1
|
Yang R, Celino-Brady FT, Dunleavy JEM, Vigh-Conrad KA, Atkins GR, Hvasta RL, Pombar CRX, Yatsenko AN, Orwig KE, O'Bryan MK, Lima AC, Conrad DF. SATINN v2: automated image analysis for mouse testis histology with multi-laboratory data integration†. Biol Reprod 2025; 112:996-1014. [PMID: 39961022 DOI: 10.1093/biolre/ioaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/08/2024] [Accepted: 02/16/2025] [Indexed: 03/21/2025] Open
Abstract
Analysis of testis histology is fundamental to the study of male fertility, but it is a slow task with a high skill threshold. Here, we describe new neural network models for the automated classification of cell types and tubule stages from whole-slide brightfield images of mouse testis. The cell type classifier recognizes 14 cell types, including multiple steps of meiosis I prophase, with an external validation accuracy of 96%. The tubule stage classifier distinguishes all 12 canonical tubule stages with external validation accuracy of 63%, which increases to 96% when allowing for ±1 stage tolerance. We addressed generalizability of SATINN, through extensive training diversification and testing on external (non-training population) wildtype and mutant datasets. This allowed us to use SATINN to successfully process data generated in multiple laboratories. We used SATINN to analyze testis images from eight different mutant lines, generated from three different labs with a range of tissue processing protocols. Finally, we show that it is possible to use SATINN output to cluster histology images in latent space, which, when applied to the eight mutant lines, reveals known relationships in their pathology. This work represents significant progress towards a tool for robust, automated testis histopathology that can be used by multiple labs.
Collapse
Affiliation(s)
- Ran Yang
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, United States
| | - Fritzie T Celino-Brady
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, United States
| | - Jessica E M Dunleavy
- School of Biosciences and Bio21 Molecular Science and Biotechnology Institute, Faculty of Science, The University of Melbourne, Melbourne, VIC, Australia
| | - Katinka A Vigh-Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, United States
| | - Georgia R Atkins
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rachel L Hvasta
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christopher R X Pombar
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Alexander N Yatsenko
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Moira K O'Bryan
- School of Biosciences and Bio21 Molecular Science and Biotechnology Institute, Faculty of Science, The University of Melbourne, Melbourne, VIC, Australia
| | - Ana C Lima
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, United States
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
2
|
Ong JY, Abdusamad M, Ramirez I, Gholkar A, Zhang X, Gimeno TV, Torres JZ. Cul3 substrate adaptor SPOP targets Nup153 for degradation. Mol Biol Cell 2025; 36:ar24. [PMID: 39785820 PMCID: PMC11974958 DOI: 10.1091/mbc.e24-04-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
SPOP is a Cul3 substrate adaptor responsible for the degradation of many proteins related to cell growth and proliferation. Because mutation or misregulation of SPOP drives cancer progression, understanding the suite of SPOP substrates is important to understanding the regulation of cell proliferation. Here, we identify Nup153, a component of the nuclear basket of the nuclear pore complex, as a novel substrate of SPOP. SPOP and Nup153 bind to each other and colocalize at the nuclear envelope and some nuclear foci in cells. The binding interaction between SPOP and Nup153 is complex and multivalent. Nup153 is ubiquitylated and degraded upon expression of SPOPWT but not its substrate binding-deficient mutant SPOPF102C. Depletion of SPOP via RNAi leads to Nup153 stabilization. Upon loss of SPOP activity, the nuclear envelope localization of spindle assembly checkpoint protein Mad1, which is tethered to the nuclear envelope by Nup153, is stronger. Altogether, our results demonstrate that SPOP regulates Nup153 levels and expands our understanding of the role of SPOP in protein and cellular homeostasis.
Collapse
Affiliation(s)
- Joseph Y. Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Mai Abdusamad
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Ivan Ramirez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Ankur Gholkar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Xiaoxuan Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Thomas V. Gimeno
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jorge Z. Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
3
|
Stathatos GG, Merriner DJ, O'Connor AE, Zenker J, Dunleavy JE, O'Bryan MK. Epsilon tubulin is an essential determinant of microtubule-based structures in male germ cells. EMBO Rep 2024; 25:2722-2742. [PMID: 38773322 PMCID: PMC11169422 DOI: 10.1038/s44319-024-00159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Alpha, beta, and gamma tubulins are essential building blocks for all eukaryotic cells. The functions of the non-canonical tubulins, delta, epsilon, and zeta, however, remain poorly understood and their requirement in mammalian development untested. Herein we have used a spermatogenesis model to define epsilon tubulin (TUBE1) function in mice. We show that TUBE1 is essential for the function of multiple complex microtubule arrays, including the meiotic spindle, axoneme and manchette and in its absence, there is a dramatic loss of germ cells and male sterility. Moreover, we provide evidence for the interplay between TUBE1 and katanin-mediated microtubule severing, and for the sub-specialization of individual katanin paralogs in the regulation of specific microtubule arrays.
Collapse
Affiliation(s)
- G Gemma Stathatos
- School of BioSciences and Bio21 Institute of Molecular Science and Biotechnology, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - D Jo Merriner
- School of BioSciences and Bio21 Institute of Molecular Science and Biotechnology, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Anne E O'Connor
- School of BioSciences and Bio21 Institute of Molecular Science and Biotechnology, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jennifer Zenker
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Jessica Em Dunleavy
- School of BioSciences and Bio21 Institute of Molecular Science and Biotechnology, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Moira K O'Bryan
- School of BioSciences and Bio21 Institute of Molecular Science and Biotechnology, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
4
|
Kang R, Kim K, Jung Y, Choi SH, Lee C, Im GH, Shin M, Ryu K, Choi S, Yang E, Shin W, Lee S, Lee S, Papadopoulos Z, Ahn JH, Koh GY, Kipnis J, Kang H, Kim H, Cho WK, Park S, Kim SG, Kim E. Loss of Katnal2 leads to ependymal ciliary hyperfunction and autism-related phenotypes in mice. PLoS Biol 2024; 22:e3002596. [PMID: 38718086 PMCID: PMC11104772 DOI: 10.1371/journal.pbio.3002596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/20/2024] [Accepted: 03/21/2024] [Indexed: 05/22/2024] Open
Abstract
Autism spectrum disorders (ASD) frequently accompany macrocephaly, which often involves hydrocephalic enlargement of brain ventricles. Katnal2 is a microtubule-regulatory protein strongly linked to ASD, but it remains unclear whether Katnal2 knockout (KO) in mice leads to microtubule- and ASD-related molecular, synaptic, brain, and behavioral phenotypes. We found that Katnal2-KO mice display ASD-like social communication deficits and age-dependent progressive ventricular enlargements. The latter involves increased length and beating frequency of motile cilia on ependymal cells lining ventricles. Katnal2-KO hippocampal neurons surrounded by enlarged lateral ventricles show progressive synaptic deficits that correlate with ASD-like transcriptomic changes involving synaptic gene down-regulation. Importantly, early postnatal Katnal2 re-expression prevents ciliary, ventricular, and behavioral phenotypes in Katnal2-KO adults, suggesting a causal relationship and a potential treatment. Therefore, Katnal2 negatively regulates ependymal ciliary function and its deletion in mice leads to ependymal ciliary hyperfunction and hydrocephalus accompanying ASD-related behavioral, synaptic, and transcriptomic changes.
Collapse
Affiliation(s)
- Ryeonghwa Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Kyungdeok Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Yewon Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Sang-Han Choi
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea
| | - Chanhee Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
| | - Miram Shin
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Korea
| | - Kwangmin Ryu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Subin Choi
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Korea
| | - Esther Yang
- Department of Anatomy, Biomedical Sciences, College of Medicine, Korea University, Seoul, Korea
| | - Wangyong Shin
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Seungjoon Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Zachary Papadopoulos
- Neuroscience Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Ji Hoon Ahn
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, Korea
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, Korea
| | - Jonathan Kipnis
- Neuroscience Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), Daejeon, Korea
| | - Hyun Kim
- Department of Anatomy, Biomedical Sciences, College of Medicine, Korea University, Seoul, Korea
| | - Won-Ki Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| |
Collapse
|
5
|
Dunleavy JEM, Graffeo M, Wozniak K, O'Connor AE, Merriner DJ, Nguyen J, Schittenhelm RB, Houston BJ, O'Bryan MK. The katanin A-subunits KATNA1 and KATNAL1 act co-operatively in mammalian meiosis and spermiogenesis to achieve male fertility. Development 2023; 150:dev201956. [PMID: 37882691 PMCID: PMC10690054 DOI: 10.1242/dev.201956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Katanins, a class of microtubule-severing enzymes, are potent M-phase regulators in oocytes and somatic cells. How the complex and evolutionarily crucial, male mammalian meiotic spindle is sculpted remains unknown. Here, using multiple single and double gene knockout mice, we reveal that the canonical katanin A-subunit KATNA1 and its close paralogue KATNAL1 together execute multiple aspects of meiosis. We show KATNA1 and KATNAL1 collectively regulate the male meiotic spindle, cytokinesis and midbody abscission, in addition to diverse spermatid remodelling events, including Golgi organisation, and acrosome and manchette formation. We also define KATNAL1-specific roles in sperm flagellum development, manchette regulation and sperm-epithelial disengagement. Finally, using proteomic approaches, we define the KATNA1, KATNAL1 and KATNB1 mammalian testis interactome, which includes a network of cytoskeletal and vesicle trafficking proteins. Collectively, we reveal that the presence of multiple katanin A-subunit paralogs in mammalian spermatogenesis allows for 'customised cutting' via neofunctionalisation and protective buffering via gene redundancy.
Collapse
Affiliation(s)
- Jessica E. M. Dunleavy
- School of BioSciences and Bio21 Institute, Faculty of Science, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Maddison Graffeo
- School of BioSciences and Bio21 Institute, Faculty of Science, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kathryn Wozniak
- Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Anne E. O'Connor
- School of BioSciences and Bio21 Institute, Faculty of Science, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - D. Jo Merriner
- School of BioSciences and Bio21 Institute, Faculty of Science, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Joseph Nguyen
- School of BioSciences and Bio21 Institute, Faculty of Science, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ralf B. Schittenhelm
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Brendan J. Houston
- School of BioSciences and Bio21 Institute, Faculty of Science, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Moira K. O'Bryan
- School of BioSciences and Bio21 Institute, Faculty of Science, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
6
|
Ong JY, Torres JZ. Cul3 substrate adaptor SPOP targets Nup153 for degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.13.540659. [PMID: 37293018 PMCID: PMC10245568 DOI: 10.1101/2023.05.13.540659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
SPOP is a Cul3 substrate adaptor responsible for degradation of many proteins related to cell growth and proliferation. Because mutation or misregulation of SPOP drives cancer progression, understanding the suite of SPOP substrates is important to understanding regulation of cell proliferation. Here, we identify Nup153, a component of the nuclear basket of the nuclear pore complex, as a novel substrate of SPOP. SPOP and Nup153 bind to each other and colocalize at the nuclear envelope and some nuclear foci in cells. The binding interaction between SPOP and Nup153 is complex and multivalent. Nup153 is ubiquitylated and degraded upon expression of SPOPWT but not its substrate binding-deficient mutant SPOPF102C. Depletion of SPOP via RNAi leads to Nup153 stabilization. Upon loss of SPOP, the nuclear envelope localization of spindle assembly checkpoint protein Mad1, which is tethered to the nuclear envelope by Nup153, is stronger. Altogether, our results demonstrate SPOP regulates Nup153 levels and expands our understanding of the role of SPOP in protein and cellular homeostasis.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Liu T, Ma J, Hou D, Wang W, Cao H. Haplotype-GGGT in long non-coding RNA MALAT1 inhibits brain metastatic lung cancer and lymph nodes of lung cancer via the MALAT1/miR-328/KATNB1. Aging (Albany NY) 2023; 15:1918-1930. [PMID: 36934373 PMCID: PMC10085600 DOI: 10.18632/aging.204563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/15/2023] [Indexed: 03/20/2023]
Abstract
The up-regulation of Katanin P8 has been reported to be correlated with a larger tumor size and lymph node metastasis in non-small-cell lung cancer (NSCLC) patients. And lncRNA MALAT1 was demonstrated to promote the proliferation of chronic myeloid leukemia cells via modulating miR-328. 135 lung cancer patients were divided into 6 groups according to their genotypes of MALAT1. The expression of KATNB1 was negatively correlated with the GGGT genotype of MALAT1. Decreased lymph node size and tumor size of brain metastatic lung were observed in patients with GGGT genotype of MALAT1. The luciferase activities of MALAT1 and KATNB1 were remarkably suppressed by miR-328 in A549 and H460. And the down-regulation of MALAT1 or up-regulation of miR-328 significantly repressed the KATNB1 expression in A549 and H460 cells. MALAT1 expression was reduced in patients carrying haplotype GGGT. A signaling pathway of MALAT1/miR-328/KATNB1 was established to explain the down-regulation of KATNB1 mRNA in patients carrying haplotype GGGT and reduced lymph node size in lung cancer and tumor size in brain metastatic lung cancer.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Jianpeng Ma
- Department of Magnetic Resonance Imaging, Dingbian County People’s Hospital, Dingbian, Yulin, Shaanxi 718600, China
| | - Dongmei Hou
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Hetao Cao
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
8
|
Szczesna E, Zehr EA, Cummings SW, Szyk A, Mahalingan KK, Li Y, Roll-Mecak A. Combinatorial and antagonistic effects of tubulin glutamylation and glycylation on katanin microtubule severing. Dev Cell 2022; 57:2497-2513.e6. [PMID: 36347241 PMCID: PMC9665884 DOI: 10.1016/j.devcel.2022.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/17/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Microtubules have spatiotemporally complex posttranslational modification patterns. How cells interpret this tubulin modification code is largely unknown. We show that C. elegans katanin, a microtubule severing AAA ATPase mutated in microcephaly and critical for cell division, axonal elongation, and cilia biogenesis, responds precisely, differentially, and combinatorially to three chemically distinct tubulin modifications-glycylation, glutamylation, and tyrosination-but is insensitive to acetylation. Glutamylation and glycylation are antagonistic rheostats with glycylation protecting microtubules from severing. Katanin exhibits graded and divergent responses to glutamylation on the α- and β-tubulin tails, and these act combinatorially. The katanin hexamer central pore constrains the polyglutamate chain patterns on β-tails recognized productively. Elements distal to the katanin AAA core sense α-tubulin tyrosination, and detyrosination downregulates severing. The multivalent microtubule recognition that enables katanin to read multiple tubulin modification inputs explains in vivo observations and illustrates how effectors can integrate tubulin code signals to produce diverse functional outcomes.
Collapse
Affiliation(s)
- Ewa Szczesna
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Elena A Zehr
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Steven W Cummings
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Agnieszka Szyk
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Kishore K Mahalingan
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomic Core Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA; Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Chen Y, Liu X, Zhang W, Li J, Liu H, Yang L, Lei P, Zhang H, Yu F. MOR1/MAP215 acts synergistically with katanin to control cell division and anisotropic cell elongation in Arabidopsis. THE PLANT CELL 2022; 34:3006-3027. [PMID: 35579372 PMCID: PMC9373954 DOI: 10.1093/plcell/koac147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/07/2022] [Indexed: 05/20/2023]
Abstract
The MAP215 family of microtubule (MT) polymerase/nucleation factors and the MT severing enzyme katanin are widely conserved MT-associated proteins (MAPs) across the plant and animal kingdoms. However, how these two essential MAPs coordinate to regulate plant MT dynamics and development remains unknown. Here, we identified novel hypomorphic alleles of MICROTUBULE ORGANIZATION 1 (MOR1), encoding the Arabidopsis thaliana homolog of MAP215, in genetic screens for mutants oversensitive to the MT-destabilizing drug propyzamide. Live imaging in planta revealed that MOR1-green fluorescent protein predominantly tracks the plus-ends of cortical MTs (cMTs) in interphase cells and labels preprophase band, spindle and phragmoplast MT arrays in dividing cells. Remarkably, MOR1 and KATANIN 1 (KTN1), the p60 subunit of Arabidopsis katanin, act synergistically to control the proper formation of plant-specific MT arrays, and consequently, cell division and anisotropic cell expansion. Moreover, MOR1 physically interacts with KTN1 and promotes KTN1-mediated severing of cMTs. Our work establishes the Arabidopsis MOR1-KTN1 interaction as a central functional node dictating MT dynamics and plant growth and development.
Collapse
Affiliation(s)
| | | | - Wenjing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haofeng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pei Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongchang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Yu
- Author for correspondence:
| |
Collapse
|
10
|
Knockout of Katnal2 Leads to Autism-like Behaviors and Developmental Delay in Zebrafish. Int J Mol Sci 2022; 23:ijms23158389. [PMID: 35955524 PMCID: PMC9368773 DOI: 10.3390/ijms23158389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
KATNAL2 mutations have been associated with autism spectrum disorder (ASD) and other related neurodevelopmental disorders (NDDs) such as intellectual disability (ID) in several cohorts. KATNAL2 has been implicated in brain development, as it is required for ciliogenesis in Xenopus and is required for dendritic arborization in mice. However, a causative relationship between the disruption of Katnal2 function and behavioral defects has not been established. Here, we generated a katnal2 null allele in zebrafish using CRISPR/Cas9-mediated genome editing and carried out morphological and behavioral characterizations. We observed that katnal2-/- embryos displayed delayed embryonic development especially during the convergence and extension (CE) movement. The hatched larvae showed reduced brain size and body length. In the behavioral tests, the katnal2-/- zebrafish exhibited reduced locomotor activity both in larvae and adults; increased nocturnal waking activity in larvae; and enhanced anxiety-like behavior, impaired social interaction, and reduced social cohesion in adults. These findings indicate an important role for katnal2 in development and behavior, providing an in vivo model to study the mechanisms underlying the ASD related to KATNAL2 mutations.
Collapse
|
11
|
Dunleavy JEM, O'Connor AE, Okuda H, Merriner DJ, O'Bryan MK. KATNB1 is a master regulator of multiple katanin enzymes in male meiosis and haploid germ cell development. Development 2021; 148:273717. [PMID: 34822718 DOI: 10.1242/dev.199922] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
Katanin microtubule-severing enzymes are crucial executers of microtubule regulation. Here, we have created an allelic loss-of-function series of the katanin regulatory B-subunit KATNB1 in mice. We reveal that KATNB1 is the master regulator of all katanin enzymatic A-subunits during mammalian spermatogenesis, wherein it is required to maintain katanin A-subunit abundance. Our data shows that complete loss of KATNB1 from germ cells is incompatible with sperm production, and we reveal multiple new spermatogenesis functions for KATNB1, including essential roles in male meiosis, acrosome formation, sperm tail assembly, regulation of both the Sertoli and germ cell cytoskeletons during sperm nuclear remodelling, and maintenance of seminiferous epithelium integrity. Collectively, our findings reveal that katanins are able to differentially regulate almost all key microtubule-based structures during mammalian male germ cell development, through the complexing of one master controller, KATNB1, with a 'toolbox' of neofunctionalised katanin A-subunits.
Collapse
Affiliation(s)
- Jessica E M Dunleavy
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC, 3800, Australia.,School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Anne E O'Connor
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC, 3800, Australia.,School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hidenobu Okuda
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC, 3800, Australia
| | - D Jo Merriner
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC, 3800, Australia.,School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Moira K O'Bryan
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
12
|
Velasquez EF, Garcia YA, Ramirez I, Gholkar AA, Torres JZ. CANVS: an easy-to-use application for the analysis and visualization of mass spectrometry-based protein-protein interaction/association data. Mol Biol Cell 2021; 32:br9. [PMID: 34432510 PMCID: PMC8693966 DOI: 10.1091/mbc.e21-05-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The elucidation of a protein’s interaction/association network is important for defining its biological function. Mass spectrometry–based proteomic approaches have emerged as powerful tools for identifying protein–protein interactions (PPIs) and protein–protein associations (PPAs). However, interactome/association experiments are difficult to interpret, considering the complexity and abundance of data that are generated. Although tools have been developed to identify protein interactions/associations quantitatively, there is still a pressing need for easy-to-use tools that allow users to contextualize their results. To address this, we developed CANVS, a computational pipeline that cleans, analyzes, and visualizes mass spectrometry–based interactome/association data. CANVS is wrapped as an interactive Shiny dashboard with simple requirements, allowing users to interface easily with the pipeline, analyze complex experimental data, and create PPI/A networks. The application integrates systems biology databases such as BioGRID and CORUM to contextualize the results. Furthermore, CANVS features a Gene Ontology tool that allows users to identify relevant GO terms in their results and create visual networks with proteins associated with relevant GO terms. Overall, CANVS is an easy-to-use application that benefits all researchers, especially those who lack an established bioinformatic pipeline and are interested in studying interactome/association data.
Collapse
Affiliation(s)
- Erick F Velasquez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Yenni A Garcia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Ivan Ramirez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Ankur A Gholkar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095.,Molecular Biology Institute, University of California, Los Angeles, CA 90095.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
| |
Collapse
|
13
|
The Aneugenicity of Ketone Bodies in Colon Epithelial Cells Is Mediated by Microtubule Hyperacetylation and Is Blocked by Resveratrol. Int J Mol Sci 2021; 22:ijms22179397. [PMID: 34502304 PMCID: PMC8430621 DOI: 10.3390/ijms22179397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/23/2023] Open
Abstract
Diabetes mellitus (DM) is considered to be associated with an increased risk of colorectal cancer. Recent studies have also revealed that tubulin hyperacetylation is caused by a diabetic status and we have reported previously that, under microtubule hyperacetylation, a microtubule severing protein, katanin-like (KL) 1, is upregulated and contributes to tumorigenesis. To further explore this phenomenon, we tested the effects of the ketone bodies, acetoacetate and β-hydroxybutyrate, in colon and fibroblast cells. Both induced microtubule hyperacetylation that responded differently to a histone deacetylase 3 knockdown. These two ketone bodies also generated intracellular reactive oxygen species (ROS) and hyperacetylation was commonly inhibited by ROS inhibitors. In a human fibroblast-based microtubule sensitivity test, only the KL1 human katanin family member showed activation by both ketone bodies. In primary cultured colon epithelial cells, these ketone bodies reduced the tau protein level and induced KL1- and α-tubulin acetyltransferase 1 (ATAT1)-dependent micronucleation. Resveratrol, known for its tumor preventive and tubulin deacetylation effects, inhibited this micronucleation. Our current data thus suggest that the microtubule hyperacetylation induced by ketone bodies may be a causal factor linking DM to colorectal carcinogenesis and may also represent an adverse effect of them that needs to be controlled if they are used as therapeutics.
Collapse
|
14
|
Lynn NA, Martinez E, Nguyen H, Torres JZ. The Mammalian Family of Katanin Microtubule-Severing Enzymes. Front Cell Dev Biol 2021; 9:692040. [PMID: 34414183 PMCID: PMC8369831 DOI: 10.3389/fcell.2021.692040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
The katanin family of microtubule-severing enzymes is critical for cytoskeletal rearrangements that affect key cellular processes like division, migration, signaling, and homeostasis. In humans, aberrant expression, or dysfunction of the katanins, is linked to developmental, proliferative, and neurodegenerative disorders. Here, we review current knowledge on the mammalian family of katanins, including an overview of evolutionary conservation, functional domain organization, and the mechanisms that regulate katanin activity. We assess the function of katanins in dividing and non-dividing cells and how their dysregulation promotes impaired ciliary signaling and defects in developmental programs (corticogenesis, gametogenesis, and neurodevelopment) and contributes to neurodegeneration and cancer. We conclude with perspectives on future katanin research that will advance our understanding of this exciting and dynamic class of disease-associated enzymes.
Collapse
Affiliation(s)
- Nicole A. Lynn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Emily Martinez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hieu Nguyen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jorge Z. Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
15
|
Garcia YA, Velasquez EF, Gao LW, Gholkar AA, Clutario KM, Cheung K, Williams-Hamilton T, Whitelegge JP, Torres JZ. Mapping Proximity Associations of Core Spindle Assembly Checkpoint Proteins. J Proteome Res 2021; 20:3414-3427. [PMID: 34087075 PMCID: PMC8256817 DOI: 10.1021/acs.jproteome.0c00941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/25/2022]
Abstract
The spindle assembly checkpoint (SAC) is critical for sensing defective microtubule-kinetochore attachments and tension across the kinetochore and functions to arrest cells in prometaphase to allow time to repair any errors before proceeding into anaphase. Dysregulation of the SAC leads to chromosome segregation errors that have been linked to human diseases like cancer. Although much has been learned about the composition of the SAC and the factors that regulate its activity, the proximity associations of core SAC components have not been explored in a systematic manner. Here, we have taken a BioID2-proximity-labeling proteomic approach to define the proximity protein environment for each of the five core SAC proteins BUB1, BUB3, BUBR1, MAD1L1, and MAD2L1 in mitotic-enriched populations of cells where the SAC is active. These five protein association maps were integrated to generate a SAC proximity protein network that contains multiple layers of information related to core SAC protein complexes, protein-protein interactions, and proximity associations. Our analysis validated many known SAC complexes and protein-protein interactions. Additionally, it uncovered new protein associations, including the ELYS-MAD1L1 interaction that we have validated, which lend insight into the functioning of core SAC proteins and highlight future areas of investigation to better understand the SAC.
Collapse
Affiliation(s)
- Yenni A. Garcia
- Department of Chemistry and Biochemistry,
University of California, Los Angeles, California 90095,
United States
| | - Erick F. Velasquez
- Department of Chemistry and Biochemistry,
University of California, Los Angeles, California 90095,
United States
| | - Lucy W. Gao
- Pasarow Mass Spectrometry Laboratory, The Jane and
Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of
Medicine, University of California, Los Angeles, California
90095, United States
| | - Ankur A. Gholkar
- Department of Chemistry and Biochemistry,
University of California, Los Angeles, California 90095,
United States
| | - Kevin M. Clutario
- Department of Chemistry and Biochemistry,
University of California, Los Angeles, California 90095,
United States
| | - Keith Cheung
- Department of Chemistry and Biochemistry,
University of California, Los Angeles, California 90095,
United States
| | - Taylor Williams-Hamilton
- Department of Chemistry and Biochemistry,
University of California, Los Angeles, California 90095,
United States
| | - Julian P. Whitelegge
- Pasarow Mass Spectrometry Laboratory, The Jane and
Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of
Medicine, University of California, Los Angeles, California
90095, United States
- Molecular Biology Institute, University of
California, Los Angeles, California 90095, United
States
- Jonsson Comprehensive Cancer Center,
University of California, Los Angeles, California 90095,
United States
| | - Jorge Z. Torres
- Department of Chemistry and Biochemistry,
University of California, Los Angeles, California 90095,
United States
- Molecular Biology Institute, University of
California, Los Angeles, California 90095, United
States
- Jonsson Comprehensive Cancer Center,
University of California, Los Angeles, California 90095,
United States
| |
Collapse
|
16
|
Ho UY, Feng CWA, Yeap YY, Bain AL, Wei Z, Shohayeb B, Reichelt ME, Homer H, Khanna KK, Bowles J, Ng DCH. WDR62 is required for centriole duplication in spermatogenesis and manchette removal in spermiogenesis. Commun Biol 2021; 4:645. [PMID: 34059773 PMCID: PMC8167107 DOI: 10.1038/s42003-021-02171-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/29/2021] [Indexed: 11/24/2022] Open
Abstract
WDR62 is a scaffold protein involved in centriole duplication and spindle assembly during mitosis. Mutations in WDR62 can cause primary microcephaly and premature ovarian insufficiency. We have generated a genetrap mouse model deficient in WDR62 and characterised the developmental effects of WDR62 deficiency during meiosis in the testis. We have found that WDR62 deficiency leads to centriole underduplication in the spermatocytes due to reduced or delayed CEP63 accumulation in the pericentriolar matrix. This resulted in prolonged metaphase that led to apoptosis. Round spermatids that inherited a pair of centrioles progressed through spermiogenesis, however, manchette removal was delayed in WDR62 deficient spermatids due to delayed Katanin p80 accumulation in the manchette, thus producing misshapen spermatid heads with elongated manchettes. In mice, WDR62 deficiency resembles oligoasthenoteratospermia, a common form of subfertility in men that is characterised by low sperm counts, poor motility and abnormal morphology. Therefore, proper WDR62 function is necessary for timely spermatogenesis and spermiogenesis during male reproduction. Uda Ho et al find that loss of centriolar scaffold protein WDR62 in mouse testis leads to defects in spermatogenesis. They find that WDR62 deficiency leads to centriole underduplication in spermatocytes and delayed manchette removal in spermatids due to delayed Katanin p80 accumulation.
Collapse
Affiliation(s)
- Uda Y Ho
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| | - Chun-Wei Allen Feng
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Yvonne Y Yeap
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda L Bain
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Zhe Wei
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Belal Shohayeb
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Melissa E Reichelt
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Hayden Homer
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Dominic C H Ng
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
17
|
Stathatos GG, Dunleavy JEM, Zenker J, O'Bryan MK. Delta and epsilon tubulin in mammalian development. Trends Cell Biol 2021; 31:774-787. [PMID: 33867233 DOI: 10.1016/j.tcb.2021.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/26/2022]
Abstract
Delta (δ-) and epsilon (ε-) tubulin are lesser-known cousins of alpha (α-) and beta (β-) tubulin. They are likely to regulate centriole function in a broad range of species; however, their in vivo role and mechanism of action in mammals remain mysterious. In unicellular species and mammalian cell lines, mutations in δ- and ε-tubulin cause centriole destabilization and atypical mitosis and, in the most severe cases, cell death. Beyond the centriole, δ- and ε-tubulin localize to the manchette during murine spermatogenesis and interact with katanin-like 2 (KATNAL2), a protein with microtubule (MT)-severing properties, indicative of novel non-centriolar functions. Herein we summarize the current knowledge surrounding δ- and ε-tubulin, identify pathways for future research, and highlight how and why spermatogenesis and embryogenesis are ideal systems to define δ- and ε-tubulin function in vivo.
Collapse
Affiliation(s)
- G Gemma Stathatos
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jessica E M Dunleavy
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jennifer Zenker
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Moira K O'Bryan
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
18
|
Li Y, Deng M, Liu H, Li Y, Chen Y, Jia M, Xue H, Shao J, Zhao J, Qi Y, An L, Yu F, Liu X. ABNORMAL SHOOT 6 interacts with KATANIN 1 and SHADE AVOIDANCE 4 to promote cortical microtubule severing and ordering in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:646-661. [PMID: 32761943 DOI: 10.1111/jipb.13003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/03/2020] [Indexed: 05/14/2023]
Abstract
Plant interphase cortical microtubules (cMTs) mediate anisotropic cell expansion in response to environmental and developmental cues. In Arabidopsis thaliana, KATANIN 1 (KTN1), the p60 catalytic subunit of the conserved MT-severing enzyme katanin, is essential for cMT ordering and anisotropic cell expansion. However, the regulation of KTN1-mediated cMT severing and ordering remains unclear. In this work, we report that the Arabidopsis IQ67 DOMAIN (IQD) family gene ABNORMAL SHOOT 6 (ABS6) encodes a MT-associated protein. Overexpression of ABS6 leads to elongated cotyledons, directional pavement cell expansion, and highly ordered transverse cMT arrays. Genetic suppressor analysis revealed that ABS6-mediated cMT ordering is dependent on KTN1 and SHADE AVOIDANCE 4 (SAV4). Live imaging of cMT dynamics showed that both ABS6 and SAV4 function as positive regulators of cMT severing. Furthermore, ABS6 directly interacts with KTN1 and SAV4 and promotes their recruitment to the cMTs. Finally, analysis of loss-of-function mutant combinations showed that ABS6, SAV4, and KTN1 work together to ensure the robust ethylene response in the apical hook of dark-grown seedlings. Together, our findings establish ABS6 and SAV4 as positive regulators of cMT severing and ordering, and highlight the role of cMT dynamics in fine-tuning differential growth in plants.
Collapse
Affiliation(s)
- Yuanfeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Meng Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Haofeng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yu Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Min Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Hui Xue
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jingxia Shao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jun Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yafei Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
19
|
Cupido T, Jones NH, Grasso MJ, Pisa R, Kapoor TM. A chemical genetics approach to examine the functions of AAA proteins. Nat Struct Mol Biol 2021; 28:388-397. [PMID: 33782614 DOI: 10.1038/s41594-021-00575-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
The structural conservation across the AAA (ATPases associated with diverse cellular activities) protein family makes designing selective chemical inhibitors challenging. Here, we identify a triazolopyridine-based fragment that binds the AAA domain of human katanin, a microtubule-severing protein. We have developed a model for compound binding and designed ASPIR-1 (allele-specific, proximity-induced reactivity-based inhibitor-1), a cell-permeable compound that selectively inhibits katanin with an engineered cysteine mutation. Only in cells expressing mutant katanin does ASPIR-1 treatment increase the accumulation of CAMSAP2 at microtubule minus ends, confirming specific on-target cellular activity. Importantly, ASPIR-1 also selectively inhibits engineered cysteine mutants of human VPS4B and FIGL1-AAA proteins, involved in organelle dynamics and genome stability, respectively. Structural studies confirm our model for compound binding at the AAA ATPase site and the proximity-induced reactivity-based inhibition. Together, our findings suggest a chemical genetics approach to decipher AAA protein functions across essential cellular processes and to test hypotheses for developing therapeutics.
Collapse
Affiliation(s)
- Tommaso Cupido
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Natalie H Jones
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA.,Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Michael J Grasso
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Rudolf Pisa
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA.,Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
20
|
Guo X, Ramirez I, Garcia YA, Velasquez EF, Gholkar AA, Cohn W, Whitelegge JP, Tofig B, Damoiseaux R, Torres JZ. DUSP7 regulates the activity of ERK2 to promote proper chromosome alignment during cell division. J Biol Chem 2021; 296:100676. [PMID: 33865857 PMCID: PMC8131738 DOI: 10.1016/j.jbc.2021.100676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/20/2022] Open
Abstract
Human cell division is a highly regulated process that relies on the accurate capture and movement of chromosomes to the metaphase plate. Errors in the fidelity of chromosome congression and alignment can lead to improper chromosome segregation, which is correlated with aneuploidy and tumorigenesis. These processes are known to be regulated by extracellular signal-regulated kinase 2 (ERK2) in other species, but the role of ERK2 in mitosis in mammals remains unclear. Here, we have identified the dual-specificity phosphatase 7 (DUSP7), known to display selectivity for ERK2, as important in regulating chromosome alignment. During mitosis, DUSP7 bound to ERK2 and regulated the abundance of active phospho-ERK2 through its phosphatase activity. Overexpression of DUSP7, but not catalytically inactive mutants, led to a decrease in the levels of phospho-ERK2 and mitotic chromosome misalignment, while knockdown of DUSP7 also led to defective chromosome congression that resulted in a prolonged mitosis. Consistently, knockdown or chemical inhibition of ERK2 or chemical inhibition of the MEK kinase that phosphorylates ERK2 led to chromosome alignment defects. Our results support a model wherein MEK-mediated phosphorylation and DUSP7-mediated dephosphorylation regulate the levels of active phospho-ERK2 to promote proper cell division.
Collapse
Affiliation(s)
- Xiao Guo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Ivan Ramirez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Yenni A Garcia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Erick F Velasquez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Ankur A Gholkar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California, Los Angeles, California, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| | - Bobby Tofig
- California NanoSystems Institute, University of California, Los Angeles, California, USA
| | - Robert Damoiseaux
- California NanoSystems Institute, University of California, Los Angeles, California, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California, Los Angeles, California, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA.
| |
Collapse
|
21
|
Chen Q, Lin F, Lin E, Huang Q, Wu G. Katanin P60 and P80 in papillary thyroid carcinoma patients: Indicators for exacerbated tumor features and worse disease-free survival. J Clin Lab Anal 2020; 34:e23502. [PMID: 33274499 PMCID: PMC7755818 DOI: 10.1002/jcla.23502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Background This study aimed to explore the clinical implications of katanin P60 and P80 (katanin P60/P80) regarding their correlations with clinicopathological features and survival profiles in papillary thyroid carcinoma (PTC) patients. Methods Tumor tissue and paired adjacent tissue specimens were obtained from 172 PTC patients who underwent lobectomy or thyroidectomy. Besides, immunohistochemistry assay and immunoreactive (IR) score (multiplying staining intensity score by density score) were used to determine katanin P60/P80 expressions. According to IR score (from 0 ~ 12), katanin P60/P80 expressions were classified as low (IR score 0 ~ 3) and high (IR score 4 ~ 12) expressions. Results Both katanin P60/P80 expressions were highly expressed in tumor tissue compared with adjacent tissue. Besides, tumor katanin P60 expression positively correlated with tumor katanin P80 expression. Tumor katanin P60 high expression correlated with larger tumor size, extrathyroidal invasion, advanced pT stage, pN stage, and pTNM stage, while no correlation of tumor katanin P60 expression with age or gender was observed; tumor katanin P80 high expression correlated with advanced pN stage and pTNM stage, whereas there was no correlation of tumor katanin P80 expression with age, gender, tumor size, extrathyroidal invasion, or pT stage. Furthermore, both tumor katanin P60/P80 high expressions correlated with shorter accumulating disease‐free survival. As for overall survival (OS), neither tumor katanin P60 nor P80 expression correlated with OS. Conclusion Katanin P60/P80 measurement might assist with tumor management and prognosis surveillance in PTC patients.
Collapse
Affiliation(s)
- Qinggui Chen
- Department of General Surgery, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Fusheng Lin
- Department of General Surgery, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Ende Lin
- Department of General Surgery, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Qinghe Huang
- Department of Intensive Care Unit, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Guoyang Wu
- Department of General Surgery, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| |
Collapse
|
22
|
Ong JY, Torres JZ. Phase Separation in Cell Division. Mol Cell 2020; 80:9-20. [PMID: 32860741 DOI: 10.1016/j.molcel.2020.08.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/10/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
Cell division requires the assembly and organization of a microtubule spindle for the proper separation of chromosomes in mitosis and meiosis. Phase separation is an emerging paradigm for understanding spatial and temporal regulation of a variety of cellular processes, including cell division. Phase-separated condensates have been recently discovered at many structures during cell division as a possible mechanism for properly localizing, organizing, and activating proteins involved in cell division. Here, we review how these condensates play roles in regulating microtubule density and organization and spindle assembly and function and in activating some of the key players in cell division. We conclude with perspectives on areas of future research for this exciting and rapidly advancing field.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
23
|
Fang Y, Liang F, Yuan R, Zhu Q, Cai S, Chen K, Zhang J, Luo X, Chen Y, Mo D. High mobility group box 2 regulates skeletal muscle development through ribosomal protein S6 kinase 1. FASEB J 2020; 34:12367-12378. [DOI: 10.1096/fj.202001183r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Ying Fang
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Feng Liang
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Renqiang Yuan
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Qi Zhu
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Shufang Cai
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Keren Chen
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Junyan Zhang
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Xiaorong Luo
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| | - Delin Mo
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat‐sen University Guangzhou China
| |
Collapse
|
24
|
Joachimiak E, Waclawek E, Niziolek M, Osinka A, Fabczak H, Gaertig J, Wloga D. The LisH Domain-Containing N-Terminal Fragment is Important for the Localization, Dimerization, and Stability of Katnal2 in Tetrahymena. Cells 2020; 9:cells9020292. [PMID: 31991798 PMCID: PMC7072489 DOI: 10.3390/cells9020292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Katanin-like 2 protein (Katnal2) orthologs have a tripartite domain organization. Two highly conserved regions, an N-terminal LisH (Lis-homology) domain and a C-terminal AAA catalytic domain, are separated by a less conserved linker. The AAA domain of Katnal2 shares the highest amino acid sequence homology with the AAA domain of the canonical katanin p60. Katnal2 orthologs are present in a wide range of eukaryotes, from protists to humans. In the ciliate Tetrahymena thermophila, a Katnal2 ortholog, Kat2, co-localizes with the microtubular structures, including basal bodies and ciliary outer doublets, and this co-localization is sensitive to levels of microtubule glutamylation. The functional analysis of Kat2 domains suggests that an N-terminal fragment containing a LisH domain plays a role in the subcellular localization, dimerization, and stability of Kat2.
Collapse
Affiliation(s)
- Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur, 02-093 Warsaw, Poland; (E.J.); (E.W.); (M.N.); (A.O.); (H.F.)
| | - Ewa Waclawek
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur, 02-093 Warsaw, Poland; (E.J.); (E.W.); (M.N.); (A.O.); (H.F.)
| | - Michal Niziolek
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur, 02-093 Warsaw, Poland; (E.J.); (E.W.); (M.N.); (A.O.); (H.F.)
| | - Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur, 02-093 Warsaw, Poland; (E.J.); (E.W.); (M.N.); (A.O.); (H.F.)
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur, 02-093 Warsaw, Poland; (E.J.); (E.W.); (M.N.); (A.O.); (H.F.)
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA;
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur, 02-093 Warsaw, Poland; (E.J.); (E.W.); (M.N.); (A.O.); (H.F.)
- Correspondence: ; Tel.: +48-(22)-5892338
| |
Collapse
|
25
|
Ye Q, Zhang M, Yin Y. Katanin P80 correlates with larger tumor size, lymph node metastasis, and advanced TNM stage and predicts poor prognosis in non-small-cell lung cancer patients. J Clin Lab Anal 2020; 34:e23141. [PMID: 31944409 PMCID: PMC7171325 DOI: 10.1002/jcla.23141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/22/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
Objective The present study aimed to investigate the correlation of katanin P80 expression with clinicopathological features and survival profile in non–small‐cell lung cancer (NSCLC) patients. Methods Totally, 398 NSCLC patients treated by pulmonary resection were enrolled and their tumor specimens were collected to determine katanin P80 expression by immunohistochemistry (IHC) assay. Clinical data were collected at diagnosis, and survival data including disease‐free survival (DFS) and overall survival (OS) were assessed after treatment. Results There were 195 (49.0%) patients with katanin P80 high expression and 203 (51.0%) patients with katanin P80 low expression, respectively. Meanwhile, katanin P80 high expression was associated with larger tumor size (P = .001), lymph node (LYN) metastasis (P = .005), and advanced TNM stage (P = .001). As for survival data, katanin P80 high expression was correlated with reduced DFS (P < .001) and OS (P < .001). And forward stepwise multivariate Cox's regression revealed that katanin P80 high expression was an independent predictor for decreased DFS (P < .001) and OS (P < .001). Besides, further analysis indicated that DFS (P < .001) and OS (P < .001) were the shortest in patients with katanin P80 high+++ expression, followed by patients with katanin P80 high++ expression and then those with katanin P80 high + expression and katanin P80 low expression. Conclusion Katanin P80 correlates with larger tumor size, LYN metastasis, and advanced TNM stage, and serves as a potential biomarker for predicting poor survival in NSCLC patients.
Collapse
Affiliation(s)
- Qing Ye
- Department of Respiratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Min Zhang
- Teaching and Research Division of Internal Medicine, Hubei College of Chinese Medicine, Jingzhou, China
| | - Yiping Yin
- Department of Respiratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
26
|
Kaid C, Assoni A, Marçola M, Semedo-Kuriki P, Bortolin RH, Carvalho VM, Okamoto OK. Proteome and miRNome profiling of microvesicles derived from medulloblastoma cell lines with stem-like properties reveals biomarkers of poor prognosis. Brain Res 2020; 1730:146646. [PMID: 31917138 DOI: 10.1016/j.brainres.2020.146646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/23/2019] [Accepted: 01/02/2020] [Indexed: 01/13/2023]
Abstract
Primary central nervous system (CNS) tumors are the most common deadly childhood cancer. Several patients with medulloblastoma experience local or metastatic recurrences after standard treatment, a condition associated with very poor prognosis. Current neuroimaging techniques do not accurately detect residual stem-like medulloblastoma cells promoting tumor relapses. In attempt to identify candidate tumor markers that could be circulating in blood or cerebrospinal (CSF) fluid of patients, we evaluated the proteome and miRNome content of extracellular microvesicles (MVs) released by highly-aggressive stem-like medulloblastoma cells overexpressing the pluripotent factor OCT4A. These cells display enhanced tumor initiating capability and resistance to chemotherapeutic agents. A common set of 464 proteins and 10 microRNAs were exclusively detected in MVs of OCT4A-overexpressing cells from four distinct medulloblastoma cell lines, DAOY, CHLA-01-MED, D283-MED, and USP13-MED. The interactome mapping of these exclusive proteins and miRNAs revealed ERK, PI3K/AKT/mTOR, EGF/EGFR, and stem cell self-renewal as the main oncogenic signaling pathways altered in these aggressive medulloblastoma cells. Of these MV cargos, four proteins (UBE2M, HNRNPCL2, HNRNPCL3, HNRNPCL4) and five miRNAs (miR-4449, miR-500b, miR-3648, miR-1291, miR-3607) have not been previously reported in MVs from normal tissues and in CSF. These proteins and miRNAs carried within MVs might serve as biomarkers of aggressive stem-like medulloblastoma cells to improve clinical benefit by helping refining diagnosis, patient stratification, and early detection of relapsed disease.
Collapse
Affiliation(s)
- Carolini Kaid
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil
| | - Amanda Assoni
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil
| | - Marina Marçola
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil
| | - Patricia Semedo-Kuriki
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Brazil
| | | | - Oswaldo Keith Okamoto
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil; Hemotherapy and Cellular Therapy Department, Hospital Israelita Albert Einstein, Sao Paulo, SP, Brazil.
| |
Collapse
|
27
|
Chua MD, Bogdan AC, Guttman JA. Klebsiella pneumoniae Redistributes Katanin Severing Proteins and Alters Astral Microtubules during Mitosis. Anat Rec (Hoboken) 2019; 303:1859-1864. [PMID: 31595676 DOI: 10.1002/ar.24286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/31/2019] [Accepted: 08/28/2019] [Indexed: 11/09/2022]
Abstract
Klebsiella pneumoniae has become a growing concern within hospitals due to multidrug resistant strains and increasing mortality rates. Recently, we showed that at the subcellular level, K. pneumoniae compromises the integrity of the epithelia by disassembling the microtubule networks of cells through the actions of katanin microtubule severing proteins. In this study, we report on the observation that mitotic cells are targeted by K. pneumoniae and that during infections, the katanin proteins are excluded from the microtubule organizing centers of dividing cells, resulting in the alteration of the microtubule cytoskeleton. Anat Rec, 2019. © 2019 American Association for Anatomy Anat Rec, 303:1859-1864, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Michael D Chua
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alexander C Bogdan
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Julian A Guttman
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
28
|
Mirvis M, Siemers KA, Nelson WJ, Stearns TP. Primary cilium loss in mammalian cells occurs predominantly by whole-cilium shedding. PLoS Biol 2019; 17:e3000381. [PMID: 31314751 PMCID: PMC6699714 DOI: 10.1371/journal.pbio.3000381] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 08/19/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022] Open
Abstract
The primary cilium is a central signaling hub in cell proliferation and differentiation and is built and disassembled every cell cycle in many animal cells. Disassembly is critically important, as misregulation or delay of cilia loss leads to cell cycle defects. The physical means by which cilia are lost are poorly understood but are thought to involve resorption of ciliary components into the cell body. To investigate cilium loss in mammalian cells, we used live-cell imaging to comprehensively characterize individual events. The predominant mode of cilium loss was rapid deciliation, in which the membrane and axoneme of the cilium was shed from the cell. Gradual resorption was also observed, as well as events in which a period of gradual resorption was followed by rapid deciliation. Deciliation resulted in intact shed cilia that could be recovered from culture medium and contained both membrane and axoneme proteins. We modulated levels of katanin and intracellular calcium, two putative regulators of deciliation, and found that excess katanin promotes cilia loss by deciliation, independently of calcium. Together, these results suggest that mammalian ciliary loss involves a tunable decision between deciliation and resorption.
Collapse
Affiliation(s)
- Mary Mirvis
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Kathleen A. Siemers
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - W. James Nelson
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Tim P. Stearns
- Department of Biology, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, California, United States of America
| |
Collapse
|
29
|
Abstract
Cell division is a highly regulated and carefully orchestrated process. Understanding the mechanisms that promote proper cell division is an important step toward unraveling important questions in cell biology and human health. Early studies seeking to dissect the mechanisms of cell division used classical genetics approaches to identify genes involved in mitosis and deployed biochemical approaches to isolate and identify proteins critical for cell division. These studies underscored that post-translational modifications and cyclin-kinase complexes play roles at the heart of the cell division program. Modern approaches for examining the mechanisms of cell division, including the use of high-throughput methods to study the effects of RNAi, cDNA, and chemical libraries, have evolved to encompass a larger biological and chemical space. Here, we outline some of the classical studies that established a foundation for the field and provide an overview of recent approaches that have advanced the study of cell division.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095 .,The Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095.,Molecular Biology Institute, UCLA, Los Angeles, California 90095
| |
Collapse
|
30
|
Hatakeyama E, Hayashi K. KATNAL1 is a more active and stable isoform of katanin, and is expressed dominantly in neurons. Biochem Biophys Res Commun 2018; 507:389-394. [DOI: 10.1016/j.bbrc.2018.11.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/09/2018] [Indexed: 11/26/2022]
|
31
|
Chua MD, Liou CH, Bogdan AC, Law HT, Yeh KM, Lin JC, Siu LK, Guttman JA. Klebsiella pneumoniae disassembles host microtubules in lung epithelial cells. Cell Microbiol 2018; 21:e12977. [PMID: 30415487 DOI: 10.1111/cmi.12977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 01/21/2023]
Abstract
Klebsiella pneumoniae raises significant concerns to the health care industry as these microbes are the source of widespread contamination of medical equipment, cause pneumonia as well as other multiorgan metastatic infections and have gained multidrug resistance. Despite soaring mortality rates, the host cell alterations occurring during these infections remain poorly understood. Here, we show that during in vitro and in vivo K. pneumoniae infections of lung epithelia, microtubules are severed and then eliminated. This destruction does not require direct association of K. pneumoniae with the host cells, as microtubules are disassembled in cells that are distant from the infecting bacteria. This microtubule dismantling is dependent on the K. pneumoniae (Kp) gene ytfL as non-pathogenic Escherichia coli expressing Kp ytfL disassemble microtubules in the absence of K. pneumoniae itself. Our data points to the host katanin catalytic subunit A like 1 protein (KATNAL1) and the katanin regulatory subunit B1 protein (KATNB1) as the gatekeepers to the microtubule severing event as both proteins localise specifically to microtubule cut sites. Infected cells that had either of these proteins knocked out maintained intact microtubules. Taken together, we have identified a novel mechanism that a bacterial pathogen has exploited to cause microtubule destruction within the host epithelia.
Collapse
Affiliation(s)
- Michael Dominic Chua
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ci-Hong Liou
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | - Hong T Law
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kuo-Ming Yeh
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - L Kristopher Siu
- Division of Infection Diseases, National Health Research Institutes, Miaoli, Taiwan
| | - Julian Andrew Guttman
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
32
|
McNally FJ, Roll-Mecak A. Microtubule-severing enzymes: From cellular functions to molecular mechanism. J Cell Biol 2018; 217:4057-4069. [PMID: 30373906 PMCID: PMC6279391 DOI: 10.1083/jcb.201612104] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/13/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022] Open
Abstract
McNally and Roll-Mecak review the molecular mechanism of microtubule-severing enzymes and their diverse roles in processes ranging from cell division to ciliogensis and morphogenesis. Microtubule-severing enzymes generate internal breaks in microtubules. They are conserved in eukaryotes from ciliates to mammals, and their function is important in diverse cellular processes ranging from cilia biogenesis to cell division, phototropism, and neurogenesis. Their mutation leads to neurodegenerative and neurodevelopmental disorders in humans. All three known microtubule-severing enzymes, katanin, spastin, and fidgetin, are members of the meiotic subfamily of AAA ATPases that also includes VPS4, which disassembles ESCRTIII polymers. Despite their conservation and importance to cell physiology, the cellular and molecular mechanisms of action of microtubule-severing enzymes are not well understood. Here we review a subset of cellular processes that require microtubule-severing enzymes as well as recent advances in understanding their structure, biophysical mechanism, and regulation.
Collapse
Affiliation(s)
- Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD .,Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD
| |
Collapse
|
33
|
Gunes S, Sengupta P, Henkel R, Alguraigari A, Sinigaglia MM, Kayal M, Joumah A, Agarwal A. Microtubular Dysfunction and Male Infertility. World J Mens Health 2018; 38:9-23. [PMID: 30350487 PMCID: PMC6920067 DOI: 10.5534/wjmh.180066] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 01/27/2023] Open
Abstract
Microtubules are the prime component of the cytoskeleton along with microfilaments. Being vital for organelle transport and cellular divisions during spermatogenesis and sperm motility process, microtubules ascertain functional capacity of sperm. Also, microtubule based structures such as axoneme and manchette are crucial for sperm head and tail formation. This review (a) presents a concise, yet detailed structural overview of the microtubules, (b) analyses the role of microtubule structures in various male reproductive functions, and (c) presents the association of microtubular dysfunctions with male infertility. Considering the immense importance of microtubule structures in the formation and maintenance of physiological functions of sperm cells, this review serves as a scientific trigger in stimulating further male infertility research in this direction.
Collapse
Affiliation(s)
- Sezgin Gunes
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, MAHSA University, Selangor, Malaysia.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Aabed Alguraigari
- Batterjee Medical College, Jeddah, Saudi Arabia.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Mariana Marques Sinigaglia
- University of Sao Paulo, Sao Paulo, Brazil.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Malik Kayal
- Alfaisal University Medical School, Riyadh, Saudi Arabia.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmad Joumah
- Alfaisal University Medical School, Riyadh, Saudi Arabia.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
34
|
Zuo L, Ying JS, Zhang FC, Xu YC. Tumor tissue katanin P60 expression correlates with lymph node metastasis and worse prognosis in patients with breast cancer: A cohort study. Cancer Biomark 2018; 21:425-432. [PMID: 29103029 DOI: 10.3233/cbm-170666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To evaluate the correlation of katanin P60 expression with clinicopathological grade and overall survival (OS) in patients with breast cancer (BC). METHODS Three hundred and four operative BC patients were retrospectively reviewed in this cohort study. Tumor tissue sample was acquired from each patient during surgery. Immunofluorescent staining was used to assess katanin P60 expression. RESULTS There were 265 BC patients with katanin P60 negative expression and 75 patients with katanin P60 positive expression. Higher N stage (p< 0.001) and TNM stage (p< 0.001) were observed in katanin P60 positive expression group compared to katanin P60 negative expression group. Kaplan-Meier (K-M) curves showed association of katanin P60 positive expression status with shorter OS. Multivariate Cox analysis illustrated katanin P60 positive expression (p< 0.001) could independently predict worse OS. Subgroups analysis indicated that katanin P60 positive expression correlated with worse OS in patients of TNM stage II (p= 0.001) and stage III (p=0.001), while no correlation was found between katanin P60 expression and OS in BC patients with stage I (p= 0.538). According to molecular subtypes, katanin P60 positive expression was correlated with shorter OS in patients with HER2+HR+ (p< 0.001), HER2+HR- (p< 0.001) and HER2-HR- (p= 0.001) status compared to katanin P60 negative expression, while no correlation between katanin P60 expression and OS was observed in patients with HER2-HR+ (p= 0.073). CONCLUSION Katanin P60 positive expression was correlated with higher lymph node metastasis and worse OS, and it could be regarded as a novel and convincing biomarker to independently predict the prognosis of BC patients.
Collapse
Affiliation(s)
- Li Zuo
- Department of Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai, China.,Department of Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai, China
| | - Jiang-Shan Ying
- Department of Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai, China.,Department of Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai, China
| | - Feng-Chun Zhang
- Department of Oncology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University, Suzhou, Jiangsu, China
| | - Ying-Chun Xu
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Dunleavy JEM, Okuda H, O’Connor AE, Merriner DJ, O’Donnell L, Jamsai D, Bergmann M, O’Bryan MK. Katanin-like 2 (KATNAL2) functions in multiple aspects of haploid male germ cell development in the mouse. PLoS Genet 2017; 13:e1007078. [PMID: 29136647 PMCID: PMC5705150 DOI: 10.1371/journal.pgen.1007078] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/28/2017] [Accepted: 10/16/2017] [Indexed: 11/19/2022] Open
Abstract
The katanin microtubule-severing proteins are essential regulators of microtubule dynamics in a diverse range of species. Here we have defined critical roles for the poorly characterised katanin protein KATNAL2 in multiple aspects of spermatogenesis: the initiation of sperm tail growth from the basal body, sperm head shaping via the manchette, acrosome attachment, and ultimately sperm release. We present data suggesting that depending on context, KATNAL2 can partner with the regulatory protein KATNB1 or act autonomously. Moreover, our data indicate KATNAL2 may regulate δ- and ε-tubulin rather than classical α-β-tubulin microtubule polymers, suggesting the katanin family has a greater diversity of function than previously realised. Together with our previous research, showing the essential requirement of katanin proteins KATNAL1 and KATNB1 during spermatogenesis, our data supports the concept that in higher order species the presence of multiple katanins has allowed for subspecialisation of function within complex cellular settings such as the seminiferous epithelium. Male infertility affects one in twenty men of reproductive age in western countries. Despite this, the biochemical basis of common defects, including reduced sperm count and abnormal sperm structure and function, remains poorly defined. Microtubules are cellular “scaffolds” that serve critical roles in all cells, including developing male germ cells wherein they facilitate mitosis and meiosis (cell division), sperm head remodelling and sperm tail formation. The precise regulation of microtubule number, length and movement is thus, essential for male fertility. Within this manuscript, we have used spermatogenesis to define the function of the putative microtubule-severing protein katanin-like 2 (KATNAL2). We show that mice with compromised KATNAL2 function are male sterile as a consequence of defects in the structural remodelling of germ cells. Notably, we show the function of microtubule-based structures involved in sperm head shaping and tail formation are disrupted. Further, we show for the first time, that KATNAL2 can function both independently or in concert with the katanin regulatory protein KATNB1 and that it can target the poorly characterized tubulin subunits delta and epsilon. Our research has immediate relevance to the origins of human male infertility and provides novel insights into aspects of microtubule regulation relevant to numerous tissues and species.
Collapse
Affiliation(s)
- Jessica E. M. Dunleavy
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria; Australia
| | - Hidenobu Okuda
- School of Biological Sciences, Monash University, Melbourne, Victoria; Australia
| | - Anne E. O’Connor
- School of Biological Sciences, Monash University, Melbourne, Victoria; Australia
| | - D. Jo Merriner
- School of Biological Sciences, Monash University, Melbourne, Victoria; Australia
| | - Liza O’Donnell
- Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Melbourne, Victoria; Australia
| | - Duangporn Jamsai
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria; Australia
| | - Martin Bergmann
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Hesse; Germany
| | - Moira K. O’Bryan
- School of Biological Sciences, Monash University, Melbourne, Victoria; Australia
- * E-mail:
| |
Collapse
|
36
|
Takáč T, Šamajová O, Pechan T, Luptovčiak I, Šamaj J. Feedback Microtubule Control and Microtubule-Actin Cross-talk in Arabidopsis Revealed by Integrative Proteomic and Cell Biology Analysis of KATANIN 1 Mutants. Mol Cell Proteomics 2017; 16:1591-1609. [PMID: 28706004 DOI: 10.1074/mcp.m117.068015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/06/2017] [Indexed: 12/20/2022] Open
Abstract
Microtubule organization and dynamics are critical for key developmental processes such as cell division, elongation, and morphogenesis. Microtubule severing is an essential regulator of microtubules and is exclusively executed by KATANIN 1 in Arabidopsis In this study, we comparatively studied the proteome-wide effects in two KATANIN 1 mutants. Thus, shotgun proteomic analysis of roots and aerial parts of single nucleotide mutant fra2 and T-DNA insertion mutant ktn1-2 was carried out. We have detected 42 proteins differentially abundant in both fra2 and ktn1-2 KATANIN 1 dysfunction altered the abundance of proteins involved in development, metabolism, and stress responses. The differential regulation of tubulins and microtubule-destabilizing protein MDP25 implied a feedback microtubule control in KATANIN 1 mutants. Furthermore, deregulation of profilin 1, actin-depolymerizing factor 3, and actin 7 was observed. These findings were confirmed by immunoblotting analysis of actin and by microscopic observation of actin filaments using fluorescently labeled phalloidin. Results obtained by quantitative RT-PCR analysis revealed that changed protein abundances were not a consequence of altered expression levels of corresponding genes in the mutants. In conclusion, we show that abundances of several cytoskeletal proteins as well as organization of microtubules and the actin cytoskeleton are amended in accordance with defective microtubule severing.
Collapse
Affiliation(s)
- Tomáš Takáč
- From the ‡Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Olga Šamajová
- From the ‡Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Tibor Pechan
- §Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Starkville, Mississippi 39759
| | - Ivan Luptovčiak
- From the ‡Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- From the ‡Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic;
| |
Collapse
|
37
|
Jiang K, Rezabkova L, Hua S, Liu Q, Capitani G, Altelaar AFM, Heck AJR, Kammerer RA, Steinmetz MO, Akhmanova A. Microtubule minus-end regulation at spindle poles by an ASPM-katanin complex. Nat Cell Biol 2017; 19:480-492. [PMID: 28436967 PMCID: PMC5458804 DOI: 10.1038/ncb3511] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/15/2017] [Indexed: 12/30/2022]
Abstract
ASPM (known as Asp in fly and ASPM-1 in worm) is a microcephaly-associated protein family that regulates spindle architecture, but the underlying mechanism is poorly understood. Here, we show that ASPM forms a complex with another protein linked to microcephaly, the microtubule-severing ATPase katanin. ASPM and katanin localize to spindle poles in a mutually dependent manner and regulate spindle flux. X-ray crystallography revealed that the heterodimer formed by the N- and C-terminal domains of the katanin subunits p60 and p80, respectively, binds conserved motifs in ASPM. Reconstitution experiments demonstrated that ASPM autonomously tracks growing microtubule minus ends and inhibits their growth, while katanin decorates and bends both ends of dynamic microtubules and potentiates the minus-end blocking activity of ASPM. ASPM also binds along microtubules, recruits katanin and promotes katanin-mediated severing of dynamic microtubules. We propose that the ASPM-katanin complex controls microtubule disassembly at spindle poles and that misregulation of this process can lead to microcephaly.
Collapse
Affiliation(s)
- Kai Jiang
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Lenka Rezabkova
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Shasha Hua
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Qingyang Liu
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Guido Capitani
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - A F Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and The Netherlands Proteomics Centre, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and The Netherlands Proteomics Centre, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
38
|
Katanin p80, NuMA and cytoplasmic dynein cooperate to control microtubule dynamics. Sci Rep 2017; 7:39902. [PMID: 28079116 PMCID: PMC5228124 DOI: 10.1038/srep39902] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/29/2016] [Indexed: 11/09/2022] Open
Abstract
Human mutations in KATNB1 (p80) cause severe congenital cortical malformations, which encompass the clinical features of both microcephaly and lissencephaly. Although p80 plays critical roles during brain development, the underlying mechanisms remain predominately unknown. Here, we demonstrate that p80 regulates microtubule (MT) remodeling in combination with NuMA (nuclear mitotic apparatus protein) and cytoplasmic dynein. We show that p80 shuttles between the nucleus and spindle pole in synchrony with the cell cycle. Interestingly, this striking feature is shared with NuMA. Importantly, p80 is essential for aster formation and maintenance in vitro. siRNA-mediated depletion of p80 and/or NuMA induced abnormal mitotic phenotypes in cultured mouse embryonic fibroblasts and aberrant neurogenesis and neuronal migration in the mouse embryonic brain. Importantly, these results were confirmed in p80-mutant harboring patient-derived induced pluripotent stem cells and brain organoids. Taken together, our findings provide valuable insights into the pathogenesis of severe microlissencephaly, in which p80 and NuMA delineate a common pathway for neurogenesis and neuronal migration via MT organization at the centrosome/spindle pole.
Collapse
|
39
|
Bradley M, Ramirez I, Cheung K, Gholkar AA, Torres JZ. Inducible LAP-tagged Stable Cell Lines for Investigating Protein Function, Spatiotemporal Localization and Protein Interaction Networks. J Vis Exp 2016. [PMID: 28060263 PMCID: PMC5226453 DOI: 10.3791/54870] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Multi-protein complexes, rather than single proteins acting in isolation, often govern molecular pathways regulating cellular homeostasis. Based on this principle, the purification of critical proteins required for the functioning of these pathways along with their native interacting partners has not only allowed the mapping of the protein constituents of these pathways, but has also provided a deeper understanding of how these proteins coordinate to regulate these pathways. Within this context, understanding a protein's spatiotemporal localization and its protein-protein interaction network can aid in defining its role within a pathway, as well as how its misregulation may lead to disease pathogenesis. To address this need, several approaches for protein purification such as tandem affinity purification (TAP) and localization and affinity purification (LAP) have been designed and used successfully. Nevertheless, in order to apply these approaches to pathway-scale proteomic analyses, these strategies must be supplemented with modern technological developments in cloning and mammalian stable cell line generation. Here, we describe a method for generating LAP-tagged human inducible stable cell lines for investigating protein subcellular localization and protein-protein interaction networks. This approach has been successfully applied to the dissection of multiple cellular pathways including cell division and is compatible with high-throughput proteomic analyses.
Collapse
Affiliation(s)
- Michelle Bradley
- Department of Chemistry and Biochemistry, University of California, Los Angeles
| | - Ivan Ramirez
- Department of Chemistry and Biochemistry, University of California, Los Angeles
| | - Keith Cheung
- Department of Chemistry and Biochemistry, University of California, Los Angeles
| | - Ankur A Gholkar
- Department of Chemistry and Biochemistry, University of California, Los Angeles
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles; Molecular Biology Institute, University of California, Los Angeles; Jonsson Comprehensive Cancer Center, University of California, Los Angeles;
| |
Collapse
|
40
|
Joly N, Martino L, Gigant E, Dumont J, Pintard L. Microtubule-severing activity of the AAA+ ATPase Katanin is essential for female meiotic spindle assembly. Development 2016; 143:3604-3614. [PMID: 27578779 DOI: 10.1242/dev.140830] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/12/2016] [Indexed: 02/03/2023]
Abstract
In most animals, female meiotic spindles are assembled in the absence of centrosomes. How microtubules (MTs) are organized into acentrosomal meiotic spindles is poorly understood. In Caenorhabditis elegans, assembly of female meiotic spindles requires MEI-1 and MEI-2, which constitute the microtubule-severing AAA+ ATPase Katanin. However, the role of MEI-2 is not known and whether MT severing is required for meiotic spindle assembly is unclear. Here, we show that the essential role of MEI-2 is to confer MT binding to Katanin, which in turn stimulates the ATPase activity of MEI-1, leading to MT severing. To test directly the contribution of MT severing to meiotic spindle assembly, we engineered Katanin variants that retained MT binding and MT bundling activities but that were inactive for MT severing. In vivo analysis of these variants showed disorganized microtubules that lacked focused spindle poles reminiscent of the Katanin loss-of-function phenotype, demonstrating that the MT-severing activity is essential for meiotic spindle assembly in C. elegans Overall, our results reveal the essential role of MEI-2 and provide the first direct evidence supporting an essential role of MT severing in meiotic spindle assembly in C. elegans.
Collapse
Affiliation(s)
- Nicolas Joly
- Institut Jacques Monod, Cell Cycle and Development Team, Centre National de la Recherche Scientifique and University of Paris Diderot and Sorbonne Paris Cité UMR7592, Paris 75013, France
| | - Lisa Martino
- Institut Jacques Monod, Cell Cycle and Development Team, Centre National de la Recherche Scientifique and University of Paris Diderot and Sorbonne Paris Cité UMR7592, Paris 75013, France
| | - Emmanuelle Gigant
- Institut Jacques Monod, Cell Division and Reproduction Team, Centre National de la Recherche Scientifique and University of Paris Diderot and Sorbonne Paris Cité UMR7592, Paris 75013, France
| | - Julien Dumont
- Institut Jacques Monod, Cell Division and Reproduction Team, Centre National de la Recherche Scientifique and University of Paris Diderot and Sorbonne Paris Cité UMR7592, Paris 75013, France
| | - Lionel Pintard
- Institut Jacques Monod, Cell Cycle and Development Team, Centre National de la Recherche Scientifique and University of Paris Diderot and Sorbonne Paris Cité UMR7592, Paris 75013, France
| |
Collapse
|
41
|
McNally KP, Panzica MT, Kim T, Cortes DB, McNally FJ. A novel chromosome segregation mechanism during female meiosis. Mol Biol Cell 2016; 27:2576-89. [PMID: 27335123 PMCID: PMC4985259 DOI: 10.1091/mbc.e16-05-0331] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/14/2016] [Indexed: 01/28/2023] Open
Abstract
During conventional anaphase A, chromosomes move outward toward spindle poles. Caenorhabditis elegans meiotic spindle poles move inward toward chromosomes to achieve the same end. In a wide range of eukaryotes, chromosome segregation occurs through anaphase A, in which chromosomes move toward stationary spindle poles, anaphase B, in which chromosomes move at the same velocity as outwardly moving spindle poles, or both. In contrast, Caenorhabditis elegans female meiotic spindles initially shorten in the pole-to-pole axis such that spindle poles contact the outer kinetochore before the start of anaphase chromosome separation. Once the spindle pole-to-kinetochore contact has been made, the homologues of a 4-μm-long bivalent begin to separate. The spindle shortens an additional 0.5 μm until the chromosomes are embedded in the spindle poles. Chromosomes then separate at the same velocity as the spindle poles in an anaphase B–like movement. We conclude that the majority of meiotic chromosome movement is caused by shortening of the spindle to bring poles in contact with the chromosomes, followed by separation of chromosome-bound poles by outward sliding.
Collapse
Affiliation(s)
- Karen Perry McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Michelle T Panzica
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Taekyung Kim
- Ludwig Institute for Cancer Research, San Diego, CA 92093 Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Daniel B Cortes
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| |
Collapse
|