1
|
Zhang J, Liu T, Wu H, Wei J, Qu Q. Target oxidative stress-induced disulfidptosis: novel therapeutic avenues in Parkinson's disease. Mol Brain 2025; 18:29. [PMID: 40186271 PMCID: PMC11971801 DOI: 10.1186/s13041-025-01200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Parkinson's disease (PD), a globally prevalent neurodegenerative disorder, has been implicated with oxidative stress (OS) as a central pathomechanism. Excessive reactive oxygen species (ROS) trigger neuronal damage and may induce disulfidptosis-a novel cell death modality not yet characterized in PD pathogenesis. METHOD Integrated bioinformatics analyses were conducted using GEO datasets to identify PD-associated differentially expressed genes (DEGs). These datasets were subjected to: immune infiltration analysis, gene set enrichment analysis (GSEA), weighted gene co-expression network analysis (WGCNA), intersection analysis of oxidative stress-related genes (ORGs) and disulfidptosis-related genes (DRGs) for functional enrichment annotation. Following hub gene identification, diagnostic performance was validated using independent cohorts. LASSO regression was applied for feature selection, with subsequent experimental validation in MPTP-induced PD mouse models. Single-cell transcriptomic profiling and molecular docking studies were performed to map target gene expression and assess drug-target interactions. RESULT A total of 1615 PD DEGs and 200 WGCNA DEGs were obtained, and the intersection with ORGs and DRGs resulted in 202 DEORGs, 11 DEDRGs, and 5 DED-ORGs (NDUFS2, LRPPRC, NDUFS1, GLUD1, and MYH6). These genes are mainly associated with oxidative stress, the respiratory electron transport chain, the ATP metabolic process, oxidative phosphorylation, mitochondrial respiration, and the TCA cycle. 10 hub genes have good diagnostic value, including in the validation dataset (AUC ≥ 0.507). LASSO analysis of hub genes yielded a total of 6 target genes, ACO2, CYCS, HSPA9, SNCA, SDHA, and VDAC1. In the MPTP-induced PD mice model, the expression of ACO2, HSPA9, and SDHA was decreased while the expression of CYCS, SNCA, and VDAC1 was increased, and the expression of the 5 DED-ORGs was decreased. Additionally, it was discovered that N-Acetylcysteine (NAC) could inhibit the occurrence of disulfidptosis in the MPTP-induced PD model. Subsequently, the distribution of target genes with AUC > 0.7 in different cell types of the brain was analyzed. Finally, molecular docking was performed between the anti-PD drugs entering clinical phase IV and the target genes. LRPPRC has low binding energy and strong affinity with duloxetine and donepezil, with binding energies of -7.6 kcal/mol and - 8.7 kcal/mol, respectively. CONCLUSION This study elucidates the pathogenic role of OS-induced disulfidptosis in PD progression. By identifying novel diagnostic biomarkers (e.g., DED-ORGs) and therapeutic targets (e.g., LRPPRC), our findings provide a mechanistic framework for PD management and lay the groundwork for future therapeutic development.
Collapse
Affiliation(s)
- Junshi Zhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Neurology, Huaihe Hospital of Henan Universtiy, Kaifeng, 475004, China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Haojie Wu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jianshe Wei
- Department of Neurology, Huaihe Hospital of Henan Universtiy, Kaifeng, 475004, China.
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
2
|
Rojas-Pirela M, Andrade-Alviárez D, Rojas V, Marcos M, Salete-Granado D, Chacón-Arnaude M, Pérez-Nieto MÁ, Kemmerling U, Concepción JL, Michels PAM, Quiñones W. Exploring glycolytic enzymes in disease: potential biomarkers and therapeutic targets in neurodegeneration, cancer and parasitic infections. Open Biol 2025; 15:240239. [PMID: 39904372 PMCID: PMC11793985 DOI: 10.1098/rsob.240239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025] Open
Abstract
Glycolysis, present in most organisms, is evolutionarily one of the oldest metabolic pathways. It has great relevance at a physiological level because it is responsible for generating ATP in the cell through the conversion of glucose into pyruvate and reducing nicotinamide adenine dinucleotide (NADH) (that may be fed into the electron chain in the mitochondria to produce additional ATP by oxidative phosphorylation), as well as for producing intermediates that can serve as substrates for other metabolic processes. Glycolysis takes place through 10 consecutive chemical reactions, each of which is catalysed by a specific enzyme. Although energy transduction by glucose metabolism is the main function of this pathway, involvement in virulence, growth, pathogen-host interactions, immunomodulation and adaptation to environmental conditions are other functions attributed to this metabolic pathway. In humans, where glycolysis occurs mainly in the cytosol, the mislocalization of some glycolytic enzymes in various other subcellular locations, as well as alterations in their expression and regulation, has been associated with the development and progression of various diseases. In this review, we describe the role of glycolytic enzymes in the pathogenesis of diseases of clinical interest. In addition, the potential role of these enzymes as targets for drug development and their potential for use as diagnostic and prognostic markers of some pathologies are also discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca37007, Spain
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - Verónica Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso2373223, Chile
| | - Miguel Marcos
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca37007, Spain
| | - Daniel Salete-Granado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
| | - Marirene Chacón-Arnaude
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - María Á. Pérez-Nieto
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León, Soria42002, Spain
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Universidad de Chile, Facultad de Medicina, Santiago de Chile8380453, Chile
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - Paul A. M. Michels
- School of Biological Sciences, University of Edinburgh, The King’s Buildings, EdinburghEH9 3FL, UK
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| |
Collapse
|
3
|
Venati SR, Uversky VN. Exploring Intrinsic Disorder in Human Synucleins and Associated Proteins. Int J Mol Sci 2024; 25:8399. [PMID: 39125972 PMCID: PMC11313516 DOI: 10.3390/ijms25158399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
In this work, we explored the intrinsic disorder status of the three members of the synuclein family of proteins-α-, β-, and γ-synucleins-and showed that although all three human synucleins are highly disordered, the highest levels of disorder are observed in γ-synuclein. Our analysis of the peculiarities of the amino acid sequences and modeled 3D structures of the human synuclein family members revealed that the pathological mutations A30P, E46K, H50Q, A53T, and A53E associated with the early onset of Parkinson's disease caused some increase in the local disorder propensity of human α-synuclein. A comparative sequence-based analysis of the synuclein proteins from various evolutionary distant species and evaluation of their levels of intrinsic disorder using a set of commonly used bioinformatics tools revealed that, irrespective of their origin, all members of the synuclein family analyzed in this study were predicted to be highly disordered proteins, indicating that their intrinsically disordered nature represents an evolutionary conserved and therefore functionally important feature. A detailed functional disorder analysis of the proteins in the interactomes of the human synuclein family members utilizing a set of commonly used disorder analysis tools showed that the human α-synuclein interactome has relatively higher levels of intrinsic disorder as compared with the interactomes of human β- and γ- synucleins and revealed that, relative to the β- and γ-synuclein interactomes, α-synuclein interactors are involved in a much broader spectrum of highly diversified functional pathways. Although proteins interacting with three human synucleins were characterized by highly diversified functionalities, this analysis also revealed that the interactors of three human synucleins were involved in three common functional pathways, such as the synaptic vesicle cycle, serotonergic synapse, and retrograde endocannabinoid signaling. Taken together, these observations highlight the critical importance of the intrinsic disorder of human synucleins and their interactors in various neuronal processes.
Collapse
Affiliation(s)
- Sriya Reddy Venati
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Barbuti PA. A-Syn(ful) MAM: A Fresh Perspective on a Converging Domain in Parkinson's Disease. Int J Mol Sci 2024; 25:6525. [PMID: 38928232 PMCID: PMC11203789 DOI: 10.3390/ijms25126525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is a disease of an unknown origin. Despite that, decades of research have provided considerable evidence that alpha-synuclein (αSyn) is central to the pathogenesis of disease. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are functional domains formed at contact sites between the ER and mitochondria, with a well-established function of MAMs being the control of lipid homeostasis within the cell. Additionally, there are numerous proteins localized or enriched at MAMs that have regulatory roles in several different molecular signaling pathways required for cellular homeostasis, such as autophagy and neuroinflammation. Alterations in several of these signaling pathways that are functionally associated with MAMs are found in PD. Taken together with studies that find αSyn localized at MAMs, this has implicated MAM (dys)function as a converging domain relevant to PD. This review will highlight the many functions of MAMs and provide an overview of the literature that finds αSyn, in addition to several other PD-related proteins, localized there. This review will also detail the direct interaction of αSyn and αSyn-interacting partners with specific MAM-resident proteins. In addition, recent studies exploring new methods to investigate MAMs will be discussed, along with some of the controversies regarding αSyn, including its several conformations and subcellular localizations. The goal of this review is to highlight and provide insight on a domain that is incompletely understood and, from a PD perspective, highlight those complex interactions that may hold the key to understanding the pathomechanisms underlying PD, which may lead to the targeted development of new therapeutic strategies.
Collapse
Affiliation(s)
- Peter A Barbuti
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
5
|
Chen Y, Mateski J, Gerace L, Wheeler J, Burl J, Prakash B, Svedin C, Amrick R, Adams BD. Non-coding RNAs and neuroinflammation: implications for neurological disorders. Exp Biol Med (Maywood) 2024; 249:10120. [PMID: 38463392 PMCID: PMC10911137 DOI: 10.3389/ebm.2024.10120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/15/2024] [Indexed: 03/12/2024] Open
Abstract
Neuroinflammation is considered a balanced inflammatory response important in the intrinsic repair process after injury or infection. Under chronic states of disease, injury, or infection, persistent neuroinflammation results in a heightened presence of cytokines, chemokines, and reactive oxygen species that result in tissue damage. In the CNS, the surrounding microglia normally contain macrophages and other innate immune cells that perform active immune surveillance. The resulting cytokines produced by these macrophages affect the growth, development, and responsiveness of the microglia present in both white and gray matter regions of the CNS. Controlling the levels of these cytokines ultimately improves neurocognitive function and results in the repair of lesions associated with neurologic disease. MicroRNAs (miRNAs) are master regulators of the genome and subsequently control the activity of inflammatory responses crucial in sustaining a robust and acute immunological response towards an acute infection while dampening pathways that result in heightened levels of cytokines and chemokines associated with chronic neuroinflammation. Numerous reports have directly implicated miRNAs in controlling the abundance and activity of interleukins, TGF-B, NF-kB, and toll-like receptor-signaling intrinsically linked with the development of neurological disorders such as Parkinson's, ALS, epilepsy, Alzheimer's, and neuromuscular degeneration. This review is focused on discussing the role miRNAs play in regulating or initiating these chronic neurological states, many of which maintain the level and/or activity of neuron-specific secondary messengers. Dysregulated miRNAs present in the microglia, astrocytes, oligodendrocytes, and epididymal cells, contribute to an overall glial-specific inflammatory niche that impacts the activity of neuronal conductivity, signaling action potentials, neurotransmitter robustness, neuron-neuron specific communication, and neuron-muscular connections. Understanding which miRNAs regulate microglial activation is a crucial step forward in developing non-coding RNA-based therapeutics to treat and potentially correct the behavioral and cognitive deficits typically found in patients suffering from chronic neuroinflammation.
Collapse
Affiliation(s)
- Yvonne Chen
- Department of Biology, Brandeis University, Waltham, MA, United States
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
| | - Julia Mateski
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of Biological Sciences, Gustavus Adolphus College, St. Peter, MN, United States
| | - Linda Gerace
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of English, Missouri State University, Springfield, MO, United States
| | - Jonathan Wheeler
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of Electrical and Computer Engineering Tech, New York Institute of Tech, Old Westbury, NY, United States
| | - Jan Burl
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of English, Southern New Hampshire University, Manchester, NH, United States
| | - Bhavna Prakash
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of Medicine, Tufts Medical Center, Medford, MA, United States
| | - Cherie Svedin
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of Biology, Utah Tech University, St. George, UT, United States
| | - Rebecca Amrick
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
- Department of English, Villanova University, Villanova, PA, United States
| | - Brian D Adams
- Department of RNA Sciences, The Brain Institute of America, New Haven, CT, United States
| |
Collapse
|
6
|
Chen B, Zhang Q, Zhong X, Zhang X, Liu X, Wang H, Yang F, Zhang J, Huang J, Wong YK, Luo P, Wang J, Sun J. Dopamine modification of glycolytic enzymes impairs glycolysis: possible implications for Parkinson's disease. Cell Commun Signal 2024; 22:75. [PMID: 38287374 PMCID: PMC10823740 DOI: 10.1186/s12964-024-01478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD), a chronic and severe neurodegenerative disease, is pathologically characterized by the selective loss of nigrostriatal dopaminergic neurons. Dopamine (DA), the neurotransmitter produced by dopaminergic neurons, and its metabolites can covalently modify proteins, and dysregulation of this process has been implicated in neuronal loss in PD. However, much remains unknown about the protein targets. METHODS In the present work, we designed and synthesized a dopamine probe (DA-P) to screen and identify the potential protein targets of DA using activity-based protein profiling (ABPP) technology in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS). In situ pull-down assays, cellular thermal shift assays (CETSAs) and immunofluorescence were performed to confirm the DA modifications on these hits. To investigate the effects of DA modifications, we measured the enzymatic activities of these target proteins, evaluated glycolytic stress and mitochondrial respiration by Seahorse tests, and systematically analyzed the changes in metabolites with unbiased LC-MS/MS-based non-targeted metabolomics profiling. RESULTS We successfully identified three glycolytic proteins, aldolase A, α-enolase and pyruvate kinase M2 (PKM2), as the binding partners of DA. DA bound to Glu166 of α-enolase, Cys49 and Cys424 of PKM2, and Lys230 of aldolase A, inhibiting the enzymatic activities of α-enolase and PKM2 and thereby impairing ATP synthesis, resulting in mitochondrial dysfunction. CONCLUSIONS Recent research has revealed that enhancing glycolysis can offer protection against PD. The present study identified that the glycolytic pathway is vulnerable to disruption by DA, suggesting a promising avenue for potential therapeutic interventions. Safeguarding glycolysis against DA-related disruption could be a potential therapeutic intervention for PD.
Collapse
Affiliation(s)
- Bing Chen
- Shenzhen Clinical Research Center for Geriatrics and Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Qian Zhang
- Shenzhen Clinical Research Center for Geriatrics and Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoru Zhong
- Shenzhen Clinical Research Center for Geriatrics and Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Xinwei Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Liu
- Shenzhen Clinical Research Center for Geriatrics and Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Hongyang Wang
- Shenzhen Clinical Research Center for Geriatrics and Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Fan Yang
- Shenzhen Clinical Research Center for Geriatrics and Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Jingjing Zhang
- Shenzhen Clinical Research Center for Geriatrics and Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Jingnan Huang
- Shenzhen Clinical Research Center for Geriatrics and Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yin-Kwan Wong
- Shenzhen Clinical Research Center for Geriatrics and Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Piao Luo
- Shenzhen Clinical Research Center for Geriatrics and Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jigang Wang
- Shenzhen Clinical Research Center for Geriatrics and Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jichao Sun
- Shenzhen Clinical Research Center for Geriatrics and Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| |
Collapse
|
7
|
Younas N, Zafar S, Saleem T, Fernandez Flores LC, Younas A, Schmitz M, Zerr I. Differential interactome mapping of aggregation prone/prion-like proteins under stress: novel links to stress granule biology. Cell Biosci 2023; 13:221. [PMID: 38041189 PMCID: PMC10693047 DOI: 10.1186/s13578-023-01164-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/02/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Aberrant stress granules (SGs) are emerging as prime suspects in the nucleation of toxic protein aggregates. Understanding the molecular networks linked with aggregation-prone proteins (prion protein, synuclein, and tau) under stressful environments is crucial to understand pathophysiological cascades associated with these proteins. METHODS We characterized and validated oxidative stress-induced molecular network changes of endogenous aggregation-prone proteins (prion protein, synuclein, and tau) by employing immunoprecipitation coupled with mass spectrometry analysis under basal and oxidative stress conditions. We used two different cell models (SH-SY5Y: human neuroblastoma and HeLa cell line) to induce oxidative stress using a well-known inducer (sodium arsenite) of oxidative stress. RESULTS Overall, we identified 597 proteins as potential interaction partners. Our comparative interactome mapping provides comprehensive network reorganizations of three aggregation-prone hallmark proteins, establish novel interacting partners and their dysregulation, and validates that prion protein and synuclein localize in cytoplasmic SGs. Localization of prion protein and synuclein in TIA1-positive SGs provides an important link between SG pathobiology and aggregation-prone proteins. In addition, dysregulation (downregulation) of prion protein and exportin-5 protein, and translocation of exportin-5 into the nucleus under oxidative stress shed light on nucleocytoplasmic transport defects during the stress response. CONCLUSIONS The current study contributes to our understanding of stress-mediated network rearrangements and posttranslational modifications of prion/prion-like proteins. Localization of prion protein and synuclein in the cytoplasmic SGs provides an important link between stress granule pathobiology and aggregation-prone proteins. In addition, our findings demonstrate nucleocytoplasmic transport defects after oxidative stress via dysregulation and nuclear accumulation of exportin-5.
Collapse
Affiliation(s)
- Neelam Younas
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| | - Saima Zafar
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tayyaba Saleem
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Leticia Camila Fernandez Flores
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Abrar Younas
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| |
Collapse
|
8
|
Vargas KJ, Colosi PL, Girardi E, Park JM, Harmon LE, Chandra SS. α-Synuclein colocalizes with AP180 and affects the size of clathrin lattices. J Biol Chem 2023; 299:105091. [PMID: 37516240 PMCID: PMC10470054 DOI: 10.1016/j.jbc.2023.105091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/31/2023] Open
Abstract
α-Synuclein and family members β- and γ-synuclein are presynaptic proteins that sense and generate membrane curvature, properties important for synaptic vesicle (SV) cycling. αβγ-synuclein triple knockout neurons exhibit SV endocytosis deficits. Here, we investigated if α-synuclein affects clathrin assembly in vitro. Visualizing clathrin assembly on membranes using a lipid monolayer system revealed that α-synuclein increases clathrin lattices size and curvature. On cell membranes, we observe that α-synuclein is colocalized with clathrin and its adapter AP180 in a concentric ring pattern. Clathrin puncta that contain both α-synuclein and AP180 were significantly larger than clathrin puncta containing either protein alone. We determined that this effect occurs in part through colocalization of α-synuclein with the phospholipid PI(4,5)P2 in the membrane. Immuno-electron microscopy (EM) of synaptosomes uncovered that α-synuclein relocalizes from SVs to the presynaptic membrane upon stimulation, positioning α-synuclein to function on presynaptic membranes during or after stimulation. Additionally, we show that deletion of synucleins impacts brain-derived clathrin-coated vesicle size. Thus, α-synuclein affects the size and curvature of clathrin structures on membranes and functions as an endocytic accessory protein.
Collapse
Affiliation(s)
- Karina J Vargas
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, USA; Marine Biological Laboratory, Woods Hole, Massachusetts, USA; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - P L Colosi
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, USA; PREP Program, Yale University, New Haven, Connecticut, USA
| | - Eric Girardi
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, USA
| | - Jae-Min Park
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, USA
| | - Leah E Harmon
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, USA
| | - Sreeganga S Chandra
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
9
|
Hu Z, Shi S, Ou Y, Hu F, Long D. Mitochondria-associated endoplasmic reticulum membranes: A promising toxicity regulation target. Acta Histochem 2023; 125:152000. [PMID: 36696877 DOI: 10.1016/j.acthis.2023.152000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are dynamic suborganelle membranes that physically couple endoplasmic reticulum (ER) and mitochondria to provide a platform for exchange of intracellular molecules and crosstalk between the two organelles. Dysfunctions of mitochondria and ER and imbalance of intracellular homeostasis have been discovered in the research of toxics. Cellular activities such as oxidative stress, ER stress, Ca2+ transport, autophagy, mitochondrial fusion and fission, and apoptosis mediated by MAMs are closely related to the toxicological effects of various toxicants. These cellular activities mediated by MAMs crosstalk with each other. Regulating the structure and function of MAMs can alleviate the damage caused by toxicants to some extent. In this review, we discuss the relationships between MAMs and the mechanisms of toxicological effects, and highlight MAMs as a potential target for protection against toxicants.
Collapse
Affiliation(s)
- Zehui Hu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Shengyuan Shi
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Yiquan Ou
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Fangyan Hu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
10
|
Nuclear α-Synuclein-Derived Cytotoxic Effect via Altered Ribosomal RNA Processing in Primary Mouse Embryonic Fibroblasts. Int J Mol Sci 2023; 24:ijms24032132. [PMID: 36768455 PMCID: PMC9917353 DOI: 10.3390/ijms24032132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
α-Synuclein (αSyn) is an important player in Parkinson's disease (PD) pathogenesis. The aggregation of αSyn is mainly formed in the cytoplasm, whereas some αSyn accumulation has also been found in the nuclei of neurons. To assess the effect of nuclear αSyn, we generated αSyn conjugated with a nuclear export signal (NES) or a nuclear localization signal (NLS), and compared them with wild-type αSyn in primary mouse embryonic fibroblasts (MEF) using DNA transfection. Overexpression of NLS-αSyn increased cytotoxicity. The levels of apoptotic markers were increased by NLS-αSyn in MEF. Interestingly, an increase in the levels of 40S ribosomal protein 15 was observed in MEF expressing NLS-αSyn. These MEF also showed a higher 28S/18S rRNA ratio. Intriguingly, the expression of NLS-αSyn in MEF enhanced segmentation of nucleolin (NCL)-positive nucleolar structures. We also observed that the downregulation of NCL, using shRNA, promoted a relatively higher 28S/18S rRNA ratio. The reduction in NCL expression accelerated the accumulation of αSyn, and NCL transfection enhanced the degradation of αSyn. These results suggest that nuclear αSyn contributes to the alteration in ribosomal RNA processing via NCL malfunction-mediated nucleolar segmentation, and that NCL is a key factor for the degradation of αSyn.
Collapse
|
11
|
Szelechowski M, Texier B, Prime M, Atamena D, Belenguer P. Mortalin/Hspa9 involvement and therapeutic perspective in Parkinson’s disease. Neural Regen Res 2023; 18:293-298. [PMID: 35900406 PMCID: PMC9396523 DOI: 10.4103/1673-5374.346487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
By controlling the proper folding of proteins imported into mitochondria and ensuring crosstalk between the reticulum and mitochondria to modulate intracellular calcium fluxes, Mortalin is a chaperone protein that plays crucial roles in neuronal homeostasis and activity. However, its expression and stability are strongly modified in response to cellular stresses, in particular upon altered oxidative conditions during neurodegeneration. Here, we report and discuss the abundant literature that has highlighted its contribution to the pathophysiology of Parkinson’s disease, as well as its therapeutic and prognostic potential in this still incurable pathology.
Collapse
|
12
|
Metabolic Features of Brain Function with Relevance to Clinical Features of Alzheimer and Parkinson Diseases. Molecules 2022; 27:molecules27030951. [PMID: 35164216 PMCID: PMC8839962 DOI: 10.3390/molecules27030951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Brain metabolism is comprised in Alzheimer’s disease (AD) and Parkinson’s disease (PD). Since the brain primarily relies on metabolism of glucose, ketone bodies, and amino acids, aspects of these metabolic processes in these disorders—and particularly how these altered metabolic processes are related to oxidative and/or nitrosative stress and the resulting damaged targets—are reviewed in this paper. Greater understanding of the decreased functions in brain metabolism in AD and PD is posited to lead to potentially important therapeutic strategies to address both of these disorders, which cause relatively long-lasting decreased quality of life in patients.
Collapse
|
13
|
Choudhary S, Lopus M, Hosur RV. Targeting disorders in unstructured and structured proteins in various diseases. Biophys Chem 2021; 281:106742. [PMID: 34922214 DOI: 10.1016/j.bpc.2021.106742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022]
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are proteins and protein segments that usually do not acquire well-defined folded structures even under physiological conditions. They are abundantly present and challenge the "one sequence-one structure-one function" theory due to a lack of stable secondary and/or tertiary structure. Due to conformational flexibility, IDPs/IDPRs can bind with multiple interacting partners with high-specificity and low-affinity and perform essential biological functions associated with signalling, recognition and regulation. Mis-functioning and mis-regulation of IDPs and IDPRs causes disorder in disordered proteins and disordered protein segments which results in numerous human diseases, such as cancer, Parkinson's disease (PD), Alzheimer's disease (AD), diabetes, metabolic disorders, systemic disorders and so on. Due to the strong connection of IDPs/IDPRs with human diseases they are considered potentential targets for drug therapy. Since they disobey the "one sequence-one structure-one function" concept, IDPs/IDPRs are complex systems for drug targeting. This review summarises various protein disorder diseases and different methods for therapeutic targeting of disordered proteins/segments. Targeting IDPs/IDPRs for diseases will open up a new era of rational drug design and drug discovery.
Collapse
Affiliation(s)
- Sinjan Choudhary
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidhyanagri Campus, Kalina, Mumbai 400098, India.
| | - Manu Lopus
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidhyanagri Campus, Kalina, Mumbai 400098, India.
| | - Ramakrishna V Hosur
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidhyanagri Campus, Kalina, Mumbai 400098, India.
| |
Collapse
|
14
|
Sunanda T, Ray B, Mahalakshmi AM, Bhat A, Rashan L, Rungratanawanich W, Song BJ, Essa MM, Sakharkar MK, Chidambaram SB. Mitochondria-Endoplasmic Reticulum Crosstalk in Parkinson's Disease: The Role of Brain Renin Angiotensin System Components. Biomolecules 2021; 11:1669. [PMID: 34827667 PMCID: PMC8615717 DOI: 10.3390/biom11111669] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
The past few decades have seen an increased emphasis on the involvement of the mitochondrial-associated membrane (MAM) in various neurodegenerative diseases, particularly in Parkinson's disease (PD) and Alzheimer's disease (AD). In PD, alterations in mitochondria, endoplasmic reticulum (ER), and MAM functions affect the secretion and metabolism of proteins, causing an imbalance in calcium homeostasis and oxidative stress. These changes lead to alterations in the translocation of the MAM components, such as IP3R, VDAC, and MFN1 and 2, and consequently disrupt calcium homeostasis and cause misfolded proteins with impaired autophagy, distorted mitochondrial dynamics, and cell death. Various reports indicate the detrimental involvement of the brain renin-angiotensin system (RAS) in oxidative stress, neuroinflammation, and apoptosis in various neurodegenerative diseases. In this review, we attempted to update the reports (using various search engines, such as PubMed, SCOPUS, Elsevier, and Springer Nature) demonstrating the pathogenic interactions between the various proteins present in mitochondria, ER, and MAM with respect to Parkinson's disease. We also made an attempt to speculate the possible involvement of RAS and its components, i.e., AT1 and AT2 receptors, angiotensinogen, in this crosstalk and PD pathology. The review also collates and provides updated information on the role of MAM in calcium signaling, oxidative stress, neuroinflammation, and apoptosis in PD.
Collapse
Affiliation(s)
- Tuladhar Sunanda
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (T.S.); (B.R.); (A.M.M.); (A.B.)
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (T.S.); (B.R.); (A.M.M.); (A.B.)
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (T.S.); (B.R.); (A.M.M.); (A.B.)
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (T.S.); (B.R.); (A.M.M.); (A.B.)
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Luay Rashan
- Biodiversity Research Centre, Dohfar University, Salalah 2059, Oman;
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA; (W.R.); (B.-J.S.)
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA; (W.R.); (B.-J.S.)
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman;
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (T.S.); (B.R.); (A.M.M.); (A.B.)
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
15
|
Atieh TB, Roth J, Yang X, Hoop CL, Baum J. DJ-1 Acts as a Scavenger of α-Synuclein Oligomers and Restores Monomeric Glycated α-Synuclein. Biomolecules 2021; 11:biom11101466. [PMID: 34680099 PMCID: PMC8533443 DOI: 10.3390/biom11101466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/03/2022] Open
Abstract
Glycation of α-synuclein (αSyn), as occurs with aging, has been linked to the progression of Parkinson’s disease (PD) through the promotion of advanced glycation end-products and the formation of toxic oligomers that cannot be properly cleared from neurons. DJ-1, an antioxidative protein that plays a critical role in PD pathology, has been proposed to repair glycation in proteins, yet a mechanism has not been elucidated. In this study, we integrate solution nuclear magnetic resonance (NMR) spectroscopy and liquid atomic force microscopy (AFM) techniques to characterize glycated N-terminally acetylated-αSyn (glyc-ac-αSyn) and its interaction with DJ-1. Glycation of ac-αSyn by methylglyoxal increases oligomer formation, as visualized by AFM in solution, resulting in decreased dynamics of the monomer amide backbone around the Lys residues, as measured using NMR. Upon addition of DJ-1, this NMR signature of glyc-ac-αSyn monomers reverts to a native ac-αSyn-like character. This phenomenon is reversible upon removal of DJ-1 from the solution. Using relaxation-based NMR, we have identified the binding site on DJ-1 for glycated and native ac-αSyn as the catalytic pocket and established that the oxidation state of the catalytic cysteine is imperative for binding. Based on our results, we propose a novel mechanism by which DJ-1 scavenges glyc-ac-αSyn oligomers without chemical deglycation, suppresses glyc-ac-αSyn monomer–oligomer interactions, and releases free glyc-ac-αSyn monomers in solution. The interference of DJ-1 with ac-αSyn oligomers may promote free ac-αSyn monomer in solution and suppress the propagation of toxic oligomer and fibril species. These results expand the understanding of the role of DJ-1 in PD pathology by acting as a scavenger for aggregated αSyn.
Collapse
|
16
|
Ho DH, Nam D, Jeong S, Seo MK, Park SW, Seol W, Son I. Expression of transduced nucleolin promotes the clearance of accumulated α-synuclein in rodent cells and animal model. Neurobiol Dis 2021; 154:105349. [PMID: 33781924 DOI: 10.1016/j.nbd.2021.105349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Alpha-synuclein (αSyn) is a major component of Lewy bodies, which are a known pathogenic marker of Parkinson's disease (PD). The dysfunction of protein degradation machinery causes αSyn accumulation. The reinforcement of αSyn degradation is a potential therapeutic target for PD because accumulated αSyn is responsible for the pathogenesis of PD. Nucleolin (NCL) is essential in the formation of the nucleolar structure. The function of NCL is correlated with oxidative stress-mediated cell death. A previous study demonstrated that NCL overexpression alleviated rotenone-induced neurotoxic effects, whereas knockdown of NCL had the opposite effect. These results suggest that NCL malfunction would exacerbate PD pathology. Thus, it was hypothesized that the introduction of ectopic NCL could rescue α-synucleinopathy in PD. This study investigated whether the ectopic expression of NCL facilitates αSyn clearance. Ectopic expression of NCL was accomplished via the transfection of green fluorescent protein (GFP) or GFP-NCL in mouse embryonic fibroblasts (MEF) or transduction of GFP or GFP-NCL using lentivirus in rat primary cortical neurons and mouse substantia nigra. NCL overexpression enhanced the clearance of accumulated or aggregated αSyn in MEFs and rat primary cortical neurons. The activity of the autophagy-lysosome pathway was enhanced by NCL expression. NCL transduction in the substantia nigra, which was co-injected with αSyn fibrils, rescued PD manifestation. The elevation of NCL levels may reflect a therapeutic strategy for α-synucleinopathy in PD.
Collapse
Affiliation(s)
- Dong Hwan Ho
- InAm Neuroscience Research Center, Sanbon Medical Center, Wonkwang University, Gunpo-si 15865, Gyeonggi-do, Republic of Korea.
| | - Daleum Nam
- InAm Neuroscience Research Center, Sanbon Medical Center, Wonkwang University, Gunpo-si 15865, Gyeonggi-do, Republic of Korea
| | - Soyeon Jeong
- InAm Neuroscience Research Center, Sanbon Medical Center, Wonkwang University, Gunpo-si 15865, Gyeonggi-do, Republic of Korea
| | - Mi Kyoung Seo
- Paik Institute for Clinical Research, Inje University College of Medicine, Republic of Korea
| | - Sung Woo Park
- Paik Institute for Clinical Research, Inje University College of Medicine, Republic of Korea; Department of Health Science and Technology, Graduate School of Inje University, Busanjin-gu, Busan 47392, Republic of Korea
| | - Wongi Seol
- InAm Neuroscience Research Center, Sanbon Medical Center, Wonkwang University, Gunpo-si 15865, Gyeonggi-do, Republic of Korea
| | - Ilhong Son
- InAm Neuroscience Research Center, Sanbon Medical Center, Wonkwang University, Gunpo-si 15865, Gyeonggi-do, Republic of Korea; Department of Neurology, Sanbon Medical Center, Wonkwang University, Gunpo-si 15865, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
17
|
Mavroeidi P, Xilouri M. Neurons and Glia Interplay in α-Synucleinopathies. Int J Mol Sci 2021; 22:4994. [PMID: 34066733 PMCID: PMC8125822 DOI: 10.3390/ijms22094994] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of the neuronal presynaptic protein alpha-synuclein within proteinaceous inclusions represents the key histophathological hallmark of a spectrum of neurodegenerative disorders, referred to by the umbrella term a-synucleinopathies. Even though alpha-synuclein is expressed predominantly in neurons, pathological aggregates of the protein are also found in the glial cells of the brain. In Parkinson's disease and dementia with Lewy bodies, alpha-synuclein accumulates mainly in neurons forming the Lewy bodies and Lewy neurites, whereas in multiple system atrophy, the protein aggregates mostly in the glial cytoplasmic inclusions within oligodendrocytes. In addition, astrogliosis and microgliosis are found in the synucleinopathy brains, whereas both astrocytes and microglia internalize alpha-synuclein and contribute to the spread of pathology. The mechanisms underlying the pathological accumulation of alpha-synuclein in glial cells that under physiological conditions express low to non-detectable levels of the protein are an area of intense research. Undoubtedly, the presence of aggregated alpha-synuclein can disrupt glial function in general and can contribute to neurodegeneration through numerous pathways. Herein, we summarize the current knowledge on the role of alpha-synuclein in both neurons and glia, highlighting the contribution of the neuron-glia connectome in the disease initiation and progression, which may represent potential therapeutic target for a-synucleinopathies.
Collapse
Affiliation(s)
| | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
18
|
Calvo-Rodriguez M, Kharitonova EK, Bacskai BJ. In vivo brain imaging of mitochondrial Ca 2+ in neurodegenerative diseases with multiphoton microscopy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118998. [PMID: 33684410 PMCID: PMC8057769 DOI: 10.1016/j.bbamcr.2021.118998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Mitochondria are involved in a large number of essential roles related to neuronal function. Ca2+ handling by mitochondria is critical for many of these functions, including energy production and cellular fate. Conversely, mitochondrial Ca2+ mishandling has been related to a variety of neurodegenerative diseases. Investigating mitochondrial Ca2+ dynamics is essential for advancing our understanding of the role of intracellular mitochondrial Ca2+ signals in physiology and pathology. Improved Ca2+ indicators, and the ability to target them to different cells and compartments, have emerged as useful tools for analysis of Ca2+ signals in living organisms. Combined with state-of-the-art techniques such as multiphoton microscopy, they allow for the study of mitochondrial Ca2+ dynamics in vivo in mouse models of the disease. Here, we provide an overview of the Ca2+ transporters/ion channels in mitochondrial membranes, and the involvement of mitochondrial Ca2+ in neurodegenerative diseases followed by a summary of the main tools available to evaluate mitochondrial Ca2+ dynamics in vivo using the aforementioned technique.
Collapse
Affiliation(s)
- Maria Calvo-Rodriguez
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA.
| | - Elizabeth K Kharitonova
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| |
Collapse
|
19
|
Popova B, Wang D, Pätz C, Akkermann D, Lázaro DF, Galka D, Kolog Gulko M, Bohnsack MT, Möbius W, Bohnsack KE, Outeiro TF, Braus GH. DEAD-box RNA helicase Dbp4/DDX10 is an enhancer of α-synuclein toxicity and oligomerization. PLoS Genet 2021; 17:e1009407. [PMID: 33657088 PMCID: PMC7928443 DOI: 10.1371/journal.pgen.1009407] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/09/2021] [Indexed: 01/01/2023] Open
Abstract
Parkinson’s disease is a neurodegenerative disorder associated with misfolding and aggregation of α-synuclein as a hallmark protein. Two yeast strain collections comprising conditional alleles of essential genes were screened for the ability of each allele to reduce or improve yeast growth upon α-synuclein expression. The resulting 98 novel modulators of α-synuclein toxicity clustered in several major categories including transcription, rRNA processing and ribosome biogenesis, RNA metabolism and protein degradation. Furthermore, expression of α-synuclein caused alterations in pre-rRNA transcript levels in yeast and in human cells. We identified the nucleolar DEAD-box helicase Dbp4 as a prominent modulator of α-synuclein toxicity. Downregulation of DBP4 rescued cells from α-synuclein toxicity, whereas overexpression led to a synthetic lethal phenotype. We discovered that α-synuclein interacts with Dbp4 or its human ortholog DDX10, sequesters the protein outside the nucleolus in yeast and in human cells, and stabilizes a fraction of α-synuclein oligomeric species. These findings provide a novel link between nucleolar processes and α-synuclein mediated toxicity with DDX10 emerging as a promising drug target. Neurodegenerative Parkinson’s disease affects about 2% of the over 65 years old human population. It is characterized by loss of dopaminergic neurons in midbrain and the presence of Lewy inclusion bodies that are predominantly composed of the α-synuclein protein. Expression of human α-synuclein in yeast cells results in dosage-dependent toxicity monitored as growth reduction and the formation of inclusions similar to mammalian neurons. Systematic analysis of yeast genes, which are essential for growth, revealed that reduced expression of central cellular proteostasis pathways, such as protein synthesis and ubiquitin-dependent protein degradation can enhance or reduce toxic effects of α-synuclein on yeast growth. Expression of α-synuclein affects not only early steps of ribosome biogenesis in yeast but also in human cells. We discovered the nucleolar DEAD-box RNA helicase Dbp4 as a novel strong enhancer of α-synuclein toxicity. The interaction of α-synuclein in yeast with Dbp4 as well as in human cells with its ortholog DDX10 results in sub-cellular exclusion from the nucleolus and promotes the accumulation of toxic oligomeric α-synuclein species. This molecular interaction of α-synuclein with DDX10 and its consequences for human cells provide a novel view in understanding the complexity of Parkinson’s disease.
Collapse
Affiliation(s)
- Blagovesta Popova
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Dan Wang
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Christina Pätz
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Dagmar Akkermann
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Diana F. Lázaro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Göttingen, Germany
| | - Dajana Galka
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Miriam Kolog Gulko
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
| | - Markus T. Bohnsack
- Department of Molecular Biology, University Medical Center Goettingen, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Electron Microscopy Core Unit, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Katherine E. Bohnsack
- Department of Molecular Biology, University Medical Center Goettingen, Göttingen, Germany
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Göttingen, Germany
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
20
|
Fakhree MAA, Konings IBM, Kole J, Cambi A, Blum C, Claessens MMAE. The Localization of Alpha-synuclein in the Endocytic Pathway. Neuroscience 2021; 457:186-195. [PMID: 33482328 DOI: 10.1016/j.neuroscience.2021.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 01/24/2023]
Abstract
Alpha-synuclein (αS) is an intrinsically disordered protein (IDP) that is abundantly present in the brain and is associated with Parkinson's disease (PD). In spite of its abundance and its contribution to PD pathogenesis, the exact cellular function of αS remains largely unknown. The ability of αS to remodel phospholipid model membranes combined with biochemical and cellular studies suggests that αS is involved in endocytosis. To unravel with which route(s) and stage(s) of the endocytic pathway αS is associated, we quantified the colocalization between αS and endocytic marker proteins in differentiated SH-SY5Y neuronal cells, using an object based colocalization analysis. Comparison with randomized data allowed us to discriminate between structural and coincidental colocalizations. A large fraction of the αS positive vesicles colocalizes with caveolin positive vesicles, a smaller fraction colocalizes with EEA1 and Rab7. We find no structural colocalization between αS and clathrin and Rab11 positive vesicles. We conclude that in a physiological context, αS is structurally associated with caveolin dependent membrane vesiculation and is found further along the endocytic pathway, in decreasing amounts, on early and late endosomes. Our results not only shed new light on the function of αS, they also provide a possible link between αS function and vesicle trafficking malfunction in PD.
Collapse
Affiliation(s)
- Mohammad A A Fakhree
- Nanobiophysics, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Irene B M Konings
- Nanobiophysics, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jeroen Kole
- Nanobiophysics, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Christian Blum
- Nanobiophysics, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Mireille M A E Claessens
- Nanobiophysics, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
21
|
Ray B, Bhat A, Mahalakshmi AM, Tuladhar S, Bishir M, Mohan SK, Veeraraghavan VP, Chandra R, Essa MM, Chidambaram SB, Sakharkar MK. Mitochondrial and Organellar Crosstalk in Parkinson's Disease. ASN Neuro 2021; 13:17590914211028364. [PMID: 34304614 PMCID: PMC8317254 DOI: 10.1177/17590914211028364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/04/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction is a well-established pathological event in Parkinson's disease (PD). Proteins misfolding and its impaired cellular clearance due to altered autophagy/mitophagy/pexophagy contribute to PD progression. It has been shown that mitochondria have contact sites with endoplasmic reticulum (ER), peroxisomes and lysosomes that are involved in regulating various physiological processes. In pathological conditions, the crosstalk at the contact sites initiates alterations in intracellular vesicular transport, calcium homeostasis and causes activation of proteases, protein misfolding and impairment of autophagy. Apart from the well-reported molecular changes like mitochondrial dysfunction, impaired autophagy/mitophagy and oxidative stress in PD, here we have summarized the recent scientific reports to provide the mechanistic insights on the altered communications between ER, peroxisomes, and lysosomes at mitochondrial contact sites. Furthermore, the manuscript elaborates on the contributions of mitochondrial contact sites and organelles dysfunction to the pathogenesis of PD and suggests potential therapeutic targets.
Collapse
Affiliation(s)
- Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Muhammed Bishir
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Surapaneni Krishna Mohan
- Department of Biochemistry, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai – 600123, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Aging and Dementia Research Group, Sultan Qaboos University, Muscat, Sultanate of Oman
- Visiting Professor, Biomedical Sciences department, University of Pacific, Sacramento, CA, USA
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK- S7N 5A2, Canada
| |
Collapse
|
22
|
Mitochondrial Translocation of DJ-1 Is Mediated by Grp75: Implication in Cardioprotection of Resveratrol Against Hypoxia/Reoxygenation-Induced Oxidative Stress. J Cardiovasc Pharmacol 2020; 75:305-313. [PMID: 32040033 DOI: 10.1097/fjc.0000000000000805] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Resveratrol (Res) was recently reported to ameliorate hypoxia/reoxygenation (H/R)-caused oxidative stress in H9c2 cardiomyocytes through promoting the mitochondrial translocation of DJ-1 protein and subsequently preserving the activity of mitochondrial complex I. However, it is noteworthy that DJ-1 possesses no mitochondria-targeting sequence. Therefore, how Res induces DJ-1 mitochondrial translocation is an important and interesting question for further exploration. Glucose-regulated protein 75 (Grp75), whose N-terminus contains a 51-amino acid long mitochondrial-targeting signal peptide, is a cytoprotective chaperone that partakes in mitochondrial import of several proteins. Here, the contribution of Grp75 to mitochondrial import of DJ-1 by Res was investigated in a cellular model of H/R. Our results showed that Res upregulated the expression of DJ-1 protein, enhanced the interaction of DJ-1 and Grp75, and promoted DJ-1 translocation to mitochondria from cytosol in H9c2 cardiomyocytes undergoing H/R. Importantly, knockdown of Grp75 markedly reduced the interaction of DJ-1 with Grp75 and subsequent DJ-1 mitochondrial translocation induced by Res. Furthermore, Res pretreatment promoted the association of DJ-1 with ND1 and NDUFA4 subunits of complex I, preserved the activity of complex I, decreased mitochondria-derived reactive oxygen species production, and eventually ameliorated H/R-caused oxidative stress damage. Intriguingly, these effects were largely prevented also by small interfering RNA targeting Grp75. Overall, these results suggested that Grp75 interacts with DJ-1 to facilitate its translocation from cytosol to mitochondria, which is required for Res-mediated preservation of mitochondria complex I and cardioprotection from H/R-caused oxidative stress injury.
Collapse
|
23
|
Scumaci D, Olivo E, Fiumara CV, La Chimia M, De Angelis MT, Mauro S, Costa G, Ambrosio FA, Alcaro S, Agosti V, Costanzo FS, Cuda G. DJ-1 Proteoforms in Breast Cancer Cells: The Escape of Metabolic Epigenetic Misregulation. Cells 2020; 9:cells9091968. [PMID: 32858971 PMCID: PMC7563694 DOI: 10.3390/cells9091968] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022] Open
Abstract
Enhanced glycolysis is a hallmark of breast cancer. In cancer cells, the high glycolytic flux induces carbonyl stress, a damaging condition in which the increase of reactive carbonyl species makes DNA, proteins, and lipids more susceptible to glycation. Together with glucose, methylglyoxal (MGO), a byproduct of glycolysis, is considered the main glycating agent. MGO is highly diffusible, enters the nucleus, and can react with easily accessible lysine- and arginine-rich tails of histones. Glycation adducts on histones undergo oxidization and further rearrange to form stable species known as advanced glycation end-products (AGEs). This modification alters nucleosomes stability and chromatin architecture deconstructing the histone code. Formation of AGEs has been associated with cancer, diabetes, and several age-related diseases. Recently, DJ-1, a cancer-associated protein that protects cells from oxidative stress, has been described as a deglycase enzyme. Although its role in cell survival results still controversial, in several human tumors, its expression, localization, oxidation, and phosphorylation were found altered. This work aimed to explore the molecular mechanism that triggers the peculiar cellular compartmentalization and the specific post-translational modifications (PTM) that, occurring in breast cancer cells, influences the DJ-1 dual role. Using a proteomic approach, we identified on DJ-1 a novel threonine phosphorylation (T125) that was found, by the in-silico tool scansite 4, as part of a putative Akt consensus. Notably, this threonine is in addition to histidine 126, a key residue involved in the formation of catalytic triade (glu18-Cys106-His126) inside the glioxalase active site of DJ. Interestingly, we found that pharmacological modulation of Akt pathway induces a functional tuning of DJ-1 proteoforms, as well as their shuttle from cytosol to nucleus, pointing out that pathway as critical in the development of DJ-1 pro-tumorigenic abilities. Deglycase activity of DJ-1 on histones proteins, investigated by coupling 2D tau gel with LC-MS/MS and 2D-TAU (Triton-Acid-Urea)-Western blot, was found correlated with its phosphorylation status that, in turn, depends from Akt activation. In normal conditions, DJ-1 acts as a redox-sensitive chaperone and as an oxidative stress sensor. In cancer cells, glycolytic rewiring, inducing increased reactive oxygen species (ROS) levels, enhances AGEs products. Alongside, the moderate increase of ROS enhances Akt signaling that induces DJ-1-phosphorylation. When phosphorylated DJ-1 increases its glyoxalase activity, the level of AGEs on histones decreases. Therefore, phospho-DJ-1 prevents glycation-induced histones misregulation and its Akt-related hyperactivity represents a way to preserve the epigenome landscape sustaining proliferation of cancer cells. Together, these results shed light on an interesting mechanism that cancer cells might execute to escape the metabolic induced epigenetic misregulation that otherwise could impair their malignant proliferative potential.
Collapse
Affiliation(s)
- Domenica Scumaci
- Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Græcia Universityof Catanzaro, S Venuta University Campus, 88100 Catanzaro, Italy; (E.O.); (C.V.F.); (M.L.C.); (S.M.); (G.C.)
- Correspondence:
| | - Erika Olivo
- Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Græcia Universityof Catanzaro, S Venuta University Campus, 88100 Catanzaro, Italy; (E.O.); (C.V.F.); (M.L.C.); (S.M.); (G.C.)
| | - Claudia Vincenza Fiumara
- Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Græcia Universityof Catanzaro, S Venuta University Campus, 88100 Catanzaro, Italy; (E.O.); (C.V.F.); (M.L.C.); (S.M.); (G.C.)
| | - Marina La Chimia
- Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Græcia Universityof Catanzaro, S Venuta University Campus, 88100 Catanzaro, Italy; (E.O.); (C.V.F.); (M.L.C.); (S.M.); (G.C.)
| | - Maria Teresa De Angelis
- Stem Cell Laboratory, Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University Magna Graeciaof Catanzaro, S. Venuta University Campus, 88100 Catanzaro, Italy;
| | - Sabrina Mauro
- Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Græcia Universityof Catanzaro, S Venuta University Campus, 88100 Catanzaro, Italy; (E.O.); (C.V.F.); (M.L.C.); (S.M.); (G.C.)
| | - Giosuè Costa
- Department of Health Sciences, University Magna Græcia of Catanzaro, Campus S. Venuta, 88100 Catanzaro, Italy; (G.C.); (F.A.A.); (S.A.)
- Net4Science Academic Spin-Off, University Magna Græcia of Catanzaro, Campus S. Venuta, Viale Europa, 88100 Catanzaro, Italy
| | - Francesca Alessandra Ambrosio
- Department of Health Sciences, University Magna Græcia of Catanzaro, Campus S. Venuta, 88100 Catanzaro, Italy; (G.C.); (F.A.A.); (S.A.)
| | - Stefano Alcaro
- Department of Health Sciences, University Magna Græcia of Catanzaro, Campus S. Venuta, 88100 Catanzaro, Italy; (G.C.); (F.A.A.); (S.A.)
- Net4Science Academic Spin-Off, University Magna Græcia of Catanzaro, Campus S. Venuta, Viale Europa, 88100 Catanzaro, Italy
| | - Valter Agosti
- Laboratory of Molecular Oncology, Department of Experimental and Clinical Medicine, CIS for Genomics and Molecular Pathology, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (V.A.); (F.S.C.)
| | - Francesco Saverio Costanzo
- Laboratory of Molecular Oncology, Department of Experimental and Clinical Medicine, CIS for Genomics and Molecular Pathology, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (V.A.); (F.S.C.)
| | - Giovanni Cuda
- Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Græcia Universityof Catanzaro, S Venuta University Campus, 88100 Catanzaro, Italy; (E.O.); (C.V.F.); (M.L.C.); (S.M.); (G.C.)
| |
Collapse
|
24
|
Pathways of protein synthesis and degradation in PD pathogenesis. PROGRESS IN BRAIN RESEARCH 2020; 252:217-270. [PMID: 32247365 DOI: 10.1016/bs.pbr.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the discovery of protein aggregates in the brains of individuals with Parkinson's disease (PD) in the early 20th century, the scientific community has been interested in the role of dysfunctional protein metabolism in PD etiology. Recent advances in the field have implicated defective protein handling underlying PD through genetic, in vitro, and in vivo studies incorporating many disease models alongside neuropathological evidence. Here, we discuss the existing body of research focused on understanding cellular pathways of protein synthesis and degradation, and how aberrations in either system could engender PD pathology with special attention to α-synuclein-related consequences. We consider transcription, translation, and post-translational modification to constitute protein synthesis, and protein degradation to encompass proteasome-, lysosome- and endoplasmic reticulum-dependent mechanisms. Novel findings connecting each of these steps in protein metabolism to development of PD indicate that deregulation of protein production and turnover remains an exciting area in PD research.
Collapse
|
25
|
Srivastava S, Vishwanathan V, Birje A, Sinha D, D'Silva P. Evolving paradigms on the interplay of mitochondrial Hsp70 chaperone system in cell survival and senescence. Crit Rev Biochem Mol Biol 2020; 54:517-536. [PMID: 31997665 DOI: 10.1080/10409238.2020.1718062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of mitochondria within a cell has grown beyond being the prime source of cellular energy to one of the major signaling platforms. Recent evidence provides several insights into the crucial roles of mitochondrial chaperones in regulating the organellar response to external triggers. The mitochondrial Hsp70 (mtHsp70/Mortalin/Grp75) chaperone system plays a critical role in the maintenance of proteostasis balance in the organelle. Defects in mtHsp70 network result in attenuated protein transport and misfolding of polypeptides leading to mitochondrial dysfunction. The functions of Hsp70 are primarily governed by J-protein cochaperones. Although human mitochondria possess a single Hsp70, its multifunctionality is characterized by the presence of multiple specific J-proteins. Several studies have shown a potential association of Hsp70 and J-proteins with diverse pathological states that are not limited to their canonical role as chaperones. The role of mitochondrial Hsp70 and its co-chaperones in disease pathogenesis has not been critically reviewed in recent years. We evaluated some of the cellular interfaces where Hsp70 machinery associated with pathophysiological conditions, particularly in context of tumorigenesis and neurodegeneration. The mitochondrial Hsp70 machinery shows a variable localization and integrates multiple components of the cellular processes with varied phenotypic consequences. Although Hsp70 and J-proteins function synergistically in proteins folding, their precise involvement in pathological conditions is mainly idiosyncratic. This machinery is associated with a heterogeneous set of molecules during the progression of a disorder. However, the precise binding to the substrate for a specific physiological response under a disease subtype is still an undocumented area of analysis.
Collapse
Affiliation(s)
- Shubhi Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Abhijit Birje
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Devanjan Sinha
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
26
|
Ji T, Zhang X, Xin Z, Xu B, Jin Z, Wu J, Hu W, Yang Y. Does perturbation in the mitochondrial protein folding pave the way for neurodegeneration diseases? Ageing Res Rev 2020; 57:100997. [PMID: 31816444 DOI: 10.1016/j.arr.2019.100997] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/03/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022]
Abstract
Mitochondria, which are cell compartments that are widely present in eukaryotic cells, have been shown to be involved in a variety of synthetic, metabolic, and signaling processes, thereby playing a vital role in cells. The mitochondrial unfolded protein response (mtUPR) is a response in which mitochondria reverse the signal to the nucleus and maintain mitochondrial protein homeostasis when unfolded and misfolded proteins continue to accumulate. Multiple neurodegeneration diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and familial amyotrophic lateral sclerosis (fALS), are public health challenges. Every year, countless efforts are expended trying to clarify the pathogenesis and treatment of neurological disorders, which are associated with mitochondrial dysfunction to some extent. Numerous studies have shown that mtUPR is involved in and plays an important role in the pathogenesis of neurological disorders, but the exact mechanism of the disorders is still unclear. Further study of the process of mtUPR in neurological disorders can help us more accurately understand their pathogenesis in order to provide new therapeutic targets. In this paper, we briefly review mtUPR signaling in Caenorhabditis elegans (C. elegans) and mammals and summarize the role of mtUPR in neurodegeneration diseases, including AD, PD and fALS.
Collapse
|
27
|
Molecular Mechanism Underlying Hypoxic Preconditioning-Promoted Mitochondrial Translocation of DJ-1 in Hypoxia/Reoxygenation H9c2 Cells. Molecules 2019; 25:molecules25010071. [PMID: 31878239 PMCID: PMC6983240 DOI: 10.3390/molecules25010071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 01/06/2023] Open
Abstract
DJ-1 was recently reported to be involved in the cardioprotection of hypoxic preconditioning (HPC) against hypoxia/reoxygenation (H/R)-induced oxidative stress damage, by preserving mitochondrial complex I activity and, subsequently, inhibiting mitochondrial reactive oxygen species (ROS) generation. However, the molecular mechanism by which HPC enables mitochondrial translocation of DJ-1, which has no mitochondria-targeting sequence, to preserve mitochondrial complex I, is largely unknown. In this study, co-immunoprecipitation data showed that DJ-1 was associated with glucose-regulated protein 75 (Grp75), and this association was significantly enhanced after HPC. Immunofluorescence imaging and Western blot analysis showed that HPC substantially enhanced the translocation of DJ-1 from cytosol to mitochondria in H9c2 cells subjected to H/R, which was mimicked by DJ-1 overexpression induced by pFlag-DJ-1 transfection. Importantly, knockdown of Grp75 markedly reduced the mitochondrial translocation of DJ-1 induced by HPC and pFlag-DJ-1 transfection. Moreover, HPC promoted the association of DJ-1 with mitochondrial complex I subunits ND1 and NDUFA4, improved complex I activity, and inhibited mitochondria-derived ROS production and subsequent oxidative stress damage after H/R, which was also mimicked by pFlag-DJ-1 transfection. Intriguingly, these effects of HPC and pFlag-DJ-1 transfection were also prevented by Grp75 knockdown. In conclusion, these results indicated that HPC promotes the translocation of DJ-1 from cytosol to mitochondria in a Grp75-dependent manner and Grp75 is required for DJ-1-mediated protection of HPC on H/R-induced mitochondrial complex I defect and subsequent oxidative stress damage.
Collapse
|
28
|
Yamamoto H, Fukui N, Adachi M, Saiki E, Yamasaki A, Matsumura R, Kuroyanagi D, Hongo K, Mizobata T, Kawata Y. Human Molecular Chaperone Hsp60 and Its Apical Domain Suppress Amyloid Fibril Formation of α-Synuclein. Int J Mol Sci 2019; 21:ijms21010047. [PMID: 31861692 PMCID: PMC6982183 DOI: 10.3390/ijms21010047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 01/14/2023] Open
Abstract
Heat shock proteins play roles in assisting other proteins to fold correctly and in preventing the aggregation and accumulation of proteins in misfolded conformations. However, the process of aging significantly degrades this ability to maintain protein homeostasis. Consequently, proteins with incorrect conformations are prone to aggregate and accumulate in cells, and this aberrant aggregation of misfolded proteins may trigger various neurodegenerative diseases, such as Parkinson's disease. Here, we investigated the possibilities of suppressing α-synuclein aggregation by using a mutant form of human chaperonin Hsp60, and a derivative of the isolated apical domain of Hsp60 (Hsp60 AD(Cys)). In vitro measurements were used to detect the effects of chaperonin on amyloid fibril formation, and interactions between Hsp60 proteins and α-synuclein were probed by quartz crystal microbalance analysis. The ability of Hsp60 AD(Cys) to suppress α-synuclein intracellular aggregation and cytotoxicity was also demonstrated. We show that Hsp60 mutant and Hsp60 AD(Cys) both effectively suppress α-synuclein amyloid fibril formation, and also demonstrate for the first time the ability of Hsp60 AD(Cys) to function as a mini-chaperone inside cells. These results highlight the possibility of using Hsp60 AD as a method of prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hanae Yamamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (H.Y.); (N.F.); (D.K.); (K.H.)
| | - Naoya Fukui
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (H.Y.); (N.F.); (D.K.); (K.H.)
| | - Mayuka Adachi
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Koyama-Minami, Tottori 680-8552, Japan; (M.A.); (A.Y.); (R.M.)
| | - Eiichi Saiki
- Department of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, Koyama-Minami, Tottori 680-8552, Japan;
| | - Anna Yamasaki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Koyama-Minami, Tottori 680-8552, Japan; (M.A.); (A.Y.); (R.M.)
| | - Rio Matsumura
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Koyama-Minami, Tottori 680-8552, Japan; (M.A.); (A.Y.); (R.M.)
| | - Daichi Kuroyanagi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (H.Y.); (N.F.); (D.K.); (K.H.)
| | - Kunihiro Hongo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (H.Y.); (N.F.); (D.K.); (K.H.)
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Koyama-Minami, Tottori 680-8552, Japan; (M.A.); (A.Y.); (R.M.)
- Department of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, Koyama-Minami, Tottori 680-8552, Japan;
- Center for Research on Green Sustainable Chemistry, Koyama-Minami, Tottori University, Tottori 680-8552, Japan
| | - Tomohiro Mizobata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (H.Y.); (N.F.); (D.K.); (K.H.)
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Koyama-Minami, Tottori 680-8552, Japan; (M.A.); (A.Y.); (R.M.)
- Department of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, Koyama-Minami, Tottori 680-8552, Japan;
- Center for Research on Green Sustainable Chemistry, Koyama-Minami, Tottori University, Tottori 680-8552, Japan
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (H.Y.); (N.F.); (D.K.); (K.H.)
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Koyama-Minami, Tottori 680-8552, Japan; (M.A.); (A.Y.); (R.M.)
- Department of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, Koyama-Minami, Tottori 680-8552, Japan;
- Center for Research on Green Sustainable Chemistry, Koyama-Minami, Tottori University, Tottori 680-8552, Japan
- Correspondence: ; Tel.: +81-857-31-5787
| |
Collapse
|
29
|
Li Y, Cookson MR. Proteomics; applications in familial Parkinson's disease. J Neurochem 2019; 151:446-458. [PMID: 31022302 DOI: 10.1111/jnc.14708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/25/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022]
Abstract
Our understanding of the biological basis of Parkinson's disease (PD) has been greatly improved in recent years by the identification of mutations that lead to inherited PD. One of the strengths of using genetics to try to understand disease biology is that it is inherently unbiased and can be applied at a genome-wide scale. More recently, many studies have used another set of unbiased approaches, proteomics, to query the function of familial PD genes in a variety of contexts. We will discuss some specific examples, including; elucidation of protein-protein interaction networks for two dominantly inherited genes, α-synuclein and leucine rich-repeat kinase 2 (LRRK2); the identification of substrates for three genes for familial PD that are also enzymes, namely LRRK2, pink1, and parkin; and changes in protein abundance that arise downstream to introduction of mutations associated with familial PD. We will also discuss those situations where we can integrate multiple proteomics approaches to nominate deeper networks of inter-related events that outline pathways relevant to inherited PD. This article is part of the Special Issue "Proteomics".
Collapse
Affiliation(s)
- Yan Li
- Protein/peptide Sequencing facility, National Institute of Neurological, Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Baltanás FC, Berciano MT, Tapia O, Narcis JO, Lafarga V, Díaz D, Weruaga E, Santos E, Lafarga M. Nucleolin reorganization and nucleolar stress in Purkinje cells of mutant PCD mice. Neurobiol Dis 2019; 127:312-322. [PMID: 30905767 DOI: 10.1016/j.nbd.2019.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/25/2019] [Accepted: 03/20/2019] [Indexed: 01/12/2023] Open
Abstract
The Purkinje cell (PC) degeneration (pcd) mouse harbors a mutation in Agtpbp1 gene that encodes for the cytosolic carboxypeptidase, CCP1. The mutation causes degeneration and death of PCs during the postnatal life, resulting in clinical and pathological manifestation of cerebellar ataxia. Monogenic biallelic damaging variants in the Agtpbp1 gene cause infantile-onset neurodegeneration and cerebellar atrophy, linking loss of functional CCP1 with human neurodegeneration. Although CCP1 plays a key role in the regulation of tubulin stabilization, its loss of function in PCs leads to a severe nuclear phenotype with heterochromatinization and accumulation of DNA damage. Therefore, the pcd mice provides a useful neuronal model to investigate nuclear mechanisms involved in neurodegeneration, particularly the nucleolar stress. In this study, we demonstrated that the Agtpbp1 gene mutation induces a p53-dependent nucleolar stress response in PCs, which is characterized by nucleolar fragmentation, nucleoplasmic and cytoplasmic mislocalization of nucleolin, and dysfunction of both pre-rRNA processing and mRNA translation. RT-qPCR analysis revealed reduction of mature 18S rRNA, with a parallel increase of its intermediate 18S-5'-ETS precursor, that correlates with a reduced expression of Fbl mRNA, which encodes an essential factor for rRNA processing. Moreover, nucleolar alterations were accompanied by a reduction of PTEN mRNA and protein levels, which appears to be related to the chromosome instability and accumulation of DNA damage in degenerating PCs. Our results highlight the essential contribution of nucleolar stress to PC degeneration and also underscore the nucleoplasmic mislocalization of nucleolin as a potential indicator of neurodegenerative processes.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Lab.1, CIC-IBMCC (Universidad de Salamanca-CSIC) and CIBERONC, Salamanca, Spain
| | - María T Berciano
- Department of Anat and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain
| | - Olga Tapia
- Department of Anat and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain
| | - Josep Oriol Narcis
- Department of Anat and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain
| | - Vanesa Lafarga
- Laboratory of Genomic Instability, "Centro Nacional de Investigaciones Oncológicas" (CNIO), Madrid, Spain
| | - David Díaz
- Laboratory of Neural Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León, Universidad de Salamanca, Salamanca, Spain
| | - Eduardo Weruaga
- Laboratory of Neural Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León, Universidad de Salamanca, Salamanca, Spain
| | - Eugenio Santos
- Lab.1, CIC-IBMCC (Universidad de Salamanca-CSIC) and CIBERONC, Salamanca, Spain
| | - Miguel Lafarga
- Department of Anat and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain.
| |
Collapse
|
31
|
Oláh J, Ovádi J. Pharmacological targeting of α-synuclein and TPPP/p25 in Parkinson's disease: challenges and opportunities in a Nutshell. FEBS Lett 2019; 593:1641-1653. [PMID: 31148150 DOI: 10.1002/1873-3468.13464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/10/2023]
Abstract
With the aging of population, neurological disorders, and especially disorders involving defects in protein conformation (also known as proteopathies) pose a serious socio-economic problem. So far there is no effective treatment for most proteopathies, including Parkinson's disease (PD). The mechanism underlying PD pathogenesis is largely unknown, and the hallmark proteins, α-synuclein (SYN) and tubulin polymerization promoting protein (TPPP/p25) are challenging drug targets. These proteins are intrinsically disordered with high conformational plasticity, and have diverse physiological and pathological functions. In the healthy brain, SYN and TPPP/p25 occur in neurons and oligodendrocytes, respectively; however, in PD and multiple system atrophy, they are co-enriched and co-localized in both cell types, thereby marking pathogenesis. Although large inclusions appear at a late disease stage, small, soluble assemblies of SYN promoted by TPPP/p25 are pathogenic. In the light of these issues, we established a new innovative strategy for the validation of a specific drug target based upon the identification of contact surfaces of the pathological SYN-TPPP/p25 complex that may lead to the development of peptidomimetic foldamers suitable for pharmaceutical intervention.
Collapse
Affiliation(s)
- Judit Oláh
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Judit Ovádi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
32
|
Modulation of Diacylglycerol-Induced Melanogenesis in Human Melanoma and Primary Melanocytes: Role of Stress Chaperone Mortalin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9848969. [PMID: 31097976 PMCID: PMC6487102 DOI: 10.1155/2019/9848969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/21/2018] [Accepted: 02/17/2019] [Indexed: 12/03/2022]
Abstract
Skin color/pigmentation is regulated through melanogenesis process in specialized melanin-producing cells, melanocytes, involving multiple signaling pathways. It is highly influenced by intrinsic and extrinsic factors such as oxidative, ultraviolet radiations and other environmental stress conditions. Besides determining the color, it governs response and tolerance of skin to a variety of environmental stresses and pathological conditions including photodamage, hyperpigmentation, and skin cancer. Depigmenting reagents have been deemed useful not only for cosmetics but also for pigmentation-related pathologies. In the present study, we attempted modulation of 1-oleoyl-2-acetyl-glycerol- (OAG-) induced melanogenesis in human melanoma and primary melanocytes. In both cell types, OAG-induced melanogenesis was associated with increase in enhanced expression of melanin, tyrosinase, as well as stress chaperones (mortalin and HSP60) and Reactive Oxygen Species (ROS). Treatment with TXC (trans-4-(Aminomethyl) cyclohexanecarboxylic acid hexadecyl ester hydrochloride) and 5/40 natural compounds resulted in their reduction. The data proposed an important role of mortalin and oxidative stress in skin pigmentation and the use of TXC and natural extracts for modulation of pigmentation pathways in normal and pathological conditions.
Collapse
|
33
|
Turi Z, Lacey M, Mistrik M, Moudry P. Impaired ribosome biogenesis: mechanisms and relevance to cancer and aging. Aging (Albany NY) 2019; 11:2512-2540. [PMID: 31026227 PMCID: PMC6520011 DOI: 10.18632/aging.101922] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
The biosynthesis of ribosomes is a complex process that requires the coordinated action of many factors and a huge energy investment from the cell. Ribosomes are essential for protein production, and thus for cellular survival, growth and proliferation. Ribosome biogenesis is initiated in the nucleolus and includes: the synthesis and processing of ribosomal RNAs, assembly of ribosomal proteins, transport to the cytoplasm and association of ribosomal subunits. The disruption of ribosome biogenesis at various steps, with either increased or decreased expression of different ribosomal components, can promote cell cycle arrest, senescence or apoptosis. Additionally, interference with ribosomal biogenesis is often associated with cancer, aging and age-related degenerative diseases. Here, we review current knowledge on impaired ribosome biogenesis, discuss the main factors involved in stress responses under such circumstances and focus on examples with clinical relevance.
Collapse
Affiliation(s)
- Zsofia Turi
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Matthew Lacey
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Pavel Moudry
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| |
Collapse
|
34
|
Vidal-Martinez G, Yang B, Vargas-Medrano J, Perez RG. Could α-Synuclein Modulation of Insulin and Dopamine Identify a Novel Link Between Parkinson's Disease and Diabetes as Well as Potential Therapies? Front Mol Neurosci 2018; 11:465. [PMID: 30622456 PMCID: PMC6308185 DOI: 10.3389/fnmol.2018.00465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
Characterizing the normal function(s) of the protein α-Synuclein (aSyn) has the potential to illuminate links between Parkinson’s disease (PD) and diabetes and also point the way toward new therapies for these disorders. Here we provide a perspective for consideration based on our discovery that aSyn normally acts to inhibit insulin secretion from pancreatic β-cells by interacting with the Kir6.2 subunit of the ATP-sensitive potassium channel (K-ATP). It is also known that K-ATP channels act to inhibit brain dopamine secretion, and we have also shown that aSyn is a normal inhibitor of dopamine synthesis. The finding, that aSyn modulates Kir6.2 and other proteins involved in dopamine and insulin secretion, suggests that aSyn interacting proteins may be negatively impacted when aSyn aggregates inside cells, whether in brain or pancreas. Furthermore, identifying therapies for PD that can counteract dysfunction found in diabetes, would be highly beneficial. One such compound may be the multiple sclerosis drug, FTY720, which like aSyn can stimulate the activity of the catalytic subunit of protein phosphatase 2A (PP2Ac) as well as insulin secretion. In aging aSyn transgenic mice given long term oral FTY720, the mice had reduced aSyn pathology and increased levels of the protective molecule, brain derived neurotrophic factor (BDNF) (Vidal-Martinez et al., 2016). In collaboration with medicinal chemists, we made two non-immunosuppressive FTY720s that also enhance PP2Ac activity, and BDNF expression (Vargas-Medrano et al., 2014; Enoru et al., 2016; Segura-Ulate et al., 2017a). FTY720 and our novel FTY720-based-derivatives, may thus have therapeutic potential for both diabetes and PD.
Collapse
Affiliation(s)
- Guadalupe Vidal-Martinez
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Barbara Yang
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Javier Vargas-Medrano
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Ruth G Perez
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| |
Collapse
|
35
|
δ-Opioid Receptor Activation Attenuates the Oligomer Formation Induced by Hypoxia and/or α-Synuclein Overexpression/Mutation Through Dual Signaling Pathways. Mol Neurobiol 2018; 56:3463-3475. [DOI: 10.1007/s12035-018-1316-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022]
|
36
|
Bondarev SA, Antonets KS, Kajava AV, Nizhnikov AA, Zhouravleva GA. Protein Co-Aggregation Related to Amyloids: Methods of Investigation, Diversity, and Classification. Int J Mol Sci 2018; 19:ijms19082292. [PMID: 30081572 PMCID: PMC6121665 DOI: 10.3390/ijms19082292] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 01/04/2023] Open
Abstract
Amyloids are unbranched protein fibrils with a characteristic spatial structure. Although the amyloids were first described as protein deposits that are associated with the diseases, today it is becoming clear that these protein fibrils play multiple biological roles that are essential for different organisms, from archaea and bacteria to humans. The appearance of amyloid, first of all, causes changes in the intracellular quantity of the corresponding soluble protein(s), and at the same time the aggregate can include other proteins due to different molecular mechanisms. The co-aggregation may have different consequences even though usually this process leads to the depletion of a functional protein that may be associated with different diseases. The protein co-aggregation that is related to functional amyloids may mediate important biological processes and change of protein functions. In this review, we survey the known examples of the amyloid-related co-aggregation of proteins, discuss their pathogenic and functional roles, and analyze methods of their studies from bacteria and yeast to mammals. Such analysis allow for us to propose the following co-aggregation classes: (i) titration: deposition of soluble proteins on the amyloids formed by their functional partners, with such interactions mediated by a specific binding site; (ii) sequestration: interaction of amyloids with certain proteins lacking a specific binding site; (iii) axial co-aggregation of different proteins within the same amyloid fibril; and, (iv) lateral co-aggregation of amyloid fibrils, each formed by different proteins.
Collapse
Affiliation(s)
- Stanislav A Bondarev
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory of Amyloid Biology, St. Petersburg State University, Russia, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
| | - Kirill S Antonets
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh., 3, Pushkin, St. Petersburg 196608, Russia.
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Université Montpellier 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France.
- Institut de Biologie Computationnelle (IBC), 34095 Montpellier, France.
- University ITMO, Institute of Bioengineering, Kronverksky Pr. 49, St. Petersburg 197101, Russia.
| | - Anton A Nizhnikov
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh., 3, Pushkin, St. Petersburg 196608, Russia.
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory of Amyloid Biology, St. Petersburg State University, Russia, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
| |
Collapse
|
37
|
De Miranda BR, Rocha EM, Bai Q, El Ayadi A, Hinkle D, Burton EA, Timothy Greenamyre J. Astrocyte-specific DJ-1 overexpression protects against rotenone-induced neurotoxicity in a rat model of Parkinson's disease. Neurobiol Dis 2018; 115:101-114. [PMID: 29649621 PMCID: PMC5943150 DOI: 10.1016/j.nbd.2018.04.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 02/07/2023] Open
Abstract
DJ-1 is a redox-sensitive protein with several putative functions important in mitochondrial physiology, protein transcription, proteasome regulation, and chaperone activity. High levels of DJ-1 immunoreactivity are reported in astrocytes surrounding pathology associated with idiopathic Parkinson's disease, possibly reflecting the glial response to oxidative damage. Previous studies showed that astrocytic over-expression of DJ-1 in vitro prevented oxidative stress and mitochondrial dysfunction in primary neurons. Based on these observations, we developed a pseudotyped lentiviral gene transfer vector with specific tropism for CNS astrocytes in vivo to overexpress human DJ-1 protein in astroglial cells. Following vector delivery to the substantia nigra and striatum of adult Lewis rats, the DJ-1 transgene was expressed robustly and specifically within astrocytes. There was no observable transgene expression in neurons or other glial cell types. Three weeks after vector infusion, animals were exposed to rotenone to induce Parkinson's disease-like pathology, including loss of dopaminergic neurons, accumulation of endogenous α-synuclein, and neuroinflammation. Animals over-expressing hDJ-1 in astrocytes were protected from rotenone-induced neurodegeneration, and displayed a marked reduction in neuronal oxidative stress and microglial activation. In addition, α-synuclein accumulation and phosphorylation were decreased within substantia nigra dopaminergic neurons in DJ-1-transduced animals, and expression of LAMP-2A, a marker of chaperone mediated autophagy, was increased. Together, these data indicate that astrocyte-specific overexpression of hDJ-1 protects neighboring neurons against multiple pathologic features of Parkinson's disease and provides the first direct evidence in vivo of a cell non-autonomous neuroprotective function of astroglial DJ-1.
Collapse
Affiliation(s)
- Briana R De Miranda
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qing Bai
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Amina El Ayadi
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - David Hinkle
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Edward A Burton
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States; Geriatric Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States; Geriatric Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States.
| |
Collapse
|
38
|
Franco-Iborra S, Vila M, Perier C. Mitochondrial Quality Control in Neurodegenerative Diseases: Focus on Parkinson's Disease and Huntington's Disease. Front Neurosci 2018; 12:342. [PMID: 29875626 PMCID: PMC5974257 DOI: 10.3389/fnins.2018.00342] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
In recent years, several important advances have been made in our understanding of the pathways that lead to cell dysfunction and death in Parkinson's disease (PD) and Huntington's disease (HD). Despite distinct clinical and pathological features, these two neurodegenerative diseases share critical processes, such as the presence of misfolded and/or aggregated proteins, oxidative stress, and mitochondrial anomalies. Even though the mitochondria are commonly regarded as the "powerhouses" of the cell, they are involved in a multitude of cellular events such as heme metabolism, calcium homeostasis, and apoptosis. Disruption of mitochondrial homeostasis and subsequent mitochondrial dysfunction play a key role in the pathophysiology of neurodegenerative diseases, further highlighting the importance of these organelles, especially in neurons. The maintenance of mitochondrial integrity through different surveillance mechanisms is thus critical for neuron survival. Mitochondria display a wide range of quality control mechanisms, from the molecular to the organellar level. Interestingly, many of these lines of defense have been found to be altered in neurodegenerative diseases such as PD and HD. Current knowledge and further elucidation of the novel pathways that protect the cell through mitochondrial quality control may offer unique opportunities for disease therapy in situations where ongoing mitochondrial damage occurs. In this review, we discuss the involvement of mitochondrial dysfunction in neurodegeneration with a special focus on the recent findings regarding mitochondrial quality control pathways, beyond the classical effects of increased production of reactive oxygen species (ROS) and bioenergetic alterations. We also discuss how disturbances in these processes underlie the pathophysiology of neurodegenerative disorders such as PD and HD.
Collapse
Affiliation(s)
- Sandra Franco-Iborra
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Miquel Vila
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Celine Perier
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| |
Collapse
|
39
|
Piston D, Alvarez-Erviti L, Bansal V, Gargano D, Yao Z, Szabadkai G, Odell M, Puno MR, Björkblom B, Maple-Grødem J, Breuer P, Kaut O, Larsen JP, Bonn S, Møller SG, Wüllner U, Schapira AHV, Gegg ME. DJ-1 is a redox sensitive adapter protein for high molecular weight complexes involved in regulation of catecholamine homeostasis. Hum Mol Genet 2018; 26:4028-4041. [PMID: 29016861 PMCID: PMC5886150 DOI: 10.1093/hmg/ddx294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/19/2017] [Indexed: 01/20/2023] Open
Abstract
DJ-1 is an oxidation sensitive protein encoded by the PARK7 gene. Mutations in PARK7 are a rare cause of familial recessive Parkinson’s disease (PD), but growing evidence suggests involvement of DJ-1 in idiopathic PD. The key clinical features of PD, rigidity and bradykinesia, result from neurotransmitter imbalance, particularly the catecholamines dopamine (DA) and noradrenaline. We report in human brain and human SH-SY5Y neuroblastoma cell lines that DJ-1 predominantly forms high molecular weight (HMW) complexes that included RNA metabolism proteins hnRNPA1 and PABP1 and the glycolysis enzyme GAPDH. In cell culture models the oxidation status of DJ-1 determined the specific complex composition. RNA sequencing indicated that oxidative changes to DJ-1 were concomitant with changes in mRNA transcripts mainly involved in catecholamine metabolism. Importantly, loss of DJ-1 function upon knock down (KD) or expression of the PD associated form L166P resulted in the absence of HMW DJ-1 complexes. In the KD model, the absence of DJ-1 complexes was accompanied by impairment in catecholamine homeostasis, with significant increases in intracellular DA and noraderenaline levels. These changes in catecholamines could be rescued by re-expression of DJ-1. This catecholamine imbalance may contribute to the particular vulnerability of dopaminergic and noradrenergic neurons to neurodegeneration in PARK7-related PD. Notably, oxidised DJ-1 was significantly decreased in idiopathic PD brain, suggesting altered complex function may also play a role in the more common sporadic form of the disease.
Collapse
Affiliation(s)
- Dominik Piston
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK.,Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Vikas Bansal
- German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Daniela Gargano
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Zhi Yao
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK
| | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK
| | - Mark Odell
- Department of Molecular and Applied Biosciences, University of Westminster, London, UK
| | - M Rhyan Puno
- Department of Molecular and Applied Biosciences, University of Westminster, London, UK
| | - Benny Björkblom
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Jodi Maple-Grødem
- Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Peter Breuer
- Department of Neurology, University of Bonn Medical Centre, Bonn, Germany
| | - Oliver Kaut
- Department of Neurology, University of Bonn Medical Centre, Bonn, Germany
| | - Jan Petter Larsen
- Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
| | - Stefan Bonn
- German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Simon Geir Møller
- Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Department of Biological Sciences, St. John's University, New York, NY, USA
| | - Ullrich Wüllner
- German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Matthew E Gegg
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
40
|
Molcho L, Ben-Zur T, Barhum Y, Offen D. DJ-1 based peptide, ND-13, promote functional recovery in mouse model of focal ischemic injury. PLoS One 2018; 13:e0192954. [PMID: 29489843 PMCID: PMC5831040 DOI: 10.1371/journal.pone.0192954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
Stroke is a leading cause of death worldwide and inflicts serious long-term damage and disability. The vasoconstrictor Endothelin-1, presenting long-term neurological deficits associated with excitotoxicity and oxidative stress is being increasingly used to induce focal ischemic injury as a model of stroke. A DJ-1 based peptide named ND-13 was shown to protect against glutamate toxicity, neurotoxic insults and oxidative stress in various animal models. Here we focus on the benefits of treatment with ND-13 on the functional outcome of focal ischemic injury. Wild type C57BL/6 mice treated with ND-13, after ischemic induction in this model, showed significant improvement in motor function, including improved body balance and motor coordination, and decreased motor asymmetry. We found that DJ-1 knockout mice are more sensitive to Endothelin-1 ischemic insult than wild type mice, contributing thereby additional evidence to the widely reported relevance of DJ-1 in neuroprotection. Furthermore, treatment of DJ-1 knockout mice with ND-13, following Endothelin-1 induced ischemia, resulted in significant improvement in motor functions, suggesting that ND-13 provides compensation for DJ-1 deficits. These preliminary results demonstrate a possible basis for clinical application of the ND-13 peptide to enhance neuroprotection in stroke patients.
Collapse
Affiliation(s)
- Lior Molcho
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Tali Ben-Zur
- Laboratory of Neuroscience, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Barhum
- Laboratory of Neuroscience, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Offen
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
- Laboratory of Neuroscience, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
41
|
Gámez-Valero A, Beyer K. Alternative Splicing of Alpha- and Beta-Synuclein Genes Plays Differential Roles in Synucleinopathies. Genes (Basel) 2018; 9:genes9020063. [PMID: 29370097 PMCID: PMC5852559 DOI: 10.3390/genes9020063] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 11/16/2022] Open
Abstract
The synuclein family is composed of three members, two of which, α- and β-synuclein, play a major role in the development of synucleinopathies, including Parkinson’s disease (PD) as most important movement disorder, dementia with Lewy bodies (DLB) as the second most frequent cause of dementia after Alzheimer’s disease and multiple system atrophy. Whereas abnormal oligomerization and fibrillation of α-synuclein are now well recognized as initial steps in the development of synucleinopathies, β-synuclein is thought to be a natural α-synuclein anti-aggregant. α-synuclein is encoded by the SNCA gene, and β-synuclein by SNCB. Both genes are homologous and undergo complex splicing events. On one hand, in-frame splicing of coding exons gives rise to at least three shorter transcripts, and the functional properties of the corresponding protein isoforms are different. Another type of alternative splicing is the alternative inclusion of at least four initial exons in the case of SNCA, and two in the case of SNCB. Finally, different lengths of 3’ untranslated regions have been also reported for both genes. SNCB only expresses in the brain, but some of the numerous SNCA transcripts are also brain-specific. With the present article, we aim to provide a systematic review of disease related changes in the differential expression of the various SNCA and SNCB transcript variants in brain, blood, and non-neuronal tissue of synucleinopathies, but especially PD and DLB as major neurodegenerative disorders.
Collapse
Affiliation(s)
- Ana Gámez-Valero
- Department of Pathology, Germans Trias i Pujol Research Institute, Badalona, 08916 Barcelona, Spain.
| | - Katrin Beyer
- Department of Pathology, Germans Trias i Pujol Research Institute, Badalona, 08916 Barcelona, Spain.
| |
Collapse
|
42
|
Lassen LB, Reimer L, Ferreira N, Betzer C, Jensen PH. Protein Partners of α-Synuclein in Health and Disease. Brain Pathol 2018; 26:389-97. [PMID: 26940507 DOI: 10.1111/bpa.12374] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/04/2016] [Accepted: 01/11/2016] [Indexed: 12/30/2022] Open
Abstract
α-synuclein is normally situated in the nerve terminal but it accumulates and aggregates in axons and cell bodies in synucleinopathies such as Parkinson's disease. The conformational changes occurring during α-synucleins aggregation process affects its interactions with other proteins and its subcellular localization. This review focuses on interaction partners of α-synuclein within different compartments of the cell with a focus on those preferentially binding aggregated α-synuclein. The aggregation state of α-synuclein also affects its catabolism and we hypothesize impaired macroautophagy is involved neuronal excretion of α-synuclein species responsible for the prion-like spreading of α-synuclein pathology.
Collapse
Affiliation(s)
- Louise Berkhoudt Lassen
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Lasse Reimer
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Nelson Ferreira
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Cristine Betzer
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Poul Henning Jensen
- DANDRITE-Danish Research Institute of Translational Neuroscience & Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| |
Collapse
|
43
|
Lee MK, Lee MS, Bae DW, Lee DH, Cha SS, Chi SW. Structural basis for the interaction between DJ-1 and Bcl-X L. Biochem Biophys Res Commun 2017; 495:1067-1073. [PMID: 29175327 DOI: 10.1016/j.bbrc.2017.11.129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/19/2017] [Indexed: 12/30/2022]
Abstract
DJ-1 is a multifunctional protein associated with Parkinson's disease (PD) and tumorigenesis. In response to ultraviolet B (UVB) irradiation, DJ-1 is translocated into the mitochondria, and its interaction with the mitochondrial protein Bcl-XL protects cells against death. In this study, we characterized the molecular interaction between DJ-1 and Bcl-XL by NMR spectroscopy. The NMR chemical shift perturbation data demonstrated that the oxidized but not the reduced form of DJ-1 binds to the predominantly hydrophobic groove surrounded by the BH1-BH3 domains in Bcl-XL. In addition, our results showed that the C-terminal α8-helix peptide (Cpep) of DJ-1 binds to the pro-apoptotic BH3 peptide-binding hydrophobic groove in Bcl-XL and, thus, acts as a Bcl-XL-binding motif. In combination with the NMR chemical shift perturbation data, a refined structural model of the Bcl-XL/DJ-1 Cpep complex revealed that the binding mode is remarkably similar to that of other Bcl-XL/pro-apoptotic BH3 peptide complexes. Taken together, our results provide a structural basis for the binding mechanism between DJ-1 and Bcl-XL, which will contribute to molecular understanding of the role of mitochondrial DJ-1 in Bcl-XL regulation in response to oxidative stress.
Collapse
Affiliation(s)
- Mi-Kyung Lee
- Disease Target Structure Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Min-Sung Lee
- Disease Target Structure Research Center, KRIBB, Daejeon 34141, Republic of Korea; Department of Proteome Structural Biology, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Da-Woon Bae
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dong-Hwa Lee
- Disease Target Structure Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Seung-Wook Chi
- Disease Target Structure Research Center, KRIBB, Daejeon 34141, Republic of Korea; Department of Proteome Structural Biology, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
44
|
Xu CY, Kang WY, Chen YM, Jiang TF, Zhang J, Zhang LN, Ding JQ, Liu J, Chen SD. DJ-1 Inhibits α-Synuclein Aggregation by Regulating Chaperone-Mediated Autophagy. Front Aging Neurosci 2017; 9:308. [PMID: 29021755 PMCID: PMC5623690 DOI: 10.3389/fnagi.2017.00308] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022] Open
Abstract
α-Synuclein misfolding and aggregation play an important role in the pathogenesis of Parkinson’s disease (PD). Loss of function and mutation of the PARK7/DJ-1 gene cause early-onset familial PD. DJ-1 can inhibit α-synuclein aggregation, and may function at an early step in the aggregation process. Soluble wild-type (WT) α-synuclein is mainly degraded by chaperone-mediated autophagy (CMA), and impairment of CMA is closely related to the pathogenesis of PD. Here, we investigated whether DJ-1 could reduce α-synuclein accumulation and aggregation by CMA. DJ-1 knockout mice and DJ-1 siRNA knockdown SH-SY5Y cells were used to investigate the potential mechanisms underlying the relationship between DJ-1 deficiency and α-synuclein aggregation. First, we confirmed that DJ-1 deficiency increased the accumulation and aggregation of α-synuclein in both SH-SY5Y cells and PD animal models, and overexpression of DJ-1 in vitro effectively decreased α-synuclein levels. α-Synuclein overexpression activated CMA by elevating the levels of lysosome-associated membrane protein type-2A (LAMP2A), but DJ-1 deficiency suppressed upregulation of LAMP2A. DJ-1 deficiency downregulated the level of lysosomal 70 kDa heat-shock cognate protein (HSC70) but not the levels of that in homogenates. Further studies showed that DJ-1 deficiency accelerated the degradation of LAMP2A in lysosomes, leading to the aggregation of α-synuclein. Our study suggests that DJ-1 deficiency aggravates α-synuclein aggregation by inhibiting the activation of CMA and provides further evidence of the molecular interaction between PD-related proteins via the CMA pathway.
Collapse
Affiliation(s)
- Chuan-Ying Xu
- Department of Neurology and Collaborative Innovation Center for Brain Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wen-Yan Kang
- Department of Neurology and Collaborative Innovation Center for Brain Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Meng Chen
- Laboratory of Neurodegenerative Diseases, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Tian-Fang Jiang
- Department of Neurology and Collaborative Innovation Center for Brain Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Zhang
- Department of Neurology and Collaborative Innovation Center for Brain Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Na Zhang
- Department of Biostatistics, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Qing Ding
- Department of Neurology and Collaborative Innovation Center for Brain Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Liu
- Department of Neurology and Collaborative Innovation Center for Brain Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng-Di Chen
- Department of Neurology and Collaborative Innovation Center for Brain Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Laboratory of Neurodegenerative Diseases, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
45
|
Anandhan A, Jacome MS, Lei S, Hernandez-Franco P, Pappa A, Panayiotidis MI, Powers R, Franco R. Metabolic Dysfunction in Parkinson's Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism. Brain Res Bull 2017; 133:12-30. [PMID: 28341600 PMCID: PMC5555796 DOI: 10.1016/j.brainresbull.2017.03.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 12/24/2022]
Abstract
The loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of protein inclusions (Lewy bodies) are the pathological hallmarks of Parkinson's disease (PD). PD is triggered by genetic alterations, environmental/occupational exposures and aging. However, the exact molecular mechanisms linking these PD risk factors to neuronal dysfunction are still unclear. Alterations in redox homeostasis and bioenergetics (energy failure) are thought to be central components of neurodegeneration that contribute to the impairment of important homeostatic processes in dopaminergic cells such as protein quality control mechanisms, neurotransmitter release/metabolism, axonal transport of vesicles and cell survival. Importantly, both bioenergetics and redox homeostasis are coupled to neuro-glial central carbon metabolism. We and others have recently established a link between the alterations in central carbon metabolism induced by PD risk factors, redox homeostasis and bioenergetics and their contribution to the survival/death of dopaminergic cells. In this review, we focus on the link between metabolic dysfunction, energy failure and redox imbalance in PD, making an emphasis in the contribution of central carbon (glucose) metabolism. The evidence summarized here strongly supports the consideration of PD as a disorder of cell metabolism.
Collapse
Affiliation(s)
- Annadurai Anandhan
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Maria S Jacome
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States
| | - Shulei Lei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Pablo Hernandez-Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
| | | | - Robert Powers
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States; Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Rodrigo Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States.
| |
Collapse
|
46
|
Abstract
Across all kingdoms in the tree of life, calcium (Ca2+) is an essential element used by cells to respond and adapt to constantly changing environments. In multicellular organisms, it plays fundamental roles during fertilization, development and adulthood. The inability of cells to regulate Ca2+ can lead to pathological conditions that ultimately culminate in cell death. One such pathological condition is manifested in Parkinson's disease, the second most common neurological disorder in humans, which is characterized by the aggregation of the protein, α-synuclein. This Review discusses current evidence that implicates Ca2+ in the pathogenesis of Parkinson's disease. Understanding the mechanisms by which Ca2+ signaling contributes to the progression of this disease will be crucial for the development of effective therapies to combat this devastating neurological condition.
Collapse
Affiliation(s)
- Sofia V Zaichick
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kaitlyn M McGrath
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gabriela Caraveo
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
47
|
Uversky VN. Looking at the recent advances in understanding α-synuclein and its aggregation through the proteoform prism. F1000Res 2017; 6:525. [PMID: 28491292 PMCID: PMC5399969 DOI: 10.12688/f1000research.10536.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2017] [Indexed: 12/31/2022] Open
Abstract
Despite attracting the close attention of multiple researchers for the past 25 years, α-synuclein continues to be an enigma, hiding sacred truth related to its structure, function, and dysfunction, concealing mechanisms of its pathological spread within the affected brain during disease progression, and, above all, covering up the molecular mechanisms of its multipathogenicity, i.e. the ability to be associated with the pathogenesis of various diseases. The goal of this article is to present the most recent advances in understanding of this protein and its aggregation and to show that the remarkable structural, functional, and dysfunctional multifaceted nature of α-synuclein can be understood using the proteoform concept.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, 33620, USA.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 7 Institutskaya St., 142290 Pushchino, Moscow Region, Russian Federation.,Laboratory of Structural Dynamics, Stability and Folding Of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russian Federation
| |
Collapse
|
48
|
Evsyukov V, Domanskyi A, Bierhoff H, Gispert S, Mustafa R, Schlaudraff F, Liss B, Parlato R. Genetic mutations linked to Parkinson's disease differentially control nucleolar activity in pre-symptomatic mouse models. Dis Model Mech 2017; 10:633-643. [PMID: 28360124 PMCID: PMC5451170 DOI: 10.1242/dmm.028092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/28/2017] [Indexed: 12/21/2022] Open
Abstract
Genetic mutations underlying neurodegenerative disorders impair ribosomal DNA (rDNA) transcription suggesting that nucleolar dysfunction could be a novel pathomechanism in polyglutamine diseases and in certain forms of amyotrophic lateral sclerosis/frontotemporal dementia. Here, we investigated nucleolar activity in pre-symptomatic digenic models of Parkinson's disease (PD) that model the multifactorial aetiology of this disease. To this end, we analysed a novel mouse model mildly overexpressing mutant human α-synuclein (hA53T-SNCA) in a PTEN-induced kinase 1 (PINK1/PARK6) knockout background and mutant mice lacking both DJ-1 (also known as PARK7) and PINK1. We showed that overexpressed hA53T-SNCA localizes to the nucleolus. Moreover, these mutants show a progressive reduction of rDNA transcription linked to a reduced mouse lifespan. By contrast, rDNA transcription is preserved in DJ-1/PINK1 double knockout (DKO) mice. mRNA levels of the nucleolar transcription initiation factor 1A (TIF-IA, also known as RRN3) decrease in the substantia nigra of individuals with PD. Because loss of TIF-IA, as a tool to mimic nucleolar stress, increases oxidative stress and because DJ-1 and PINK1 mutations result in higher vulnerability to oxidative stress, we further explored the synergism between these PD-associated genes and impaired nucleolar function. By the conditional ablation of TIF-IA, we blocked ribosomal RNA (rRNA) synthesis in adult dopaminergic neurons in a DJ-1/PINK1 DKO background. However, the early phenotype of these triple knockout mice was similar to those mice exclusively lacking TIF-IA. These data sustain a model in which loss of DJ-1 and PINK1 does not impair nucleolar activity in a pre-symptomatic stage. This is the first study to analyse nucleolar function in digenic PD models. We can conclude that, at least in these models, the nucleolus is not as severely disrupted as previously shown in DA neurons from PD patients and neurotoxin-based PD mouse models. The results also show that the early increase in rDNA transcription and nucleolar integrity may represent specific homeostatic responses in these digenic pre-symptomatic PD models. Summary: Genetic mutations linked to Parkinson's disease lead to stage-specific deregulation of the nucleolus, a major integrator of the cellular stress response.
Collapse
Affiliation(s)
- Valentin Evsyukov
- Institute of Anatomy and Medical Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Andrii Domanskyi
- German Cancer Research Center, Molecular Biology of the Cell I, 69120 Heidelberg, Germany.,Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Holger Bierhoff
- German Cancer Research Center, Molecular Biology of the Cell II, 69120 Heidelberg, Germany.,Department of Biochemistry, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, 07743 Jena, Germany.,Leibniz-Institute on Aging - Fritz Lipmann Institute (FLI), 07743 Jena, Germany
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Rasem Mustafa
- Institute of Anatomy and Medical Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany.,Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Falk Schlaudraff
- Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Birgit Liss
- Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Rosanna Parlato
- Institute of Anatomy and Medical Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany .,Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| |
Collapse
|
49
|
Cowie AM, Sarty KI, Mercer A, Koh J, Kidd KA, Martyniuk CJ. Molecular networks related to the immune system and mitochondria are targets for the pesticide dieldrin in the zebrafish (Danio rerio) central nervous system. J Proteomics 2017; 157:71-82. [DOI: 10.1016/j.jprot.2017.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 12/26/2022]
|
50
|
Choi S, Choi KY. Screening-based approaches to identify small molecules that inhibit protein–protein interactions. Expert Opin Drug Discov 2017; 12:293-303. [DOI: 10.1080/17460441.2017.1280456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sehee Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- CK Biotechnology Inc., 416 Advanced Science and Technology Center, 50 Yonsei-ro, Seoul, Korea
| |
Collapse
|