealed phosphoproteins that were predominantly involved in synaptic and glutamatergic signalling. In a drug-naïve cohort (without deferiprone administration), the analysis revealed 21 differentially expressed phosphosites in 5-HTT KO compared to WT mice. We confirmed the deferiprone-induced increase in tyrosine hydroxylase serine 40 residue phosphorylation (pTH-Ser40) (initially revealed in our phosphoproteomics study) by Western blot analysis, with deferiprone increasing pTH-Ser40 expression in WT and 5-HTT KO mice. CONCLUSION As glutamatergic and synaptic signalling are dysfunctional in 5-HTT KO mice (and are the target of fast-acting antidepressant drugs such as ketamine), these molecular effects may underpin deferiprone's antidepressant-like properties. Furthermore, dopaminergic signalling may also be involved in deferiprone's antidepressant-like properties.
Collapse
Affiliation(s)
- Volkan Uzungil
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Sandra Luza
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia
| | - Carlos M Opazo
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Isaline Mees
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Shanshan Li
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Nicholas A Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Anthony J Hannan
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
8
|
Chen XZ, Bai RX, Qin FY, Peng HJ, Ren JF, Hu L, Li YD, He C. Phosphoproteomic Analysis Reveals the Predominating Cellular Processes and the Involved Key Phosphoproteins Essential for the Proliferation of Toxoplasma gondii. Acta Parasitol 2023; 68:820-831. [PMID: 37821727 DOI: 10.1007/s11686-023-00720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/04/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE To explore the essential roles of phosphorylation in mediating the proliferation of T. gondii in its cell lytic life. METHODS We profiled the phosphoproteome data of T. gondii residing in HFF cells for 2 h and 6 h, representing the early- and late-stages of proliferation (ESP and LSP) within its first generation of division. RESULTS We identified 70 phosphoproteins, among which 8 phosphoproteins were quantified with the phosphorylation level significantly regulated. While only two of the eight phosphoproteins, GRA7 and TGGT1_242070, were significantly down-regulated at the transcriptional level in the group of LSP vs. ESP. Moreover, GO terms correlated with host membrane component were significantly enriched in the category of cellular component, suggesting phosphoprotein played important roles in acquiring essential substance from host cell via manipulating host membrane. Further GO analysis in the categories of molecular function and biological process and pathway analysis revealed that the cellular processes of glucose and lipid metabolism were regulated by T. gondii phosphoproteins such as PMCAA1, LIPIN, Pyk1 and ALD. Additionally, several phosphoproteins were enriched at the central nodes in the protein-protein interaction network, which may have essential roles in T. gondii proliferation including GAP45, MLC1, fructose-1,6-bisphosphate aldolase, GRAs and so on. CONCLUSION This study revealed the main cellular processes and key phosphoproteins crucial for the intracellular proliferation of T. gondii, which would provide clues to explore the roles of phosphorylation in regulating the development of tachyzoites and new insight into the mechanism of T. gondii development in vitro.
Collapse
Affiliation(s)
- Xin-Zhu Chen
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Rui-Xue Bai
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Fei-Yu Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Hong-Juan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jin-Feng Ren
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Lang Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Yu-di Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Cheng He
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China.
| |
Collapse
|
9
|
Ghosh I, Kwon Y, Shabestari AB, Chikhale R, Chen J, Wiese C, Sung P, De Benedetti A. TLK1-mediated RAD54 phosphorylation spatio-temporally regulates Homologous Recombination Repair. Nucleic Acids Res 2023; 51:8643-8662. [PMID: 37439356 PMCID: PMC10484734 DOI: 10.1093/nar/gkad589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/17/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Environmental agents like ionizing radiation (IR) and chemotherapeutic drugs can cause severe damage to the DNA, often in the form of double-strand breaks (DSBs). Remaining unrepaired, DSBs can lead to chromosomal rearrangements, and cell death. One major error-free pathway to repair DSBs is homologous recombination repair (HRR). Tousled-like kinase 1 (TLK1), a Ser/Thr kinase that regulates the DNA damage checkpoint, has been found to interact with RAD54, a central DNA translocase in HRR. To determine how TLK1 regulates RAD54, we inhibited or depleted TLK1 and tested how this impacts HRR in human cells using a ISce-I-GR-DsRed fused reporter endonuclease. Our results show that TLK1 phosphorylates RAD54 at three threonines (T41, T59 and T700), two of which are located within its N-terminal domain (NTD) and one is located within its C-terminal domain (CTD). Phosphorylation at both T41 and T59 supports HRR and protects cells from DNA DSB damage. In contrast, phosphorylation of T700 leads to impaired HRR and engenders no protection to cells from cytotoxicity and rather results in repair delay. Further, our work enlightens the effect of RAD54-T700 (RAD54-CTD) phosphorylation by TLK1 in mammalian system and reveals a new site of interaction with RAD51.
Collapse
Affiliation(s)
- Ishita Ghosh
- Department of Biochemistry and Molecular Biology, Louisiana Health Science Center-Shreveport, Shreveport, Louisiana 71130, US2. Texas 78229, USA
| | - Youngho Kwon
- Department of Biochemistry & Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Aida Badamchi Shabestari
- Department of Biochemistry & Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Rupesh Chikhale
- Division of Pharmacy & Optometry, University of Manchester, Manchester, UK
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry and Proteomics Core, Center for Structural Biology, University of Kentucky, Lexington, KY, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Patrick Sung
- Department of Biochemistry & Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, Louisiana Health Science Center-Shreveport, Shreveport, Louisiana 71130, US2. Texas 78229, USA
| |
Collapse
|
10
|
Feng H, Wang N, Zhang N, Liao HH. Alternative autophagy: mechanisms and roles in different diseases. Cell Commun Signal 2022; 20:43. [PMID: 35361231 PMCID: PMC8973741 DOI: 10.1186/s12964-022-00851-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/01/2022] [Indexed: 12/11/2022] Open
Abstract
As an important mechanism to maintain cellular homeostasis, autophagy exerts critical functions via degrading misfolded proteins and damaged organelles. Recent years, alternative autophagy, a new type of autophagy has been revealed, which shares similar morphology with canonical autophagy but is independent of Atg5/Atg7. Investigations on different diseases showed the pivotal role of alternative autophagy during their physio-pathological processes, including heart diseases, neurodegenerative diseases, oncogenesis, inflammatory bowel disease (IBD), and bacterial infection. However, the studies are limited and the precise roles and mechanisms of alternative autophagy are far from clear. It is necessary to review current research on alternative autophagy and get some hint in order to provide new insight for further study. Video Abstract.
Collapse
Affiliation(s)
- Hong Feng
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Nian Wang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
11
|
González-Cuesta M, Sidhu P, Ashmus RA, Males A, Proceviat C, Madden Z, Rogalski JC, Busmann JA, Foster LJ, García Fernández JM, Davies GJ, Ortiz Mellet C, Vocadlo DJ. Bicyclic Picomolar OGA Inhibitors Enable Chemoproteomic Mapping of Its Endogenous Post-translational Modifications. J Am Chem Soc 2022; 144:832-844. [PMID: 34985906 DOI: 10.1021/jacs.1c10504] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Owing to its roles in human health and disease, the modification of nuclear, cytoplasmic, and mitochondrial proteins with O-linked N-acetylglucosamine residues (O-GlcNAc) has emerged as a topic of great interest. Despite the presence of O-GlcNAc on hundreds of proteins within cells, only two enzymes regulate this modification. One of these enzymes is O-GlcNAcase (OGA), a dimeric glycoside hydrolase that has a deep active site cleft in which diverse substrates are accommodated. Chemical tools to control OGA are emerging as essential resources for helping to decode the biochemical and cellular functions of the O-GlcNAc pathway. Here we describe rationally designed bicyclic thiazolidine inhibitors that exhibit superb selectivity and picomolar inhibition of human OGA. Structures of these inhibitors in complex with human OGA reveal the basis for their exceptional potency and show that they extend out of the enzyme active site cleft. Leveraging this structure, we create a high affinity chemoproteomic probe that enables simple one-step purification of endogenous OGA from brain and targeted proteomic mapping of its post-translational modifications. These data uncover a range of new modifications, including some that are less-known, such as O-ubiquitination and N-formylation. We expect that these inhibitors and chemoproteomics probes will prove useful as fundamental tools to decipher the mechanisms by which OGA is regulated and directed to its diverse cellular substrates. Moreover, the inhibitors and structures described here lay out a blueprint that will enable the creation of chemical probes and tools to interrogate OGA and other carbohydrate active enzymes.
Collapse
Affiliation(s)
- Manuel González-Cuesta
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Peter Sidhu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Roger A Ashmus
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Alexandra Males
- Department of Chemistry. University of York, York YO10 5DD, United Kingdom
| | - Cameron Proceviat
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Zarina Madden
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Jason C Rogalski
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jil A Busmann
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC, Universidad de Sevilla, 41092 Sevilla, Spain
| | - Gideon J Davies
- Department of Chemistry. University of York, York YO10 5DD, United Kingdom
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
12
|
The Spliced Leader RNA Silencing (SLS) Pathway in Trypanosoma brucei Is Induced by Perturbations of Endoplasmic Reticulum, Golgi Complex, or Mitochondrial Protein Factors: Functional Analysis of SLS-Inducing Kinase PK3. mBio 2021; 12:e0260221. [PMID: 34844425 PMCID: PMC8630539 DOI: 10.1128/mbio.02602-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the parasite Trypanosoma brucei, the causative agent of human African sleeping sickness, all mRNAs are trans-spliced to generate a common 5′ exon derived from the spliced leader (SL) RNA. Perturbations of protein translocation across the endoplasmic reticulum (ER) induce the spliced leader RNA silencing (SLS) pathway. SLS activation is mediated by a serine-threonine kinase, PK3, which translocates from the cytosolic face of the ER to the nucleus, where it phosphorylates the TATA-binding protein TRF4, leading to the shutoff of SL RNA transcription, followed by induction of programmed cell death. Here, we demonstrate that SLS is also induced by depletion of the essential ER-resident chaperones BiP and calreticulin, ER oxidoreductin 1 (ERO1), and the Golgi complex-localized quiescin sulfhydryl oxidase (QSOX). Most strikingly, silencing of Rhomboid-like 1 (TIMRHOM1), involved in mitochondrial protein import, also induces SLS. The PK3 kinase, which integrates SLS signals, is modified by phosphorylation on multiple sites. To determine which of the phosphorylation events activate PK3, several individual mutations or their combination were generated. These mutations failed to completely eliminate the phosphorylation or translocation of the kinase to the nucleus. The structures of PK3 kinase and its ATP binding domain were therefore modeled. A conserved phenylalanine at position 771 was proposed to interact with ATP, and the PK3F771L mutation completely eliminated phosphorylation under SLS, suggesting that the activation involves most if not all of the phosphorylation sites. The study suggests that the SLS occurs broadly in response to failures in protein sorting, folding, or modification across multiple compartments.
Collapse
|
13
|
Liu S, Joshi K, Denning MF, Zhang J. RIPK3 signaling and its role in the pathogenesis of cancers. Cell Mol Life Sci 2021; 78:7199-7217. [PMID: 34654937 PMCID: PMC9044760 DOI: 10.1007/s00018-021-03947-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/04/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
RIPK3 (receptor-interacting protein kinase 3) is a serine/threonine-protein kinase. As a key component of necrosomes, RIPK3 is an essential mediator of inflammatory factors (such as TNFα-tumor necrosis factor α) and infection-induced necroptosis, a programmed necrosis. In addition, RIPK3 signaling is also involved in the regulation of apoptosis, cytokine/chemokine production, mitochondrial metabolism, autophagy, and cell proliferation by interacting with and/or phosphorylating the critical regulators of the corresponding signaling pathways. Similar to apoptosis, RIPK3-signaling-mediated necroptosis is inactivated in most types of cancers, suggesting RIPK3 might play a critical suppressive role in the pathogenesis of cancers. However, in some inflammatory types of cancers, such as pancreatic cancers and colorectal cancers, RIPK3 signaling might promote cancer development by stimulating proliferation signaling in tumor cells and inducing an immunosuppressive response in the tumor environment. In this review, we summarize recent research progress in the regulators of RIPK3 signaling, and discuss the function of this pathway in the regulation of mixed lineage kinase domain-like (MLKL)-mediated necroptosis and MLKL-independent cellular behaviors. In addition, we deliberate the potential roles of RIPK3 signaling in the pathogenesis of different types of cancers and discuss the potential strategies for targeting this pathway in cancer therapy.
Collapse
Affiliation(s)
- Shanhui Liu
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Kanak Joshi
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Mitchell F Denning
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.
- Department of Pathology and Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
14
|
Lin YH, Platt MP, Gilley RP, Brown D, Dube PH, Yu Y, Gonzalez-Juarbe N. Influenza Causes MLKL-Driven Cardiac Proteome Remodeling During Convalescence. Circ Res 2021; 128:570-584. [PMID: 33501852 DOI: 10.1161/circresaha.120.318511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RATIONALE Patients with and without cardiovascular diseases have been shown to be at risk of influenza-mediated cardiac complications. Recent clinical reports support the notion of a direct link between laboratory-confirmed influenza virus infections and adverse cardiac events. OBJECTIVE Define the molecular mechanisms underlying influenza virus-induced cardiac pathogenesis after resolution of pulmonary infection and the role of necroptosis in this process. METHODS AND RESULTS Hearts from wild-type and necroptosis-deficient (MLKL [mixed lineage kinase domain-like protein]-KO) mice were dissected 12 days after initial influenza A virus (IAV) infection when viral titers were undetectable in the lungs. Immunofluorescence microscopy and plaque assays showed presence of viable IAV particles in the myocardium without generation of interferon responses. Global proteome and phosphoproteome analyses using high-resolution accurate mass-based LC-MS/MS and label-free quantitation showed that the global proteome as well as the phosphoproteome profiles were significantly altered in IAV-infected mouse hearts in a strain-independent manner. Necroptosis-deficient mice had increased survival and reduced weight loss post-IAV infection, as well as increased antioxidant and mitochondrial function, indicating partial protection to IAV infection. These findings were confirmed in vitro by pretreatment of human and rat myocytes with antioxidants or necroptosis inhibitors, which blunted oxidative stress and mitochondrial damage after IAV infection. CONCLUSIONS This study provides the first evidence that the cardiac proteome and phosphoproteome are significantly altered post-pulmonary influenza infection. Moreover, viral particles can persist in the heart after lung clearance, altering mitochondrial function and promoting cell death without active replication and interferon responses. Finally, our findings show inhibition of necroptosis or prevention of mitochondrial damage as possible therapeutic interventions to reduce cardiac damage during influenza infections. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Yi-Han Lin
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, MD (Y.-H.L., M.P.P., D.B., Y.Y., N.G.-J.)
| | - Maryann P Platt
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, MD (Y.-H.L., M.P.P., D.B., Y.Y., N.G.-J.)
| | - Ryan P Gilley
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, TX (R.P.G., P.H.D.)
| | - David Brown
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, MD (Y.-H.L., M.P.P., D.B., Y.Y., N.G.-J.)
| | - Peter H Dube
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, TX (R.P.G., P.H.D.)
| | - Yanbao Yu
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, MD (Y.-H.L., M.P.P., D.B., Y.Y., N.G.-J.)
| | - Norberto Gonzalez-Juarbe
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, MD (Y.-H.L., M.P.P., D.B., Y.Y., N.G.-J.)
| |
Collapse
|
15
|
Rezcallah MC, Al-Mazi T, Ammit AJ. Cataloguing the phosphorylation sites of tristetraprolin (TTP): Functional implications for inflammatory diseases. Cell Signal 2020; 78:109868. [PMID: 33276085 DOI: 10.1016/j.cellsig.2020.109868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 01/10/2023]
Abstract
Tristetraprolin (TTP) is a destabilizing mRNA binding protein known to regulate gene expression of a wide variety of targets, including those that control inflammation. TTP expression, regulation and function is controlled by phosphorylation. While the importance of key serine (S) sites (S52 and S178 in mice and S186 in humans) has been recognized, other sites on the hyperphosphorylated TTP protein have more recently emerged as playing an important role in regulating cellular signalling and downstream functions of TTP. In order to propel investigation of TTP and fully exploit its potential as a drug target in inflammatory disease, this review will catalogue TTP phosphorylation sites in both the murine and human TTP protein, the known and unknown roles and functions of these sites, the kinases and phosphatases that act upon TTP and overview methodological approaches to increase our knowledge of this important protein regulated by phosphorylation.
Collapse
Affiliation(s)
- Maria C Rezcallah
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Trisha Al-Mazi
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Ma S, Liu H, Sun W, Mustafa A, Xi Y, Pu F, Li Y, Han C, Bai L, Hua H. Molecular evolution of the ATP-binding cassette subfamily G member 2 gene subfamily and its paralogs in birds. BMC Evol Biol 2020; 20:85. [PMID: 32664916 PMCID: PMC7362505 DOI: 10.1186/s12862-020-01654-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Background ATP-binding cassette (ABC) transporters are involved in the active transportation of various endogenous or exogenous substances. Two ABCG2 gene subfamily members have been identified in birds. A detailed comparative study of the ABCG2 and ABCG2-like genes aid our understanding of their evolutionary history at the molecular level and provide a theoretical reference for studying the specific functions of ABCG2 and ABCG2-like genes in birds. Results We first identified 77 ABCG2/ABCG2-like gene sequences in the genomes of 41 birds. Further analysis showed that both the nucleic acid and amino acid sequences of ABCG2 and ABCG2-like genes were highly conserved and exhibited high homology in birds. However, significant differences in the N-terminal structure were found between the ABCG2 and ABCG2-like amino acid sequences. A selective pressure analysis showed that the ABCG2 and ABCG2-like genes were affected by purifying selection during the process of bird evolution. Conclusions We believe that multiple members of the ABCG2 gene subfamily exist on chromosome 4 in the ancestors of birds. Over the long course of evolution, only the ABCG2 gene was retained on chromosome 4 in birds. The ABCG2-like gene on chromosome 6 might have originated from chromosome replication or fusion. The structural differences between the N terminus of ABCG2 protein and those of ABCG2-like proteins might lead to functional differences between the corresponding genes.
Collapse
Affiliation(s)
- Shengchao Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China.
| | - Wenqiang Sun
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Ahsan Mustafa
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, P.R. China
| | - Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Fajun Pu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Yanying Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Lili Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - He Hua
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| |
Collapse
|
17
|
Abstract
There is a type of noncanonical autophagy, which is independent of ATG5 (autophagy related 5), also referred to as alternative autophagy. Both canonical and ATG5-independent alternative autophagy require the initiator ULK1 (unc-51 like kinase 1), but how ULK1 regulates these two types of autophagy differently remains unclear. A recent paper from Torii et al. demonstrates that phosphorylation of ULK1 at Ser746 by RIPK3 (receptor interacting serine/threonine kinase 3) is the key difference between these two types of autophagy; this phosphorylation is exclusively found during alternative autophagy.
Collapse
Affiliation(s)
- Xin Wen
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
18
|
Identification of a phosphorylation site on Ulk1 required for genotoxic stress-induced alternative autophagy. Nat Commun 2020; 11:1754. [PMID: 32273498 PMCID: PMC7145817 DOI: 10.1038/s41467-020-15577-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 03/13/2020] [Indexed: 01/29/2023] Open
Abstract
Alternative autophagy is an autophagy-related protein 5 (Atg5)-independent type of macroautophagy. Unc51-like kinase 1 (Ulk1) is an essential initiator not only for Atg5-dependent canonical autophagy but also for alternative autophagy. However, the mechanism as to how Ulk1 differentially regulates both types of autophagy has remained unclear. In this study, we identify a phosphorylation site of Ulk1 at Ser746, which is phosphorylated during genotoxic stress-induced alternative autophagy. Phospho-Ulk1746 localizes exclusively on the Golgi and is required for alternative autophagy, but not canonical autophagy. We also identify receptor-interacting protein kinase 3 (RIPK3) as the kinase responsible for genotoxic stress-induced Ulk1746 phosphorylation, because RIPK3 interacts with and phosphorylates Ulk1 at Ser746, and loss of RIPK3 abolishes Ulk1746 phosphorylation. These findings indicate that RIPK3-dependent Ulk1746 phosphorylation on the Golgi plays a pivotal role in genotoxic stress-induced alternative autophagy. Unlike canonical macroautophagy, alternative autophagy does not require the factors Atg5 and Atg7, but does require Ulk1. Here the authors show that phosphorylation of Ulk1 at Ser746 by RIPK3 is required for alternative autophagy initiation at the Golgi in response to genotoxic stress.
Collapse
|
19
|
Reversible phosphorylation of Rpn1 regulates 26S proteasome assembly and function. Proc Natl Acad Sci U S A 2019; 117:328-336. [PMID: 31843888 DOI: 10.1073/pnas.1912531117] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The fundamental importance of the 26S proteasome in health and disease suggests that its function must be finely controlled, and yet our knowledge about proteasome regulation remains limited. Posttranslational modifications, especially phosphorylation, of proteasome subunits have been shown to impact proteasome function through different mechanisms, although the vast majority of proteasome phosphorylation events have not been studied. Here, we have characterized 1 of the most frequently detected proteasome phosphosites, namely Ser361 of Rpn1, a base subunit of the 19S regulatory particle. Using a variety of approaches including CRISPR/Cas9-mediated gene editing and quantitative mass spectrometry, we found that loss of Rpn1-S361 phosphorylation reduces proteasome activity, impairs cell proliferation, and causes oxidative stress as well as mitochondrial dysfunction. A screen of the human kinome identified several kinases including PIM1/2/3 that catalyze S361 phosphorylation, while its level is reversibly controlled by the proteasome-resident phosphatase, UBLCP1. Mechanistically, Rpn1-S361 phosphorylation is required for proper assembly of the 26S proteasome, and we have utilized a genetic code expansion system to directly demonstrate that S361-phosphorylated Rpn1 more readily forms a precursor complex with Rpt2, 1 of the first steps of 19S base assembly. These findings have revealed a prevalent and biologically important mechanism governing proteasome formation and function.
Collapse
|
20
|
What if? Mouse proteomics after gene inactivation. J Proteomics 2019; 199:102-122. [DOI: 10.1016/j.jprot.2019.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 12/17/2022]
|
21
|
Inactivation of Cyclic AMP Response Element Transcription Caused by Constitutive p38 Activation Is Mediated by Hyperphosphorylation-Dependent CRTC2 Nucleocytoplasmic Transport. Mol Cell Biol 2019; 39:MCB.00554-18. [PMID: 30782776 DOI: 10.1128/mcb.00554-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/01/2019] [Indexed: 01/05/2023] Open
Abstract
The p38 signal transduction pathway can be activated transiently or constitutively, depending on the contexts in which the activation occurs. However, the biological consequence of constitutive activation of p38 is largely unknown. After screening 300 transcriptional cofactors, we identified CRTC2 as a downstream substrate of constitutively activated p38. Constitutive, rather than transient, activation of p38 led to hyperphosphorylation of CRTC2, resulting in CRTC2 cytosolic relocation and subsequent inactivation of cyclic AMP response element (CRE)-mediated transcription. Interestingly, the cytosolic translocation of CRTC2 depended on phosphorylation accumulation at multiple sites (≥11 phosphoserine/phosphothreonine residues) but not on specific sites. The hyperphosphorylation-driven nucleocytoplasmic transport of CRTC2 may not be a rare case of nuclear export of proteins, as we also observed that constitutively activated p38 promoted FOS nuclear export in a hyperphosphorylation-dependent manner. Collectively, our study uncovered a previously unknown mechanism of inactivation of selected transcription, which results from hyperphosphorylation-driven nucleocytoplasmic transport of cofactors or transcription factors mediated by constitutively active kinase.
Collapse
|
22
|
Signals Getting Crossed in the Entanglement of Redox and Phosphorylation Pathways: Phosphorylation of Peroxiredoxin Proteins Sparks Cell Signaling. Antioxidants (Basel) 2019; 8:antiox8020029. [PMID: 30678096 PMCID: PMC6406269 DOI: 10.3390/antiox8020029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen and nitrogen species have cell signaling properties and are involved in a multitude of processes beyond redox homeostasis. The peroxiredoxin (Prdx) proteins are highly sensitive intracellular peroxidases that can coordinate cell signaling via direct reactive species scavenging or by acting as a redox sensor that enables control of binding partner activity. Oxidation of the peroxidatic cysteine residue of Prdx proteins are the classical post-translational modification that has been recognized to modulate downstream signaling cascades, but increasing evidence supports that dynamic changes to phosphorylation of Prdx proteins is also an important determinant in redox signaling. Phosphorylation of Prdx proteins affects three-dimensional structure and function to coordinate cell proliferation, wound healing, cell fate and lipid signaling. The advent of large proteomic datasets has shown that there are many opportunities to understand further how phosphorylation of Prdx proteins fit into intracellular signaling cascades in normal or malignant cells and that more research is necessary. This review summarizes the Prdx family of proteins and details how post-translational modification by kinases and phosphatases controls intracellular signaling.
Collapse
|
23
|
Al-Moujahed A, Tian B, Efstathiou NE, Konstantinou EK, Hoang M, Lin H, Miller JW, Vavvas DG. Receptor interacting protein kinase 3 (RIP3) regulates iPSCs generation through modulating cell cycle progression genes. Stem Cell Res 2019; 35:101387. [PMID: 30703581 PMCID: PMC7375132 DOI: 10.1016/j.scr.2019.101387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 12/24/2018] [Accepted: 01/18/2019] [Indexed: 01/02/2023] Open
Abstract
The molecular mechanisms involved in induced pluripotent stem cells (iPSCs) generation are poorly understood. The cell death machinery of apoptosis-inducing caspases have been shown to facilitate the process of iPSCs reprogramming. However, the effect of other cell death processes, such as programmed necrosis (necroptosis), on iPSCs induction has not been studied. In this study, we investigated the role of receptor-interacting protein kinase 3 (RIP3), an essential regulator of necroptosis, in reprogramming mouse embryonic fibroblast cells (MEFs) into iPSCs. RIP3 was found to be upregulated in iPSCs compared to MEFs. Deletion of RIP3 dramatically suppressed the reprogramming of iPSCs (~82%). RNA-seq analysis and qRT-PCR showed that RIP3 KO MEFs expressed lower levels of genes that control cell cycle progression and cell division and higher levels of extracellular matrix-regulating genes. The growth rate of RIP3 KO MEFs was significantly slower than WT MEFs. These findings can partially explain the inhibitory effects of RIP3 deletion on iPSCs generation and show for the first time that the necroptosis kinase RIP3 plays an important role in iPSC reprogramming. In contrast to RIP3, the kinase and scaffolding functions of RIPK1 appeared to have distinct effects on reprogramming.
Collapse
Affiliation(s)
- Ahmad Al-Moujahed
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, United States; Department of Pathology, Boston University School of Medicine, Boston, MA 02118, United States
| | - Bo Tian
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, United States; Department of Ophthalmology & Visual Sciences, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Nikolaos E Efstathiou
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, United States
| | - Eleni K Konstantinou
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, United States
| | - Mien Hoang
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, United States
| | - Haijiang Lin
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, United States; Department of Ophthalmology & Visual Sciences, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Joan W Miller
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, United States
| | - Demetrios G Vavvas
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, United States.
| |
Collapse
|
24
|
Steinberg SF. Post-translational modifications at the ATP-positioning G-loop that regulate protein kinase activity. Pharmacol Res 2018; 135:181-187. [PMID: 30048755 DOI: 10.1016/j.phrs.2018.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/27/2022]
Abstract
Protein kinases are a superfamily of enzymes that control a wide range of cellular functions. These enzymes share a highly conserved catalytic core that folds into a similar bilobar three-dimensional structure. One highly conserved region in the protein kinase core is the glycine-rich loop (or G-loop), a highly flexible loop that is characterized by a consensus GxGxxG sequence. The G-loop points toward the catalytic cleft and functions to bind and position ATP for phosphotransfer. Of note, in many protein kinases, the second and third glycine residues in the G-loop triad flank residues that can be targets for phosphorylation (Ser, Thr, or Tyr) or other post-translational modifications (ubiquitination, acetylation, O-GlcNAcylation, oxidation). There is considerable evidence that cyclin-dependent kinases are held inactive through inhibitory phosphorylation of the conserved Thr/Tyr residues in this position of the G-loop and that dephosphorylation by cellular phosphatases is required for CDK activation and progression through the cell cycle. This review summarizes literature that identifies residues in or adjacent to the G-loop in other protein kinases that are targets for functionally important post-translational modifications.
Collapse
Affiliation(s)
- Susan F Steinberg
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
25
|
Lombardi LM, Zaghlula M, Sztainberg Y, Baker SA, Klisch TJ, Tang AA, Huang EJ, Zoghbi HY. An RNA interference screen identifies druggable regulators of MeCP2 stability. Sci Transl Med 2018; 9:9/404/eaaf7588. [PMID: 28835516 DOI: 10.1126/scitranslmed.aaf7588] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 04/14/2016] [Accepted: 06/13/2017] [Indexed: 12/14/2022]
Abstract
Alterations in gene dosage due to copy number variation are associated with autism spectrum disorder, intellectual disability (ID), and other psychiatric disorders. The nervous system is so acutely sensitive to the dose of methyl-CpG-binding protein 2 (MeCP2) that even a twofold change in MeCP2 protein-either increased or decreased-results in distinct disorders with overlapping features including ID, autistic behavior, and severe motor dysfunction. Rett syndrome is caused by loss-of-function mutations in MECP2, whereas duplications spanning the MECP2 locus result in MECP2 duplication syndrome (MDS), which accounts for ~1% of X-linked ID. Despite evidence from mouse models that restoring MeCP2 can reverse the course of disease, there are currently no U.S. Food and Drug Administration-approved therapies available to clinically modulate MeCP2 abundance. We used a forward genetic screen against all known human kinases and phosphatases to identify druggable regulators of MeCP2 stability. Two putative modulators of MeCP2, HIPK2 (homeodomain-interacting protein kinase 2) and PP2A (protein phosphatase 2A), were validated as stabilizers of MeCP2 in vivo. Further, pharmacological inhibition of PP2A in vivo reduced MeCP2 in the nervous system and rescued both overexpression and motor abnormalities in a mouse model of MDS. Our findings reveal potential therapeutic targets for treating disorders of altered MECP2 dosage.
Collapse
Affiliation(s)
- Laura M Lombardi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Manar Zaghlula
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.,Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yehezkel Sztainberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Steven A Baker
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Tiemo J Klisch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Amy A Tang
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Eric J Huang
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA. .,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.,Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
26
|
Sun Y, Zhai L, Ma S, Zhang C, Zhao L, Li N, Xu Y, Zhang T, Guo Z, Zhang H, Xu P, Zhao X. Down-regulation of RIP3 potentiates cisplatin chemoresistance by triggering HSP90-ERK pathway mediated DNA repair in esophageal squamous cell carcinoma. Cancer Lett 2018; 418:97-108. [DOI: 10.1016/j.canlet.2018.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/30/2017] [Accepted: 01/08/2018] [Indexed: 11/29/2022]
|
27
|
Lusthaus M, Mazkereth N, Donin N, Fishelson Z. Receptor-Interacting Protein Kinases 1 and 3, and Mixed Lineage Kinase Domain-Like Protein Are Activated by Sublytic Complement and Participate in Complement-Dependent Cytotoxicity. Front Immunol 2018. [PMID: 29527209 PMCID: PMC5829068 DOI: 10.3389/fimmu.2018.00306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The complement system participates in the pathogenesis of many diseases. Complement activation produces several active protein complexes and peptides, including the terminal C5b-9 complexes. It was reported that C5b-9 complexes insert into the plasma membrane and cause membrane perturbation, intracellular calcium surge, metabolic depletion, and osmotic lysis. Previously, we showed that complement-dependent cytotoxicity (CDC) is regulated by JNK and Bid. Here, we demonstrate that three mediators in TNFα-induced necroptosis (regulated necrosis), the receptor-interacting protein kinases, receptor-interacting protein kinase 1 (RIPK1) and receptor-interacting protein kinase 3 (RIPK3), and mixed-lineage kinase domain-like protein (MLKL), are activated by complement and contribute to CDC. Cell treatment with necrostatin-1 (Nec-1), a RIPK1 inhibitor, GSK’872, a RIPK3 inhibitor, or necrosulfonamide and GW806742X, MLKL inhibitors, restrain CDC. These findings were confirmed by using specific siRNAs targeting the synthesis of these proteins. Mouse fibroblasts lacking RIPK3 or MLKL were found to be less sensitive to C5b-9 than were wild-type (WT) fibroblasts. Enhanced CDC was achieved by RIPK1 or RIPK3 overexpression but not by the overexpression of a RHIM-RIPK1 mutant nor by a kinase-dead RIPK3 mutant. Nec-1 reduces the CDC of WT but not of RIPK3-knockout fibroblasts. Cells treated with a sublytic dose of complement exhibit co-localization of RIPK3 with RIPK1 in the cytoplasm and co-localization of RIPK3 and MLKL with C5b-9 at the plasma membrane. Data supporting cooperation among the RIP kinases, MLKL, JNK, and Bid in CDC are presented. These results provide a deeper insight into the cell death process activated by complement and identify potential points of cross talk between complement and other inducers of inflammation and regulated necrosis.
Collapse
Affiliation(s)
- Michal Lusthaus
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Niv Mazkereth
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalie Donin
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zvi Fishelson
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
28
|
Yang Z, Wang Y, Zhang Y, He X, Zhong CQ, Ni H, Chen X, Liang Y, Wu J, Zhao S, Zhou D, Han J. RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis. Nat Cell Biol 2018; 20:186-197. [PMID: 29358703 DOI: 10.1038/s41556-017-0022-y] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/05/2017] [Indexed: 01/22/2023]
Abstract
Receptor-interacting protein kinase 3 (RIP3)-regulated production of reactive oxygen species (ROS) positively feeds back on tumour necrosis factor (TNF)-induced necroptosis, a type of programmed necrosis. Glutamine catabolism is known to contribute to RIP3-mediated ROS induction, but the major contributor is unknown. Here, we show that RIP3 activates the pyruvate dehydrogenase complex (PDC, also known as PDH), the rate-limiting enzyme linking glycolysis to aerobic respiration, by directly phosphorylating the PDC E3 subunit (PDC-E3) on T135. Upon activation, PDC enhances aerobic respiration and subsequent mitochondrial ROS production. Unexpectedly, mixed-lineage kinase domain-like (MLKL) is also required for the induction of aerobic respiration, and we further show that it is required for RIP3 translocation to meet mitochondria-localized PDC. Our data uncover a regulation mechanism of PDC activity, show that PDC activation by RIP3 is most likely the major mechanism activated by TNF to increase aerobic respiration and its by-product ROS, and suggest that RIP3-dependent induction of aerobic respiration contributes to pathologies related to oxidative stress.
Collapse
Affiliation(s)
- Zhentao Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yingying Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiadi He
- State Key Laboratory of Genetic Engineering, School of Life Science and Institute of Biomedical Sciences, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
| | - Chuan-Qi Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hengxiao Ni
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xin Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yaoji Liang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shimin Zhao
- State Key Laboratory of Genetic Engineering, School of Life Science and Institute of Biomedical Sciences, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
29
|
Pajares MÁ. PDRG1 at the interface between intermediary metabolism and oncogenesis. World J Biol Chem 2017; 8:175-186. [PMID: 29225734 PMCID: PMC5714802 DOI: 10.4331/wjbc.v8.i4.175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/14/2017] [Accepted: 11/19/2017] [Indexed: 02/05/2023] Open
Abstract
PDRG1 is a small oncogenic protein of 133 residues. In normal human tissues, the p53 and DNA damage-regulated gene 1 (PDRG1) gene exhibits maximal expression in the testis and minimal levels in the liver. Increased expression has been detected in several tumor cells and in response to genotoxic stress. High-throughput studies identified the PDRG1 protein in a variety of macromolecular complexes involved in processes that are altered in cancer cells. For example, this oncogene has been found as part of the RNA polymerase II complex, the splicing machinery and nutrient sensing machinery, although its role in these complexes remains unclear. More recently, the PDRG1 protein was found as an interaction target for the catalytic subunits of methionine adenosyltransferases. These enzymes synthesize S-adenosylmethionine, the methyl donor for, among others, epigenetic methylations that occur on the DNA and histones. In fact, downregulation of S-adenosylmethionine synthesis is the first functional effect directly ascribed to PDRG1. The existence of global DNA hypomethylation, together with increased PDRG1 expression, in many tumor cells highlights the importance of this interaction as one of the putative underlying causes for cell transformation. Here, we will review the accumulated knowledge on this oncogene, emphasizing the numerous aspects that remain to be explored.
Collapse
Affiliation(s)
- María Ángeles Pajares
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC), Madrid 28040, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid 28046, Spain
| |
Collapse
|
30
|
Yruela I, Oldfield CJ, Niklas KJ, Dunker AK. Evidence for a Strong Correlation Between Transcription Factor Protein Disorder and Organismic Complexity. Genome Biol Evol 2017; 9:1248-1265. [PMID: 28430951 PMCID: PMC5434936 DOI: 10.1093/gbe/evx073] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2017] [Indexed: 12/11/2022] Open
Abstract
Studies of diverse phylogenetic lineages reveal that protein disorder increases in concert with organismic complexity but that differences nevertheless exist among lineages. To gain insight into this phenomenology, we analyzed all of the transcription factor (TF) families for which sequences are known for 17 species spanning bacteria, yeast, algae, land plants, and animals and for which the number of different cell types has been reported in the primary literature. Although the fraction of disordered residues in TF sequences is often moderately or poorly correlated with organismic complexity as gauged by cell-type number (r2 < 0.5), an unbiased and phylogenetically broad analysis shows that organismic complexity is positively and strongly correlated with the total number of TFs, the number of their spliced variants and their total disordered residues content (r2 > 0.8). Furthermore, the correlation between the fraction of disordered residues and cell-type number becomes stronger when confined to the TF families participating in cell cycle, cell size, cell division, cell differentiation, or cell proliferation, and other important developmental processes. The data also indicate that evolutionarily simpler organisms allow for the detection of subtle differences in the conserved IDRs of TFs as well as changes in variable IDRs, which can influence the DNA recognition and multifunctionality of TFs through direct or indirect mechanisms. Although strong correlations cannot be taken as evidence for cause-and-effect relationships, we interpret our data to indicate that increasing TF disorder likely was an important factor contributing to the evolution of organismic complexity and not merely a concurrent unrelated effect of increasing organismic complexity.
Collapse
Affiliation(s)
- Inmaculada Yruela
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain.,Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Christopher J Oldfield
- Department of Biochemistry and Molecular Biology, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| | - Karl J Niklas
- School of Integrative Plant Science, Cornell University, Ithaca, NY
| | - A Keith Dunker
- Department of Biochemistry and Molecular Biology, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
31
|
Liu H, Wei Q, Huang C, Zhang Y, Guo Z. Potential Roles of Intrinsic Disorder in Maternal-Effect Proteins Involved in the Maintenance of DNA Methylation. Int J Mol Sci 2017; 18:E1898. [PMID: 28869544 PMCID: PMC5618547 DOI: 10.3390/ijms18091898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/14/2023] Open
Abstract
DNA methylation is an important epigenetic modification that needs to be carefully controlled as a prerequisite for normal early embryogenesis. Compelling evidence now suggests that four maternal-effect proteins, primordial germ cell 7 (PGC7), zinc finger protein 57 (ZFP57), tripartite motif-containing 28 (TRIM28) and DNA methyltransferase (cytosine-5) 1 (DNMT1) are involved in the maintenance of DNA methylation. However, it is still not fully understood how these maternal-effect proteins maintain the DNA methylation imprint. We noticed that a feature common to these proteins is the presence of significant levels of intrinsic disorder so in this study we started from an intrinsic disorder perspective to try to understand these maternal-effect proteins. To do this, we firstly analysed the intrinsic disorder predispositions of PGC7, ZFP57, TRIM28 and DNMT1 by using a set of currently available computational tools and secondly conducted an intensive literature search to collect information on their interacting partners and structural characterization. Finally, we discuss the potential effect of intrinsic disorder on the function of these proteins in maintaining DNA methylation.
Collapse
Affiliation(s)
- Hongliang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Qing Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China.
| | - Chenyang Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
32
|
He C, Chen AY, Wei HX, Feng XS, Peng HJ. Phosphoproteome of Toxoplasma gondii Infected Host Cells Reveals Specific Cellular Processes Predominating in Different Phases of Infection. Am J Trop Med Hyg 2017; 97:236-244. [PMID: 28719319 DOI: 10.4269/ajtmh.16-0901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The invasion of Toxoplasma gondii tachyzoites into the host cell results in extensive host cell signaling activation/deactivation that is usually regulated by the phosphorylation/dephosphorylation. To elucidate how T. gondii regulates host cell signal transduction, the comparative phosphoproteome of stable isotope labeling with amino acids in cell culture-labeled human foreskin fibroblast cells was analyzed. The cells were grouped (Light [L], Medium [M], and Heavy [H] groups) based on the labeling isotope weight and were infected with T. gondii for different lengths of time (L: 0 hour; M: 2 hours; and H: 6 hours). A total of 892 phosphoproteins were identified with 1,872 phosphopeptides and 1,619 phosphorylation sites. The M versus L comparison revealed 694 significantly regulated phosphopeptides (436 upregulated and 258 downregulated). The H versus L comparison revealed 592 significantly regulated phosphopeptides (146 upregulated and 446 downregulated). The H versus M comparison revealed 794 significantly regulated phosphopeptides (149 upregulated and 645 downregulated). At 2 and 6 hours post-T. gondii infection, the most predominant host cell reactions were cell cycle regulation and cytoskeletal reorganization, which might be required for the efficient invasion and multiplication of T. gondii. Similar biological process profiles but different molecular function categories of host cells infected with T. gondii for 2 and 6 hours, which suggested that the host cell processes were not affected significantly by T. gondii infection but emphasized some differences in specific cellular processes at this two time points. Western blotting verification of some significantly regulated phosphoprotein phosphorylation sites was consistent with the mass spectra data. This study provided new insights into and further understanding of pathogen-host interactions from the host cell perspective.
Collapse
Affiliation(s)
- Cheng He
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, and Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Ai-Yuan Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, and Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Hai-Xia Wei
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, and Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Xiao-Shuang Feng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, and Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Hong-Juan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, and Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| |
Collapse
|
33
|
Ha S, Jeong SH, Yi K, Chung KM, Hong CJ, Kim SW, Kim EK, Yu SW. Phosphorylation of p62 by AMP-activated protein kinase mediates autophagic cell death in adult hippocampal neural stem cells. J Biol Chem 2017; 292:13795-13808. [PMID: 28655770 DOI: 10.1074/jbc.m117.780874] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/26/2017] [Indexed: 12/25/2022] Open
Abstract
In the adult brain, programmed death of neural stem cells is considered to be critical for tissue homeostasis and cognitive function and is dysregulated in neurodegeneration. Previously, we have reported that adult rat hippocampal neural (HCN) stem cells undergo autophagic cell death (ACD) following insulin withdrawal. Because the apoptotic capability of the HCN cells was intact, our findings suggested activation of unique molecular mechanisms linking insulin withdrawal to ACD rather than apoptosis. Here, we report that phosphorylation of autophagy-associated protein p62 by AMP-activated protein kinase (AMPK) drives ACD and mitophagy in HCN cells. Pharmacological inhibition of AMPK or genetic ablation of the AMPK α2 subunit by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing suppressed ACD, whereas AMPK activation promoted ACD in insulin-deprived HCN cells. We found that following insulin withdrawal AMPK phosphorylated p62 at a novel site, Ser-293/Ser-294 (in rat and human p62, respectively). Phosphorylated p62 translocated to mitochondria and induced mitophagy and ACD. Interestingly, p62 phosphorylation at Ser-293 was not required for staurosporine-induced apoptosis in HCN cells. To the best of our knowledge, this is the first report on the direct phosphorylation of p62 by AMPK. Our data suggest that AMPK-mediated p62 phosphorylation is an ACD-specific signaling event and provide novel mechanistic insight into the molecular mechanisms in ACD.
Collapse
Affiliation(s)
- Shinwon Ha
- From the Department of Brain and Cognitive Sciences and
| | | | - Kyungrim Yi
- From the Department of Brain and Cognitive Sciences and
| | | | | | - Seong Who Kim
- the Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Eun-Kyoung Kim
- From the Department of Brain and Cognitive Sciences and.,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea and
| | - Seong-Woon Yu
- From the Department of Brain and Cognitive Sciences and .,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea and
| |
Collapse
|
34
|
Verdina A, Di Rocco G, Virdia I, Monteonofrio L, Gatti V, Policicchio E, Bruselles A, Tartaglia M, Soddu S. HIPK2-T566 autophosphorylation diversely contributes to UV- and doxorubicin-induced HIPK2 activation. Oncotarget 2017; 8:16744-16754. [PMID: 28060750 PMCID: PMC5369998 DOI: 10.18632/oncotarget.14421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/15/2016] [Indexed: 12/30/2022] Open
Abstract
HIPK2 is a Y-regulated S/T kinase involved in various cellular processes, including cell-fate decision during development and DNA damage response. Cis-autophosphorylation in the activation-loop and trans-autophosphorylation at several S/T sites along the protein are required for HIPK2 activation, subcellular localization, and subsequent posttranslational modifications. The specific function of a few of these autophosphorylations has been recently clarified; however, most of the sites found phosphorylated by mass spectrometry in human and/or mouse HIPK2 are still uncharacterized. In the process of studying HIPK2 in human colorectal cancers, we identified a mutation (T566P) in a site we previously found autophosphorylated in mouse Hipk2. Biochemical and functional characterization of this site showed that compared to wild type (wt) HIPK2, HIPK2-T566P maintains nuclear-speckle localization and has only a mild reduction in kinase and growth arresting activities upon overexpression. Next, we assessed cell response following UV-irradiation or treatment with doxorubicin, two well-known HIPK2 activators, by evaluating cell number and viability, p53-Ser46 phosphorylation, p21 induction, and caspase cleavage. Interestingly, cells expressing HIPK2-T566P mutant did not respond to UV-irradiation, while behaved similarly to wt HIPK2 upon doxorubicin-treatment. Evaluation of HIPK2-T566 phosphorylation status by a T566-phospho-specific antibody showed constitutive phosphorylation in unstressed cells, which was maintained after doxorubicin-treatment but inhibited by UV-irradiation. Taken together, these data show that HIPK2-T566 phosphorylation contributes to UV-induced HIPK2 activity but it is dispensable for doxorubicin response.
Collapse
Affiliation(s)
- Alessandra Verdina
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Giuliana Di Rocco
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Ilaria Virdia
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Laura Monteonofrio
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Veronica Gatti
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
- Present address: Istituto di Biologia Cellulare e Neurobiologia, CNR, Monterotondo Scalo, Rome, Italy
| | - Eleonora Policicchio
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandro Bruselles
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù – IRCCS, Rome, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| |
Collapse
|
35
|
Guo X, Huang X, Chen MJ. Reversible phosphorylation of the 26S proteasome. Protein Cell 2017; 8:255-272. [PMID: 28258412 PMCID: PMC5359188 DOI: 10.1007/s13238-017-0382-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/26/2017] [Indexed: 01/09/2023] Open
Abstract
The 26S proteasome at the center of the ubiquitin-proteasome system (UPS) is essential for virtually all cellular processes of eukaryotes. A common misconception about the proteasome is that, once made, it remains as a static and uniform complex with spontaneous and constitutive activity for protein degradation. Recent discoveries have provided compelling evidence to support the exact opposite insomuch as the 26S proteasome undergoes dynamic and reversible phosphorylation under a variety of physiopathological conditions. In this review, we summarize the history and current understanding of proteasome phosphorylation, and advocate the idea of targeting proteasome kinases/phosphatases as a new strategy for clinical interventions of several human diseases.
Collapse
Affiliation(s)
- Xing Guo
- The Life Sciences Institute of Zhejiang University, Hangzhou, 310058, China.
| | - Xiuliang Huang
- Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Mark J Chen
- Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, CA, 94080, USA
| |
Collapse
|
36
|
Receptor-interacting protein kinase 3 promotes platelet activation and thrombosis. Proc Natl Acad Sci U S A 2017; 114:2964-2969. [PMID: 28242694 DOI: 10.1073/pnas.1610963114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown that receptor-interacting protein kinase 3 (RIP3) is involved in many important biological processes, including necroptosis, apoptosis, and inflammation. Here we show that RIP3 plays a critical role in regulating platelet functions and in vivo thrombosis and hemostasis. Tail bleeding times were significantly longer in RIP3-knockout (RIP3-/-) mice compared with their wild-type (WT) littermates. In an in vivo model of arteriole thrombosis, mice lacking RIP3 exhibited prolonged occlusion times. WT mice repopulated with RIP3-/- bone marrow-derived cells had longer occlusion times than RIP3-/- mice repopulated with WT bone marrow-derived cells, suggesting a role for RIP3-deficient platelets in arterial thrombosis. Consistent with these findings, we observed that RIP3 was expressed in both human and mice platelets. Deletion of RIP3 in mouse platelets caused a marked defect in aggregation and attenuated dense granule secretion in response to low doses of thrombin or a thromboxane A2 analog, U46619. Phosphorylation of Akt induced by U46619 or thrombin was diminished in RIP3-/- platelets. Moreover, RIP3 interacted with Gα13 Platelet spreading on fibrinogen and clot retraction were impaired in the absence of RIP3. RIP3 inhibitor dose-dependently inhibited platelet aggregation in vitro and prevented arterial thrombus formation in vivo. These data demonstrate a role for RIP3 in promoting in vivo thrombosis and hemostasis by amplifying platelet activation. RIP3 may represent a novel promising therapeutic target for thrombotic diseases.
Collapse
|
37
|
Zhang Y, Su SS, Zhao S, Yang Z, Zhong CQ, Chen X, Cai Q, Yang ZH, Huang D, Wu R, Han J. RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat Commun 2017; 8:14329. [PMID: 28176780 PMCID: PMC5309790 DOI: 10.1038/ncomms14329] [Citation(s) in RCA: 402] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 12/16/2016] [Indexed: 12/29/2022] Open
Abstract
Necroptosis is a type of programmed cell death with great significance in many pathological processes. Tumour necrosis factor-α(TNF), a proinflammatory cytokine, is a prototypic trigger of necroptosis. It is known that mitochondrial reactive oxygen species (ROS) promote necroptosis, and that kinase activity of receptor interacting protein 1 (RIP1) is required for TNF-induced necroptosis. However, how ROS function and what RIP1 phosphorylates to promote necroptosis are largely unknown. Here we show that three crucial cysteines in RIP1 are required for sensing ROS, and ROS subsequently activates RIP1 autophosphorylation on serine residue 161 (S161). The major function of RIP1 kinase activity in TNF-induced necroptosis is to autophosphorylate S161. This specific phosphorylation then enables RIP1 to recruit RIP3 and form a functional necrosome, a central controller of necroptosis. Since ROS induction is known to require necrosomal RIP3, ROS therefore function in a positive feedback circuit that ensures effective induction of necroptosis. Mitochondrial reactive oxygen species (ROS) promote necroptosis and the receptor interacting protein 1 (RIP1) is a key player in this form of cell death. Here, the authors show that cysteine residues in RIP1 sense ROS and oxidation of the cysteines triggers RIP1 autophosphorylation, which promotes functional necrosome formation.
Collapse
Affiliation(s)
- Yingying Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Sheng Sean Su
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Shubo Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhentao Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Chuan-Qi Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Xin Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Qixu Cai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhang-Hua Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Deli Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Rui Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
38
|
Fettweis G, Di Valentin E, L'homme L, Lassence C, Dequiedt F, Fillet M, Coupienne I, Piette J. RIP3 antagonizes a TSC2-mediated pro-survival pathway in glioblastoma cell death. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2017; 1864:113-124. [PMID: 27984090 DOI: 10.1016/j.bbamcr.2016.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/29/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022]
Abstract
Glioblastomas are the deadliest type of brain cancer and are frequently associated with poor prognosis and a high degree of recurrence despite removal by surgical resection and treatment by chemo- and radio-therapy. Photodynamic therapy (PDT) is a treatment well known to induce mainly necrotic and apoptotic cell death in solid tumors. 5-Aminolevulinic acid (5-ALA)-based PDT was recently shown to sensitize human glioblastoma cells (LN-18) to a RIP3 (Receptor Interacting Protein 3)-dependent cell death which is counter-acted by activation of autophagy. These promising results led us to investigate the pathways involved in cell death and survival mechanisms occurring in glioblastoma following PDT. In the present study, we describe a new TSC2 (Tuberous Sclerosis 2)-dependent survival pathway implicating MK2 (MAPKAPK2) kinase and 14-3-3 proteins which conducts to the activation of a pro-survival autophagy. Moreover, we characterized a new RIP3/TSC2 complex where RIP3 is suggested to promote cell death by targeting TSC2-dependent survival pathway. These results highlight (i) a new role of TSC2 to protect glioblastoma against PDT-induced cell death and (ii) TSC2 and 14-3-3 as new RIP3 partners.
Collapse
Affiliation(s)
- Gregory Fettweis
- Laboratory of Virology and Immunology, GIGA-I(3), University of Liège, Liège, Belgium
| | | | - Laurent L'homme
- Laboratory of Virology and Immunology, GIGA-I(3), University of Liège, Liège, Belgium
| | - Cédric Lassence
- Laboratory of Virology and Immunology, GIGA-I(3), University of Liège, Liège, Belgium
| | - Franck Dequiedt
- Laboratory of Protein Signaling and Interactions, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmaceutical Sciences, CIRM, University of Liège, Liège, Belgium
| | - Isabelle Coupienne
- Laboratory of Virology and Immunology, GIGA-I(3), University of Liège, Liège, Belgium
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA-I(3), University of Liège, Liège, Belgium.
| |
Collapse
|
39
|
Ciuffa R, Caron E, Leitner A, Uliana F, Gstaiger M, Aebersold R. Contribution of Mass Spectrometry-Based Proteomics to the Understanding of TNF-α Signaling. J Proteome Res 2016; 16:14-33. [PMID: 27762135 DOI: 10.1021/acs.jproteome.6b00728] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NF-κB is a family of ubiquitous dimeric transcription factors that play a role in a myriad of cellular processes, ranging from differentiation to stress response and immunity. In inflammation, activation of NF-κB is mediated by pro-inflammatory cytokines, in particular the prototypic cytokines IL-1β and TNF-α, which trigger the activation of complex signaling cascades. In spite of decades of research, the system level understanding of TNF-α signaling is still incomplete. This is partially due to the limited knowledge at the proteome level. The objective of this review is to summarize and critically evaluate the current status of the proteomic research on TNF-α signaling. We will discuss the merits and flaws of the existing studies as well as the insights that they have generated into the proteomic landscape and architecture connected to this signaling pathway. Besides delineating past and current trends in TNF-α proteomic research, we will identify research directions and new methodologies that can further contribute to characterize the TNF-α associated proteome in space and time.
Collapse
Affiliation(s)
- Rodolfo Ciuffa
- Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland
| | - Etienne Caron
- Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland
| | - Alexander Leitner
- Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland
| | - Federico Uliana
- Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland
| | - Matthias Gstaiger
- Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland.,Faculty of Science, University of Zurich , 8006 Zurich, Switzerland
| |
Collapse
|
40
|
Miller WP, Mihailescu ML, Yang C, Barber AJ, Kimball SR, Jefferson LS, Dennis MD. The Translational Repressor 4E-BP1 Contributes to Diabetes-Induced Visual Dysfunction. Invest Ophthalmol Vis Sci 2016; 57:1327-37. [PMID: 26998719 PMCID: PMC4811182 DOI: 10.1167/iovs.15-18719] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The translational repressor 4E-BP1 interacts with the mRNA cap-binding protein eIF4E and thereby promotes cap-independent translation of mRNAs encoding proteins that contribute to diabetic retinopathy. Interaction of 4E-BP1 with eIF4E is enhanced in the retina of diabetic rodents, at least in part, as a result of elevated 4E-BP1 protein expression. In the present study, we examined the role of 4E-BP1 in diabetes-induced visual dysfunction, as well as the mechanism whereby hyperglycemia promotes 4E-BP1 expression. Methods Nondiabetic and diabetic wild-type and 4E-BP1/2 knockout mice were evaluated for visual function using a virtual optomotor test (Optomotry). Retinas were harvested from nondiabetic and type 1 diabetic mice and analyzed for protein abundance and posttranslational modifications. Similar analyses were performed on cells in culture exposed to hyperglycemic conditions or an O-GlcNAcase inhibitor (Thiamet G [TMG]). Results Diabetes-induced visual dysfunction was delayed in mice deficient of 4E-BP1/2 as compared to controls. 4E-BP1 protein expression was enhanced by hyperglycemia in the retina of diabetic rodents and by hyperglycemic conditions in retinal cells in culture. A similar elevation in 4E-BP1 expression was observed with TMG. The rate of 4E-BP1 degradation was significantly prolonged by either hyperglycemic conditions or TMG. A PEST motif in the C-terminus of 4E-BP1 regulated polyubiquitination, turnover, and binding of an E3 ubiquitin ligase complex containing CUL3. Conclusions The findings support a model whereby elevated 4E-BP1 expression observed in the retina of diabetic rodents is the result of O-GlcNAcylation of 4E-BP1 within its PEST motif.
Collapse
Affiliation(s)
- William P Miller
- Department of Cellular and Molecular Physiology The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Maria L Mihailescu
- Department of Cellular and Molecular Physiology The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Chen Yang
- Department of Cellular and Molecular Physiology The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Alistair J Barber
- Department of Cellular and Molecular Physiology The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States 2Department of Ophthalmology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Leonard S Jefferson
- Department of Cellular and Molecular Physiology The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| |
Collapse
|
41
|
Phosphoproteomic profiling of mouse primary HSPCs reveals new regulators of HSPC mobilization. Blood 2016; 128:1465-74. [PMID: 27365422 DOI: 10.1182/blood-2016-05-711424] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/28/2016] [Indexed: 12/14/2022] Open
Abstract
Protein phosphorylation is a central mechanism of signal transduction that both positively and negatively regulates protein function. Large-scale studies of the dynamic phosphorylation states of cell signaling systems have been applied extensively in cell lines and whole tissues to reveal critical regulatory networks, and candidate-based evaluations of phosphorylation in rare cell populations have also been informative. However, application of comprehensive profiling technologies to adult stem cell and progenitor populations has been challenging, due in large part to the scarcity of such cells in adult tissues. Here, we combine multicolor flow cytometry with highly efficient 3-dimensional high performance liquid chromatography/mass spectrometry to enable quantitative phosphoproteomic analysis from 200 000 highly purified primary mouse hematopoietic stem and progenitor cells (HSPCs). Using this platform, we identify ARHGAP25 as a novel regulator of HSPC mobilization and demonstrate that ARHGAP25 phosphorylation at serine 363 is an important modulator of its function. Our approach provides a robust platform for large-scale phosphoproteomic analyses performed with limited numbers of rare progenitor cells. Data from our study comprises a new resource for understanding the molecular signaling networks that underlie hematopoietic stem cell mobilization.
Collapse
|
42
|
Lu X, Zhu X, Li Y, Liu M, Yu B, Wang Y, Rao M, Yang H, Zhou K, Wang Y, Chen Y, Chen M, Zhuang S, Chen LF, Liu R, Chen R. Multiple P-TEFbs cooperatively regulate the release of promoter-proximally paused RNA polymerase II. Nucleic Acids Res 2016; 44:6853-67. [PMID: 27353326 PMCID: PMC5001612 DOI: 10.1093/nar/gkw571] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/06/2016] [Indexed: 01/09/2023] Open
Abstract
The association of DSIF and NELF with initiated RNA Polymerase II (Pol II) is the general mechanism for inducing promoter-proximal pausing of Pol II. However, it remains largely unclear how the paused Pol II is released in response to stimulation. Here, we show that the release of the paused Pol II is cooperatively regulated by multiple P-TEFbs which are recruited by bromodomain-containing protein Brd4 and super elongation complex (SEC) via different recruitment mechanisms. Upon stimulation, Brd4 recruits P-TEFb to Spt5/DSIF via a recruitment pathway consisting of Med1, Med23 and Tat-SF1, whereas SEC recruits P-TEFb to NELF-A and NELF-E via Paf1c and Med26, respectively. P-TEFb-mediated phosphorylation of Spt5, NELF-A and NELF-E results in the dissociation of NELF from Pol II, thereby transiting transcription from pausing to elongation. Additionally, we demonstrate that P-TEFb-mediated Ser2 phosphorylation of Pol II is dispensable for pause release. Therefore, our studies reveal a co-regulatory mechanism of Brd4 and SEC in modulating the transcriptional pause release by recruiting multiple P-TEFbs via a Mediator- and Paf1c-coordinated recruitment network.
Collapse
Affiliation(s)
- Xiaodong Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Xinxing Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - You Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Min Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Bin Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Yu Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Muhua Rao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Haiyang Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Kai Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Yao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Yanheng Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Meihua Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Songkuan Zhuang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Lin-Feng Chen
- Department of Biochemistry, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Runzhong Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Ruichuan Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
43
|
Panayiotou R, Miralles F, Pawlowski R, Diring J, Flynn HR, Skehel M, Treisman R. Phosphorylation acts positively and negatively to regulate MRTF-A subcellular localisation and activity. eLife 2016; 5:e15460. [PMID: 27304076 PMCID: PMC4963197 DOI: 10.7554/elife.15460] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/14/2016] [Indexed: 11/29/2022] Open
Abstract
The myocardin-related transcription factors (MRTF-A and MRTF-B) regulate cytoskeletal genes through their partner transcription factor SRF. The MRTFs bind G-actin, and signal-regulated changes in cellular G-actin concentration control their nuclear accumulation. The MRTFs also undergo Rho- and ERK-dependent phosphorylation, but the function of MRTF phosphorylation, and the elements and signals involved in MRTF-A nuclear export are largely unexplored. We show that Rho-dependent MRTF-A phosphorylation reflects relief from an inhibitory function of nuclear actin. We map multiple sites of serum-induced phosphorylation, most of which are S/T-P motifs and show that S/T-P phosphorylation is required for transcriptional activation. ERK-mediated S98 phosphorylation inhibits assembly of G-actin complexes on the MRTF-A regulatory RPEL domain, promoting nuclear import. In contrast, S33 phosphorylation potentiates the activity of an autonomous Crm1-dependent N-terminal NES, which cooperates with five other NES elements to exclude MRTF-A from the nucleus. Phosphorylation thus plays positive and negative roles in the regulation of MRTF-A.
Collapse
Affiliation(s)
- Richard Panayiotou
- Signaling and Transcription Group, Francis Crick Institute, London, United Kingdom
| | - Francesc Miralles
- Signaling and Transcription Group, Francis Crick Institute, London, United Kingdom
| | - Rafal Pawlowski
- Signaling and Transcription Group, Francis Crick Institute, London, United Kingdom
| | - Jessica Diring
- Signaling and Transcription Group, Francis Crick Institute, London, United Kingdom
| | - Helen R Flynn
- Mass Spectrometry Science Technology Platform, Francis Crick Institute, London, United Kingdom
| | - Mark Skehel
- Mass Spectrometry Science Technology Platform, Francis Crick Institute, London, United Kingdom
| | - Richard Treisman
- Signaling and Transcription Group, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
44
|
Williams PA, Krug MS, McMillan EA, Peake JD, Davis TL, Cocklin S, Strochlic TI. Phosphorylation of the RNA-binding protein Dazl by MAPKAP kinase 2 regulates spermatogenesis. Mol Biol Cell 2016; 27:2341-50. [PMID: 27280388 PMCID: PMC4966976 DOI: 10.1091/mbc.e15-11-0773] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 06/03/2016] [Indexed: 01/28/2023] Open
Abstract
Developing male germ cells are exquisitely sensitive to stress and rely on RNA-binding proteins for posttranscriptional gene expression. Phosphorylation of the germ cell–specific RNA-binding protein deleted in azoospermia-like (Dazl) by the stress-activated protein kinase MK2 is a negative regulator of spermatogenesis. Developing male germ cells are exquisitely sensitive to environmental insults such as heat and oxidative stress. An additional characteristic of these cells is their unique dependence on RNA-binding proteins for regulating posttranscriptional gene expression and translational control. Here we provide a mechanistic link unifying these two features. We show that the germ cell–specific RNA-binding protein deleted in azoospermia-like (Dazl) is phosphorylated by MAPKAP kinase 2 (MK2), a stress-induced protein kinase activated downstream of p38 MAPK. We demonstrate that phosphorylation of Dazl by MK2 on an evolutionarily conserved serine residue inhibits its interaction with poly(A)-binding protein, resulting in reduced translation of Dazl-regulated target RNAs. We further show that transgenic expression of wild-type human Dazl but not a phosphomimetic form in the Drosophila male germline can restore fertility to flies deficient in boule, the Drosophila orthologue of human Dazl. These results illuminate a novel role for MK2 in spermatogenesis, expand the repertoire of RNA-binding proteins phosphorylated by this kinase, and suggest that signaling by the p38-MK2 pathway is a negative regulator of spermatogenesis via phosphorylation of Dazl.
Collapse
Affiliation(s)
- Patrick A Williams
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Michael S Krug
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Emily A McMillan
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Jasmine D Peake
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Tara L Davis
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Simon Cocklin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Todd I Strochlic
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| |
Collapse
|
45
|
Vanden Berghe T, Hassannia B, Vandenabeele P. An outline of necrosome triggers. Cell Mol Life Sci 2016; 73:2137-52. [PMID: 27052312 PMCID: PMC4887535 DOI: 10.1007/s00018-016-2189-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/09/2023]
Abstract
Necroptosis was initially identified as a backup cell death program when apoptosis is blocked. However, it is now recognized as a cellular defense mechanism against infections and is presumed to be a detrimental factor in several pathologies driven by cell death. Necroptosis is a prototypic form of regulated necrosis that depends on activation of the necrosome, which is a protein complex in which receptor interacting protein kinase (RIPK) 3 is activated. The RIP homotypic interaction motif (RHIM) is the core domain that regulates activation of the necrosome. To date, three RHIM-containing proteins have been reported to activate the kinase activity of RIPK3 within the necrosome: RIPK1, Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF), and DNA-dependent activator of interferon regulatory factors (DAI). Here, we review and discuss commonalities and differences of the increasing number of activators of the necrosome. Since the discovery that activation of mixed lineage kinase domain-like (MLKL) by RIPK3 kinase activity is crucial in necroptosis, interest has increased in monitoring and therapeutically targeting their activation. The availability of new phospho-specific antibodies, pharmacologic inhibitors, and transgenic models will allow us to further document the role of necroptosis in degenerative, inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Tom Vanden Berghe
- Inflammation Research Center, VIB, 9000, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium.
| | - Behrouz Hassannia
- Inflammation Research Center, VIB, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
- Laboratory of Eukaryotic Gene Expression and Signal Transduction, Department of Physiology, Ghent University, 9000, Ghent, Belgium
| | - Peter Vandenabeele
- Inflammation Research Center, VIB, 9000, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
46
|
Ren J, Cook AA, Bergmeier W, Sondek J. A negative-feedback loop regulating ERK1/2 activation and mediated by RasGPR2 phosphorylation. Biochem Biophys Res Commun 2016; 474:193-198. [PMID: 27107697 DOI: 10.1016/j.bbrc.2016.04.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
Abstract
The dynamic regulation of ERK1 and -2 (ERK1/2) is required for precise signal transduction controlling cell proliferation, differentiation, and survival. However, the underlying mechanisms regulating the activation of ERK1/2 are not completely understood. In this study, we show that phosphorylation of RasGRP2, a guanine nucleotide exchange factor (GEF), inhibits its ability to activate the small GTPase Rap1 that ultimately leads to decreased activation of ERK1/2 in cells. ERK2 phosphorylates RasGRP2 at Ser394 located in the linker region implicated in its autoinhibition. These studies identify RasGRP2 as a novel substrate of ERK1/2 and define a negative-feedback loop that regulates the BRaf-MEK-ERK signaling cascade. This negative-feedback loop determines the amplitude and duration of active ERK1/2.
Collapse
Affiliation(s)
- Jinqi Ren
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Aaron A Cook
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - John Sondek
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599.,Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| |
Collapse
|
47
|
Naik E, Dixit VM. Usp9X Is Required for Lymphocyte Activation and Homeostasis through Its Control of ZAP70 Ubiquitination and PKCβ Kinase Activity. THE JOURNAL OF IMMUNOLOGY 2016; 196:3438-51. [PMID: 26936881 DOI: 10.4049/jimmunol.1403165] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/09/2016] [Indexed: 11/19/2022]
Abstract
To achieve a durable adaptive immune response, lymphocytes must undergo clonal expansion and induce a survival program that enables the persistence of Ag-experienced cells and the development of memory. During the priming phase of this response, CD4(+)T lymphocytes either remain tolerized or undergo clonal expansion. In this article, we show that Usp9X functions as a positive regulatory switch during T lymphocyte priming through removal of inhibitory monoubiquitination from ZAP70. In the absence of Usp9X, an increased amount of ZAP70 localized to early endosomes consistent with the role of monoubiquitin in endocytic sorting. Usp9X becomes competent to deubiquitinate ZAP70 through TCR-dependent phosphorylation and enhancement of its catalytic activity and association with the LAT signalosome. In B lymphocytes, Usp9X is required for the induction of PKCβ kinase activity after BCR-dependent activation. Accordingly, inUsp9Xknockout B cells, there was a significant reduction in phospho-CARMA1 levels that resulted in reduced CARMA1/Bcl-10/MALT-1 complex formation and NF-κB-dependent cell survival. The pleiotropic effect of Usp9X during Ag-receptor signaling highlights its importance for the development of an effective and durable adaptive immune response.
Collapse
Affiliation(s)
- Edwina Naik
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, CA 94080
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, CA 94080
| |
Collapse
|
48
|
CARP-1/CCAR1: a biphasic regulator of cancer cell growth and apoptosis. Oncotarget 2016; 6:6499-510. [PMID: 25894788 PMCID: PMC4466629 DOI: 10.18632/oncotarget.3376] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/12/2015] [Indexed: 12/03/2022] Open
Abstract
Targeted cancer therapy using small molecule inhibitors (SMIs) has been useful in targeting the tumor cells while sparing the normal cells. Despite clinical success of many targeted therapies, their off-target effects and development of resistance are emerging as significant and challenging problems. Thus, there is an urgent need to identify targets to devise new means to treat cancers and their drug-resistant phenotypes. CARP-1/CCAR1 (Cell division cycle and apoptosis regulator 1), a peri-nuclear phospho-protein, plays a dynamic role in regulating cell growth and apoptosis by serving as a co-activator of steroid/thyroid nuclear receptors, β-catenin, Anaphase Promoting Complex/Cyclosome (APC/C) E3 ligase, and tumor suppressor p53. CARP-1/CCAR1 also regulates chemotherapy-dependent apoptosis. CARP-1/CCAR1 functional mimetics (CFMs) are a novel SMIs of CARP-1/CCAR1 interaction with APC/C. CFMs promote apoptosis in a manner independent of p53. CFMs are potent inhibitors of a variety of cancer cells including the drug (Adriamycin or Tamoxifen)-resistant breast cancer cells but not the immortalized breast epithelial cells, while a nano-lipid formulation of the lead compound CFM-4 improves its bioavailability and efficacy in vivo when administered orally. This review focuses on the background and pleiotropic roles of CARP-1/CCAR1 as well as its apoptosis signaling mechanisms in response to chemotherapy in cancer cells.
Collapse
|
49
|
Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res 2015; 25:1285-98. [PMID: 26611636 PMCID: PMC4670995 DOI: 10.1038/cr.2015.139] [Citation(s) in RCA: 1819] [Impact Index Per Article: 181.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 01/03/2023] Open
Abstract
Inflammasome is an intracellular signaling complex of the innate immune system. Activation of inflammasomes promotes the secretion of interleukin 1β (IL-1β) and IL-18 and triggers pyroptosis. Caspase-1 and -11 (or -4/5 in human) in the canonical and non-canonical inflammasome pathways, respectively, are crucial for inflammasome-mediated inflammatory responses. Here we report that gasdermin D (GSDMD) is another crucial component of inflammasomes. We discovered the presence of GSDMD protein in nigericin-induced NLRP3 inflammasomes by a quantitative mass spectrometry-based analysis. Gene deletion of GSDMD demonstrated that GSDMD is required for pyroptosis and for the secretion but not proteolytic maturation of IL-1β in both canonical and non-canonical inflammasome responses. It was known that GSDMD is a substrate of caspase-1 and we showed its cleavage at the predicted site during inflammasome activation and that this cleavage was required for pyroptosis and IL-1β secretion. Expression of the N-terminal proteolytic fragment of GSDMD can trigger cell death and N-terminal modification such as tagging with Flag sequence disrupted the function of GSDMD. We also found that pro-caspase-1 is capable of processing GSDMD and ASC is not essential for GSDMD to function. Further analyses of LPS plus nigericin- or Salmonella typhimurium-treated macrophage cell lines and primary cells showed that apoptosis became apparent in Gsdmd−/− cells, indicating a suppression of apoptosis by pyroptosis. The induction of apoptosis required NLRP3 or other inflammasome receptors and ASC, and caspase-1 may partially contribute to the activation of apoptotic caspases in Gsdmd−/− cells. These data provide new insights into the molecular mechanisms of pyroptosis and reveal an unexpected interplay between apoptosis and pyroptosis.
Collapse
|
50
|
TCR-induced sumoylation of the kinase PKC-θ controls T cell synapse organization and T cell activation. Nat Immunol 2015; 16:1195-203. [PMID: 26390157 DOI: 10.1038/ni.3259] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 07/30/2015] [Indexed: 12/14/2022]
Abstract
Sumoylation regulates many cellular processes, but its role in signaling via the T cell antigen receptor (TCR) remains unknown. We found that the kinase PKC-θ was sumoylated upon costimulation with antigen or via the TCR plus the coreceptor CD28, with Lys325 and Lys506 being the main sumoylation sites. We identified the SUMO E3 ligase PIASxβ as a ligase for PKC-θ. Analysis of primary mouse and human T cells revealed that sumoylation of PKC-θ was essential for T cell activation. Desumoylation did not affect the catalytic activity of PKC-θ but inhibited the association of CD28 with PKC-θ and filamin A and impaired the assembly of a mature immunological synapse and central co-accumulation of PKC-θ and CD28. Our findings demonstrate that sumoylation controls TCR-proximal signaling and that sumoylation of PKC-θ is essential for the formation of a mature immunological synapse and T cell activation.
Collapse
|