1
|
Scofield S, Koshko L, Stilgenbauer L, Booms A, Berube R, Kassotis C, Lin CH, Jang H, Kim S, Stemmer P, Lempradl A, Sadagurski M. Integrative multi-omics analysis of metabolic dysregulation induced by occupational benzene exposure in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 971:179060. [PMID: 40068415 PMCID: PMC11928247 DOI: 10.1016/j.scitotenv.2025.179060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Type 2 Diabetes Mellitus (T2DM) is a significant public health burden. Emerging evidence links volatile organic compounds (VOCs), such as benzene to endocrine disruption and metabolic dysfunction. However, the effects of chronic environmentally relevant VOC exposures on metabolic health are still emerging. Building on our previous findings that benzene exposure at smoking levels (50 ppm) induces metabolic impairments in male mice, we investigated the effects of benzene exposure below OSHA's Occupational Exposure Limit (OEL) on metabolic health. Adult male C57BL/6 mice were exposed to 0.9 ppm benzene 8 h a day for 9 weeks. We assessed measures of metabolic homeostasis and conducted RNA and proteome sequencing on insulin-sensitive organs (liver, skeletal muscle, adipose tissue). At this dose, exposure caused significant metabolic disruptions, including hyperglycemia, hyperinsulinemia, and insulin resistance. Transcriptomic analysis of liver, muscle, and adipose tissue identified key changes in metabolic and immune pathways especially in liver. Proteomic analysis of the liver revealed mitochondrial dysfunction as a shared feature, with disruptions in oxidative phosphorylation, mitophagy, and immune activation. Comparative analysis with high-dose (50 ppm) exposure showed conserved and dose-specific transcriptomic changes in liver, particularly in metabolic and immune responses. Our study is the first to comprehensively assess the impacts of occupational benzene exposure on metabolic health, highlighting mitochondrial dysfunction as a central mechanism and the dose-dependent molecular pathways in insulin-sensitive organs driving benzene-induced metabolic imbalance. Our data indicate that the current OSHA OEL for benzene is insufficient and needs to be lowered, as they could result in adverse metabolic health in exposed workers, particularly men, following chronic exposure.
Collapse
Affiliation(s)
- Sydney Scofield
- Department of Biological Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, MI, USA
| | - Lisa Koshko
- Department of Biological Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, MI, USA
| | - Lukas Stilgenbauer
- Department of Biological Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, MI, USA
| | - Alix Booms
- Van Andel Research Institute, Grand Rapids, MI, USA
| | - Roxanne Berube
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Christopher Kassotis
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Chung-Ho Lin
- School of Natural Resources, University of Missouri, Columbia, MO, USA
| | - Hyejeong Jang
- Department of Oncology, School of Medicine, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Seongho Kim
- Department of Oncology, School of Medicine, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Paul Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | | | - Marianna Sadagurski
- Department of Biological Sciences, Integrative Biosciences Center (IBio), Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
2
|
Scofield S, Koshko L, Stilgenbauer L, Booms A, Berube R, Kassotis C, Lin CH, Jang H, Kim S, Stemmer P, Lempradl A, Sadagurski M. Integrative multiomics analysis of metabolic dysregulation induced by occupational benzene exposure in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.22.629805. [PMID: 39763906 PMCID: PMC11703235 DOI: 10.1101/2024.12.22.629805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Background Type 2 Diabetes Mellitus (T2DM) is a significant public health burden. Emerging evidence links volatile organic compounds (VOCs), such as benzene to endocrine disruption and metabolic dysfunction. However, the effects of chronic environmentally relevant VOC exposures on metabolic health are still emerging. Objective Building on our previous findings that benzene exposure at smoking levels (50 ppm) induces metabolic impairments in male mice, we investigated the effects of occupationally relevant, below OSHA approved, benzene exposure on metabolic health. Methods Adult male C57BL/6 mice were exposed to 0.9ppm benzene 8 hours a day for 9 weeks. We assessed measures of metabolic homeostasis and conducted RNA and proteome sequencing on insulin-sensitive organs (liver, skeletal muscle, adipose tissue). Results This low-dose exposure caused significant metabolic disruptions, including hyperglycemia, hyperinsulinemia, and insulin resistance. Transcriptomic analysis of liver, skeletal muscle, and adipose tissue identified key changes in metabolic and immune pathways especially in liver. Proteomic analysis of the liver revealed mitochondrial dysfunction as a shared feature, with disruptions in oxidative phosphorylation, mitophagy, and immune activation. Comparative analysis with high-dose (50 ppm) exposure showed both conserved and dose-specific transcriptomic changes in liver, particularly in metabolic and immune responses. Conclusions Our study is the first to comprehensively assess the impacts of occupational benzene exposure on metabolic health, highlighting mitochondrial dysfunction as a central mechanism and the dose-dependent molecular pathways in insulin-sensitive organs driving benzene-induced metabolic imbalance. Our data indicate that current OSHA occupational exposure limits for benzene are insufficient, as they could result in adverse metabolic health in exposed workers, particularly men, following chronic exposure.
Collapse
|
3
|
Damiecki M, Naha R, Schaumkessel Y, Westhoff P, Atanelov N, Stefanski A, Petzsch P, Stühler K, Köhrer K, Weber AP, Anand R, Reichert AS, Kondadi AK. Mitochondrial apolipoprotein MIC26 is a metabolic rheostat regulating central cellular fuel pathways. Life Sci Alliance 2024; 7:e202403038. [PMID: 39393820 PMCID: PMC11472510 DOI: 10.26508/lsa.202403038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024] Open
Abstract
Mitochondria play central roles in metabolism and metabolic disorders such as type 2 diabetes. MIC26, a mitochondrial contact site and cristae organising system complex subunit, was linked to diabetes and modulation of lipid metabolism. Yet, the functional role of MIC26 in regulating metabolism under hyperglycemia is not understood. We used a multi-omics approach combined with functional assays using WT and MIC26 KO cells cultured in normoglycemia or hyperglycemia, mimicking altered nutrient availability. We show that MIC26 has an inhibitory role in glycolysis and cholesterol/lipid metabolism under normoglycemic conditions. Under hyperglycemia, this inhibitory role is reversed demonstrating that MIC26 is critical for metabolic adaptations. This is partially mediated by alterations of mitochondrial metabolite transporters. Furthermore, MIC26 deletion led to a major metabolic rewiring of glutamine use and oxidative phosphorylation. We propose that MIC26 acts as a metabolic "rheostat," that modulates mitochondrial metabolite exchange via regulating mitochondrial cristae, allowing cells to cope with nutrient overload.
Collapse
Affiliation(s)
- Melissa Damiecki
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ritam Naha
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Yulia Schaumkessel
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Nika Atanelov
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Patrick Petzsch
- Genomics and Transcriptomics Laboratory, BMFZ, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Molecular Medicine, Protein Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, BMFZ, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Pm Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
Vue Z, Murphy A, Le H, Neikirk K, Garza-Lopez E, Marshall AG, Mungai M, Jenkins B, Vang L, Beasley HK, Ezedimma M, Manus S, Whiteside A, Forni MF, Harris C, Crabtree A, Albritton CF, Jamison S, Demirci M, Prasad P, Oliver A, Actkins KV, Shao J, Zaganjor E, Scudese E, Rodriguez B, Koh A, Rabago I, Moore JE, Nguyen D, Aftab M, Kirk B, Li Y, Wandira N, Ahmad T, Saleem M, Kadam A, Katti P, Koh HJ, Evans C, Koo YD, Wang E, Smith Q, Tomar D, Williams CR, Sweetwyne MT, Quintana AM, Phillips MA, Hubert D, Kirabo A, Dash C, Jadiya P, Kinder A, Ajijola OA, Miller-Fleming TW, McReynolds MR, Hinton A. MICOS Complex Loss Governs Age-Associated Murine Mitochondrial Architecture and Metabolism in the Liver, While Sam50 Dictates Diet Changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599846. [PMID: 38979162 PMCID: PMC11230271 DOI: 10.1101/2024.06.20.599846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The liver, the largest internal organ and a metabolic hub, undergoes significant declines due to aging, affecting mitochondrial function and increasing the risk of systemic liver diseases. How the mitochondrial three-dimensional (3D) structure changes in the liver across aging, and the biological mechanisms regulating such changes confers remain unclear. In this study, we employed Serial Block Face-Scanning Electron Microscopy (SBF-SEM) to achieve high-resolution 3D reconstructions of murine liver mitochondria to observe diverse phenotypes and structural alterations that occur with age, marked by a reduction in size and complexity. We also show concomitant metabolomic and lipidomic changes in aged samples. Aged human samples reflected altered disease risk. To find potential regulators of this change, we examined the Mitochondrial Contact Site and Cristae Organizing System (MICOS) complex, which plays a crucial role in maintaining mitochondrial architecture. We observe that the MICOS complex is lost during aging, but not Sam50. Sam50 is a component of the sorting and assembly machinery (SAM) complex that acts in tandem with the MICOS complex to modulate cristae morphology. In murine models subjected to a high-fat diet, there is a marked depletion of the mitochondrial protein SAM50. This reduction in Sam50 expression may heighten the susceptibility to liver disease, as our human biobank studies corroborate that Sam50 plays a genetically regulated role in the predisposition to multiple liver diseases. We further show that changes in mitochondrial calcium dysregulation and oxidative stress accompany the disruption of the MICOS complex. Together, we establish that a decrease in mitochondrial complexity and dysregulated metabolism occur with murine liver aging. While these changes are partially be regulated by age-related loss of the MICOS complex, the confluence of a murine high-fat diet can also cause loss of Sam50, which contributes to liver diseases. In summary, our study reveals potential regulators that affect age-related changes in mitochondrial structure and metabolism, which can be targeted in future therapeutic techniques.
Collapse
Affiliation(s)
- Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Alexandria Murphy
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Margaret Mungai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Brenita Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Mariaassumpta Ezedimma
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Sasha Manus
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Maria Fernanda Forni
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Chanel Harris
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208-3501, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Claude F. Albritton
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208-3501, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sydney Jamison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mert Demirci
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ky’Era V. Actkins
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Benjamin Rodriguez
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Izabella Rabago
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Johnathan E. Moore
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Desiree Nguyen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Muhammad Aftab
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Benjamin Kirk
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Yahang Li
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Nelson Wandira
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Taseer Ahmad
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab,40100, Pakistan
| | - Mohammad Saleem
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ashlesha Kadam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, AP, 517619, India
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Chantell Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Young Do Koo
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, Iowa, USA1
| | - Eric Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Dhanendra Tomar
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab,40100, Pakistan
| | - Clintoria R. Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Mariya T. Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Anita M. Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
| | - Mark A. Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - David Hubert
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, 37232, USA
- Vanderbilt Institute for Global Health, Nashville, TN, 37232, USA
| | - Chandravanu Dash
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN, United States
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest University School of Medicine, Winston-Salem, NC
| | - André Kinder
- Artur Sá Earp Neto University Center – UNIFASE-FMP, Petrópolis Medical School, Brazil
| | - Olujimi A. Ajijola
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, CA, USA
| | - Tyne W. Miller-Fleming
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
5
|
Ronayne CT, Latorre-Muro P. Navigating the landscape of mitochondrial-ER communication in health and disease. Front Mol Biosci 2024; 11:1356500. [PMID: 38323074 PMCID: PMC10844478 DOI: 10.3389/fmolb.2024.1356500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
Intracellular organelle communication enables the maintenance of tissue homeostasis and health through synchronized adaptive processes triggered by environmental cues. Mitochondrial-Endoplasmic Reticulum (ER) communication sustains cellular fitness by adjusting protein synthesis and degradation, and metabolite and protein trafficking through organelle membranes. Mitochondrial-ER communication is bidirectional and requires that the ER-components of the Integrated Stress Response signal to mitochondria upon activation and, likewise, mitochondria signal to the ER under conditions of metabolite and protein overload to maintain proper functionality and ensure cellular survival. Declines in the mitochondrial-ER communication occur upon ageing and correlate with the onset of a myriad of heterogeneous age-related diseases such as obesity, type 2 diabetes, cancer, or neurodegenerative pathologies. Thus, the exploration of the molecular mechanisms of mitochondrial-ER signaling and regulation will provide insights into the most fundamental cellular adaptive processes with important therapeutical opportunities. In this review, we will discuss the pathways and mechanisms of mitochondrial-ER communication at the mitochondrial-ER interface and their implications in health and disease.
Collapse
Affiliation(s)
- Conor T. Ronayne
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Sun Y, Yao J, Lu C, Yang N, Han X, Lin H, Yin Y. Cold-inducible PPA1 is critical for the adipocyte browning in mice. Biochem Biophys Res Commun 2023; 677:45-53. [PMID: 37549601 DOI: 10.1016/j.bbrc.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Promoting the thermogenic capacity of brown/beige adipocytes is becoming a promising strategy to counteract obesity and related metabolic diseases. Inorganic pyrophosphatase 1 (PPA1) is an enzyme that catalyzes the hydrolysis of PPi to Pi, and its presence is required for anabolism to take place in cells. Our previous study demonstrated the importance of PPA1 in maintaining adipose tissue function and whole-body metabolic homeostasis. In this study, we found that the expression of PPA1 was positively associated with the thermogenic capacity of brown/beige adipocytes. PPA1+/- mice exhibited less browning capacity in subcutaneous white adipose tissue compared to wild-type mice and also showed apparent cold intolerance. We found that decreased PPA1 abundance may lead to mitochondrial dysfunction and inhibited adipocyte browning both in vivo and in vitro. Furthermore, our study also revealed that PPA1 worked as a new target gene of nuclear respiratory factor 1 (NRF1), a major transcription regulator of mitochondrial biogenesis. Together, our findings indicated an essential role of PPA1 in mitochondrial function and browning in adipocytes and suggested PPA1 as a new therapeutic target for increasing thermogenesis to combat obesity and metabolic diseases.
Collapse
Affiliation(s)
- Yue Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingxin Yao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chang Lu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nan Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Haiyan Lin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Ye Yin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Liang T, Kota J, Williams KE, Saxena R, Gawrieh S, Zhong X, Zimmers TA, Chalasani N. Dynamic Alterations to Hepatic MicroRNA-29a in Response to Long-Term High-Fat Diet and EtOH Feeding. Int J Mol Sci 2023; 24:14564. [PMID: 37834011 PMCID: PMC10572557 DOI: 10.3390/ijms241914564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
MicroRNA-29a (miR-29a) is a well characterized fibro-inflammatory molecule and its aberrant expression is linked to a variety of pathological liver conditions. The long-term effects of a high-fat diet (HFD) in combination with different levels of EtOH consumption on miR-29a expression and liver pathobiology are unknown. Mice at 8 weeks of age were divided into five groups (calorie-matched diet plus water (CMD) as a control group, HFD plus water (HFD) as a liver disease group, HFD plus 2% EtOH (HFD + 2% E), HFD + 10% E, and HFD + 20% E as intervention groups) and fed for 4, 13, 26, or 39 weeks. At each time point, analyses were performed for liver weight/body weight (BW) ratio, AST/ALT ratio, as well as liver histology assessments, which included inflammation, estimated fat deposition, lipid area, and fibrosis. Hepatic miR-29a was measured and correlations with phenotypic traits were determined. Four-week feeding produced no differences between the groups on all collected phenotypic traits or miR-29a expression, while significant effects were observed after 13 weeks, with EtOH concentration-specific induction of miR-29a. A turning point for most of the collected traits was apparent at 26 weeks, and miR-29a was significantly down-regulated with increasing liver injury. Overall, miR-29a up-regulation was associated with a lower liver/BW ratio, fat deposition, inflammation, and fibrosis, suggesting a protective role of miR-29a against liver disease progression. A HFD plus increasing concentrations of EtOH produces progressive adverse effects on the liver, with no evidence of beneficial effects of low-dose EtOH consumption. Moreover, miR-29a up-regulation is associated with less severe liver injury.
Collapse
Affiliation(s)
- Tiebing Liang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.E.W.); (S.G.); (N.C.)
| | - Janaiah Kota
- Ultragenyx Pharmaceuticals, Novato, CA 94949, USA;
| | - Kent E. Williams
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.E.W.); (S.G.); (N.C.)
| | - Romil Saxena
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Samer Gawrieh
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.E.W.); (S.G.); (N.C.)
| | - Xiaoling Zhong
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.Z.); (T.A.Z.)
| | - Teresa A. Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (X.Z.); (T.A.Z.)
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.E.W.); (S.G.); (N.C.)
| |
Collapse
|
8
|
Wang S, Zhang J, Li J, Wang J, Liu W, Zhang Z, Yu H. Label-free quantitative proteomics reveals the potential mechanisms of insoluble dietary fiber from okara in improving hepatic lipid metabolism of high-fat diet-induced mice. J Proteomics 2023; 287:104980. [PMID: 37499746 DOI: 10.1016/j.jprot.2023.104980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 03/21/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The high purity insoluble dietary fiber (IDF) from okara is a natural component with a potentially positive effect on a high-fat diet (HFD)-induced hepatic metabolic disorders, although its regulatory mechanism remains unclear. This study aims to elucidate the potential pathways and key proteins of IDF for the amelioration of hepatic lipid metabolism in mice fed with HFD. Here, we used label-free quantitative proteomics technology to quantity and identify differentially expressed proteins in the liver that are associated with IDF treatment. The differentially expressed proteins were assessed by GO annotation and KEGG pathways. Western blot and qRT-PCR analyses were conducted to validate the potential targets regulated by IDF. In total, 73 differentially expressed proteins were identified, of which 27 were up-regulated (FC > 1.5) and 46 were down-regulated (FC < 0.667). GO analysis suggested that differentially expressed proteins were mainly located in the cell and organelles, regulated biological processes, and were associated with enzyme activity and molecular binding. The KEGG pathway enrichment analysis further demonstrated glycolysis/gluconeogenesis, pyruvate metabolism, TCA cycle, arginine biosynthesis, alanine, aspartate and glutamate metabolism, and retinol metabolism were affected. The combination of proteomics, Western blot, and qRT-PCR suggested that ACS, ACLY, GOT1, GLS2, NAGS, CYP4A10, CYP3A25, and CYP2A5 in these pathways might be key proteins for IDF intervention. Taken together, our findings elucidate new mechanisms involved in how IDF affects hepatic metabolism, provide important information for the functional food industries, and improve the added value of okara. SIGNIFICANCE: Okara is evidenced as a high-quality by-product with several nutritional components, especially dietary fiber (50-60%) labeled as "The Seventh Nutrient". Previous studies have shown that IDF has a positive potential effect on a high-fat diet (HFD)-induced hepatic metabolic disorders, but its molecular mechanism remains unclear. To elucidate the therapeutic mechanism of IDF at the protein level, a label-free quantitative proteomic analysis was used to identify the dynamic changes of the liver proteome between HIDF and HFD groups in this study. These results provide a new perspective for exploring the therapeutic mechanism of IDF at the protein level and enlightenment for promoting the comprehensive utilization of okara.
Collapse
Affiliation(s)
- Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Jiarui Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Jiaxin Li
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Ourense, 32004, Spain
| | - Junyao Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Wenhao Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China
| | - Zhao Zhang
- Shandong Sinoglory Health Food Co., Ltd., Liaocheng, Shandong 252000, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun, Jilin 130118, China.
| |
Collapse
|
9
|
Cetin AK, Buyukdere Y, Gulec A, Akyol A. Taurine supplementation reduces adiposity and hepatic lipid metabolic activity in adult offspring following maternal cafeteria diet. Nutr Res 2023; 117:15-29. [PMID: 37423013 DOI: 10.1016/j.nutres.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
Maternal taurine supplementation has been shown to exert protective effects following a maternal obesogenic diet on offspring growth and metabolism. However, the long-term effects of maternal cafeteria diet on adiposity, metabolic profile, and hepatic gene expression patterns following supplementation of taurine in adult offspring remains unclear. In this study, we hypothesized that exposure to maternal taurine supplementation would modulate the effects of maternal cafeteria diet by reducing adiposity and hepatic gene expression patterns involved in lipid metabolism in adult offspring. Female Wistar rats were fed a control diet, control diet supplemented with 1.5% taurine in drinking water, cafeteria diet (CAF) or CAF supplemented with taurine (CAFT) from weaning. After 8 weeks, all animals were mated and maintained on the same diets during pregnancy and lactation. After weaning, all offspring were fed with control chow diet until the age of 20 weeks. Despite similar body weights, CAFT offspring had significantly lower fat deposition and body fat when compared with CAF offspring. Microarray analysis revealed that genes (Akr1c3, Cyp7a1, Hsd17b6, Cd36, Acsm3, and Aldh1b1) related to steroid hormone biosynthesis, cholesterol metabolism, peroxisome proliferator-activated receptor signaling pathway, butanoate metabolism, and fatty acid degradation were down-regulated in CAFT offspring. The current study shows that exposure to maternal cafeteria diet promoted adiposity and taurine supplementation reduced lipid deposition and in both male and female offspring and led to alterations in hepatic gene expression patterns, reducing the detrimental effects of maternal cafeteria diet.
Collapse
Affiliation(s)
- Arzu Kabasakal Cetin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - Yucel Buyukdere
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - Atila Gulec
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - Asli Akyol
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey.
| |
Collapse
|
10
|
Wang S, Kang Y, Wang R, Deng J, Yu Y, Yu J, Wang J. Emerging Roles of NDUFS8 Located in Mitochondrial Complex I in Different Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248754. [PMID: 36557887 PMCID: PMC9783039 DOI: 10.3390/molecules27248754] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
NADH:ubiquinone oxidoreductase core subunit S8 (NDUFS8) is an essential core subunit and component of the iron-sulfur (FeS) fragment of mitochondrial complex I directly involved in the electron transfer process and energy metabolism. Pathogenic variants of the NDUFS8 are relevant to infantile-onset and severe diseases, including Leigh syndrome, cancer, and diabetes mellitus. With over 1000 nuclear genes potentially causing a mitochondrial disorder, the current diagnostic approach requires targeted molecular analysis, guided by a combination of clinical and biochemical features. Currently, there are only several studies on pathogenic variants of the NDUFS8 in Leigh syndrome, and a lack of literature on its precise mechanism in cancer and diabetes mellitus exists. Therefore, NDUFS8-related diseases should be extensively explored and precisely diagnosed at the molecular level with the application of next-generation sequencing technologies. A more distinct comprehension will be needed to shed light on NDUFS8 and its related diseases for further research. In this review, a comprehensive summary of the current knowledge about NDUFS8 structural function, its pathogenic mutations in Leigh syndrome, as well as its underlying roles in cancer and diabetes mellitus is provided, offering potential pathogenesis, progress, and therapeutic target of different diseases. We also put forward some problems and solutions for the following investigations.
Collapse
Affiliation(s)
- Sifan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; (S.W.); (Y.K.); (R.W.); (J.D.); (Y.Y.)
- Department of Pathology, School of Basic Medicine, Central South University, Changsha 410008, China
- Xiangya School of Medicine, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuanbo Kang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; (S.W.); (Y.K.); (R.W.); (J.D.); (Y.Y.)
- Department of Pathology, School of Basic Medicine, Central South University, Changsha 410008, China
- Xiangya School of Medicine, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ruifeng Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; (S.W.); (Y.K.); (R.W.); (J.D.); (Y.Y.)
- Department of Pathology, School of Basic Medicine, Central South University, Changsha 410008, China
| | - Junqi Deng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; (S.W.); (Y.K.); (R.W.); (J.D.); (Y.Y.)
- Department of Pathology, School of Basic Medicine, Central South University, Changsha 410008, China
| | - Yupei Yu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; (S.W.); (Y.K.); (R.W.); (J.D.); (Y.Y.)
- Department of Pathology, School of Basic Medicine, Central South University, Changsha 410008, China
| | - Jun Yu
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (J.Y.); (J.W.); Tel./Fax: +86-731-84805411 (J.W.)
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; (S.W.); (Y.K.); (R.W.); (J.D.); (Y.Y.)
- Department of Pathology, School of Basic Medicine, Central South University, Changsha 410008, China
- Xiangya School of Medicine, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (J.Y.); (J.W.); Tel./Fax: +86-731-84805411 (J.W.)
| |
Collapse
|
11
|
Hepatoprotective Effect of Grape Seed and Skin Extract Against Lithium Exposure Examined by the Window of Proteomics. Dose Response 2022; 20:15593258221141585. [DOI: 10.1177/15593258221141585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
Context The liver is the organ by which the majority of substances are metabolized, including psychotropic drugs. Lithium (Li) used as drug for many neurological disorders such as bipolar disorders. Objective This study aims to assess lithium toxicity and to evaluate the hepatic-protective properties of a grape skin seed and extract (GSSE). Materials and methods Twenty-four male Wistar rats were exposed for 30 days to either various lithium concentrations, GSSE alone, or lithium supplemented with GSSE. The proteomic analysis revealed alterations of liver protein profiles after lithium treatments that were successfully identified by mass spectrometry. Results Lithium treatment induced an oxidative damage by the alteration of antioxidant enzymes activities such as superoxide dismutase, CAT, and Gpx. The regulated proteins are mainly involved in the respiratory electron transport chain, detoxification processes, ribosomal stress pathway, glycolysis, and cytoskeleton. Proteins were differentially expressed in a dose-dependent manner. Interestingly, GSSE reversed the situation and restored the level of liver proteins whose abundance was modified after lithium treatment, arguing for its protective activity. Conclusion Our data demonstrated the ability of proteomic analysis to underline the toxicity mechanisms of lithium in animal models. Based on these results, GSSE may be envisaged as a nutritional supplement to weaken the liver toxicity of lithium.
Collapse
|
12
|
Chen X, Luo J, Yang L, Guo Y, Fan Y, Liu J, Sun J, Zhang Y, Jiang Q, Chen T, Xi Q. miR-143-Mediated Responses to Betaine Supplement Repress Lipogenesis and Hepatic Gluconeogenesis by Targeting MAT1a and MAPK11. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7981-7992. [PMID: 35734958 DOI: 10.1021/acs.jafc.2c02940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The liver as the central organ is responsible for lipogenesis, gluconeogenesis and one-carbon metabolism. Methyl donors (e.g., betaine) modulate metabolic homeostasis and gene regulation through one-carbon metabolism. MiR-143 regulates DNA methylation by targeting DNMT3A, thereby suggesting that this miRNA participates in one-carbon metabolic pathways. However, the effect and mechanism that regulate glucose and lipid metabolism via the methyl group metabolism pathway remain elusive. In this study, we found that a betaine supplement and miR-143 KO significantly promoted lipolysis and glucose utilization and repressed lipogenesis and gluconeogenesis through enhancing energy consumption and thermogenesis, repressing GPNMB and targeting MAPK11, respectively. We further explored the relationship between miR-143 and a methyl donor (betaine) and the miR-143-mediated responses to the betaine supplement regulating the mechanism of the glucose and lipid metabolism. The results showed that betaine significantly down-regulated the expression of miR-143 that subsequently increased SAM levels in the liver by targeting MAT1a. In brief, the regulations of glucose and lipid metabolism are related to the miR-143-regulation of one-carbon units, and the relationship between betaine and miR-143 in the methionine cycle is a typical yin-yang type of regulation. Thus, betaine and miR-143 function together as key regulators and biomarkers for preventing and diagnosing metabolic diseases such as fatty liver disease, obesity, and diabetes.
Collapse
Affiliation(s)
- Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642 China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642 China
| | - Lekai Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642 China
| | - Yue Guo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642 China
| | - Yaotian Fan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642 China
| | - Jie Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642 China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642 China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642 China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642 China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642 China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642 China
| |
Collapse
|
13
|
Nowacka-Chmielewska MM, Liśkiewicz D, Grabowska K, Liśkiewicz A, Marczak Ł, Wojakowska A, Pondel N, Grabowski M, Barski JJ, Małecki A. Effects of Simultaneous Exposure to a Western Diet and Wheel-Running Training on Brain Energy Metabolism in Female Rats. Nutrients 2021; 13:nu13124242. [PMID: 34959794 PMCID: PMC8707360 DOI: 10.3390/nu13124242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In the pathogenesis of central nervous system disorders (e.g., neurodegenerative), an important role is attributed to an unhealthy lifestyle affecting brain energy metabolism. Physical activity in the prevention and treatment of lifestyle-related diseases is getting increasing attention. METHODS We performed a series of assessments in adult female Long Evans rats subjected to 6 weeks of Western diet feeding and wheel-running training. A control group of lean rats was fed with a standard diet. In all experimental groups, we measured physiological parameters (animal weights, body composition, serum metabolic parameters). We assessed the impact of simultaneous exposure to a Western diet and wheel-running on the cerebrocortical protein expression (global proteomic profiling), and in the second part of the experiment, we measured the cortical levels of protein related to brain metabolism (Western blot). RESULTS Western diet led to an obese phenotype and induced changes in the serum metabolic parameters. Wheel-running did not reduce animal weights or fat mass but significantly decreased serum glucose level. The global proteome analysis revealed that the altered proteins were functionally annotated as they were involved mostly in metabolic pathways. Western blot analysis showed the downregulation of the mitochondrial protein-Acyl-CoA dehydrogenase family member 9, hexokinase 1 (HK1)-enzyme involved in principal glucose metabolism pathways and monocarboxylate transporter 2 (MCT2). Wheel-running reversed this decline in the cortical levels of HK1 and MCT2. CONCLUSION The cerebrocortical proteome is affected by a combination of physical activity and Western diet in female rats. An analysis of the cortical proteins involved in brain energy metabolism provides a valuable basis for the deeper investigation of changes in the brain structure and function induced by simultaneous exposure to a Western diet and physical activity.
Collapse
Affiliation(s)
- Marta Maria Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, 40-065 Katowice, Poland; (D.L.); (N.P.); (A.M.)
- Correspondence: ; Tel.: +48-509-505-836
| | - Daniela Liśkiewicz
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, 40-065 Katowice, Poland; (D.L.); (N.P.); (A.M.)
| | - Konstancja Grabowska
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (K.G.); (M.G.); (J.J.B.)
| | - Arkadiusz Liśkiewicz
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland; (Ł.M.); (A.W.)
| | - Anna Wojakowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland; (Ł.M.); (A.W.)
| | - Natalia Pondel
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, 40-065 Katowice, Poland; (D.L.); (N.P.); (A.M.)
| | - Mateusz Grabowski
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (K.G.); (M.G.); (J.J.B.)
| | - Jarosław Jerzy Barski
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (K.G.); (M.G.); (J.J.B.)
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Andrzej Małecki
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, 40-065 Katowice, Poland; (D.L.); (N.P.); (A.M.)
| |
Collapse
|
14
|
Sasaki Y, Yoshino N, Okuwa T, Odagiri T, Satoh T, Muraki Y. A mouse monoclonal antibody against influenza C virus attenuates acetaminophen-induced liver injury in mice. Sci Rep 2021; 11:11816. [PMID: 34083649 PMCID: PMC8175586 DOI: 10.1038/s41598-021-91251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/24/2021] [Indexed: 11/09/2022] Open
Abstract
Molecular mimicry is one of the main processes for producing autoantibodies during infections. Although some autoantibodies are associated with autoimmune diseases, the functions of many autoantibodies remain unknown. Previously, we reported that S16, a mouse (BALB/c) monoclonal antibody against the hemagglutinin-esterase fusion glycoprotein of influenza C virus, recognizes host proteins in some species of animals, but we could not succeed in identifying the proteins. In the present study, we found that S16 cross-reacted with acetyl-CoA acyltransferase 2 (ACAA2), which is expressed in the livers of BALB/c mice. ACAA2 was released into the serum after acetaminophen (APAP) administration, and its serum level correlated with serum alanine aminotransferase (ALT) activity. Furthermore, we observed that S16 injected into mice with APAP-induced hepatic injury prompted the formation of an immune complex between S16 and ACAA2 in the serum. The levels of serum ALT (p < 0.01) and necrotic areas in the liver (p < 0.01) were reduced in the S16-injected mice. These results suggest that S16 may have a mitigation function in response to APAP-induced hepatotoxicity. This study shows the therapeutic function of an autoantibody and suggests that an antibody against extracellular ACAA2 might be a candidate for treating APAP-induced hepatic injury.
Collapse
Affiliation(s)
- Yutaka Sasaki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Naoto Yoshino
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Takako Okuwa
- Department of Microbiology, Kanazawa Medical University School of Medicine, Ishikawa, Japan
| | - Takashi Odagiri
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Takashi Satoh
- Department of Pathology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Yasushi Muraki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan.
| |
Collapse
|
15
|
Liput KP, Lepczyński A, Nawrocka A, Poławska E, Ogłuszka M, Jończy A, Grzybek W, Liput M, Szostak A, Urbański P, Roszczyk A, Pareek CS, Pierzchała M. Effects of Three-Month Administration of High-Saturated Fat Diet and High-Polyunsaturated Fat Diets with Different Linoleic Acid (LA, C18:2n-6) to α-Linolenic Acid (ALA, C18:3n-3) Ratio on the Mouse Liver Proteome. Nutrients 2021; 13:1678. [PMID: 34063343 PMCID: PMC8156955 DOI: 10.3390/nu13051678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of the study was to evaluate the effect of different types of high-fat diets (HFDs) on the proteomic profile of mouse liver. The analysis included four dietary groups of mice fed a standard diet (STD group), a high-fat diet rich in SFAs (SFA group), and high-fat diets dominated by PUFAs with linoleic acid (LA, C18:2n-6) to α-linolenic acid (ALA, C18:3n-3) ratios of 14:1 (14:1 group) and 5:1 (5:1 group). After three months of diets, liver proteins were resolved by two-dimensional gel electrophoresis (2DE) using 17 cm non-linear 3-10 pH gradient strips. Protein spots with different expression were identified by MALDI-TOF/TOF. The expression of 13 liver proteins was changed in the SFA group compared to the STD group (↓: ALB, APOA1, IVD, MAT1A, OAT and PHB; ↑: ALDH1L1, UniProtKB-Q91V76, GALK1, GPD1, HMGCS2, KHK and TKFC). Eleven proteins with altered expression were recorded in the 14:1 group compared to the SFA group (↓: ARG1, FTL1, GPD1, HGD, HMGCS2 and MAT1A; ↑: APOA1, CA3, GLO1, HDHD3 and IVD). The expression of 11 proteins was altered in the 5:1 group compared to the SFA group (↓: ATP5F1B, FTL1, GALK1, HGD, HSPA9, HSPD1, PC and TKFC; ↑: ACAT2, CA3 and GSTP1). High-PUFA diets significantly affected the expression of proteins involved in, e.g., carbohydrate metabolism, and had varying effects on plasma total cholesterol and glucose levels. The outcomes of this study revealed crucial liver proteins affected by different high-fat diets.
Collapse
Affiliation(s)
- Kamila P. Liput
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, K. Janickiego 32 Str., 71-270 Szczecin, Poland;
| | - Agata Nawrocka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Ewa Poławska
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Magdalena Ogłuszka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Aneta Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Weronika Grzybek
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Michał Liput
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute of the Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Agnieszka Szostak
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Paweł Urbański
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Agnieszka Roszczyk
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| | - Chandra S. Pareek
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland;
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Mariusz Pierzchała
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (A.N.); (E.P.); (M.O.); (A.S.); (P.U.); (A.R.)
| |
Collapse
|
16
|
Yu M, Alimujiang M, Hu L, Liu F, Bao Y, Yin J. Berberine alleviates lipid metabolism disorders via inhibition of mitochondrial complex I in gut and liver. Int J Biol Sci 2021; 17:1693-1707. [PMID: 33994854 PMCID: PMC8120465 DOI: 10.7150/ijbs.54604] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
This study is to investigate the relationship between berberine (BBR) and mitochondrial complex I in lipid metabolism. BBR reversed high-fat diet-induced obesity, hepatic steatosis, hyperlipidemia and insulin resistance in mice. Fatty acid consumption, β-oxidation and lipogenesis were attenuated in liver after BBR treatment which may be through reduction in SCD1, FABP1, CD36 and CPT1A. BBR promoted fecal lipid excretion, which may result from the reduction in intestinal CD36 and SCD1. Moreover, BBR inhibited mitochondrial complex I-dependent oxygen consumption and ATP synthesis of liver and gut, but no impact on activities of complex II, III and IV. BBR ameliorated mitochondrial swelling, facilitated mitochondrial fusion, and reduced mtDNA and citrate synthase activity. BBR decreased the abundance and diversity of gut microbiome. However, no change in metabolism of recipient mice was observed after fecal microbiota transplantation from BBR treated mice. In primary hepatocytes, BBR and AMPK activator A769662 normalized oleic acid-induced lipid deposition. Although both the agents activated AMPK, BBR decreased oxygen consumption whereas A769662 increased it. Collectively, these findings indicated that BBR repressed complex I in gut and liver and consequently inhibited lipid metabolism which led to alleviation of obesity and fatty liver. This process was independent of intestinal bacteria.
Collapse
Affiliation(s)
- Muyu Yu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, 600 Yishan Road, Shanghai, 200233, China
| | - Miriayi Alimujiang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, 600 Yishan Road, Shanghai, 200233, China
| | - Lili Hu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, 600 Yishan Road, Shanghai, 200233, China
| | - Fang Liu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, 600 Yishan Road, Shanghai, 200233, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, 600 Yishan Road, Shanghai, 200233, China
| | - Jun Yin
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, 600 Yishan Road, Shanghai, 200233, China.,Department of Endocrinology and Metabolism, Shanghai Eighth People's Hospital, Shanghai, 200235, China
| |
Collapse
|
17
|
Sabiha B, Bhatti A, Fan KH, John P, Aslam MM, Ali J, Feingold E, Demirci FY, Kamboh MI. Assessment of genetic risk of type 2 diabetes among Pakistanis based on GWAS-implicated loci. Gene 2021; 783:145563. [PMID: 33705809 DOI: 10.1016/j.gene.2021.145563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Genome-wide association studies (GWAS) have identified multiple type 2 diabetes (T2D) loci, mostly among populations of European descent. There is a high prevalence of T2D among Pakistanis. Both genetic and environmental factors may be responsible for this high prevalence. In order to understand the shared genetic basis of T2D among Pakistanis and Europeans, we examined 77 genome-wide significant variants previously implicated among European populations. We genotyped 77 single-nucleotide polymorphisms (SNPs) by iPLEX® Gold or TaqMan® assays in a case-control sample of 1,683 individuals. Association analysis was performed using logistic regression. A total of 16 SNPs (TCF7L2/rs7903146, GLIS3/rs7041847, CHCHD9/rs13292136, PLEKHA1/rs2292626, FTO/rs9936385, CDKAL1/rs7756992, KCNJ11/rs5215, LOC105372155/rs12970134, KCNQ1/rs163182, CTRB1/rs7202877, ST6GAL1/rs16861329, ADAMTS9-AS2/rs6795735, LOC105370275/rs1359790, C5orf67/rs459193, ZBED3-AS1/rs6878122 and UBE2E2/rs7612463) showed statistically significant associations after controlling for the false discovery rate. While KCNQ1/rs163182 and ZBED3-AS1/rs6878122 showed opposite allelic effects, the remaining significant SNPs had the same allelic effects as reported previously. Our data indicate that a selected number of T2D loci previously identified among populations of European descent also affect the risk of T2D in the Pakistani population.
Collapse
Affiliation(s)
- Bibi Sabiha
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Attya Bhatti
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan.
| | - Kang-Hsien Fan
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Peter John
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Muhammad Muaaz Aslam
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Johar Ali
- Center for Genome Sciences, Rehman Medical College, Phase-V, Hayatabad, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - F Yesim Demirci
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
18
|
Zemljic-Harpf AE, Hoe LES, Schilling JM, Zuniga-Hertz JP, Nguyen A, Vaishnav YJ, Belza GJ, Budiono BP, Patel PM, Head BP, Dillmann WH, Mahata SK, Peart JN, Roth DM, Headrick JP, Patel HH. Morphine induces physiological, structural, and molecular benefits in the diabetic myocardium. FASEB J 2021; 35:e21407. [PMID: 33583084 PMCID: PMC10843897 DOI: 10.1096/fj.201903233r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 01/03/2023]
Abstract
The obesity epidemic has increased type II diabetes mellitus (T2DM) across developed countries. Cardiac T2DM risks include ischemic heart disease, heart failure with preserved ejection fraction, intolerance to ischemia-reperfusion (I-R) injury, and refractoriness to cardioprotection. While opioids are cardioprotective, T2DM causes opioid receptor signaling dysfunction. We tested the hypothesis that sustained opioid receptor stimulus may overcome diabetes mellitus-induced cardiac dysfunction via membrane/mitochondrial-dependent protection. In a murine T2DM model, we investigated effects of morphine on cardiac function, I-R tolerance, ultrastructure, subcellular cholesterol expression, mitochondrial protein abundance, and mitochondrial function. T2DM induced 25% weight gain, hyperglycemia, glucose intolerance, cardiac hypertrophy, moderate cardiac depression, exaggerated postischemic myocardial dysfunction, abnormalities in mitochondrial respiration, ultrastructure and Ca2+ -induced swelling, and cell death were all evident. Morphine administration for 5 days: (1) improved glucose homeostasis; (2) reversed cardiac depression; (3) enhanced I-R tolerance; (4) restored mitochondrial ultrastructure; (5) improved mitochondrial function; (6) upregulated Stat3 protein; and (7) preserved membrane cholesterol homeostasis. These data show that morphine treatment restores contractile function, ischemic tolerance, mitochondrial structure and function, and membrane dynamics in type II diabetic hearts. These findings suggest potential translational value for short-term, but high-dose morphine administration in diabetic patients undergoing or recovering from acute ischemic cardiovascular events.
Collapse
Affiliation(s)
- Alice E. Zemljic-Harpf
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Louise E. See Hoe
- Department of Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Jan M. Schilling
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Juan P. Zuniga-Hertz
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Alexander Nguyen
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Yash J. Vaishnav
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Gianna J. Belza
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Boris P. Budiono
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, QLD, Australia
| | - Piyush M. Patel
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Brian P. Head
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Wolfgang H. Dillmann
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sushil K. Mahata
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jason N. Peart
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, QLD, Australia
| | - David M. Roth
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - John P. Headrick
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, QLD, Australia
| | - Hemal H. Patel
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
19
|
Zembroski AS, Buhman KK, Aryal UK. Proteome and phosphoproteome characterization of liver in the postprandial state from diet-induced obese and lean mice. J Proteomics 2020; 232:104072. [PMID: 33309929 DOI: 10.1016/j.jprot.2020.104072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
A metabolic consequence of obesity is hepatosteatosis, which can develop into more serious diseases in the non-alcoholic fatty liver disease (NAFLD) spectrum. The goal of this study was to identify the protein signature of liver in the postprandial state in obesity compared to leanness. The postprandial state is of interest due to the central role of the liver in regulating macronutrient and energy homeostasis during the fed-fast cycle and lack of previously reported controlled studies in the postprandial state. Therefore, we assessed the proteome and phosphoproteome of liver in the postprandial state from diet-induced obese (DIO) and lean mice using untargeted LC-MS/MS analysis. We identified significant alterations in the levels of proteins involved in fatty acid oxidation, activation, and transport, as well as proteins involved in energy metabolism including ketogenesis, tricarboxylic acid cycle, and electron transport chain in liver of DIO compared to lean mice. Additionally, phosphorylated proteins in liver of DIO and lean mice reflect possible regulatory mechanisms controlling fatty acid metabolism and gene expression that may contribute to hepatic metabolic alterations in obesity. Our data indicates PPARα-mediated transcriptional regulation of lipid metabolism and adaptation to hepatic lipid overload. The results of this study expand our knowledge of the molecular changes that occur in liver in the postprandial state in obesity compared to leanness. SIGNIFICANCE: Proteome and phosphoproteome studies of liver in a controlled postprandial state in obesity and leanness are lacking; however, this information is crucial to understanding how obesity-associated hepatosteatosis influences postprandial nutrient and energy metabolism. In this global shotgun proteome and phosphoproteome analysis, we identified unique protein signatures defining obesity and leanness in liver in the postprandial state and identified potential mechanisms contributing to hepatic metabolic alterations in obesity. The results of this study provide a foundation to focus future experiments on the contribution of altered protein and phosphorylation patterns to postprandial metabolism in obesity-associated hepatosteatosis.
Collapse
Affiliation(s)
- Alyssa S Zembroski
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Uma K Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA..
| |
Collapse
|
20
|
Baiges-Gaya G, Fernández-Arroyo S, Luciano-Mateo F, Cabré N, Rodríguez-Tomàs E, Hernández-Aguilera A, Castañé H, Romeu M, Nogués MR, Camps J, Joven J. Hepatic metabolic adaptation and adipose tissue expansion are altered in mice with steatohepatitis induced by high-fat high sucrose diet. J Nutr Biochem 2020; 89:108559. [PMID: 33264665 DOI: 10.1016/j.jnutbio.2020.108559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 10/05/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Obesity is a chronic progressive disease with several metabolic alterations. Nonalcoholic fatty liver disease (NAFLD) is an important comorbidity of obesity that can progress to nonalcoholic steatohepatitis (NASH), cirrhosis or hepatocarcinoma. This study aimed at clarifying the molecular mechanisms underlying the metabolic alterations in hepatic and adipose tissue during high-fat high-sucrose diet-induced NAFLD development in mice. METHODS Twenty-four male mice (C57BL/6J) were randomly allocated into 3 groups (n = 8 mice per group) to receive a chow diet, a high-fat diet (HFD), or a high-fat high-sucrose diet (HF-HSD) for 20 weeks. At sacrifice, liver and adipose tissue were obtained for histopathological, metabolomic, and protein expression analyses. RESULTS HF-HSD (but not HFD) was associated with NASH and increased oxidative stress. These animals presented an inhibition of hepatic autophagy and alterations in AMP-activated protein kinase/mammalian target of rapamycin activity. We also observed that the ability of metabolic adaptation was adversely affected by the increase of damaged mitochondria. NASH development was associated with changes in adipose tissue dynamics and increased amounts of saturated fatty acids, monounsaturated fatty acids and polyunsaturated fatty acids in visceral adipose tissue. CONCLUSION HF-HSD led to a metabolic blockage and impaired hepatic mitochondria turnover. In addition, the continuous accumulation of fatty acids produced adipose tissue dysfunction and hepatic fat accumulation that favored the progression to NASH.
Collapse
Affiliation(s)
- Gerard Baiges-Gaya
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Facultat de Medicina, Reus, Spain; Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'investigació Sanitària Pere Virgili, Reus, Spain
| | - Salvador Fernández-Arroyo
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Facultat de Medicina, Reus, Spain; Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'investigació Sanitària Pere Virgili, Reus, Spain
| | - Fedra Luciano-Mateo
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Facultat de Medicina, Reus, Spain; Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'investigació Sanitària Pere Virgili, Reus, Spain
| | - Noemí Cabré
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Facultat de Medicina, Reus, Spain; Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'investigació Sanitària Pere Virgili, Reus, Spain
| | - Elisabet Rodríguez-Tomàs
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Facultat de Medicina, Reus, Spain; Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'investigació Sanitària Pere Virgili, Reus, Spain
| | - Anna Hernández-Aguilera
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Facultat de Medicina, Reus, Spain; Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'investigació Sanitària Pere Virgili, Reus, Spain
| | - Helena Castañé
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Facultat de Medicina, Reus, Spain; Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'investigació Sanitària Pere Virgili, Reus, Spain
| | - Marta Romeu
- Universitat Rovira i Virgili, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Unitat de Farmacologia, Reus, Spain
| | - Maria-Rosa Nogués
- Universitat Rovira i Virgili, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Unitat de Farmacologia, Reus, Spain
| | - Jordi Camps
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Facultat de Medicina, Reus, Spain; Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'investigació Sanitària Pere Virgili, Reus, Spain.
| | - Jorge Joven
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Facultat de Medicina, Reus, Spain; Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'investigació Sanitària Pere Virgili, Reus, Spain; Campus of International Excellence Southern Catalonia, Tarragona, Spain.
| |
Collapse
|
21
|
Hu Y, Yin F, Liu Z, Xie H, Xu Y, Zhou D, Zhu B. Acerola polysaccharides ameliorate high-fat diet-induced non-alcoholic fatty liver disease through reduction of lipogenesis and improvement of mitochondrial functions in mice. Food Funct 2020; 11:1037-1048. [PMID: 31819934 DOI: 10.1039/c9fo01611b] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acerola polysaccharides (ACPs) were purified from acerola (Malpighia emarginata DC.), a tropical fruit with strong antioxidant and anti-inflammatory activities. However, the biological activities of ACPs have barely been investigated. The present study was designed to investigate the efficacy of ACPs in the treatment of high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) in C57BL/6 mice. Male C57BL/6 mice were fed with a high-fat diet and treated with different doses of ACPs for 9 continuous weeks. NAFLD was examined in terms of body weight, lipid profiles, liver function markers, and histology. Gene expression was determined by using both qRT-PCR and western blot. Our results showed that administration of ACPs significantly reduced HFD-induced hyperlipidemia and hepatic lipid deposition by inhibiting the SREBP1c pathway in mice. ACP treatment normalized oxidative stress by activating nuclear factor (erythroid-derived-2)-like 2 (Nrf2) and reduced the expressions of pro-inflammatory cytokines in HFD fed mice. Furthermore, ACPs reduced uncoupling protein 2 (UCP2) expression, restored mitochondrial ATP content, increased mitochondrial complex I, IV, and V activity, and increased mitochondrial beta-oxidation by stimulating peroxisomal proliferator-activated receptor-gamma coactivator-1α (PGC-1α) in the liver of HFD-fed mice. Our study indicated that ACPs may be an effective dietary supplement for preventing HFD-induced NAFLD by regulating lipogenesis, reducing inflammation and oxidative stress, and promoting the mitochondrial function.
Collapse
Affiliation(s)
- Yuanyuan Hu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Wang Y, An H, Liu T, Qin C, Sesaki H, Guo S, Radovick S, Hussain M, Maheshwari A, Wondisford FE, O'Rourke B, He L. Metformin Improves Mitochondrial Respiratory Activity through Activation of AMPK. Cell Rep 2020; 29:1511-1523.e5. [PMID: 31693892 PMCID: PMC6866677 DOI: 10.1016/j.celrep.2019.09.070] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/11/2019] [Accepted: 09/23/2019] [Indexed: 12/25/2022] Open
Abstract
Impaired mitochondrial respiratory activity contributes to the development of insulin resistance in type 2 diabetes. Metformin, a first-line antidiabetic drug, functions mainly by improving patients’ hyperglycemia and insulin resistance. However, its mechanism of action is still not well understood. We show here that pharmacological metformin concentration increases mitochondrial respiration, membrane potential, and ATP levels in hepatocytes and a clinically relevant metformin dose increases liver mitochondrial density and complex 1 activity along with improved hyperglycemia in high-fat- diet (HFD)-fed mice. Metformin, functioning through 5′ AMP-activated protein kinase (AMPK), promotes mitochondrial fission to improve mitochondrial respiration and restore the mitochondrial life cycle. Furthermore, HFD-fed-mice with liver-specific knockout of AMPKα1/2 subunits exhibit higher blood glucose levels when treated with metformin. Our results demonstrate that activation of AMPK by metformin improves mitochondrial respiration and hyperglycemia in obesity. We also found that supra-pharmacological metformin concentrations reduce adenine nucleotides, resulting in the halt of mitochondrial respiration. These findings suggest a mechanism for metformin’s anti-tumor effects. The mechanism of metformin action still remains controversial, in particular on mitochondrial activity and the involvement of AMPK. Wang et al. show that pharmacological metformin concentration or dose improves mitochondrial respiration by increasing mitochondrial fission through AMPK-Mff signaling; in contrast, supra-pharmacological metformin concentrations reduce mitochondrial respiration through decreasing adenine nucleotide levels.
Collapse
Affiliation(s)
- Yu Wang
- Division of Neonatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hongying An
- Division of Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ting Liu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Caolitao Qin
- Division of Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Shaodong Guo
- Department of Nutrition and Food Science, Texas A&M University, TX 77843, USA
| | - Sally Radovick
- Departments of Pediatrics and Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Mehboob Hussain
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Akhil Maheshwari
- Division of Neonatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Fredric E Wondisford
- Departments of Pediatrics and Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Brian O'Rourke
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ling He
- Division of Neonatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Division of Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
23
|
Alimujiang M, Yu XY, Yu MY, Hou WL, Yan ZH, Yang Y, Bao YQ, Yin J. Enhanced liver but not muscle OXPHOS in diabetes and reduced glucose output by complex I inhibition. J Cell Mol Med 2020; 24:5758-5771. [PMID: 32253813 PMCID: PMC7214161 DOI: 10.1111/jcmm.15238] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial function is critical in energy metabolism. To fully capture how the mitochondrial function changes in metabolic disorders, we investigated mitochondrial function in liver and muscle of animal models mimicking different types and stages of diabetes. Type 1 diabetic mice were induced by streptozotocin (STZ) injection. The db/db mice were used as type 2 diabetic model. High-fat diet-induced obese mice represented pre-diabetic stage of type 2 diabetes. Oxidative phosphorylation (OXPHOS) of isolated mitochondria was measured with Clark-type oxygen electrode. Both in early and late stages of type 1 diabetes, liver mitochondrial OXPHOS increased markedly with complex IV-dependent OXPHOS being the most prominent. However, ATP, ADP and AMP contents in the tissue did not change. In pre-diabetes and early stage of type 2 diabetes, liver mitochondrial complex I and II-dependent OXPHOS increased greatly then declined to almost normal at late stage of type 2 diabetes, among which alteration of complex I-dependent OXPHOS was the most significant. In contrast, muscle mitochondrial OXPHOS in HFD, early-stage type 1 and 2 diabetic mice, did not change. In vitro, among inhibitors to each complex, only complex I inhibitor rotenone decreased glucose output in primary hepatocytes without cytotoxicity both in the absence and presence of oleic acid (OA). Rotenone affected cellular energy state and had no effects on cellular and mitochondrial reactive oxygen species production. Taken together, the mitochondrial OXPHOS of liver but not muscle increased in obesity and diabetes, and only complex I inhibition may ameliorate hyperglycaemia via lowering hepatic glucose production.
Collapse
Affiliation(s)
- Miriayi Alimujiang
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xue-Ying Yu
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Mu-Yu Yu
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wo-Lin Hou
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhong-Hong Yan
- Department of Chemistry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yu-Qian Bao
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jun Yin
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Endocrinology and Metabolism, Shanghai Eighth People's Hospital, Shanghai, China
| |
Collapse
|
24
|
Eramo MJ, Lisnyak V, Formosa LE, Ryan MT. The ‘mitochondrial contact site and cristae organising system’ (MICOS) in health and human disease. J Biochem 2019; 167:243-255. [DOI: 10.1093/jb/mvz111] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
AbstractThe ‘mitochondrial contact site and cristae organising system’ (MICOS) is an essential protein complex that promotes the formation, maintenance and stability of mitochondrial cristae. As such, loss of core MICOS components disrupts cristae structure and impairs mitochondrial function. Aberrant mitochondrial cristae morphology and diminished mitochondrial function is a pathological hallmark observed across many human diseases such as neurodegenerative conditions, obesity and diabetes mellitus, cardiomyopathy, and in muscular dystrophies and myopathies. While mitochondrial abnormalities are often an associated secondary effect to the pathological disease process, a direct role for the MICOS in health and human disease is emerging. This review describes the role of MICOS in the maintenance of mitochondrial architecture and summarizes both the direct and associated roles of the MICOS in human disease.
Collapse
Affiliation(s)
- Matthew J Eramo
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, 23 Innovation Walk, Monash University, 3800 Melbourne, Victoria, Australia
| | - Valerie Lisnyak
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, 23 Innovation Walk, Monash University, 3800 Melbourne, Victoria, Australia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, 23 Innovation Walk, Monash University, 3800 Melbourne, Victoria, Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, 23 Innovation Walk, Monash University, 3800 Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Simoes IC, Janikiewicz J, Bauer J, Karkucinska-Wieckowska A, Kalinowski P, Dobrzyń A, Wolski A, Pronicki M, Zieniewicz K, Dobrzyń P, Krawczyk M, Zischka H, Wieckowski MR, Potes Y. Fat and Sugar-A Dangerous Duet. A Comparative Review on Metabolic Remodeling in Rodent Models of Nonalcoholic Fatty Liver Disease. Nutrients 2019; 11:2871. [PMID: 31771244 PMCID: PMC6950566 DOI: 10.3390/nu11122871] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common disease in Western society and ranges from steatosis to steatohepatitis to end-stage liver disease such as cirrhosis and hepatocellular carcinoma. The molecular mechanisms that are involved in the progression of steatosis to more severe liver damage in patients are not fully understood. A deeper investigation of NAFLD pathogenesis is possible due to the many different animal models developed recently. In this review, we present a comparative overview of the most common dietary NAFLD rodent models with respect to their metabolic phenotype and morphological manifestation. Moreover, we describe similarities and controversies concerning the effect of NAFLD-inducing diets on mitochondria as well as mitochondria-derived oxidative stress in the progression of NAFLD.
Collapse
Affiliation(s)
- Ines C.M. Simoes
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Justyna Janikiewicz
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Judith Bauer
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Biedersteiner Strasse 29, D-80802 Munich, Germany; (J.B.); (H.Z.)
| | | | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.K.); (K.Z.)
| | - Agnieszka Dobrzyń
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Andrzej Wolski
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Maciej Pronicki
- Department of Pathology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (A.K.-W.); (M.P.)
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.K.); (K.Z.)
| | - Paweł Dobrzyń
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Marcin Krawczyk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Department of Medicine II, Saarland University Medical Center, 66421 Homburg, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Biedersteiner Strasse 29, D-80802 Munich, Germany; (J.B.); (H.Z.)
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Mariusz R. Wieckowski
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Yaiza Potes
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| |
Collapse
|
26
|
Liu Q, Zhou Z, Liu P, Zhang S. Comparative proteomic study of liver lipid droplets and mitochondria in mice housed at different temperatures. FEBS Lett 2019; 593:2118-2138. [PMID: 31234227 PMCID: PMC6771624 DOI: 10.1002/1873-3468.13509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 01/18/2023]
Abstract
Laboratory mice are standardly housed at around 23 °C, setting them under chronic cold stress. Metabolic changes in the liver in mice housed at thermoneutral, standard and cold temperatures remain unknown. In the present study, we isolated lipid droplets and mitochondria from their livers in a comparative proteomic study aiming to investigate the changes. According to proteomic analysis, mitochondrial tricarboxylic acid cycle (TCA cycle) and retinol metabolism are enhanced, whereas oxidative phosphorylation is not affected obviously under cold conditions, suggesting that liver mitochondria may increase TCA cycle capacity in biosynthetic pathways, as well as retinol metabolism, to help the liver to adapt. Based on proteomic and immunoblotting results, perilipin 5 and major urinary proteins are increased significantly, whereas mitochondrial pyruvate carrier is decreased dramatically under cold conditions, indicating their involvement in liver adaptation.
Collapse
Affiliation(s)
- Qingfeng Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ziyun Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pingsheng Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuyan Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Wang L, Cheng B, Li H, Wang Y. Proteomics analysis of preadipocytes between fat and lean broilers. Br Poult Sci 2019; 60:522-529. [PMID: 31132862 DOI: 10.1080/00071668.2019.1621989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
1. Reducing excessive chicken body fat deposition is a main goal of the poultry industry. Preadipocytes are important in adipose tissue growth and development. 2. To discover proteins related to chicken fat deposition, two-dimensional fluorescence difference gel electrophoresis (2-D DIGE) was used to identify differentially expressed proteins in preadipocytes derived from Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF). 3. A total of 46 differentially expressed protein spots were found in the preadipocytes between fat and lean broilers. Matrix-assisted laser desorption-ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) analysis showed the protein spots corresponded to 33 different proteins. The proteins were mainly related to biological oxidation, cell proliferation, cytoskeleton, lipid metabolism, molecular chaperone, protein synthesis and signal transduction. 4. From the perspective of protein expression, these results lay a foundation for further study of the genetic mechanism of broiler adipose tissue growth and development.
Collapse
Affiliation(s)
- L Wang
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Chicken Genetics and Breeding , Harbin , P. R. China.,Department of Education of Heilongjiang Province, Key Laboratory of Animal Genetics, Breeding and Reproduction , Harbin , P. R. China.,College of Animal Science and Technology, Northeast Agricultural University , Harbin , P. R. China
| | - B Cheng
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Chicken Genetics and Breeding , Harbin , P. R. China.,Department of Education of Heilongjiang Province, Key Laboratory of Animal Genetics, Breeding and Reproduction , Harbin , P. R. China.,College of Animal Science and Technology, Northeast Agricultural University , Harbin , P. R. China
| | - H Li
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Chicken Genetics and Breeding , Harbin , P. R. China.,Department of Education of Heilongjiang Province, Key Laboratory of Animal Genetics, Breeding and Reproduction , Harbin , P. R. China.,College of Animal Science and Technology, Northeast Agricultural University , Harbin , P. R. China
| | - Y Wang
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Chicken Genetics and Breeding , Harbin , P. R. China.,Department of Education of Heilongjiang Province, Key Laboratory of Animal Genetics, Breeding and Reproduction , Harbin , P. R. China.,College of Animal Science and Technology, Northeast Agricultural University , Harbin , P. R. China
| |
Collapse
|
28
|
Zhang J, Shi H, Li S, Cao Z, Yang H, Wang Y. Integrative hepatic metabolomics and proteomics reveal insights into the mechanism of different feed efficiency with high or low dietary forage levels in Holstein heifers. J Proteomics 2019; 194:1-13. [DOI: 10.1016/j.jprot.2018.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/18/2018] [Accepted: 12/23/2018] [Indexed: 01/18/2023]
|
29
|
Boonanuntanasarn S, Nakharuthai C, Schrama D, Duangkaew R, Rodrigues PM. Effects of dietary lipid sources on hepatic nutritive contents, fatty acid composition and proteome of Nile tilapia (Oreochromis niloticus). J Proteomics 2019; 192:208-222. [DOI: 10.1016/j.jprot.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/05/2018] [Accepted: 09/03/2018] [Indexed: 01/09/2023]
|
30
|
Van Laar VS, Otero PA, Hastings TG, Berman SB. Potential Role of Mic60/Mitofilin in Parkinson's Disease. Front Neurosci 2019; 12:898. [PMID: 30740041 PMCID: PMC6357844 DOI: 10.3389/fnins.2018.00898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022] Open
Abstract
There are currently no treatments that hinder or halt the inexorable progression of Parkinson's disease (PD). While the etiology of PD remains elusive, evidence suggests that early dysfunction of mitochondrial respiration and homeostasis play a major role in PD pathogenesis. The mitochondrial structural protein Mic60, also known as mitofilin, is critical for maintaining mitochondrial architecture and function. Loss of Mic60 is associated with detrimental effects on mitochondrial homeostasis. Growing evidence now implicates Mic60 in the pathogenesis of PD. In this review, we discuss the data supporting a role of Mic60 and mitochondrial dysfunction in PD. We will also consider the potential of Mic60 as a therapeutic target for treating neurological disorders.
Collapse
Affiliation(s)
- Victor S Van Laar
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States
| | - P Anthony Otero
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States.,Division of Neuropathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Cellular and Molecular Pathology (CMP) Program, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Teresa G Hastings
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarah B Berman
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States.,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
31
|
Gilmore-Hall S, Kuo J, Ward JM, Zahra R, Morrison RS, Perkins G, La Spada AR. CCP1 promotes mitochondrial fusion and motility to prevent Purkinje cell neuron loss in pcd mice. J Cell Biol 2019; 218:206-219. [PMID: 30337352 PMCID: PMC6314562 DOI: 10.1083/jcb.201709028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 08/03/2018] [Accepted: 10/01/2018] [Indexed: 12/22/2022] Open
Abstract
A perplexing question in neurodegeneration is why different neurons degenerate. The Purkinje cell degeneration (pcd) mouse displays a dramatic phenotype of degeneration of cerebellar Purkinje cells. Loss of CCP1/Nna1 deglutamylation of tubulin accounts for pcd neurodegeneration, but the mechanism is unknown. In this study, we modulated the dosage of fission and fusion genes in a Drosophila melanogaster loss-of-function model and found that mitochondrial fragmentation and disease phenotypes were rescued by reduced Drp1. We observed mitochondrial fragmentation in CCP1 null cells and in neurons from pcd mice, and we documented reduced mitochondrial fusion in cells lacking CCP1. We examined the effect of tubulin hyperglutamylation on microtubule-mediated mitochondrial motility in pcd neurons and noted markedly reduced retrograde axonal transport. Mitochondrial stress promoted Parkin-dependent turnover of CCP1, and CCP1 and Parkin physically interacted. Our results indicate that CCP1 regulates mitochondrial motility through deglutamylation of tubulin and that loss of CCP1-mediated mitochondrial fusion accounts for the exquisite vulnerability of Purkinje neurons in pcd mice.
Collapse
Affiliation(s)
| | - Jennifer Kuo
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Jacqueline M Ward
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Rabaab Zahra
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | | | - Guy Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA
| | - Albert R La Spada
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA
- Department of Neurology, Duke University School of Medicine, Durham, NC
- Department of Neurobiology, Duke University School of Medicine, Durham, NC
- Department of Cell Biology, Duke University School of Medicine, Durham, NC
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC
| |
Collapse
|
32
|
Kappler L, Kollipara L, Lehmann R, Sickmann A. Investigating the Role of Mitochondria in Type 2 Diabetes - Lessons from Lipidomics and Proteomics Studies of Skeletal Muscle and Liver. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:143-182. [PMID: 31452140 DOI: 10.1007/978-981-13-8367-0_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction is discussed as a key player in the pathogenesis of type 2 diabetes mellitus (T2Dm), a highly prevalent disease rapidly developing as one of the greatest global health challenges of this century. Data however about the involvement of mitochondria, central hubs in bioenergetic processes, in the disease development are still controversial. Lipid and protein homeostasis are under intense discussion to be crucial for proper mitochondrial function. Consequently proteomics and lipidomics analyses might help to understand how molecular changes in mitochondria translate to alterations in energy transduction as observed in the healthy and metabolic diseases such as T2Dm and other related disorders. Mitochondrial lipids integrated in a tool covering proteomic and functional analyses were up to now rarely investigated, although mitochondrial lipids might provide a possible lynchpin in the understanding of type 2 diabetes development and thereby prevention. In this chapter state-of-the-art analytical strategies, pre-analytical aspects, potential pitfalls as well as current proteomics and lipidomics-based knowledge about the pathophysiological role of mitochondria in the pathogenesis of type 2 diabetes will be discussed.
Collapse
Affiliation(s)
- Lisa Kappler
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Rainer Lehmann
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tuebingen, Tuebingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tuebingen, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany. .,Medical Proteome Centre, Ruhr Universität Bochum, Bochum, Germany. .,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
33
|
Krahmer N, Najafi B, Schueder F, Quagliarini F, Steger M, Seitz S, Kasper R, Salinas F, Cox J, Uhlenhaut NH, Walther TC, Jungmann R, Zeigerer A, Borner GHH, Mann M. Organellar Proteomics and Phospho-Proteomics Reveal Subcellular Reorganization in Diet-Induced Hepatic Steatosis. Dev Cell 2018; 47:205-221.e7. [PMID: 30352176 DOI: 10.1016/j.devcel.2018.09.017] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/29/2018] [Accepted: 09/18/2018] [Indexed: 01/20/2023]
Abstract
Lipid metabolism is highly compartmentalized between cellular organelles that dynamically adapt their compositions and interactions in response to metabolic challenges. Here, we investigate how diet-induced hepatic lipid accumulation, observed in non-alcoholic fatty liver disease (NAFLD), affects protein localization, organelle organization, and protein phosphorylation in vivo. We develop a mass spectrometric workflow for protein and phosphopeptide correlation profiling to monitor levels and cellular distributions of ∼6,000 liver proteins and ∼16,000 phosphopeptides during development of steatosis. Several organelle contact site proteins are targeted to lipid droplets (LDs) in steatotic liver, tethering organelles orchestrating lipid metabolism. Proteins of the secretory pathway dramatically redistribute, including the mis-localization of the COPI complex and sequestration of the Golgi apparatus at LDs. This correlates with reduced hepatic protein secretion. Our systematic in vivo analysis of subcellular rearrangements and organelle-specific phosphorylation reveals how nutrient overload leads to organellar reorganization and cellular dysfunction.
Collapse
Affiliation(s)
- Natalie Krahmer
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Bahar Najafi
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| | - Florian Schueder
- Department of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany; Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Fabiana Quagliarini
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), IDO, Garching, Munich 85748, Germany
| | - Martin Steger
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Susanne Seitz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| | - Robert Kasper
- Max Planck Institute of Neurobiology, Imaging facility, Martinsried 82152, Germany
| | - Favio Salinas
- Computational Systems Biochemistry, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Jürgen Cox
- Computational Systems Biochemistry, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Nina Henriette Uhlenhaut
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), IDO, Garching, Munich 85748, Germany
| | - Tobias Christian Walther
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Ralf Jungmann
- Department of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany; Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| | - Georg Heinz Helmut Borner
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Matthias Mann
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany; Faculty of Health Sciences, NNF Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
34
|
A mix of dietary fermentable fibers improves lipids handling by the liver of overfed minipigs. J Nutr Biochem 2018; 65:72-82. [PMID: 30654277 DOI: 10.1016/j.jnutbio.2018.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/17/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023]
Abstract
Obesity induced by overfeeding ultimately can lead to nonalcoholic fatty liver disease, whereas dietary fiber consumption is known to have a beneficial effect. We aimed to determine if a supplementation of a mix of fibers (inulin, resistant starch and pectin) could limit or alleviate overfeeding-induced metabolic perturbations. Twenty female minipigs were fed with a control diet (C) or an enriched fat/sucrose diet supplemented (O + F) or not (O) with fibers. Between 0 and 56 days of overfeeding, insulin (+88%), HOMA (+102%), cholesterol (+45%) and lactate (+63%) were increased, without any beneficial effect of fibers supplementation. However, fibers supplementation limited body weight gain (vs. O, -15% at D56) and the accumulation of hepatic lipids droplets induced by overfeeding. This could be explained by a decreased lipids transport potential (-50% FABP1 mRNA, O + F vs. O) inducing a down-regulation of regulatory elements of lipids metabolism / lipogenesis (-36% SREBP1c mRNA, O + F vs. O) but not to an increased oxidation (O + F not different from O and C for proteins and mRNA measured). Glucose metabolism was also differentially regulated by fibers supplementation, with an increased net hepatic release of glucose in the fasted state (diet × time effect, P<.05 at D56) that can be explained partially by a possible increased glycogen synthesis in the fed state (+82% GYS2 protein, O + F vs. O, P=.09). The direct role of short chain fatty acids on gluconeogenesis stimulation is questioned, with probably a short-term impact (D14) but no effect on a long-term (D56) basis.
Collapse
|
35
|
Feng Y, Madungwe NB, Bopassa JC. Mitochondrial inner membrane protein, Mic60/mitofilin in mammalian organ protection. J Cell Physiol 2018; 234:3383-3393. [PMID: 30259514 DOI: 10.1002/jcp.27314] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
The identification of the mitochondrial contact site and cristae organizing system (MICOS) in the inner mitochondrial membrane shed light on the intricate components necessary for mitochondria to form their signature cristae in which many protein complexes including the electron transport chain are localized. Mic60/mitofilin has been described as the core component for the assembly and maintenance of MICOS, thus controlling cristae morphology, protein transport, mitochondrial DNA transcription, as well as connecting the inner and outer mitochondrial membranes. Although Mic60 homologs are present in many species, mammalian Mic60 is only recently gaining attention as a critical player in several organ systems and diseases with mitochondrial-defect origins. In this review, we summarize what is currently known about the ever-expanding role of Mic60 in mammals, and highlight some new studies pushing the field of mitochondrial cristae organization towards potentially new and exciting therapies targeting this protein.
Collapse
Affiliation(s)
- Yansheng Feng
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, Texas.,Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - Ngonidzashe B Madungwe
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, Texas.,Department of Biomedical Engineering, University of Texas at San Antonio, Texas
| | - Jean C Bopassa
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, Texas
| |
Collapse
|
36
|
Zhang XY, Zhu MK, Yuan C, Zou XT. Proteomic analysis of hypothalamus and liver proteins affected by dietary l-arginine supplementation in laying hens. J Anim Physiol Anim Nutr (Berl) 2018; 102:1553-1563. [PMID: 30091229 DOI: 10.1111/jpn.12916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/31/2018] [Indexed: 12/11/2022]
Abstract
The goal of this study was to investigate the influence of l-arginine (l-Arg) supplementation on diet-induced changes in hypothalamus and liver proteome of laying hens. Layers were fed either an isonitrogenous control diet or a l-Arg diet. The test included a 2-week acclimation period and a 12-week experimental period. Eight layers per group were sacrificed at terminal of the experiment underwent 12 fasting. Blood and tissue samples of hypothalamus and liver were collected for further analysis. The levels of serum nitric oxide and hypothalamus neuropeptide Y of layers in l-Arg group were increased in comparison with those in control group. Quantitative proteomic analyses showed that a total of 3,715 hypothalamus proteins (235 differentially expressed) and 3797 liver proteins (373 differentially expressed) were detected between control and l-Arg-fed groups. A further enriched Gene Ontology term analysis of proteins found that 17 hypothalamus proteins (11 upregulated and six downregulated) and 29 liver proteins (14 upregulated and 15 downregulated) were altered differentially between the two groups. Our findings revealed the changes in metabolic and hormonal signals in central nervous system and peripheral tissues by responding to l-Arg feeding, which provides a possible way to gain a better understanding of l-Arg function in laying hens.
Collapse
Affiliation(s)
- X Y Zhang
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
| | - M K Zhu
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
| | - C Yuan
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
| | - X T Zou
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Wang J, Xu S, Gao J, Zhang L, Zhang Z, Yang W, Li Y, Liao S, Zhou H, Liu P, Liang B. SILAC-based quantitative proteomic analysis of the livers of spontaneous obese and diabetic rhesus monkeys. Am J Physiol Endocrinol Metab 2018; 315:E294-E306. [PMID: 29664677 DOI: 10.1152/ajpendo.00016.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a severe metabolic disorder that affects more than 10% of the population worldwide. Obesity is a major cause of insulin resistance and contributes to the development of T2DM. Liver is an essential metabolic organ that plays crucial roles in the pathogenesis of obesity and diabetes. However, the underlying mechanisms of liver in the transition of obesity to diabetes are not fully understood. The nonhuman primate rhesus monkey is an appropriate animal for research of human diseases. Here, we first screened and selected three individuals of spontaneously diabetic rhesus monkeys. Interestingly, the diabetic monkeys were obese with a high body mass index at the beginning, but gradually lost their body weight during one year of observation. Furthermore, we performed stable isotope labeling with amino acids in cell culture-based quantitative proteomics to identify proteins and signaling pathways with altered expression in the liver of obese and diabetic monkeys. In total, 3,509 proteins were identified and quantified, of which 185 proteins displayed an altered expression level. Gene ontology analysis revealed that the expression of proteins involved in fatty acids β-oxidation and galactose metabolism was increased in obese monkeys; while proteins involved in oxidative phosphorylation and branched chain amino acid (BCAA) degradation were upregulated in diabetic monkeys. In addition, we observed mild apoptosis in the liver of diabetic monkeys, suggesting liver injury at the late onset of diabetes. Taken together, our liver proteomics may reveal a distinct metabolic transition from fatty acids β-oxidation in obese monkey to BCAA degradation in diabetic monkeys.
Collapse
Affiliation(s)
- Junlong Wang
- College of Pharmaceutical Sciences, Soochow University , Suzhou , China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming , China
| | - Shimeng Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
| | - Linqiang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming , China
| | - Zhiguo Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming , China
| | - Wenhui Yang
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Department of Geriatrics, Yan'an Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Yunhai Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming , China
| | - Shasha Liao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming , China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Bin Liang
- College of Pharmaceutical Sciences, Soochow University , Suzhou , China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming , China
| |
Collapse
|
38
|
Protein Expression Profile of Twenty-Week-Old Diabetic db/db and Non-Diabetic Mice Livers: A Proteomic and Bioinformatic Analysis. Biomolecules 2018; 8:biom8020035. [PMID: 29857581 PMCID: PMC6023011 DOI: 10.3390/biom8020035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 02/08/2023] Open
Abstract
Type 2 diabetes mellitus is characterized by insulin resistance in the liver. Insulin is not only involved in carbohydrate metabolism, it also regulates protein synthesis. This work describes the expression of proteins in the liver of a diabetic mouse and identifies the metabolic pathways involved. Twenty-week-old diabetic db/db mice were hepatectomized, after which proteins were separated by 2D-Polyacrylamide Gel Electrophoresis (2D-PAGE). Spots varying in intensity were analyzed using mass spectrometry, and biological function was assigned by the Database for Annotation, Visualization and Integrated Discovery (DAVID) software. A differential expression of 26 proteins was identified; among these were arginase-1, pyruvate carboxylase, peroxiredoxin-1, regucalcin, and sorbitol dehydrogenase. Bioinformatics analysis indicated that many of these proteins are mitochondrial and participate in metabolic pathways, such as the citrate cycle, the fructose and mannose metabolism, and glycolysis or gluconeogenesis. In addition, these proteins are related to oxidation⁻reduction reactions and molecular function of vitamin binding and amino acid metabolism. In conclusion, the proteomic profile of the liver of diabetic mouse db/db exhibited mainly alterations in the metabolism of carbohydrates and nitrogen. These differences illustrate the heterogeneity of diabetes in its different stages and under different conditions and highlights the need to improve treatments for this disease.
Collapse
|
39
|
Fan Z, Li L, Li X, Zhang M, Zhong Y, Li Y, Yu D, Cao J, Zhao J, Xiaoming Deng XD, Zhang M, Jian-Guo Wen JGW, Liu Z, Goscinski MA, Berge V, Nesland J, Suo Z. Generation of an oxoglutarate dehydrogenase knockout rat model and the effect of a high-fat diet. RSC Adv 2018; 8:16636-16644. [PMID: 35540547 PMCID: PMC9080337 DOI: 10.1039/c8ra00253c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/29/2018] [Indexed: 11/21/2022] Open
Abstract
Although abnormal metabolism in metabolic syndrome and tumours has been well described, the relationship between oxoglutarate dehydrogenase (OGDH) and obesity-related diseases is still largely unknown. This study aimed to investigate whether it was possible to use transcription activator-like effector nuclease (TALEN) technology to establish OGDH−/− rats and then study the effect of a high-fat diet (HFD) on these rats. However, after OGDH+/−rats were generated, we were unable to identify any OGDH−/− rats by performing mating experiments with the OGDH+/− rats for almost one year. During the past three years, only OGDH+/− rats were stably established, and correspondingly reduced OGDH expression in the tissues of the OGDH+/− rats was verified. No significant abnormal behaviour was observed in the OGDH+/− rats compared to the wild-type (WT) control rats. However, the OGDH+/− rats were revealed to have higher body weight, and the difference was even significantly greater under the HFD condition. Furthermore, blood biochemical and tissue histological examinations uncovered no abnormalities with normal diets, but a HFD resulted in liver dysfunction with pathological alterations in the OGDH+/− rats. Our results strongly indicate that OGDH homologous knockout is lethal in rats but heterologous OGDH knockout results in vulnerable liver lesions with a HFD. Therefore, the current study may provide a useful OGDH+/− rat model for further investigations of metabolic syndrome and obesity-related hepatic carcinogenesis. Although abnormal metabolism in metabolic syndrome and tumours has been well described, the relationship between oxoglutarate dehydrogenase (OGDH) and obesity-related diseases is still largely unknown.![]()
Collapse
|
40
|
Navarro CDC, Figueira TR, Francisco A, Dal'Bó GA, Ronchi JA, Rovani JC, Escanhoela CAF, Oliveira HCF, Castilho RF, Vercesi AE. Redox imbalance due to the loss of mitochondrial NAD(P)-transhydrogenase markedly aggravates high fat diet-induced fatty liver disease in mice. Free Radic Biol Med 2017; 113:190-202. [PMID: 28964917 DOI: 10.1016/j.freeradbiomed.2017.09.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/30/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
Abstract
The mechanisms by which a high fat diet (HFD) promotes non-alcoholic fatty liver disease (NAFLD) appear to involve liver mitochondrial dysfunctions and redox imbalance. We hypothesized that a HFD would increase mitochondrial reliance on NAD(P)-transhydrogenase (NNT) as the source of NADPH for antioxidant systems that counteract NAFLD development. Therefore, we studied HFD-induced liver mitochondrial dysfunctions and NAFLD in C57Unib.B6 congenic mice with (Nnt+/+) or without (Nnt-/-) NNT activity; the spontaneously mutated allele (Nnt-/-) was inherited from the C57BL/6J mouse substrain. After 20 weeks on a HFD, Nnt-/- mice exhibited a higher prevalence of steatohepatitis and content of liver triglycerides compared to Nnt+/+ mice on an identical diet. Under a HFD, the aggravated NAFLD phenotype in the Nnt-/- mice was accompanied by an increased H2O2 release rate from mitochondria, decreased aconitase activity (a redox-sensitive mitochondrial enzyme) and higher susceptibility to Ca2+-induced mitochondrial permeability transition. In addition, HFD led to the phosphorylation (inhibition) of pyruvate dehydrogenase (PDH) and markedly reduced the ability of liver mitochondria to remove peroxide in Nnt-/- mice. Bypass or pharmacological reactivation of PDH by dichloroacetate restored the peroxide removal capability of mitochondria from Nnt-/- mice on a HFD. Noteworthy, compared to mice that were chow-fed, the HFD did not impair peroxide removal nor elicit redox imbalance in mitochondria from Nnt+/+ mice. Therefore, HFD interacted with Nnt mutation to generate PDH inhibition and further suppression of peroxide removal. We conclude that NNT plays a critical role in counteracting mitochondrial redox imbalance, PDH inhibition and advancement of NAFLD in mice fed a HFD. The present study provide seminal experimental evidence that redox imbalance in liver mitochondria potentiates the progression from simple steatosis to steatohepatitis following a HFD.
Collapse
Affiliation(s)
- Claudia D C Navarro
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Tiago R Figueira
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Annelise Francisco
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Genoefa A Dal'Bó
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Juliana A Ronchi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Juliana C Rovani
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-865 Campinas, SP, Brazil
| | - Cecilia A F Escanhoela
- Departamento de Anatomia Patológica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Helena C F Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-865 Campinas, SP, Brazil
| | - Roger F Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil.
| | - Anibal E Vercesi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil.
| |
Collapse
|
41
|
Lohr K, Pachl F, Moghaddas Gholami A, Geillinger KE, Daniel H, Kuster B, Klingenspor M. Reduced mitochondrial mass and function add to age-related susceptibility toward diet-induced fatty liver in C57BL/6J mice. Physiol Rep 2017; 4:4/19/e12988. [PMID: 27694529 PMCID: PMC5064140 DOI: 10.14814/phy2.12988] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/09/2016] [Indexed: 01/11/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major health burden in the aging society with an urging medical need for a better understanding of the underlying mechanisms. Mitochondrial fatty acid oxidation and mitochondrial‐derived reactive oxygen species (ROS) are considered critical in the development of hepatic steatosis, the hallmark of NAFLD. Our study addressed in C57BL/6J mice the effect of high fat diet feeding and age on liver mitochondria at an early stage of NAFLD development. We therefore analyzed functional characteristics of hepatic mitochondria and associated alterations in the mitochondrial proteome in response to high fat feeding in adolescent, young adult, and middle‐aged mice. Susceptibility to diet‐induced obesity increased with age. Young adult and middle‐aged mice developed fatty liver, but not adolescent mice. Fat accumulation was negatively correlated with an age‐related reduction in mitochondrial mass and aggravated by a reduced capacity of fatty acid oxidation in high fat‐fed mice. Irrespective of age, high fat diet increased ROS production in hepatic mitochondria associated with a balanced nuclear factor erythroid‐derived 2 like 2 (NFE2L2) dependent antioxidative response, most likely triggered by reduced tethering of NFE2L2 to mitochondrial phosphoglycerate mutase 5. Age indirectly influenced mitochondrial function by reducing mitochondrial mass, thus exacerbating diet‐induced fat accumulation. Therefore, consideration of age in metabolic studies must be emphasized.
Collapse
Affiliation(s)
- Kerstin Lohr
- Chair of Molecular Nutritional Medicine, Technische Universität München, Else Kröner Fresenius Center for Nutritional Medicine, Freising-Weihenstephan, Germany Z I E L - Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Fiona Pachl
- Chair of Proteomics and Bioanalytics, Technische Universität München Bavarian Biomolecular Mass Spectrometry Center, Freising-Weihenstephan, Germany
| | - Amin Moghaddas Gholami
- Chair of Proteomics and Bioanalytics, Technische Universität München Bavarian Biomolecular Mass Spectrometry Center, Freising-Weihenstephan, Germany
| | - Kerstin E Geillinger
- Z I E L - Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany Nutritional Physiology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Hannelore Daniel
- Z I E L - Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany Nutritional Physiology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technische Universität München Bavarian Biomolecular Mass Spectrometry Center, Freising-Weihenstephan, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Technische Universität München, Else Kröner Fresenius Center for Nutritional Medicine, Freising-Weihenstephan, Germany Z I E L - Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|
42
|
Geisler CE, Renquist BJ. Hepatic lipid accumulation: cause and consequence of dysregulated glucoregulatory hormones. J Endocrinol 2017; 234:R1-R21. [PMID: 28428362 DOI: 10.1530/joe-16-0513] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022]
Abstract
Fatty liver can be diet, endocrine, drug, virus or genetically induced. Independent of cause, hepatic lipid accumulation promotes systemic metabolic dysfunction. By acting as peroxisome proliferator-activated receptor (PPAR) ligands, hepatic non-esterified fatty acids upregulate expression of gluconeogenic, beta-oxidative, lipogenic and ketogenic genes, promoting hyperglycemia, hyperlipidemia and ketosis. The typical hormonal environment in fatty liver disease consists of hyperinsulinemia, hyperglucagonemia, hypercortisolemia, growth hormone deficiency and elevated sympathetic tone. These endocrine and metabolic changes further encourage hepatic steatosis by regulating adipose tissue lipolysis, liver lipid uptake, de novo lipogenesis (DNL), beta-oxidation, ketogenesis and lipid export. Hepatic lipid accumulation may be induced by 4 separate mechanisms: (1) increased hepatic uptake of circulating fatty acids, (2) increased hepatic de novo fatty acid synthesis, (3) decreased hepatic beta-oxidation and (4) decreased hepatic lipid export. This review will discuss the hormonal regulation of each mechanism comparing multiple physiological models of hepatic lipid accumulation. Nonalcoholic fatty liver disease (NAFLD) is typified by increased hepatic lipid uptake, synthesis, oxidation and export. Chronic hepatic lipid signaling through PPARgamma results in gene expression changes that allow concurrent activity of DNL and beta-oxidation. The importance of hepatic steatosis in driving systemic metabolic dysfunction is highlighted by the common endocrine and metabolic disturbances across many conditions that result in fatty liver. Understanding the mechanisms underlying the metabolic dysfunction that develops as a consequence of hepatic lipid accumulation is critical to identifying points of intervention in this increasingly prevalent disease state.
Collapse
Affiliation(s)
- Caroline E Geisler
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| | - Benjamin J Renquist
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| |
Collapse
|
43
|
Wollam J, Mahata S, Riopel M, Hernandez-Carretero A, Biswas A, Bandyopadhyay GK, Chi NW, Eiden LE, Mahapatra NR, Corti A, Webster NJG, Mahata SK. Chromogranin A regulates vesicle storage and mitochondrial dynamics to influence insulin secretion. Cell Tissue Res 2017; 368:487-501. [PMID: 28220294 PMCID: PMC10843982 DOI: 10.1007/s00441-017-2580-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/16/2017] [Indexed: 01/01/2023]
Abstract
Chromogranin A (CgA) is a prohormone and a granulogenic factor that regulates secretory pathways in neuroendocrine tissues. In β-cells of the endocrine pancreas, CgA is a major cargo in insulin secretory vesicles. The impact of CgA deficiency on the formation and exocytosis of insulin vesicles is yet to be investigated. In addition, no literature exists on the impact of CgA on mitochondrial function in β-cells. Using three different antibodies, we demonstrate that CgA is processed to vasostatin- and catestatin-containing fragments in pancreatic islet cells. CgA deficiency in Chga-KO islets leads to compensatory overexpression of chromogranin B, secretogranin II, SNARE proteins and insulin genes, as well as increased insulin protein content. Ultrastructural studies of pancreatic islets revealed that Chga-KO β-cells contain fewer immature secretory granules than wild-type (WT) control but increased numbers of mature secretory granules and plasma membrane-docked vesicles. Compared to WT control, CgA-deficient β-cells exhibited increases in mitochondrial volume, numerical densities and fusion, as well as increased expression of nuclear encoded genes (Ndufa9, Ndufs8, Cyc1 and Atp5o). These changes in secretory vesicles and the mitochondria likely contribute to the increased glucose-stimulated insulin secretion observed in Chga-KO mice. We conclude that CgA is an important regulator for coordination of mitochondrial dynamics, secretory vesicular quanta and GSIS for optimal secretory functioning of β-cells, suggesting a strong, CgA-dependent positive link between mitochondrial fusion and GSIS.
Collapse
Affiliation(s)
- Joshua Wollam
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sumana Mahata
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Matthew Riopel
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Angshuman Biswas
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Nai-Wen Chi
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Lee E Eiden
- Section on Molecular Neuroscience, NIMH-IRP, Bethesda, MD, USA
| | - Nitish R Mahapatra
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Angelo Corti
- IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Nicholas J G Webster
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Sushil K Mahata
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
- VA San Diego Healthcare System, San Diego, CA, USA.
- Metabolic Physiology & Ultrastructural Biology Laboratory, Department of Medicine, University of California, San Diego (0732), 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA.
| |
Collapse
|
44
|
Brain proteomic modifications associated to protective effect of grape extract in a murine model of obesity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:578-588. [DOI: 10.1016/j.bbapap.2017.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 01/24/2017] [Accepted: 03/03/2017] [Indexed: 01/01/2023]
|
45
|
Caira S, Iannelli A, Sciarrillo R, Picariello G, Renzone G, Scaloni A, Addeo P. Differential representation of liver proteins in obese human subjects suggests novel biomarkers and promising targets for drug development in obesity. J Enzyme Inhib Med Chem 2017; 32:672-682. [PMID: 28274171 PMCID: PMC6009959 DOI: 10.1080/14756366.2017.1292262] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The proteome of liver biopsies from human obese (O) subjects has been compared to those of nonobese (NO) subjects using two-dimensional gel electrophoresis (2-DE). Differentially represented proteins were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS)-based peptide mass fingerprinting (PMF) and nanoflow-liquid chromatography coupled to electrospray-tandem mass spectrometry (nLC-ESI-MS/MS). Overall, 61 gene products common to all of the liver biopsies were identified within 65 spots, among which 25 ones were differently represented between O and NO subjects. In particular, over-representation of short-chain acyl-CoA dehydrogenase, Δ(3,5)-Δ(2,4)dienoyl-CoA isomerase, acetyl-CoA acetyltransferase, glyoxylate reductase/hydroxypyruvate reductase, fructose-biphosphate aldolase B, peroxiredoxin I, protein DJ-1, catalase, α- and β-hemoglobin subunits, 3-mercaptopyruvate S-transferase, calreticulin, aminoacylase 1, phenazine biosynthesis-like domain-containing protein and a form of fatty acid-binding protein, together with downrepresentation of glutamate dehydrogenase, glutathione S-transferase A1, S-adenosylmethionine synthase 1A and a form of apolipoprotein A-I, was associated with the obesity condition. Some of these metabolic enzymes and antioxidant proteins have already been identified as putative diagnostic markers of liver dysfunction in animal models of steatosis or obesity, suggesting additional investigations on their role in these syndromes. Their differential representation in human liver was suggestive of their consideration as obesity human biomarkers and for the development of novel antiobesity drugs.
Collapse
Affiliation(s)
- Simonetta Caira
- a Proteomics and Mass Spectrometry Laboratory , ISPAAM, National Research Council , Naples , Italy
| | - Antonio Iannelli
- b Département de Chirurgie Digestive , Centre Hospitalier Universitarie de Nice , Nice , France
| | - Rosaria Sciarrillo
- c Dipartimento di Scienze e Tecnologie , Università degli Studi del Sannio , Benevento , Italy
| | | | - Giovanni Renzone
- a Proteomics and Mass Spectrometry Laboratory , ISPAAM, National Research Council , Naples , Italy
| | - Andrea Scaloni
- a Proteomics and Mass Spectrometry Laboratory , ISPAAM, National Research Council , Naples , Italy
| | - Pietro Addeo
- e Service de Chirurgie Hépatique, Pancréatique, Biliaire et Transplantation, Pôle des Pathologies Digestives, Hépatiques et de la Transplantation, Hôpital de Hautepierre , Université de Strasbourg, Hôpitaux Universitaires de Strasbourg , Strasbourg , France
| |
Collapse
|
46
|
Wu L, Guo X, Hartson SD, Davis MA, He H, Medeiros DM, Wang W, Clarke SL, Lucas EA, Smith BJ, von Lintig J, Lin D. Lack of β, β-carotene-9', 10'-oxygenase 2 leads to hepatic mitochondrial dysfunction and cellular oxidative stress in mice. Mol Nutr Food Res 2017; 61. [PMID: 27991717 DOI: 10.1002/mnfr.201600576] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/27/2016] [Accepted: 12/05/2016] [Indexed: 12/17/2022]
Abstract
SCOPE β,β-Carotene-9',10'-dioxygenase 2 (BCO2) is a carotenoid cleavage enzyme localized to the inner mitochondrial membrane in mammals. This study was aimed to assess the impact of genetic ablation of BCO2 on hepatic oxidative stress through mitochondrial function in mice. METHODS AND RESULTS Liver samples from 6-wk-old male BCO2-/- knockout (KO) and isogenic wild-type (WT) mice were subjected to proteomics and functional activity assays. Compared to the WT, KO mice consumed more food (by 18%) yet displayed significantly lower body weight (by 12%). Mitochondrial proteomic results demonstrated that loss of BCO2 was associated with quantitative changes of the mitochondrial proteome mainly shown by suppressed expression of enzymes and/or proteins involved in fatty acid β-oxidation, the tricarboxylic acid cycle, and the electron transport chain. The mitochondrial basal respiratory rate, proton leak, and electron transport chain complex II capacity were significantly elevated in the livers of KO compared to WT mice. Moreover, elevated reactive oxygen species and increased mitochondrial protein carbonylation were also demonstrated in liver of KO mice. CONCLUSIONS Loss of BCO2 induces mitochondrial hyperactivation, mitochondrial stress, and changes of the mitochondrial proteome, leading to mitochondrial energy insufficiency. BCO2 appears to be critical for proper hepatic mitochondrial function.
Collapse
Affiliation(s)
- Lei Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Xin Guo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Steven D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Mary Abby Davis
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Hui He
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Denis M Medeiros
- Graduate School, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Weiqun Wang
- Department of Food, Nutrition, Dietetics, and Health, Kansas State University, Manhattan, KS, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Johannes von Lintig
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
47
|
Leung A, Trac C, Du J, Natarajan R, Schones DE. Persistent Chromatin Modifications Induced by High Fat Diet. J Biol Chem 2016; 291:10446-55. [PMID: 27006400 DOI: 10.1074/jbc.m115.711028] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 01/14/2023] Open
Abstract
Obesity is a highly heritable complex disease that results from the interaction of multiple genetic and environmental factors. Formerly obese individuals are susceptible to metabolic disorders later in life, even after lifestyle changes are made to mitigate the obese state. This is reminiscent of the metabolic memory phenomenon originally observed for persistent complications in diabetic patients, despite subsequent glycemic control. Epigenetic modifications represent a potential mediator of this observed memory. We previously demonstrated that a high fat diet leads to changes in chromatin accessibility in the mouse liver. The regions of greatest chromatin changes in accessibility are largely strain-dependent, indicating a genetic component in diet-induced chromatin alterations. We have now examined the persistence of diet-induced chromatin accessibility changes upon diet reversal in two strains of mice. We find that a substantial fraction of loci that undergo chromatin accessibility changes with a high fat diet remains in the remodeled state after diet reversal in C57BL/6J mice. In contrast, the vast majority of diet-induced chromatin accessibility changes in A/J mice are transient. Our data also indicate that the persistent chromatin accessibility changes observed in C57BL/6J mice are associated with specific transcription factors and histone post-translational modifications. The persistent loci identified here are likely to be contributing to the overall phenotype and are attractive targets for therapeutic intervention.
Collapse
Affiliation(s)
- Amy Leung
- From the Department of Diabetes Complications and Metabolism, Beckman Research Institute, and
| | - Candi Trac
- From the Department of Diabetes Complications and Metabolism, Beckman Research Institute, and
| | - Juan Du
- From the Department of Diabetes Complications and Metabolism, Beckman Research Institute, and Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91010
| | - Rama Natarajan
- From the Department of Diabetes Complications and Metabolism, Beckman Research Institute, and Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91010
| | - Dustin E Schones
- From the Department of Diabetes Complications and Metabolism, Beckman Research Institute, and Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91010
| |
Collapse
|
48
|
Modjtahedi N, Tokatlidis K, Dessen P, Kroemer G. Mitochondrial Proteins Containing Coiled-Coil-Helix-Coiled-Coil-Helix (CHCH) Domains in Health and Disease. Trends Biochem Sci 2016; 41:245-260. [PMID: 26782138 DOI: 10.1016/j.tibs.2015.12.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 11/19/2022]
Abstract
Members of the coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing protein family that carry (CX9C) type motifs are imported into the mitochondrion with the help of the disulfide relay-dependent MIA import pathway. These evolutionarily conserved proteins are emerging as new cellular factors that control mitochondrial respiration, redox regulation, lipid homeostasis, and membrane ultrastructure and dynamics. We discuss recent insights on the activity of known (CX9C) motif-carrying proteins in mammals and review current data implicating the Mia40/CHCHD4 import machinery in the regulation of their mitochondrial import. Recent findings and the identification of disease-associated mutations in specific (CX9C) motif-carrying proteins have highlighted members of this family of proteins as potential therapeutic targets in a variety of human disorders.
Collapse
Affiliation(s)
- Nazanine Modjtahedi
- Institut National de la Santé et de la Recherche Médicale, U1030, Villejuif, France; Gustave Roussy Cancer Campus, Villejuif, France; Faculty of Medicine, Université Paris-Saclay, Kremlin-Bicêtre, France.
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Philippe Dessen
- Gustave Roussy Cancer Campus, Villejuif, France; Faculty of Medicine, Université Paris-Saclay, Kremlin-Bicêtre, France; Groupe bioinformatique Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Equipe 11 Labellisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, AP-HP, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
49
|
Kakimoto PA, Kowaltowski AJ. Effects of high fat diets on rodent liver bioenergetics and oxidative imbalance. Redox Biol 2016; 8:216-25. [PMID: 26826574 PMCID: PMC4753394 DOI: 10.1016/j.redox.2016.01.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 02/08/2023] Open
Abstract
Human metabolic diseases can be mimicked in rodents by using dietary interventions such as high fat diets (HFD). Nonalcoholic fatty liver disease (NAFLD) develops as a result of HFD and the disease may progress in a manner involving increased production of oxidants. The main intracellular source of these oxidants are mitochondria, which are also responsible for lipid metabolism and thus widely recognized as important players in the pathology and progression of steatosis. Here, we review publications that study redox and bioenergetic effects of HFD in the liver. We find that dietary composition and protocol implementations vary widely, as do the results of these dietary interventions. Overall, all HFD promote steatosis, changes in β-oxidation, generation and consequences of oxidants, while effects on body weight, insulin signaling and other bioenergetic parameters are more variable with the experimental models adopted. Our review provides a broad analysis of the bioenergetic and redox changes promoted by HFD as well as suggestions for changes and specifications in methodologies that may help explain apparent disparities in the current literature. High fat diets (HFDs) induce steatosis, even with no weight changes . HFDs activate β-oxidation. HFDs promote oxidative imbalance.
Collapse
Affiliation(s)
- Pâmela A Kakimoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| |
Collapse
|
50
|
Impact of Chromogranin A deficiency on catecholamine storage, catecholamine granule morphology and chromaffin cell energy metabolism in vivo. Cell Tissue Res 2015; 363:693-712. [PMID: 26572539 DOI: 10.1007/s00441-015-2316-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/16/2015] [Indexed: 01/01/2023]
Abstract
Chromogranin A (CgA) is a prohormone and granulogenic factor in neuroendocrine tissues with a regulated secretory pathway. The impact of CgA depletion on secretory granule formation has been previously demonstrated in cell culture. However, studies linking the structural effects of CgA deficiency with secretory performance and cell metabolism in the adrenomedullary chromaffin cells in vivo have not previously been reported. Adrenomedullary content of the secreted adrenal catecholamines norepinephrine (NE) and epinephrine (EPI) was decreased 30-40 % in Chga-KO mice. Quantification of NE and EPI-storing dense core (DC) vesicles (DCV) revealed decreased DCV numbers in chromaffin cells in Chga-KO mice. For both cell types, the DCV diameter in Chga-KO mice was less (100-200 nm) than in WT mice (200-350 nm). The volume density of the vesicle and vesicle number was also lower in Chga-KO mice. Chga-KO mice showed an ~47 % increase in DCV/DC ratio, implying vesicle swelling due to increased osmotically active free catecholamines. Upon challenge with 2 U/kg insulin, there was a diminution in adrenomedullary EPI, no change in NE and a very large increase in the EPI and NE precursor dopamine (DA), consistent with increased catecholamine biosynthesis during prolonged secretion. We found dilated mitochondrial cristae, endoplasmic reticulum and Golgi complex, as well as increased synaptic mitochondria, synaptic vesicles and glycogen granules in Chga-KO mice compared to WT mice, suggesting that decreased granulogenesis and catecholamine storage in CgA-deficient mouse adrenal medulla is compensated by increased VMAT-dependent catecholamine update into storage vesicles, at the expense of enhanced energy expenditure by the chromaffin cell.
Collapse
|