1
|
Chapman EA, Rogers HT, Gao Z, Chan HJ, Alvarado FJ, Ge Y. In-depth characterization of S-glutathionylation in ventricular myosin light chain 1 across species by top-down proteomics. J Mol Cell Cardiol 2025; 203:1-6. [PMID: 40169117 DOI: 10.1016/j.yjmcc.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/07/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
S-glutathionylation (SSG) is increasingly recognized as a critical signaling mechanism in the heart, yet SSG modifications in cardiac sarcomeric proteins remain understudied. Here we identified SSG of the ventricular isoform of myosin light chain 1 (MLC-1v) in human, swine, and mouse cardiac tissues using top-down mass spectrometry (MS)-based proteomics. Our results enabled the accurate identification, quantification, and site-specific localization of SSG in MLC-1v across different species. Notably, the endogenous SSG of MLC-1v was observed in human and swine cardiac tissues but not in mice. Treating non-reduced cardiac tissue lysates with GSSG elevated MLC-1v SSG levels across all three species.
Collapse
Affiliation(s)
- Emily A Chapman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Holden T Rogers
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zhan Gao
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hsin-Ju Chan
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
2
|
Saei AA, Sun L, Mahmoudi M. The role of protein corona in advancing plasma proteomics. Proteomics 2025; 25:e2400028. [PMID: 39221533 PMCID: PMC11735278 DOI: 10.1002/pmic.202400028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The protein corona, a layer of biomolecules forming around nanoparticles in biological environments, critically influences nanoparticle interactions with biosystems, affecting pharmacokinetics and biological outcomes. Initially, the protein corona presented challenges for nanomedicine and nanotoxicology, such as nutrient depletion in cell cultures and masking of nanoparticle-targeting species. However, recent advancements have highlighted its potential in environmental toxicity, proteomics, and immunology. This viewpoint focuses on leveraging the protein corona to enhance the depth of plasma proteome analysis, addressing challenges posed by the high dynamic range of protein concentrations in plasma. The protein corona simplifies sample preparation, enriches low-abundance proteins, and improves proteome coverage. Innovations include using diverse nanoparticles and spiking small molecules to increase the number of quantified proteins. Reproducibility issues across core facilities necessitate standardized protocols. Moreover, top-down proteomics enables proteoform-specific measurements, providing deeper insights into protein corona composition. Future research should aim at improving top-down proteomics techniques and integrating protein corona studies and proteomics for personalized medicine and advanced diagnostics.
Collapse
Affiliation(s)
- Amir Ata Saei
- Center for Translational Microbiome ResearchDepartment of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Liangliang Sun
- Department of ChemistryMichigan State UniversityEast LansingMichiganUSA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
3
|
Chapman EA, Rogers HT, Gao Z, Chan HJ, Alvarado FJ, Ge Y. In-depth Characterization of S-Glutathionylation in Ventricular Myosin Light Chain 1 Across Species by Top-Down Proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.628048. [PMID: 39713419 PMCID: PMC11661159 DOI: 10.1101/2024.12.11.628048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
S-glutathionylation (SSG) is increasingly recognized as a critical signaling mechanism in the heart, yet SSG modifications in cardiac sarcomeric proteins remain understudied. Here we identified SSG of the ventricular isoform of myosin light chain 1 (MLC-1v) in human, swine, and mouse cardiac tissues using top-down mass spectrometry (MS)-based proteomics. Our results enabled the accurate identification, quantification, and site-specific localization of SSG in MLC-1v across different species. Notably, the endogenous SSG of MLC-1v was observed in human and swine cardiac tissues but not in mice. Treating non-reduced cardiac tissue lysates with GSSG elevated MLC-1v SSG levels across all three species.
Collapse
|
4
|
Roberts DS, Loo JA, Tsybin YO, Liu X, Wu S, Chamot-Rooke J, Agar JN, Paša-Tolić L, Smith LM, Ge Y. Top-down proteomics. NATURE REVIEWS. METHODS PRIMERS 2024; 4:38. [PMID: 39006170 PMCID: PMC11242913 DOI: 10.1038/s43586-024-00318-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 07/16/2024]
Abstract
Proteoforms, which arise from post-translational modifications, genetic polymorphisms and RNA splice variants, play a pivotal role as drivers in biology. Understanding proteoforms is essential to unravel the intricacies of biological systems and bridge the gap between genotypes and phenotypes. By analysing whole proteins without digestion, top-down proteomics (TDP) provides a holistic view of the proteome and can decipher protein function, uncover disease mechanisms and advance precision medicine. This Primer explores TDP, including the underlying principles, recent advances and an outlook on the future. The experimental section discusses instrumentation, sample preparation, intact protein separation, tandem mass spectrometry techniques and data collection. The results section looks at how to decipher raw data, visualize intact protein spectra and unravel data analysis. Additionally, proteoform identification, characterization and quantification are summarized, alongside approaches for statistical analysis. Various applications are described, including the human proteoform project and biomedical, biopharmaceutical and clinical sciences. These are complemented by discussions on measurement reproducibility, limitations and a forward-looking perspective that outlines areas where the field can advance, including potential future applications.
Collapse
Affiliation(s)
- David S Roberts
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California - Los Angeles, Los Angeles, CA, USA
| | | | - Xiaowen Liu
- Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, USA
| | | | - Jeffrey N Agar
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Ljiljana Paša-Tolić
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
- Department of Cell and Regenerative Biology, Human Proteomics Program, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
5
|
Liu M, Zhai L, Yang Z, Li S, Liu T, Chen A, Wang L, Li Y, Li R, Li C, Tan M, Chen Z, Qian J. Integrative Proteomic Analysis Reveals the Cytoskeleton Regulation and Mitophagy Difference Between Ischemic Cardiomyopathy and Dilated Cardiomyopathy. Mol Cell Proteomics 2023; 22:100667. [PMID: 37852321 PMCID: PMC10684391 DOI: 10.1016/j.mcpro.2023.100667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/21/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023] Open
Abstract
Ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) are the two primary etiologies of end-stage heart failure. However, there remains a dearth of comprehensive understanding the global perspective and the dynamics of the proteome and phosphoproteome in ICM and DCM, which hinders the profound comprehension of pivotal biological characteristics as well as differences in signal transduction activation mechanisms between these two major types of heart failure. We conducted high-throughput quantification proteomics and phosphoproteomics analysis of clinical heart tissues with ICM or DCM, which provided us the system-wide molecular insights into pathogenesis of clinical heart failure in both ICM and DCM. Both protein and phosphorylation expression levels exhibit distinct separation between heart failure and normal control heart tissues, highlighting the prominent characteristics of ICM and DCM. By integrating with omics results, Western blots, phosphosite-specific mutation, chemical intervention, and immunofluorescence validation, we found a significant activation of the PRKACA-GSK3β signaling pathway in ICM. This signaling pathway influenced remolding of the microtubule network and regulated the critical actin filaments in cardiac construction. Additionally, DCM exhibited significantly elevated mitochondria energy supply injury compared to ICM, which induced the ROCK1-vimentin signaling pathway activation and promoted mitophagy. Our study not only delineated the major distinguishing features between ICM and DCM but also revealed the crucial discrepancy in the mechanisms between ICM and DCM. This study facilitates a more profound comprehension of pathophysiologic heterogeneity between ICM and DCM and provides a novel perspective to assist in the discovery of potential therapeutic targets for different types of heart failure.
Collapse
Affiliation(s)
- Muyin Liu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhaohua Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Su Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Tianxian Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ao Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Lulu Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Youran Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Ruidong Li
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Chenguang Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China; Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhangwei Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| |
Collapse
|
6
|
Reitz CJ, Kuzmanov U, Gramolini AO. Multi-omic analyses and network biology in cardiovascular disease. Proteomics 2023; 23:e2200289. [PMID: 37691071 DOI: 10.1002/pmic.202200289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
Heart disease remains a leading cause of death in North America and worldwide. Despite advances in therapies, the chronic nature of cardiovascular diseases ultimately results in frequent hospitalizations and steady rates of mortality. Systems biology approaches have provided a new frontier toward unraveling the underlying mechanisms of cell, tissue, and organ dysfunction in disease. Mapping the complex networks of molecular functions across the genome, transcriptome, proteome, and metabolome has enormous potential to advance our understanding of cardiovascular disease, discover new disease biomarkers, and develop novel therapies. Computational workflows to interpret these data-intensive analyses as well as integration between different levels of interrogation remain important challenges in the advancement and application of systems biology-based analyses in cardiovascular research. This review will focus on summarizing the recent developments in network biology-level profiling in the heart, with particular emphasis on modeling of human heart failure. We will provide new perspectives on integration between different levels of large "omics" datasets, including integration of gene regulatory networks, protein-protein interactions, signaling networks, and metabolic networks in the heart.
Collapse
Affiliation(s)
- Cristine J Reitz
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada
| | - Uros Kuzmanov
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada
| | - Anthony O Gramolini
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Sousa P, Silva L, Luís C, Câmara JS, Perestrelo R. MALDI-TOF MS: A Promising Analytical Approach to Cancer Diagnostics and Monitoring. SEPARATIONS 2023; 10:453. [DOI: 10.3390/separations10080453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Cancer remains the second most common cause of death after cardiovascular diseases, accounting for nearly 10 million deaths in 2020. Although the incidence of cancer increases considerably with age, the cancer burden can also be reduced and have a high chance of cure through early detection, appropriate treatment, and care of patients. The development of high-throughput analytical approaches, like matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), contributes to identifying a pool of proteins/peptides as putative biomarkers for the early detection, diagnosis, and tumor progression. The purpose of the current review is to present an updated outline of recent proteome/peptidome research to establish putative cancer biomarkers using MALDI-TOF MS and highlight the applicability of statistical analysis in the oncology field. The pros and cons of MALDI-TOF MS application on cancer diagnostics and monitoring will be discussed, as well as compared with tandem mass spectrometry (MS/MS)-based proteomics (e.g., liquid chromatography–tandem mass spectrometry). In addition, pre-analytical (e.g., sample quality control) and analytical (e.g., sample pre-treatment, instrumental analytical conditions) properties that influence the robustness of MALDI-TOF MS data will be also discussed.
Collapse
Affiliation(s)
- Patrícia Sousa
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Laurentina Silva
- Hospital Dr. Nélio Mendonça, SESARAM, EPERAM—Serviço de Saúde da Região Autónoma da Madeira, Avenida Luís de CamõesK, 9004-514 Funchal, Portugal
| | - Catarina Luís
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - José S. Câmara
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
8
|
Bayne EF, Rossler KJ, Gregorich ZR, Aballo TJ, Roberts DS, Chapman EA, Guo W, Palecek SP, Ralphe JC, Kamp TJ, Ge Y. Top-down proteomics of myosin light chain isoforms define chamber-specific expression in the human heart. J Mol Cell Cardiol 2023; 181:89-97. [PMID: 37327991 PMCID: PMC10528938 DOI: 10.1016/j.yjmcc.2023.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/27/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Myosin functions as the "molecular motor" of the sarcomere and generates the contractile force necessary for cardiac muscle contraction. Myosin light chains 1 and 2 (MLC-1 and -2) play important functional roles in regulating the structure of the hexameric myosin molecule. Each of these light chains has an 'atrial' and 'ventricular' isoform, so called because they are believed to exhibit chamber-restricted expression in the heart. However, recently the chamber-specific expression of MLC isoforms in the human heart has been questioned. Herein, we analyzed the expression of MLC-1 and -2 atrial and ventricular isoforms in each of the four cardiac chambers in adult non-failing donor hearts using top-down mass spectrometry (MS)-based proteomics. Strikingly, we detected an isoform thought to be ventricular, MLC-2v (gene: MYL2), in the atria and confirmed the protein sequence using tandem MS (MS/MS). For the first time, a putative deamidation post-translation modification (PTM) located on MLC-2v in atrial tissue was localized to amino acid N13. MLC-1v (MYL3) and MLC-2a (MYL7) were the only MLC isoforms exhibiting chamber-restricted expression patterns across all donor hearts. Importantly, our results unambiguously show that MLC-1v, not MLC-2v, is ventricle-specific in adult human hearts. Moreover, we found elevated MLC-2 phosphorylation in male hearts compared to female hearts across each cardiac chamber. Overall, top-down proteomics allowed an unbiased analysis of MLC isoform expression throughout the human heart, uncovering previously unexpected isoform expression patterns and PTMs.
Collapse
Affiliation(s)
- Elizabeth F Bayne
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kalina J Rossler
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachery R Gregorich
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Timothy J Aballo
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David S Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Emily A Chapman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wei Guo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - J Carter Ralphe
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Timothy J Kamp
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
9
|
Basharat AR, Zang Y, Sun L, Liu X. TopFD: A Proteoform Feature Detection Tool for Top-Down Proteomics. Anal Chem 2023; 95:8189-8196. [PMID: 37196155 DOI: 10.1021/acs.analchem.2c05244] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Top-down liquid chromatography-mass spectrometry (LC-MS) analyzes intact proteoforms and generates mass spectra containing peaks of proteoforms with various isotopic compositions, charge states, and retention times. An essential step in top-down MS data analysis is proteoform feature detection, which aims to group these peaks into peak sets (features), each containing all peaks of a proteoform. Accurate protein feature detection enhances the accuracy in MS-based proteoform identification and quantification. Here, we present TopFD, a software tool for top-down MS feature detection that integrates algorithms for proteoform feature detection, feature boundary refinement, and machine learning models for proteoform feature evaluation. We performed extensive benchmarking of TopFD, ProMex, FlashDeconv, and Xtract using seven top-down MS data sets and demonstrated that TopFD outperforms other tools in feature accuracy, reproducibility, and feature abundance reproducibility.
Collapse
Affiliation(s)
- Abdul Rehman Basharat
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Yong Zang
- Department of Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaowen Liu
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
10
|
Melby JA, Brown KA, Gregorich ZR, Roberts DS, Chapman EA, Ehlers LE, Gao Z, Larson EJ, Jin Y, Lopez JR, Hartung J, Zhu Y, McIlwain SJ, Wang D, Guo W, Diffee GM, Ge Y. High sensitivity top-down proteomics captures single muscle cell heterogeneity in large proteoforms. Proc Natl Acad Sci U S A 2023; 120:e2222081120. [PMID: 37126723 PMCID: PMC10175728 DOI: 10.1073/pnas.2222081120] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/05/2023] [Indexed: 05/03/2023] Open
Abstract
Single-cell proteomics has emerged as a powerful method to characterize cellular phenotypic heterogeneity and the cell-specific functional networks underlying biological processes. However, significant challenges remain in single-cell proteomics for the analysis of proteoforms arising from genetic mutations, alternative splicing, and post-translational modifications. Herein, we have developed a highly sensitive functionally integrated top-down proteomics method for the comprehensive analysis of proteoforms from single cells. We applied this method to single muscle fibers (SMFs) to resolve their heterogeneous functional and proteomic properties at the single-cell level. Notably, we have detected single-cell heterogeneity in large proteoforms (>200 kDa) from the SMFs. Using SMFs obtained from three functionally distinct muscles, we found fiber-to-fiber heterogeneity among the sarcomeric proteoforms which can be related to the functional heterogeneity. Importantly, we detected multiple isoforms of myosin heavy chain (~223 kDa), a motor protein that drives muscle contraction, with high reproducibility to enable the classification of individual fiber types. This study reveals single muscle cell heterogeneity in large proteoforms and establishes a direct relationship between sarcomeric proteoforms and muscle fiber types, highlighting the potential of top-down proteomics for uncovering the molecular underpinnings of cell-to-cell variation in complex systems.
Collapse
Affiliation(s)
- Jake A. Melby
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Zachery R. Gregorich
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI53706
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Emily A. Chapman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Lauren E. Ehlers
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Zhan Gao
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI53705
| | - Eli J. Larson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Justin R. Lopez
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI53706
| | - Jared Hartung
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI53706
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI53705
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI53705
| | - Sean J. McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI53705
| | | | - Wei Guo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI53706
| | - Gary M. Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI53706
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI53705
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI53705
| |
Collapse
|
11
|
Chapman EA, Aballo TJ, Melby JA, Zhou T, Price SJ, Rossler KJ, Lei I, Tang PC, Ge Y. Defining the Sarcomeric Proteoform Landscape in Ischemic Cardiomyopathy by Top-Down Proteomics. J Proteome Res 2023; 22:931-941. [PMID: 36800490 PMCID: PMC10115148 DOI: 10.1021/acs.jproteome.2c00729] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Ischemic cardiomyopathy (ICM) is a prominent form of heart failure, but the molecular mechanisms underlying ICM remain relatively understudied due to marked phenotypic heterogeneity. Alterations in post-translational modifications (PTMs) and isoform switches in sarcomeric proteins play important roles in cardiac pathophysiology. Thus, it is essential to define sarcomeric proteoform landscape to better understand ICM. Herein, we have implemented a top-down liquid chromatography (LC)-mass spectrometry (MS)-based proteomics method for the identification and quantification of sarcomeric proteoforms in the myocardia of donors without heart diseases (n = 16) compared to end-stage ICM patients (n = 16). Importantly, quantification of post-translational modifications (PTMs) and expression reveal significant changes in various sarcomeric proteins extracted from ICM tissues. Changes include altered phosphorylation and expression of cardiac troponin I (cTnI) and enigma homologue 2 (ENH2) as well as an increase in muscle LIM protein (MLP) and calsarcin-1 (Cal-1) phosphorylation in ICM hearts. Our results imply that the contractile apparatus of the sarcomere is severely dysregulated during ICM. Thus, this is the first study to uncover significant molecular changes to multiple sarcomeric proteins in the LV myocardia of the end-stage ICM patients using liquid chromatography-mass spectrometry (LC-MS)-based top-down proteomics. Raw data are available via the PRIDE repository with identifier PXD038066.
Collapse
Affiliation(s)
- Emily A. Chapman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Timothy J. Aballo
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Jake A. Melby
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Tianhua Zhou
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Scott J. Price
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kalina J. Rossler
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Ienglam Lei
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Paul C. Tang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
12
|
Bayne EF, Rossler KJ, Gregorich ZR, Aballo TJ, Roberts DS, Chapman EA, Guo W, Ralphe JC, Kamp TJ, Ge Y. Top-down Proteomics of Myosin Light Chain Isoforms Define Chamber-Specific Expression in the Human Heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525767. [PMID: 36747670 PMCID: PMC9900887 DOI: 10.1101/2023.01.26.525767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Myosin functions as the "molecular motor" of the sarcomere and generates the contractile force necessary for cardiac muscle contraction. Myosin light chains 1 and 2 (MLC-1 and -2) play important functional roles in regulating the structure of the hexameric myosin molecule. Each of these light chains has an "atrial" and "ventricular" isoform, so called because they are believed to exhibit chamber-restricted expression in the heart. However, recently the chamber-specific expression of MLC isoforms in the human heart has been questioned. Herein, we analyzed the expression of MLC-1 and -2 atrial and ventricular isoforms in each of the four cardiac chambers in adult non-failing donor hearts using top-down mass spectrometry (MS)-based proteomics. Strikingly, we detected an isoform thought to be ventricular, MLC-2v, in the atria and confirmed the protein sequence using tandem MS (MS/MS). For the first time, a putative deamidation post-translation modification (PTM) located on MLC-2v in atrial tissue was localized to amino acid N13. MLC-1v and MLC-2a were the only MLC isoforms exhibiting chamber-restricted expression patterns across all donor hearts. Importantly, our results unambiguously show that MLC-1v, not MLC-2v, is ventricle-specific in adult human hearts. Overall, top-down proteomics allowed us an unbiased analysis of MLC isoform expression throughout the human heart, uncovering previously unexpected isoform expression patterns and PTMs.
Collapse
|
13
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
14
|
Targeted Bottom-Up Mass Spectrometry Approach for the Relative Quantification of Post-Translational Modification of Bovine κ-Casein during Milk Fermentation. Molecules 2022; 27:molecules27185834. [PMID: 36144569 PMCID: PMC9506521 DOI: 10.3390/molecules27185834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
κ-casein (κ-CN) is one of the key components in bovine milk, playing a unique role in the structuration of casein micelles. It contains in its chemical structure up to sixteen amino acid residues (mainly serine and threonine) susceptible to modifications, including glycosylation and phosphorylation, which may further be formed during milk processing. In this study, changes in post-translational modification (PTM) of κ-CN during bovine milk fermentation were investigated. One-to-five-day fermented milk samples were produced. A traditional bottom−up proteomics approach was used to establish a multiple-reaction monitoring (MRM) method for relative quantification of κ-CN PTM. Endoproteinase Glu-C was found to efficiently digest the κ-CN molecule. The developed LC-MS method was validated by performing assessments of linearity, precision, repeatability, reproducibility, limit of detection (LOD), and limit of quantification (LOQ). Among the yielded peptides, four of them containing serine and threonine residues were identified and the unmodified as well as the modified variants of each of them were relatively quantified. These peptides were (1) IPTINTIASGEPTSTTE [140, 158], (2) STVATLE [162, 168], (3) DSPE [169, 172], and (4) INTVQVTSTAV [180, 190]. Distribution analysis between unmodified and modified peptides revealed that over 50% of κ-CN was found in one of its modified forms in milk. The fermentation process further significantly altered the composition between unmodified/modified κ-CN, with glycoslaytion being predominant compared to phosphorylation (p < 0.01). Further method development towards α and β-CN fractions and their PTM behavior would be an asset to better understand the changes undergone by milk proteins and the micellar structure during fermentation.
Collapse
|
15
|
van Gorp PRR, Zhang J, Liu J, Tsonaka R, Mei H, Dekker SO, Bart CI, De Coster T, Post H, Heck AJR, Schalij MJ, Atsma DE, Pijnappels DA, de Vries AAF. Sbk2, a Newly Discovered Atrium-Enriched Regulator of Sarcomere Integrity. Circ Res 2022; 131:24-41. [PMID: 35587025 DOI: 10.1161/circresaha.121.319300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Heart development relies on tight spatiotemporal control of cardiac gene expression. Genes involved in this intricate process have been identified using animals and pluripotent stem cell-based models of cardio(myo)genesis. Recently, the repertoire of cardiomyocyte differentiation models has been expanded with iAM-1, a monoclonal line of conditionally immortalized neonatal rat atrial myocytes (NRAMs), which allows toggling between proliferative and differentiated (ie, excitable and contractile) phenotypes in a synchronized and homogenous manner. METHODS In this study, the unique properties of conditionally immortalized NRAMs (iAMs) were exploited to identify and characterize (lowly expressed) genes with an as-of-yet uncharacterized role in cardiomyocyte differentiation. RESULTS Transcriptome analysis of iAM-1 cells at different stages during one cycle of differentiation and subsequent dedifferentiation identified ≈13 000 transcripts, of which the dynamic changes in expression upon cardiomyogenic differentiation mostly opposed those during dedifferentiation. Among the genes whose expression increased during differentiation and decreased during dedifferentiation were many with known (lineage-specific) functions in cardiac muscle formation. Filtering for cardiac-enriched low-abundance transcripts, identified multiple genes with an uncharacterized role during cardio(myo)genesis including Sbk2 (SH3 domain binding kinase family member 2). Sbk2 encodes an evolutionarily conserved putative serine/threonine protein kinase, whose expression is strongly up- and downregulated during iAM-1 cell differentiation and dedifferentiation, respectively. In neonatal and adult rats, the protein is muscle-specific, highly atrium-enriched, and localized around the A-band of cardiac sarcomeres. Knockdown of Sbk2 expression caused loss of sarcomeric organization in NRAMs, iAMs and their human counterparts, consistent with a decrease in sarcomeric gene expression as evinced by transcriptome and proteome analyses. Interestingly, co-immunoprecipitation using Sbk2 as bait identified possible interaction partners with diverse cellular functions (translation, intracellular trafficking, cytoskeletal organization, chromatin modification, sarcomere formation). CONCLUSIONS iAM-1 cells are a relevant and suitable model to identify (lowly expressed) genes with a hitherto unidentified role in cardiomyocyte differentiation as exemplified by Sbk2: a regulator of atrial sarcomerogenesis.
Collapse
Affiliation(s)
- P R R van Gorp
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, the Netherlands. (P.R.R.v.G., J.Z., J.L., S.O.D., C.I.B., T.D.C., M.J.S., D.E.A., D.A.P., A.A.F.d.V.)
| | - J Zhang
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, the Netherlands. (P.R.R.v.G., J.Z., J.L., S.O.D., C.I.B., T.D.C., M.J.S., D.E.A., D.A.P., A.A.F.d.V.)
| | - J Liu
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, the Netherlands. (P.R.R.v.G., J.Z., J.L., S.O.D., C.I.B., T.D.C., M.J.S., D.E.A., D.A.P., A.A.F.d.V.).,Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, the Netherlands. (H.M.)
| | - R Tsonaka
- Department of Biomedical Data Sciences, Medical Statistics Section, Leiden University Medical Center, the Netherlands. (R.T.)
| | - H Mei
- Central Laboratory, Longgang District People's Hospital of Shenzhen & The Third Affiliated Hospital of The Chinese University of Hong Kong, China (J.L.)
| | - S O Dekker
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, the Netherlands. (P.R.R.v.G., J.Z., J.L., S.O.D., C.I.B., T.D.C., M.J.S., D.E.A., D.A.P., A.A.F.d.V.)
| | - C I Bart
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, the Netherlands. (P.R.R.v.G., J.Z., J.L., S.O.D., C.I.B., T.D.C., M.J.S., D.E.A., D.A.P., A.A.F.d.V.)
| | - T De Coster
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, the Netherlands. (P.R.R.v.G., J.Z., J.L., S.O.D., C.I.B., T.D.C., M.J.S., D.E.A., D.A.P., A.A.F.d.V.)
| | - H Post
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, the Netherlands (H.P., A.J.R.H.).,Netherlands Proteomics Centre, the Netherlands (H.P., A.J.R.H.)
| | - A J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, the Netherlands (H.P., A.J.R.H.).,Netherlands Proteomics Centre, the Netherlands (H.P., A.J.R.H.)
| | - M J Schalij
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, the Netherlands. (P.R.R.v.G., J.Z., J.L., S.O.D., C.I.B., T.D.C., M.J.S., D.E.A., D.A.P., A.A.F.d.V.)
| | - D E Atsma
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, the Netherlands. (P.R.R.v.G., J.Z., J.L., S.O.D., C.I.B., T.D.C., M.J.S., D.E.A., D.A.P., A.A.F.d.V.)
| | - D A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, the Netherlands. (P.R.R.v.G., J.Z., J.L., S.O.D., C.I.B., T.D.C., M.J.S., D.E.A., D.A.P., A.A.F.d.V.)
| | - A A F de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, the Netherlands. (P.R.R.v.G., J.Z., J.L., S.O.D., C.I.B., T.D.C., M.J.S., D.E.A., D.A.P., A.A.F.d.V.)
| |
Collapse
|
16
|
Rogawski R, Sharon M. Characterizing Endogenous Protein Complexes with Biological Mass Spectrometry. Chem Rev 2022; 122:7386-7414. [PMID: 34406752 PMCID: PMC9052418 DOI: 10.1021/acs.chemrev.1c00217] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 01/11/2023]
Abstract
Biological mass spectrometry (MS) encompasses a range of methods for characterizing proteins and other biomolecules. MS is uniquely powerful for the structural analysis of endogenous protein complexes, which are often heterogeneous, poorly abundant, and refractive to characterization by other methods. Here, we focus on how biological MS can contribute to the study of endogenous protein complexes, which we define as complexes expressed in the physiological host and purified intact, as opposed to reconstituted complexes assembled from heterologously expressed components. Biological MS can yield information on complex stoichiometry, heterogeneity, topology, stability, activity, modes of regulation, and even structural dynamics. We begin with a review of methods for isolating endogenous complexes. We then describe the various biological MS approaches, focusing on the type of information that each method yields. We end with future directions and challenges for these MS-based methods.
Collapse
Affiliation(s)
- Rivkah Rogawski
- Department of Biomolecular
Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Sharon
- Department of Biomolecular
Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
17
|
Tucholski T, Ge Y. Fourier-transform ion cyclotron resonance mass spectrometry for characterizing proteoforms. MASS SPECTROMETRY REVIEWS 2022; 41:158-177. [PMID: 32894796 PMCID: PMC7936991 DOI: 10.1002/mas.21653] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 05/05/2023]
Abstract
Proteoforms contribute functional diversity to the proteome and aberrant proteoforms levels have been implicated in biological dysfunction and disease. Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), with its ultrahigh mass-resolving power, mass accuracy, and versatile tandem MS capabilities, has empowered top-down, middle-down, and native MS-based approaches for characterizing proteoforms and their complexes in biological systems. Herein, we review the features which make FT-ICR MS uniquely suited for measuring proteoform mass with ultrahigh resolution and mass accuracy; obtaining in-depth proteoform sequence coverage with expansive tandem MS capabilities; and unambiguously identifying and localizing post-translational and noncovalent modifications. We highlight examples from our body of work in which we have quantified and comprehensively characterized proteoforms from cardiac and skeletal muscle to better understand conditions such as chronic heart failure, acute myocardial infarction, and sarcopenia. Structural characterization of monoclonal antibodies and their proteoforms by FT-ICR MS and emerging applications, such as native top-down FT-ICR MS and high-throughput top-down FT-ICR MS-based proteomics at 21 T, are also covered. Historically, the information gleaned from FT-ICR MS analyses have helped provide biological insights. We predict FT-ICR MS will continue to enable the study of proteoforms of increasing size from increasingly complex endogenous mixtures and facilitate the benchmarking of sensitive and specific assays for clinical diagnostics. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53706
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53705
| |
Collapse
|
18
|
Grosser M, Lin H, Wu M, Zhang Y, Tipper S, Venter D, Lu J, dos Remedios CG. A bibliometric review of peripartum cardiomyopathy compared to other cardiomyopathies using artificial intelligence and machine learning. Biophys Rev 2022; 14:381-401. [PMID: 35340600 PMCID: PMC8921361 DOI: 10.1007/s12551-022-00933-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
As developments in artificial intelligence and machine learning become more widespread in healthcare, their potential to transform clinical outcomes also increases. Peripartum cardiomyopathy is a rare and poorly-characterised condition that presents as heart failure in the last trimester prior to delivery or within 5-6 months postpartum. The lack of a definitive understanding of the molecular causes and clinical progress of this condition suggests that bibliometrics will be well-suited to creating new insights into this serious clinical problem. We examine similarities and differences between peripartum and its closely related familial dilated cardiomyopathy and idiopathic dilated cardiomyopathy. Using PubMed as the source of bibliometric data, we apply artificial intelligence-supported natural language processing to compare extracted data and genes association with these cardiomyopathies. Gene data were enhanced with additional metadata from third-party datasets and then analysed for their impact and specificity for peripartum cardiomyopathy. Artificial intelligence identified 14 genes that distinguished peripartum from both dilated and familial dilated cardiomyopathy. They are as follows: CTSD, RLN2, MMP23B*, SLC17A5, ST2*, PTHLH, CFH*, CFI, GPT, MR1, Rln1, SRI, STAT5A* and THBD. We then used the Human Protein Atlas website that uses affinity-purified rabbit polyclonal antibodies to identify genes that are expressed at the protein level (bold), or as RNA transcripts (*) in healthy human left ventricles. Additional analysis focussed on the full set of peripartum genes on linkage and specificity to cardiomyopathy yielded a different set of thirteen genes (bold font indicates those expressed in cardiomyocytes: PRL, RLN2, PLN, ST2, CTSD, F2, ACE, STAT3, TTN, SPP1, LGALS3, miR-146a, GNB3, SRI). This type of analysis can highlight new avenues for research, aimed at improving genomics-driven peripartum cardiomyopathy diagnosis as well as potential pathological and clinical sub-classification. We expect that this will allow for future improvements in identification, treatment and management of this condition. The first step in the application of these bibliometric-based artificial intelligence methods is to understand the current knowledge, and it is the aim of this paper to show how this might be achieved.
Collapse
Affiliation(s)
- M. Grosser
- 23 Strands Pty Ltd, 107, 26 Pirrama Rd, Pyrmont, NSW Australia
| | - H. Lin
- 23 Strands Pty Ltd, 107, 26 Pirrama Rd, Pyrmont, NSW Australia
| | - M. Wu
- University Technology Sydney, 15 Broadway, Ultimo, NSW Australia
| | - Y. Zhang
- University Technology Sydney, 15 Broadway, Ultimo, NSW Australia
| | - S. Tipper
- 23 Strands Pty Ltd, 107, 26 Pirrama Rd, Pyrmont, NSW Australia
| | - D. Venter
- 23 Strands Pty Ltd, 107, 26 Pirrama Rd, Pyrmont, NSW Australia
| | - J. Lu
- University Technology Sydney, 15 Broadway, Ultimo, NSW Australia
| | - C. G. dos Remedios
- Victor Chang Cardiac Research Institute, 405 Liverpool St, Darlinghurst, Australia
- Sydney Heart Bank, University of Sydney, Sydney, Australia
| |
Collapse
|
19
|
Tiambeng TN, Wu Z, Melby JA, Ge Y. Size Exclusion Chromatography Strategies and MASH Explorer for Large Proteoform Characterization. Methods Mol Biol 2022; 2500:15-30. [PMID: 35657584 PMCID: PMC9703982 DOI: 10.1007/978-1-0716-2325-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Top-down mass spectrometry (MS)-based analysis of larger proteoforms (>50 kDa) is typically challenging due to an exponential decay in the signal-to-noise ratio with increasing protein molecular weight (MW) and coelution with low-MW proteoforms. Size exclusion chromatography (SEC) fractionates proteins based on their size, separating larger proteoforms from those of smaller size in the proteome. In this protocol, we initially describe the use of SEC to fractionate high-MW proteoforms from low-MW proteoforms. Subsequently, the SEC fractions containing the proteoforms of interest are subjected to reverse-phase liquid chromatography (RPLC) coupled online with high-resolution MS. Finally, proteoforms are characterized using MASH Explorer, a user-friendly software environment for in-depth proteoform characterization.
Collapse
Affiliation(s)
- Timothy N. Tiambeng
- Department of Chemistry, University of Wisconsin – Madison, Madison, WI 53706
| | - Zhijie Wu
- Department of Chemistry, University of Wisconsin – Madison, Madison, WI 53706
| | - Jake A. Melby
- Department of Chemistry, University of Wisconsin – Madison, Madison, WI 53706
| | - Ying Ge
- Department of Chemistry, University of Wisconsin – Madison, Madison, WI 53706,Department of Cell and Regenerative Biology, University of Wisconsin – Madison, Madison, WI 53705,Human Proteomic Program, University of Wisconsin – Madison, Madison WI 53705,To whom correspondence may be addressed: Dr. Ying Ge, 8551 WIMR-II, 1111 Highland Ave., Madison, Wisconsin 53705, USA. ; Tel: 608-265-4744
| |
Collapse
|
20
|
Sergienko NM, Donner DG, Delbridge LMD, McMullen JR, Weeks KL. Protein phosphatase 2A in the healthy and failing heart: New insights and therapeutic opportunities. Cell Signal 2021; 91:110213. [PMID: 34902541 DOI: 10.1016/j.cellsig.2021.110213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
Protein phosphatases have emerged as critical regulators of phosphoprotein homeostasis in settings of health and disease. Protein phosphatase 2A (PP2A) encompasses a large subfamily of enzymes that remove phosphate groups from serine/threonine residues within phosphoproteins. The heterogeneity in PP2A structure, which arises from the grouping of different catalytic, scaffolding and regulatory subunit isoforms, creates distinct populations of catalytically active enzymes (i.e. holoenzymes) that localise to different parts of the cell. This structural complexity, combined with other regulatory mechanisms, such as interaction of PP2A heterotrimers with accessory proteins and post-translational modification of the catalytic and/or regulatory subunits, enables PP2A holoenzymes to target phosphoprotein substrates in a highly specific manner. In this review, we summarise the roles of PP2A in cardiac physiology and disease. PP2A modulates numerous processes that are vital for heart function including calcium handling, contractility, β-adrenergic signalling, metabolism and transcription. Dysregulation of PP2A has been observed in human cardiac disease settings, including heart failure and atrial fibrillation. Efforts are underway, particularly in the cancer field, to develop therapeutics targeting PP2A activity. The development of small molecule activators of PP2A (SMAPs) and other compounds that selectively target specific PP2A holoenzymes (e.g. PP2A/B56α and PP2A/B56ε) will improve understanding of the function of different PP2A species in the heart, and may lead to the development of therapeutics for normalising aberrant protein phosphorylation in settings of cardiac remodelling and dysfunction.
Collapse
Affiliation(s)
- Nicola M Sergienko
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Central Clinical School, Monash University, Clayton VIC 3800, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Physiology and Department of Medicine Alfred Hospital, Monash University, Clayton VIC 3800, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora VIC 3086, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| | - Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| |
Collapse
|
21
|
Liu W, Shen J, Li Y, Wu J, Luo X, Yu Y, Zhang Y, Gu L, Zhang X, Jiang C, Li J. Pyroptosis inhibition improves the symptom of acute myocardial infarction. Cell Death Dis 2021; 12:852. [PMID: 34531373 PMCID: PMC8445977 DOI: 10.1038/s41419-021-04143-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 12/01/2022]
Abstract
Acute myocardial infarction (AMI), the leading cause of mortality worldwide, is a rapidly developing and irreversible disease. Therefore, proper prompt intervention at the early stage of AMI is crucial for its treatment. However, the molecular features in the early stage have not been clarified. Here, we constructed mouse AMI model and profiled transcriptomes and proteomes at the early stages of AMI progress. Immune system was extensively activated at 6-h AMI. Then, pyroptosis was activated at 24-h AMI. VX-765 treatment, a pyroptosis inhibitor, significantly reduced the infarct size and improved the function of cardiomyocytes. Besides, we identified that WIPI1, specifically expressed in heart, was significantly upregulated at 1 h after AMI. Moreover, WIPI1 expression is significantly higher in the peripheral blood of patients with AMI than healthy control. WIPI1 can serve as a potential early diagnostic biomarker for AMI. It likely decelerates AMI progress by activating autophagy pathways. These findings shed new light on gene expression dynamics in AMI progress, and present a potential early diagnostic marker and a candidate drug for clinical pre-treatment to prolong the optimal cure time.
Collapse
Affiliation(s)
- Wenju Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signalling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, 200124, Shanghai, China
| | - Junwei Shen
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, 200124, Shanghai, China
| | - Yanfei Li
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, 201318, Shanghai, China
| | - Jiawen Wu
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, 200124, Shanghai, China
| | - Xiaoli Luo
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, 200124, Shanghai, China
| | - Yuanyuan Yu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signalling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Yuhan Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signalling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Liang Gu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signalling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Xiaobai Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signalling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signalling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
| | - Jue Li
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, 200124, Shanghai, China.
- Key Laboratory of Arrhythmias, Ministry of Education, China, Tongji University School of Medicine, 200124, Shanghai, China.
| |
Collapse
|
22
|
Melby JA, Roberts DS, Larson EJ, Brown KA, Bayne EF, Jin S, Ge Y. Novel Strategies to Address the Challenges in Top-Down Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1278-1294. [PMID: 33983025 PMCID: PMC8310706 DOI: 10.1021/jasms.1c00099] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Top-down mass spectrometry (MS)-based proteomics is a powerful technology for comprehensively characterizing proteoforms to decipher post-translational modifications (PTMs) together with genetic variations and alternative splicing isoforms toward a proteome-wide understanding of protein functions. In the past decade, top-down proteomics has experienced rapid growth benefiting from groundbreaking technological advances, which have begun to reveal the potential of top-down proteomics for understanding basic biological functions, unraveling disease mechanisms, and discovering new biomarkers. However, many challenges remain to be comprehensively addressed. In this Account & Perspective, we discuss the major challenges currently facing the top-down proteomics field, particularly in protein solubility, proteome dynamic range, proteome complexity, data analysis, proteoform-function relationship, and analytical throughput for precision medicine. We specifically review the major technology developments addressing these challenges with an emphasis on our research group's efforts, including the development of top-down MS-compatible surfactants for protein solubilization, functionalized nanoparticles for the enrichment of low-abundance proteoforms, strategies for multidimensional chromatography separation of proteins, and a new comprehensive user-friendly software package for top-down proteomics. We have also made efforts to connect proteoforms with biological functions and provide our visions on what the future holds for top-down proteomics.
Collapse
Affiliation(s)
- Jake A Melby
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - David S Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Eli J Larson
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyle A Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Elizabeth F Bayne
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
23
|
Munawar S, Turnbull IC. Cardiac Tissue Engineering: Inclusion of Non-cardiomyocytes for Enhanced Features. Front Cell Dev Biol 2021; 9:653127. [PMID: 34113613 PMCID: PMC8186263 DOI: 10.3389/fcell.2021.653127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/31/2021] [Indexed: 12/01/2022] Open
Abstract
Engineered cardiac tissues (ECTs) are 3D physiological models of the heart that are created and studied for their potential role in developing therapies of cardiovascular diseases and testing cardio toxicity of drugs. Recreating the microenvironment of the native myocardium in vitro mainly involves the use of cardiomyocytes. However, ECTs with only cardiomyocytes (CM-only) often perform poorly and are less similar to the native myocardium compared to ECTs constructed from co-culture of cardiomyocytes and nonmyocytes. One important goal of co-culture tissues is to mimic the native heart's cellular composition, which can result in better tissue function and maturity. In this review, we investigate the role of nonmyocytes in ECTs and discuss the mechanisms behind the contributions of nonmyocytes in enhancement of ECT features.
Collapse
Affiliation(s)
| | - Irene C. Turnbull
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
24
|
Tucholski T, Cai W, Gregorich ZR, Bayne EF, Mitchell SD, McIlwain SJ, de Lange WJ, Wrobbel M, Karp H, Hite Z, Vikhorev PG, Marston SB, Lal S, Li A, Dos Remedios C, Kohmoto T, Hermsen J, Ralphe JC, Kamp TJ, Moss RL, Ge Y. Distinct hypertrophic cardiomyopathy genotypes result in convergent sarcomeric proteoform profiles revealed by top-down proteomics. Proc Natl Acad Sci U S A 2020; 117:24691-24700. [PMID: 32968017 PMCID: PMC7547245 DOI: 10.1073/pnas.2006764117] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common heritable heart disease. Although the genetic cause of HCM has been linked to mutations in genes encoding sarcomeric proteins, the ability to predict clinical outcomes based on specific mutations in HCM patients is limited. Moreover, how mutations in different sarcomeric proteins can result in highly similar clinical phenotypes remains unknown. Posttranslational modifications (PTMs) and alternative splicing regulate the function of sarcomeric proteins; hence, it is critical to study HCM at the level of proteoforms to gain insights into the mechanisms underlying HCM. Herein, we employed high-resolution mass spectrometry-based top-down proteomics to comprehensively characterize sarcomeric proteoforms in septal myectomy tissues from HCM patients exhibiting severe outflow track obstruction (n = 16) compared to nonfailing donor hearts (n = 16). We observed a complex landscape of sarcomeric proteoforms arising from combinatorial PTMs, alternative splicing, and genetic variation in HCM. A coordinated decrease of phosphorylation in important myofilament and Z-disk proteins with a linear correlation suggests PTM cross-talk in the sarcomere and dysregulation of protein kinase A pathways in HCM. Strikingly, we discovered that the sarcomeric proteoform alterations in the myocardium of HCM patients undergoing septal myectomy were remarkably consistent, regardless of the underlying HCM-causing mutations. This study suggests that the manifestation of severe HCM coalesces at the proteoform level despite distinct genotype, which underscores the importance of molecular characterization of HCM phenotype and presents an opportunity to identify broad-spectrum treatments to mitigate the most severe manifestations of this genetically heterogenous disease.
Collapse
Affiliation(s)
- Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Wenxuan Cai
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
| | - Zachery R Gregorich
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
| | - Elizabeth F Bayne
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Stanford D Mitchell
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
| | - Sean J McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705
| | - Willem J de Lange
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705
| | - Max Wrobbel
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
| | - Hannah Karp
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
| | - Zachary Hite
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
| | - Petr G Vikhorev
- National Heart & Lung Institute, Imperial College London, London W12 0NN, United Kingdom
| | - Steven B Marston
- National Heart & Lung Institute, Imperial College London, London W12 0NN, United Kingdom
| | - Sean Lal
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, NSW 2006,Australia
| | - Amy Li
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, NSW 2006,Australia
- Department of Pharmacy & Biomedical Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Cristobal Dos Remedios
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, NSW 2006,Australia
- Department of Molecular Cardiology & Biophysics, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Takushi Kohmoto
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706
| | - Joshua Hermsen
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706
| | - J Carter Ralphe
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705
| | - Timothy J Kamp
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Richard L Moss
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706;
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
25
|
Brown KA, Melby JA, Roberts DS, Ge Y. Top-down proteomics: challenges, innovations, and applications in basic and clinical research. Expert Rev Proteomics 2020; 17:719-733. [PMID: 33232185 PMCID: PMC7864889 DOI: 10.1080/14789450.2020.1855982] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Abstract
Introduction- A better understanding of the underlying molecular mechanism of diseases is critical for developing more effective diagnostic tools and therapeutics toward precision medicine. However, many challenges remain to unravel the complex nature of diseases. Areas covered- Changes in protein isoform expression and post-translation modifications (PTMs) have gained recognition for their role in underlying disease mechanisms. Top-down mass spectrometry (MS)-based proteomics is increasingly recognized as an important method for the comprehensive characterization of proteoforms that arise from alternative splicing events and/or PTMs for basic and clinical research. Here, we review the challenges, technological innovations, and recent studies that utilize top-down proteomics to elucidate changes in the proteome with an emphasis on its use to study heart diseases. Expert opinion- Proteoform-resolved information can substantially contribute to the understanding of the molecular mechanisms underlying various diseases and for the identification of novel proteoform targets for better therapeutic development . Despite the challenges of sequencing intact proteins, top-down proteomics has enabled a wealth of information regarding protein isoform switching and changes in PTMs. Continuous developments in sample preparation, intact protein separation, and instrumentation for top-down MS have broadened its capabilities to characterize proteoforms from a range of samples on an increasingly global scale.
Collapse
Affiliation(s)
- Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Jake A. Melby
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
26
|
Liu R, Sun F, Forghani P, Armand LC, Rampoldi A, Li D, Wu R, Xu C. Proteomic Profiling Reveals Roles of Stress Response, Ca 2+ Transient Dysregulation, and Novel Signaling Pathways in Alcohol-Induced Cardiotoxicity. Alcohol Clin Exp Res 2020; 44:2187-2199. [PMID: 32981093 DOI: 10.1111/acer.14471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Alcohol use in pregnancy increases the risk of abnormal cardiac development, and excessive alcohol consumption in adults can induce cardiomyopathy, contractile dysfunction, and arrhythmias. Understanding molecular mechanisms underlying alcohol-induced cardiac toxicity could provide guidance in the development of therapeutic strategies. METHODS We have performed proteomic and bioinformatic analysis to examine protein alterations globally and quantitatively in cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) treated with ethanol (EtOH). Proteins in both cell lysates and extracellular culture media were systematically quantitated. RESULTS Treatment with EtOH caused severe detrimental effects on hiPSC-CMs as indicated by significant cell death and deranged Ca2+ handling. Treatment of hiPSC-CMs with EtOH significantly affected proteins responsible for stress response (e.g., GPX1 and HSPs), ion channel-related proteins (e.g. ATP1A2), myofibril structure proteins (e.g., MYL2/3), and those involved in focal adhesion and extracellular matrix (e.g., ILK and PXN). Proteins involved in the TNF receptor-associated factor 2 signaling (e.g., CPNE1 and TNIK) were also affected by EtOH treatment. CONCLUSIONS The observed changes in protein expression highlight the involvement of oxidative stress and dysregulation of Ca2+ handling and contraction while also implicating potential novel targets in alcohol-induced cardiotoxicity. These findings facilitate further exploration of potential mechanisms, discovery of novel biomarkers, and development of targeted therapeutics against EtOH-induced cardiotoxicity.
Collapse
Affiliation(s)
- Rui Liu
- From the, Department of Pediatrics, (RL, PF, LCA, AR, DL, CX), Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia.,Department of Pediatrics, (RL), the Third Xiangya Hospital of Central South University, Changsha, China
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, (FS, RW), Georgia Institute of Technology, Atlanta, Georgia
| | - Parvin Forghani
- From the, Department of Pediatrics, (RL, PF, LCA, AR, DL, CX), Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Lawrence C Armand
- From the, Department of Pediatrics, (RL, PF, LCA, AR, DL, CX), Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Antonio Rampoldi
- From the, Department of Pediatrics, (RL, PF, LCA, AR, DL, CX), Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Dong Li
- From the, Department of Pediatrics, (RL, PF, LCA, AR, DL, CX), Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, (FS, RW), Georgia Institute of Technology, Atlanta, Georgia
| | - Chunhui Xu
- From the, Department of Pediatrics, (RL, PF, LCA, AR, DL, CX), Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia.,Wallace H. Coulter Department of Biomedical Engineering, (CX), Georgia Institute of Technology and Emory University, Atlanta, Georgia
| |
Collapse
|
27
|
Tiambeng TN, Roberts DS, Brown KA, Zhu Y, Chen B, Wu Z, Mitchell SD, Guardado-Alvarez TM, Jin S, Ge Y. Nanoproteomics enables proteoform-resolved analysis of low-abundance proteins in human serum. Nat Commun 2020; 11:3903. [PMID: 32764543 PMCID: PMC7411019 DOI: 10.1038/s41467-020-17643-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Top-down mass spectrometry (MS)-based proteomics provides a comprehensive analysis of proteoforms to achieve a proteome-wide understanding of protein functions. However, the MS detection of low-abundance proteins from blood remains an unsolved challenge due to the extraordinary dynamic range of the blood proteome. Here, we develop an integrated nanoproteomics method coupling peptide-functionalized superparamagnetic nanoparticles (NPs) with top-down MS for the enrichment and comprehensive analysis of cardiac troponin I (cTnI), a gold-standard cardiac biomarker, directly from serum. These NPs enable the sensitive enrichment of cTnI (<1 ng/mL) with high specificity and reproducibility, while simultaneously depleting highly abundant proteins such as human serum albumin (>1010 more abundant than cTnI). We demonstrate that top-down nanoproteomics can provide high-resolution proteoform-resolved molecular fingerprints of diverse cTnI proteoforms to establish proteoform-pathophysiology relationships. This scalable and reproducible antibody-free strategy can generally enable the proteoform-resolved analysis of low-abundance proteins directly from serum to reveal previously unachievable molecular details.
Collapse
Affiliation(s)
- Timothy N Tiambeng
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - David S Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Kyle A Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Yanlong Zhu
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53719, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - Stanford D Mitchell
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53719, USA
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | | | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53719, USA.
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53719, USA.
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53719, USA.
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53719, USA.
| |
Collapse
|
28
|
Yu D, Wang Z, Cupp-Sutton KA, Liu X, Wu S. Deep Intact Proteoform Characterization in Human Cell Lysate Using High-pH and Low-pH Reversed-Phase Liquid Chromatography. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2502-2513. [PMID: 31755044 PMCID: PMC7539543 DOI: 10.1007/s13361-019-02315-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 08/10/2019] [Accepted: 08/10/2019] [Indexed: 05/26/2023]
Abstract
Post-translational modifications (PTMs) play critical roles in biological processes and have significant effects on the structures and dynamics of proteins. Top-down proteomics methods were developed for and applied to the study of intact proteins and their PTMs in human samples. However, the large dynamic range and complexity of human samples makes the study of human proteins challenging. To address these challenges, we developed a 2D pH RP/RPLC-MS/MS technique that fuses high-resolution separation and intact protein characterization to study the human proteins in HeLa cell lysate. Our results provide a deep coverage of soluble proteins in human cancer cells. Compared to 225 proteoforms from 124 proteins identified when 1D separation was used, 2778 proteoforms from 628 proteins were detected and characterized using our 2D separation method. Many proteoforms with critically functional PTMs including phosphorylation were characterized. Additionally, we present the first detection of intact human GcvH proteoforms with rare modifications such as octanoylation and lipoylation. Overall, the increase in the number of proteoforms identified using 2DLC separation is largely due to the reduction in sample complexity through improved separation resolution, which enables the detection of low-abundance PTM-modified proteoforms. We demonstrate here that 2D pH RP/RPLC is an effective technique to analyze complex protein samples using top-down proteomics.
Collapse
Affiliation(s)
- Dahang Yu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA
| | - Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA
| | - Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA
| | - Xiaowen Liu
- School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA.
| |
Collapse
|
29
|
Wu Z, Jin Y, Chen B, Gugger MK, Wilkinson-Johnson CL, Tiambeng TN, Jin S, Ge Y. Comprehensive Characterization of the Recombinant Catalytic Subunit of cAMP-Dependent Protein Kinase by Top-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2561-2570. [PMID: 31792770 PMCID: PMC6922056 DOI: 10.1007/s13361-019-02341-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 05/22/2023]
Abstract
Reversible phosphorylation plays critical roles in cell growth, division, and signal transduction. Kinases which catalyze the transfer of γ-phosphate groups of nucleotide triphosphates to their substrates are central to the regulation of protein phosphorylation and are therefore important therapeutic targets. Top-down mass spectrometry (MS) presents unique opportunities to study protein kinases owing to its capabilities in comprehensive characterization of proteoforms that arise from alternative splicing, sequence variations, and post-translational modifications. Here, for the first time, we developed a top-down MS method to characterize the catalytic subunit (C-subunit) of an important kinase, cAMP-dependent protein kinase (PKA). The recombinant PKA C-subunit was expressed in Escherichia coli and successfully purified via his-tag affinity purification. By intact mass analysis with high resolution and high accuracy, four different proteoforms of the affinity-purified PKA C-subunit were detected, and the most abundant proteoform was found containing seven phosphorylations with the removal of N-terminal methionine. Subsequently, the seven phosphorylation sites of the most abundant PKA C-subunit proteoform were characterized simultaneously using tandem MS methods. Four sites were unambiguously identified as Ser10, Ser11, Ser18, and Ser30, and the remaining phosphorylation sites were localized to Ser2/Ser3, Ser358/Thr368, and Thr[215-224]Tyr in the PKA C-subunit sequence with a 20mer 6xHis-tag added at the N-terminus. Interestingly, four of these seven phosphorylation sites were located at the 6xHis-tag. Furthermore, we have performed dephosphorylation reaction by Lambda protein phosphatase and showed that all phosphorylations of the recombinant PKA C-subunit phosphoproteoforms were removed by this phosphatase.
Collapse
Affiliation(s)
- Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Morgan K Gugger
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Timothy N Tiambeng
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
30
|
Cai W, Zhang J, de Lange WJ, Gregorich ZR, Karp H, Farrell ET, Mitchell SD, Tucholski T, Lin Z, Biermann M, McIlwain SJ, Ralphe JC, Kamp TJ, Ge Y. An Unbiased Proteomics Method to Assess the Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Circ Res 2019; 125:936-953. [PMID: 31573406 PMCID: PMC6852699 DOI: 10.1161/circresaha.119.315305] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Abstract
RATIONALE Human pluripotent stem cell (hPSC)-derived cardiomyocytes exhibit the properties of fetal cardiomyocytes, which limits their applications. Various methods have been used to promote maturation of hPSC-cardiomyocytes; however, there is a lack of an unbiased and comprehensive method for accurate assessment of the maturity of hPSC-cardiomyocytes. OBJECTIVE We aim to develop an unbiased proteomics strategy integrating high-throughput top-down targeted proteomics and bottom-up global proteomics for the accurate and comprehensive assessment of hPSC-cardiomyocyte maturation. METHODS AND RESULTS Utilizing hPSC-cardiomyocytes from early- and late-stage 2-dimensional monolayer culture and 3-dimensional engineered cardiac tissue, we demonstrated the high reproducibility and reliability of a top-down proteomics method, which enabled simultaneous quantification of contractile protein isoform expression and associated post-translational modifications. This method allowed for the detection of known maturation-associated contractile protein alterations and, for the first time, identified contractile protein post-translational modifications as promising new markers of hPSC-cardiomyocytes maturation. Most notably, decreased phosphorylation of α-tropomyosin was found to be associated with hPSC-cardiomyocyte maturation. By employing a bottom-up global proteomics strategy, we identified candidate maturation-associated markers important for sarcomere organization, cardiac excitability, and Ca2+ homeostasis. In particular, upregulation of myomesin 1 and transmembrane 65 was associated with hPSC-cardiomyocyte maturation and validated in cardiac development, making these promising markers for assessing maturity of hPSC-cardiomyocytes. We have further validated α-actinin isoforms, phospholamban, dystrophin, αB-crystallin, and calsequestrin 2 as novel maturation-associated markers, in the developing mouse cardiac ventricles. CONCLUSIONS We established an unbiased proteomics method that can provide accurate and specific assessment of the maturity of hPSC-cardiomyocytes and identified new markers of maturation. Furthermore, this integrated proteomics strategy laid a strong foundation for uncovering the molecular pathways involved in cardiac development and disease using hPSC-cardiomyocytes.
Collapse
Affiliation(s)
- Wenxuan Cai
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jianhua Zhang
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Willem J. de Lange
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachery R. Gregorich
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hannah Karp
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Emily T. Farrell
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Stanford D. Mitchell
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mitch Biermann
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sean J. McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - J. Carter Ralphe
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Timothy J. Kamp
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ying Ge
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
31
|
Fert-Bober J, Murray CI, Parker SJ, Van Eyk JE. Precision Profiling of the Cardiovascular Post-Translationally Modified Proteome: Where There Is a Will, There Is a Way. Circ Res 2019; 122:1221-1237. [PMID: 29700069 DOI: 10.1161/circresaha.118.310966] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is an exponential increase in biological complexity as initial gene transcripts are spliced, translated into amino acid sequence, and post-translationally modified. Each protein can exist as multiple chemical or sequence-specific proteoforms, and each has the potential to be a critical mediator of a physiological or pathophysiological signaling cascade. Here, we provide an overview of how different proteoforms come about in biological systems and how they are most commonly measured using mass spectrometry-based proteomics and bioinformatics. Our goal is to present this information at a level accessible to every scientist interested in mass spectrometry and its application to proteome profiling. We will specifically discuss recent data linking various protein post-translational modifications to cardiovascular disease and conclude with a discussion for enablement and democratization of proteomics across the cardiovascular and scientific community. The aim is to inform and inspire the readership to explore a larger breadth of proteoform, particularity post-translational modifications, related to their particular areas of expertise in cardiovascular physiology.
Collapse
Affiliation(s)
- Justyna Fert-Bober
- From the Advanced Clinical BioSystems Research Institute, Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| | - Christopher I Murray
- From the Advanced Clinical BioSystems Research Institute, Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| | - Sarah J Parker
- From the Advanced Clinical BioSystems Research Institute, Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA.
| | - Jennifer E Van Eyk
- From the Advanced Clinical BioSystems Research Institute, Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
32
|
Chen B, Lin Z, Zhu Y, Jin Y, Larson E, Xu Q, Fu C, Zhang Z, Zhang Q, Pritts WA, Ge Y. Middle-Down Multi-Attribute Analysis of Antibody-Drug Conjugates with Electron Transfer Dissociation. Anal Chem 2019; 91:11661-11669. [PMID: 31442030 DOI: 10.1021/acs.analchem.9b02194] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antibody-drug conjugates (ADCs) are designed to combine the target specificity of monoclonal antibodies and potent cytotoxin drugs to achieve better therapeutic outcomes. Comprehensive evaluation of the quality attributes of ADCs is critical for drug development but remains challenging due to heterogeneity of the construct. Currently, peptide mapping with reversed-phase liquid chromatography (RPLC) coupled to mass spectrometry (MS) is the predominant approach to characterize ADCs. However, it is suboptimal for sequence characterization and quantification of ADCs because it lacks a comprehensive view of coexisting variants and suffers from varying ionization effects of drug-conjugated peptides compared to unconjugated counterparts. Here, we present the first middle-down RPLC-MS analysis of both cysteine (Adcetris; BV) and lysine (Kadcyla; T-DM1) conjugated ADCs at the subunit level (∼25 kDa) with electron transfer dissociation (ETD). We successfully achieved high-resolution separation of subunit isomers arising from different drug conjugation and subsequently localized the conjugation sites. Moreover, we obtained a comprehensive overview of the microvariants associated with each subunits and characterized them such as oxidized variants with different sites. Furthermore, we observed relatively high levels of conjugation near complementarity-determining regions (CDRs) from the heavy chain but no drug conjugation near CDRs of light chain (Lc) from lysine conjugated T-DM1. Based on the extracted ion chromatograms, we accurately measured average drug to antibody ratio (DAR) values and relative occupancy of drug-conjugated subunits. Overall, the middle-down MS approach enables the evaluation of multiple quality attributes including DAR, positional isomers, conjugation sites, occupancy, and microvariants, which potentially opens up a new avenue to characterize ADCs.
Collapse
Affiliation(s)
- Bifan Chen
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Ziqing Lin
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Yutong Jin
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Eli Larson
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Qingge Xu
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Cexiong Fu
- Process Analytical , AbbVie Inc. , North Chicago , Illinois 60064 , United States
| | - Zhaorui Zhang
- Process Analytical , AbbVie Inc. , North Chicago , Illinois 60064 , United States
| | - Qunying Zhang
- Process Analytical , AbbVie Inc. , North Chicago , Illinois 60064 , United States
| | - Wayne A Pritts
- Process Analytical , AbbVie Inc. , North Chicago , Illinois 60064 , United States
| | - Ying Ge
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
33
|
Abstract
The cardiac troponin complex, composed of three regulatory proteins (cTnI, cTnT, TnC), functions as the critical regulator of cardiac muscle contraction and relaxation. Myofilament protein-protein interactions are regulated by post-translational modifications (PTMs) to the protein constituents of this complex. Dysregulation of troponin PTMs, particularly phosphorylation, results in altered cardiac contractility. Altered PTMs and isoforms have been increasingly recognized as the molecular mechanisms underlying heart diseases. Therefore, it is essential to comprehensively analyze cardiac troponin proteoforms that arise from PTMs, alternative splicing, and sequence variations. In this chapter, we described two detailed protocols for the enrichment and purification of endogenous cardiac troponin proteoforms from cardiac tissue. Subsequently, mass spectrometry (MS)-based top-down proteomics utilizing online liquid chromatography (LC)/quadrupole time-of-flight (Q-TOF) MS for separation, profiling, and quantification of the troponins was demonstrated. Characterization of troponin amino acid sequence and the localization of PTMs were shown using Fourier-transform ion cyclotron resonance (FT-ICR) MS with electron capture dissociation (ECD) and collisionally activated dissociation (CAD). Furthermore, we described the use of MASH software, a comprehensive and free software package developed in our lab, for top-down proteomics data analysis. The methods we described can be applied for the analysis of troponin proteoforms in cardiac tissues, from animal models to human clinical samples, for heart disease.
Collapse
|
34
|
Schaffer LV, Tucholski T, Shortreed MR, Ge Y, Smith LM. Intact-Mass Analysis Facilitating the Identification of Large Human Heart Proteoforms. Anal Chem 2019; 91:10937-10942. [PMID: 31393705 DOI: 10.1021/acs.analchem.9b02343] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Proteoforms, the primary effectors of biological processes, are the different forms of proteins that arise from molecular processing events such as alternative splicing and post-translational modifications. Heart diseases exhibit changes in proteoform levels, motivating the development of a deeper understanding of the heart proteoform landscape. Our recently developed two-dimensional top-down proteomics platform coupling serial size exclusion chromatography (sSEC) to reversed-phase chromatography (RPC) expanded coverage of the human heart proteome and allowed observation of high-molecular weight proteoforms. However, most of these observed proteoforms were not identified due to the difficulty in obtaining quality tandem mass spectrometry (MS2) fragmentation data for large proteoforms from complex biological mixtures on a chromatographic time scale. Herein, we sought to identify human heart proteoforms in this data set using an enhanced version of Proteoform Suite, which identifies proteoforms by intact mass alone. Specifically, we added a new feature to Proteoform Suite to determine candidate identifications for isotopically unresolved proteoforms larger than 50 kDa, enabling subsequent MS2 identification of important high-molecular weight human heart proteoforms such as lamin A (72 kDa) and trifunctional enzyme subunit α (79 kDa). With this new workflow for large proteoform identification, endogenous human cardiac myosin binding protein C (140 kDa) was identified for the first time. This study demonstrates the integration of our sSEC-RPC-MS proteomics platform with intact-mass analysis through Proteoform Suite to create a catalog of human heart proteoforms and facilitate the identification of large proteoforms in complex systems.
Collapse
Affiliation(s)
- Leah V Schaffer
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Trisha Tucholski
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Michael R Shortreed
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Ying Ge
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States.,Human Proteomics Program , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Lloyd M Smith
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
35
|
Ghezellou P, Garikapati V, Kazemi SM, Strupat K, Ghassempour A, Spengler B. A perspective view of top-down proteomics in snake venom research. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 1:20-27. [PMID: 30076652 DOI: 10.1002/rcm.8255] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/25/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
The venom produced by snakes contains complex mixtures of pharmacologically active proteins and peptides which play a crucial role in the pathophysiology of snakebite diseases. The deep understanding of venom proteomes can help to improve the treatment of this "neglected tropical disease" (as expressed by the World Health Organization [WHO]) and to develop new drugs. The most widely used technique for venom analysis is liquid chromatography/tandem mass spectrometry (LC/MS/MS)-based bottom-up (BU) proteomics. Considering the fact that multiple multi-locus gene families encode snake venom proteins, the major challenge for the BU proteomics is the limited sequence coverage and also the "protein inference problem" which result in a loss of information for the identification and characterization of toxin proteoforms (genetic variation, alternative mRNA splicing, single nucleotide polymorphism [SNP] and post-translational modifications [PTMs]). In contrast, intact protein measurements with top-down (TD) MS strategies cover almost complete protein sequences, and prove the ability to identify venom proteoforms and to localize their modifications and sequence variations.
Collapse
Affiliation(s)
- Parviz Ghezellou
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Germany
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Seyed Mahdi Kazemi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Germany
| |
Collapse
|
36
|
Abstract
Despite decades of accumulated knowledge about proteins and their post-translational modifications (PTMs), numerous questions remain regarding their molecular composition and biological function. One of the most fundamental queries is the extent to which the combinations of DNA-, RNA- and PTM-level variations explode the complexity of the human proteome. Here, we outline what we know from current databases and measurement strategies including mass spectrometry-based proteomics. In doing so, we examine prevailing notions about the number of modifications displayed on human proteins and how they combine to generate the protein diversity underlying health and disease. We frame central issues regarding determination of protein-level variation and PTMs, including some paradoxes present in the field today. We use this framework to assess existing data and to ask the question, "How many distinct primary structures of proteins (proteoforms) are created from the 20,300 human genes?" We also explore prospects for improving measurements to better regularize protein-level biology and efficiently associate PTMs to function and phenotype.
Collapse
|
37
|
Brown KA, Chen B, Guardado-Alvarez TM, Lin Z, Hwang L, Ayaz-Guner S, Jin S, Ge Y. A photocleavable surfactant for top-down proteomics. Nat Methods 2019; 16:417-420. [PMID: 30988469 PMCID: PMC6532422 DOI: 10.1038/s41592-019-0391-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 03/13/2019] [Indexed: 01/21/2023]
Abstract
We report the identification of a photo-cleavable anionic surfactant, 4-hexylphenylazosulfonate (Azo) that can be rapidly degraded upon UV irradiation, for top-down proteomics. Azo can effectively solubilize proteins with performance comparable to SDS and is mass spectrometry (MS)-compatible. Importantly, Azo-aided top-down proteomics enables the solubilization of membrane proteins for comprehensive characterization of post-translational modifications. Moreover, Azo is simple to synthesize and can be used as a general SDS replacement in SDS-PAGE.
Collapse
Affiliation(s)
- Kyle A Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Ziqing Lin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Leekyoung Hwang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Serife Ayaz-Guner
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA. .,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
38
|
The whole transcriptome and proteome changes in the early stage of myocardial infarction. Cell Death Discov 2019; 5:73. [PMID: 30854232 PMCID: PMC6399251 DOI: 10.1038/s41420-019-0152-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/10/2019] [Indexed: 12/31/2022] Open
Abstract
As the most severe manifestation of coronary artery disease, myocardial infarction (MI) is a complex and multifactorial pathophysiologic process. However, the pathogenesis that underlies MI remains unclear. Here, we generated a MI mouse model by ligation of the proximal left anterior descending coronary artery. The transcriptome and proteome, at different time points after MI, were detected and analysed. Immune-related pathways, cell cycle-related pathways, and extracellular matrix remodelling-related pathways were significantly increased after MI. Not only innate immune cells but also adaptive immune cells participated in the early stage of MI. Proteins that functioned in blood agglutination, fibrinolysis, secretion, and immunity were significantly changed after MI. Nppa, Serpina3n, and Anxa1, three secreted proteins that can easily be detected in blood, were significantly changed after MI. Our discoveries not only reveal the molecular and cellular changes in MI but also identify potential candidate biomarkers of MI for clinical diagnosis or treatment.
Collapse
|
39
|
Lin Z, Wei L, Cai W, Zhu Y, Tucholski T, Mitchell SD, Guo W, Ford SP, Diffee GM, Ge Y. Simultaneous Quantification of Protein Expression and Modifications by Top-down Targeted Proteomics: A Case of the Sarcomeric Subproteome. Mol Cell Proteomics 2019; 18:594-605. [PMID: 30591534 PMCID: PMC6398208 DOI: 10.1074/mcp.tir118.001086] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/08/2018] [Indexed: 12/14/2022] Open
Abstract
Determining changes in protein expression and post-translational modifications (PTMs) is crucial for elucidating cellular signal transduction and disease mechanisms. Conventional antibody-based approaches have inherent problems such as the limited availability of high-quality antibodies and batch-to-batch variation. Top-down mass spectrometry (MS)-based proteomics has emerged as the most powerful method for characterization and quantification of protein modifications. Nevertheless, robust methods to simultaneously determine changes in protein expression and PTMs remain lacking. Herein, we have developed a straightforward and robust top-down liquid chromatography (LC)/MS-based targeted proteomics platform for simultaneous quantification of protein expression and PTMs with high throughput and high reproducibility. We employed this method to analyze the sarcomeric subproteome from various muscle types of different species, which successfully revealed skeletal muscle heterogeneity and cardiac developmental changes in sarcomeric protein isoform expression and PTMs. As demonstrated, this targeted top-down proteomics platform offers an excellent 'antibody-independent' alternative for the accurate quantification of sarcomeric protein expression and PTMs concurrently in complex mixtures, which is generally applicable to different species and various tissue types.
Collapse
Affiliation(s)
- Ziqing Lin
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
- §Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Liming Wei
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
- ¶Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
| | - Wenxuan Cai
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
- ‖Molecular & Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Yanlong Zhu
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
- §Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Trisha Tucholski
- **Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Stanford D Mitchell
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
- ‖Molecular & Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Wei Guo
- ‡‡Department of Animal Science, Fetal Programming Center, University of Wyoming, Laramie, Wyoming 82071
| | - Stephen P Ford
- ‡‡Department of Animal Science, Fetal Programming Center, University of Wyoming, Laramie, Wyoming 82071
| | - Gary M Diffee
- §§Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53705
| | - Ying Ge
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705;
- §Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705
- ‖Molecular & Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705
- **Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
40
|
Tucholski T, Knott SJ, Chen B, Pistono P, Lin Z, Ge Y. A Top-Down Proteomics Platform Coupling Serial Size Exclusion Chromatography and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal Chem 2019; 91:3835-3844. [PMID: 30758949 DOI: 10.1021/acs.analchem.8b04082] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mass spectrometry (MS) based top-down proteomics provides rich information about proteoforms arising from combinatorial amino acid sequence variations and post-translational modifications (PTMs). Fourier transform ion cyclotron resonance (FT-ICR) MS affords ultrahigh resolving power and provides high-accuracy mass measurements, presenting a powerful tool for top-down MS characterization of proteoforms. However, the detection and characterization of large proteins from complex mixtures remain challenging due to the exponential decrease in S: N with increasing molecular weight (MW) and coeluting low-MW proteins; thus, size-based fractionation of complex protein mixtures prior to MS analysis is necessary. Here, we directly combine MS-compatible serial size exclusion chromatography (sSEC) fractionation with 12 T FT-ICR MS for targeted top-down characterization of proteins from complex mixtures extracted from human and swine heart tissue. Benefiting from the ultrahigh resolving power of FT-ICR, we isotopically resolved 31 distinct proteoforms (30-50 kDa) simultaneously in a single mass spectrum within a 100 m/ z window. Notably, within a 5 m/ z window, we obtained baseline isotopic resolution for 6 distinct large proteoforms (30-50 kDa). The ultrahigh resolving power of FT-ICR MS combined with sSEC fractionation enabled targeted top-down analysis of large proteoforms (>30 kDa) from the human heart proteome without extensive chromatographic separation or protein purification. Further separation of proteoforms inside the mass spectrometer (in-MS) allowed for isolation of individual proteoforms and targeted electron capture dissociation (ECD), yielding high sequence coverage. sSEC/FT-ICR ECD facilitated the identification and sequence characterization of important metabolic enzymes. This platform, which facilitates deep interrogation of proteoform primary structure, is highly tunable, allows for adjustment of MS and MS/MS parameters in real time, and can be utilized for a variety of complex protein mixtures.
Collapse
Affiliation(s)
- Trisha Tucholski
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Samantha J Knott
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Bifan Chen
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Paige Pistono
- Department of Biochemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Ziqing Lin
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , 1111 Highland Avenue , WIMR II 8551, Madison , Wisconsin 53705 , United States
| | - Ying Ge
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States.,Department of Cell and Regenerative Biology , University of Wisconsin-Madison , 1111 Highland Avenue , WIMR II 8551, Madison , Wisconsin 53705 , United States
| |
Collapse
|
41
|
Liang Y, Jin Y, Wu Z, Tucholski T, Brown KA, Zhang L, Zhang Y, Ge Y. Bridged Hybrid Monolithic Column Coupled to High-Resolution Mass Spectrometry for Top-Down Proteomics. Anal Chem 2019; 91:1743-1747. [PMID: 30668094 DOI: 10.1021/acs.analchem.8b05817] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Top-down mass spectrometry (MS)-based proteomics has become a powerful tool for comprehensive characterization of intact proteins. However, because of the high complexity of the proteome, highly effective separation of intact proteins from complex mixtures prior to MS analysis remains challenging. Monolithic columns have shown great promise for intact protein separation due to their high permeability, low backpressure, and fast mass transfer. Herein, for the first time, we developed bridged hybrid bis(triethoxysilyl)ethylene (BTSEY) monolith with C8 functional groups (C8@BTSEY) for highly effective protein separation and coupled it to high-resolution MS for identification of intact proteins from complex protein mixtures. We have optimized mobile phase conditions of our monolith-based reverse-phase chromatography (RPC) for online liquid chromatography (LC)-MS analysis and evaluated separation reproducibility of the C8@BTSEY column. We further assessed the chromatographic performance of this column by separating a complex protein mixture extracted from swine heart tissue. Using our monolithic column (i.d. 100 μm × 35 cm), we separated over 300 proteoforms (up to 104 kDa) from 360 ng of protein mixture in an 80 min one-dimensional (1D) LC run. The highly effective separation and recovery of intact proteins from this monolithic column allowed unambiguous identification of ∼100 proteoforms including a large protein, αactinin2 (103.77 kDa), by online 1D LC-MS/MS analysis for the first time. As demonstrated, this C8@BTSEY column is reproducible and effective in separation of intact proteins, which shows high promise for top-down proteomics.
Collapse
Affiliation(s)
- Yu Liang
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States.,CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian , Liaoning 116023 , China
| | - Yutong Jin
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Zhijie Wu
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Trisha Tucholski
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Kyle A Brown
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Lihua Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian , Liaoning 116023 , China
| | - Yukui Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian , Liaoning 116023 , China
| | - Ying Ge
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States.,Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| |
Collapse
|
42
|
Hu HL, Kang Y, Zeng Y, Zhang M, Liao Q, Rong MQ, Zhang Q, Lai R. Region-resolved proteomics profiling of monkey heart. J Cell Physiol 2019; 234:13720-13734. [PMID: 30644093 PMCID: PMC7166496 DOI: 10.1002/jcp.28052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/06/2018] [Indexed: 02/05/2023]
Abstract
Nonhuman primates (NHPs) play an indispensable role in biomedical research because of their similarities in genetics, physiological, and neurological function to humans. Proteomics profiling of monkey heart could reveal significant cardiac biomarkers and help us to gain a better understanding of the pathogenesis of heart disease. However, the proteomic study of monkey heart is relatively lacking. Here, we performed the proteomics profiling of the normal monkey heart by measuring three major anatomical regions (vessels, valves, and chambers) based on iTRAQ‐coupled LC‐MS/MS analysis. Over 3,200 proteins were identified and quantified from three heart tissue samples. Furthermore, multiple bioinformatics analyses such as gene ontology analysis, protein–protein interaction analysis, and gene‐diseases association were used to investigate biological network of those proteins from each area. More than 60 genes in three heart regions are implicated with heart diseases such as hypertrophic cardiomyopathy, heart failure, and myocardial infarction. These genes associated with heart disease are mainly enriched in citrate cycle, amino acid degradation, and glycolysis pathway. At the anatomical level, the revelation of molecular characteristics of the healthy monkey heart would be an important starting point to investigate heart disease. As a unique resource, this study can serve as a reference map for future in‐depth research on cardiac disease‐related NHP model and novel biomarkers of cardiac injury.
Collapse
Affiliation(s)
- Hao-Liang Hu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yu Kang
- Division of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yong Zeng
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ming Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences &Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, China
| | - Qiong Liao
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ming-Qiang Rong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qin Zhang
- Division of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences &Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, China
| |
Collapse
|
43
|
Gregorich ZR, Patel JR, Cai W, Lin Z, Heurer R, Fitzsimons DP, Moss RL, Ge Y. Deletion of Enigma Homologue from the Z-disc slows tension development kinetics in mouse myocardium. J Gen Physiol 2019; 151:670-679. [PMID: 30642915 PMCID: PMC6504290 DOI: 10.1085/jgp.201812214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022] Open
Abstract
Enigma Homologue (ENH) is a component of the Z-disc, a structure that anchors actin filaments in the contractile unit of muscle, the sarcomere. Cardiac-specific ablation of ENH protein expression causes contractile dysfunction that ultimately culminates in dilated cardiomyopathy. However, whether ENH is involved in the regulation of myocardial contractility is unknown. To determine if ENH is required for the mechanical activity of cardiac muscle, we analyze muscle mechanics of isolated trabeculae from the hearts of ENH +/+ and ENH -/- mice. We detected no differences in steady-state mechanical properties but show that when muscle fibers are allowed to relax and then are restretched, the rate at which tension redevelops is depressed in ENH -/- mouse myocardium relative to that in ENH +/+ myocardium. SDS-PAGE analysis demonstrated that the expression of β-myosin heavy chain is increased in ENH -/- mouse myocardium, which could partially, but not completely, account for the depression in tension redevelopment kinetics. Using top-down proteomics analysis, we found that the expression of other thin/thick filament regulatory proteins is unaltered, although the phosphorylation of a cardiac troponin T isoform, cardiac troponin I, and myosin regulatory light chain is decreased in ENH -/- mouse myocardium. Nevertheless, these alterations are very small and thus insufficient to explain slowed tension redevelopment kinetics in ENH -/- mouse myocardium. These data suggest that the ENH protein influences tension redevelopment kinetics in mouse myocardium, possibly by affecting cross-bridge cycling kinetics. Previous studies also indicate that ablation of specific Z-disc proteins in myocardium slows contraction kinetics, which could also be a contributing factor in this study.
Collapse
Affiliation(s)
- Zachery R Gregorich
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI.,Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI
| | - Jitandrakumar R Patel
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI.,University of Wisconsin-Madison Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI
| | - Wenxuan Cai
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI.,Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI.,Human Proteomics Program, University of Wisconsin-Madison, Madison, WI
| | - Rachel Heurer
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
| | - Daniel P Fitzsimons
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
| | - Richard L Moss
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI .,University of Wisconsin-Madison Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI.,Human Proteomics Program, University of Wisconsin-Madison, Madison, WI
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI .,Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI.,University of Wisconsin-Madison Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI.,Human Proteomics Program, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
44
|
Affiliation(s)
- Clement
M. Potel
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Simone Lemeer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
45
|
Zamanian Azodi M, Rezaei Tavirani M, Rezaei Tavirani M. Compound-Protein Interaction Analysis in Condition Following Cardiac Arrest. Galen Med J 2018; 7:e1380. [PMID: 34466450 PMCID: PMC8344096 DOI: 10.22086/gmj.v0i0.1380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/16/2018] [Accepted: 11/22/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Cardiac arrest (CA) and differentially expressed genes (DEGs) relative to postCA have attracted the attention of scientist to prevent damages, which threaten patients. In the present study, metabolites relevant to DEGs of post-CA condition investigated via protein-compound interaction to understand the pathological mechanisms in the human body. MATERIALS AND METHODS STITCH plug-in integrated into Cytoscape V.3.6.1 was used to detect the most significant interacting compounds relative to DEGs of pig's brain after 5 minutes' CA. The genes were obtained from the Gene Expression Omnibus database. The identified elements were considered for further evaluation and validation by literature survey. RESULT Findings indicate that biochemical compounds including magnesium, calcium, glucose, glycerol, hydrogen, chloride, sulfate, and estradiol interact with DEGs in the two up- and down-regulated networks. CONCLUSION The compounds interacting with DEGs are suitable subjects to analysis for re-regulation of the body after CA.
Collapse
Affiliation(s)
- Mona Zamanian Azodi
- Student Research Committee, Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
46
|
Lermyte F, Valkenborg D, Loo JA, Sobott F. Radical solutions: Principles and application of electron-based dissociation in mass spectrometry-based analysis of protein structure. MASS SPECTROMETRY REVIEWS 2018; 37:750-771. [PMID: 29425406 PMCID: PMC6131092 DOI: 10.1002/mas.21560] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 05/11/2023]
Abstract
In recent years, electron capture (ECD) and electron transfer dissociation (ETD) have emerged as two of the most useful methods in mass spectrometry-based protein analysis, evidenced by a considerable and growing body of literature. In large part, the interest in these methods is due to their ability to induce backbone fragmentation with very little disruption of noncovalent interactions which allows inference of information regarding higher order structure from the observed fragmentation behavior. Here, we review the evolution of electron-based dissociation methods, and pay particular attention to their application in "native" mass spectrometry, their mechanism, determinants of fragmentation behavior, and recent developments in available instrumentation. Although we focus on the two most widely used methods-ECD and ETD-we also discuss the use of other ion/electron, ion/ion, and ion/neutral fragmentation methods, useful for interrogation of a range of classes of biomolecules in positive- and negative-ion mode, and speculate about how this exciting field might evolve in the coming years.
Collapse
Affiliation(s)
- Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Dirk Valkenborg
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Agoralaan, Diepenbeek, Belgium
- Applied Bio and Molecular Systems, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Joseph A Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California
- UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
47
|
Cai W, Hite ZL, Lyu B, Wu Z, Lin Z, Gregorich ZR, Messer AE, McIlwain SJ, Marston SB, Kohmoto T, Ge Y. Temperature-sensitive sarcomeric protein post-translational modifications revealed by top-down proteomics. J Mol Cell Cardiol 2018; 122:11-22. [PMID: 30048711 DOI: 10.1016/j.yjmcc.2018.07.247] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/11/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
Abstract
Despite advancements in symptom management for heart failure (HF), this devastating clinical syndrome remains the leading cause of death in the developed world. Studies using animal models have greatly advanced our understanding of the molecular mechanisms underlying HF; however, differences in cardiac physiology and the manifestation of HF between animals, particularly rodents, and humans necessitates the direct interrogation of human heart tissue samples. Nevertheless, an ever-present concern when examining human heart tissue samples is the potential for artefactual changes related to temperature changes during tissue shipment or sample processing. Herein, we examined the effects of temperature on the post-translational modifications (PTMs) of sarcomeric proteins, the proteins responsible for muscle contraction, under conditions mimicking those that might occur during tissue shipment or sample processing. Using a powerful top-down proteomics method, we found that sarcomeric protein PTMs were differentially affected by temperature. Specifically, cardiac troponin I and enigma homolog isoform 2 showed robust increases in phosphorylation when tissue was incubated at either 4 °C or 22 °C. The observed increase is likely due to increased cyclic AMP levels and activation of protein kinase A in the tissue. On the contrary, cardiac troponin T and myosin regulatory light chain phosphorylation decreased when tissue was incubated at 4 °C or 22 °C. Furthermore, significant protein degradation was also observed after incubation at 4 °C or 22 °C. Overall, these results indicate that temperature exerts various effects on sarcomeric protein PTMs and careful tissue handling is critical for studies involving human heart samples. Moreover, these findings highlight the power of top-down proteomics for examining the integrity of cardiac tissue samples.
Collapse
Affiliation(s)
- Wenxuan Cai
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachary L Hite
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Beini Lyu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachery R Gregorich
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrew E Messer
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sean J McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Steve B Marston
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Takushi Kohmoto
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ying Ge
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
48
|
Lin Z, Guo F, Gregorich ZR, Sun R, Zhang H, Hu Y, Shanmuganayagam D, Ge Y. Comprehensive Characterization of Swine Cardiac Troponin T Proteoforms by Top-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1284-1294. [PMID: 29633223 PMCID: PMC6109964 DOI: 10.1007/s13361-018-1925-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 05/12/2023]
Abstract
Cardiac troponin T (cTnT) regulates the Ca2+-mediated interaction between myosin thick filaments and actin thin filaments during cardiac contraction and relaxation. cTnT is released into the blood following injury, and increased serum levels of the protein are used clinically as a biomarker for myocardial infarction. Moreover, mutations in cTnT are causative in a number of familial cardiomyopathies. With the increasing use of large animal (swine) model to recapitulate human diseases, it is essential to characterize species-dependent protein sequence variants, alternative RNA splicing, and post-translational modifications (PTMs), but challenges remain due to the incomplete database and lack of validation of the predicted splicing isoforms. Herein, we integrated top-down mass spectrometry (MS) with online liquid chromatography (LC) and immunoaffinity purification to comprehensively characterize miniature swine cTnT proteoforms, including those arising from alternative RNA splicing and PTMs. A total of seven alternative splicing isoforms of cTnT were identified by LC/MS from swine left ventricular tissue, with each isoform containing un-phosphorylated and mono-phosphorylated proteoforms. The phosphorylation site was localized to Ser1 for the mono-phosphorylated proteoforms of cTnT1, 3, 4, and 6 by online MS/MS combining collisionally activated dissociation (CAD) and electron transfer dissociation (ETD). Offline MS/MS on Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer with CAD and electron capture dissociation (ECD) was then utilized to achieve deep sequencing of mono-phosphorylated cTnT1 (35.2 kDa) with a high sequence coverage of 87%. Taken together, this study demonstrated the unique advantage of top-down MS in the comprehensive characterization of protein alternative splicing isoforms together with PTMs. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Fang Guo
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Cardiology, Shandong Provincial Hospital, Jinan, 250021, Shandong, People's Republic of China
| | - Zachery R Gregorich
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Ruixiang Sun
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Han Zhang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yang Hu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
49
|
Gabriel-Costa D. The pathophysiology of myocardial infarction-induced heart failure. ACTA ACUST UNITED AC 2018; 25:277-284. [PMID: 29685587 DOI: 10.1016/j.pathophys.2018.04.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/06/2018] [Accepted: 04/14/2018] [Indexed: 12/20/2022]
Abstract
Heart failure (HF) is a multifactorial disorder and is usually the end stage of many cardiovascular diseases (CVD). HF presents one of the highest morbidity and mortality indices worldwide and high costs to public health organizations. Myocardial infarction (MI) is the most prevalent CVD in the Western world and leads to HF when its management is inadequate. It has a destructive potential for heart cells and abruptly reduces the cardiac output, a clinical condition known as heart dysfunction that might progress to HF. Many acute and chronic adaptations occur due to MI that progress to HF, e.g., neurohumoral hyperactivity, inflammatory response and cardiac remodeling. Herein, we reviewed in simplistic manner the processes involved in setting of MI until the establishment of HF.
Collapse
Affiliation(s)
- Daniele Gabriel-Costa
- Universidade da Força Aérea, Instituto de Ciências da Atividade Física, Programa de Pós-Graduação em Desempenho Humano Operacional, Rio de Janeiro, RJ, Brasil.
| |
Collapse
|
50
|
Gao L, Gregorich ZR, Zhu W, Mattapally S, Oduk Y, Lou X, Kannappan R, Borovjagin AV, Walcott GP, Pollard AE, Fast VG, Hu X, Lloyd SG, Ge Y, Zhang J. Large Cardiac Muscle Patches Engineered From Human Induced-Pluripotent Stem Cell-Derived Cardiac Cells Improve Recovery From Myocardial Infarction in Swine. Circulation 2018; 137:1712-1730. [PMID: 29233823 PMCID: PMC5903991 DOI: 10.1161/circulationaha.117.030785] [Citation(s) in RCA: 321] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/20/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Here, we generated human cardiac muscle patches (hCMPs) of clinically relevant dimensions (4 cm × 2 cm × 1.25 mm) by suspending cardiomyocytes, smooth muscle cells, and endothelial cells that had been differentiated from human induced-pluripotent stem cells in a fibrin scaffold and then culturing the construct on a dynamic (rocking) platform. METHODS In vitro assessments of hCMPs suggest maturation in response to dynamic culture stimulation. In vivo assessments were conducted in a porcine model of myocardial infarction (MI). Animal groups included: MI hearts treated with 2 hCMPs (MI+hCMP, n=13), MI hearts treated with 2 cell-free open fibrin patches (n=14), or MI hearts with neither experimental patch (n=15); a fourth group of animals underwent sham surgery (Sham, n=8). Cardiac function and infarct size were evaluated by MRI, arrhythmia incidence by implanted loop recorders, and the engraftment rate by calculation of quantitative polymerase chain reaction measurements of expression of the human Y chromosome. Additional studies examined the myocardial protein expression profile changes and potential mechanisms of action that related to exosomes from the cell patch. RESULTS The hCMPs began to beat synchronously within 1 day of fabrication, and after 7 days of dynamic culture stimulation, in vitro assessments indicated the mechanisms related to the improvements in electronic mechanical coupling, calcium-handling, and force generation, suggesting a maturation process during the dynamic culture. The engraftment rate was 10.9±1.8% at 4 weeks after the transplantation. The hCMP transplantation was associated with significant improvements in left ventricular function, infarct size, myocardial wall stress, myocardial hypertrophy, and reduced apoptosis in the periscar boarder zone myocardium. hCMP transplantation also reversed some MI-associated changes in sarcomeric regulatory protein phosphorylation. The exosomes released from the hCMP appeared to have cytoprotective properties that improved cardiomyocyte survival. CONCLUSIONS We have fabricated a clinically relevant size of hCMP with trilineage cardiac cells derived from human induced-pluripotent stem cells. The hCMP matures in vitro during 7 days of dynamic culture. Transplantation of this type of hCMP results in significantly reduced infarct size and improvements in cardiac function that are associated with reduction in left ventricular wall stress. The hCMP treatment is not associated with significant changes in arrhythmogenicity.
Collapse
Affiliation(s)
- Ling Gao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham (L.G., W.Z., S.M., Y.O., X.LO., R.K., A.V.B., G.P.W., A.E.P., V.G.F., S.G.L., J.Z.)
| | - Zachery R Gregorich
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison (Z.R.G., Y.G.)
| | - Wuqiang Zhu
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham (L.G., W.Z., S.M., Y.O., X.LO., R.K., A.V.B., G.P.W., A.E.P., V.G.F., S.G.L., J.Z.)
| | - Saidulu Mattapally
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham (L.G., W.Z., S.M., Y.O., X.LO., R.K., A.V.B., G.P.W., A.E.P., V.G.F., S.G.L., J.Z.)
| | - Yasin Oduk
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham (L.G., W.Z., S.M., Y.O., X.LO., R.K., A.V.B., G.P.W., A.E.P., V.G.F., S.G.L., J.Z.)
| | - Xi Lou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham (L.G., W.Z., S.M., Y.O., X.LO., R.K., A.V.B., G.P.W., A.E.P., V.G.F., S.G.L., J.Z.)
| | - Ramaswamy Kannappan
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham (L.G., W.Z., S.M., Y.O., X.LO., R.K., A.V.B., G.P.W., A.E.P., V.G.F., S.G.L., J.Z.)
| | - Anton V Borovjagin
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham (L.G., W.Z., S.M., Y.O., X.LO., R.K., A.V.B., G.P.W., A.E.P., V.G.F., S.G.L., J.Z.)
| | - Gregory P Walcott
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham (L.G., W.Z., S.M., Y.O., X.LO., R.K., A.V.B., G.P.W., A.E.P., V.G.F., S.G.L., J.Z.)
| | - Andrew E Pollard
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham (L.G., W.Z., S.M., Y.O., X.LO., R.K., A.V.B., G.P.W., A.E.P., V.G.F., S.G.L., J.Z.)
| | - Vladimir G Fast
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham (L.G., W.Z., S.M., Y.O., X.LO., R.K., A.V.B., G.P.W., A.E.P., V.G.F., S.G.L., J.Z.)
| | - Xinyang Hu
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (X.H.)
| | - Steven G Lloyd
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham (L.G., W.Z., S.M., Y.O., X.LO., R.K., A.V.B., G.P.W., A.E.P., V.G.F., S.G.L., J.Z.)
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison (Z.R.G., Y.G.)
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham (L.G., W.Z., S.M., Y.O., X.LO., R.K., A.V.B., G.P.W., A.E.P., V.G.F., S.G.L., J.Z.).
| |
Collapse
|