1
|
İpek R, Akalın A, Habiloğlu E, Hattapoğlu S, Pirinççioğlu AG. The fourth family in the world with a novel variant in the ATP5MK gene: four siblings with complex V (ATP synthase) deficiency. Neurogenetics 2025; 26:33. [PMID: 40014158 DOI: 10.1007/s10048-025-00813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
Mitochondrial Complex V (ATP synthase) deficiency nuclear type 6 (MC5DN6) is a progressive neurodegenerative disorder characterized by autosomal recessive inheritance and developmental regression, particularly in gross motor skills, which manifests in early childhood. This study aims to present the discovery of a novel variant in four male siblings aged 13 years 9 months to 25 years, making this the fourth family reported globally, while also raising awareness of rare mitochondrial diseases. Four individuals from the same family were retrospectively evaluated based on their demographic, clinical, laboratory, and molecular genetic data. The mutation in the ATP5MK gene was analyzed using the exome sequencing (ES) method. The detected variation was classified according to the criteria American College of Medical Genetics. Four cases, aged between 13 years 9 months and 25 years, were analyzed. All individuals were male. While all four cases had a history of neurodegenerative disease, they also exhibited intellectual disability, muscle weakness, increased deep tendon reflexes in the lower extremities, spasticity, scoliosis, pes cavus deformity, positive Babinski reflex, abnormal gait patterns due to foot deformities, and normal cerebellar tests. Additional findings included geographic tongue (n = 2), strabismus (n = 2), nystagmus (n = 1), ophthalmoplegia (n = 2), hypertrophic upper extremity muscle body build (n = 2), keloid tissue (n = 1), and short stature (n = 3). ES of the first case identified a homozygous splice donor variant (c.87 + 1G > A) in the ATP5MK gene as a novel variant, and family screening revealed the same variant in a biallelic state in the other three siblings. The parents were confirmed as heterozygous carriers, consistent with autosomal recessive inheritance. Mitochondrial diseases can mimic a wide range of neurological disorders. They should be considered as a potential underlying cause when treatment for suspected differential diagnoses proves ineffective.
Collapse
Affiliation(s)
- Rojan İpek
- Department of Pediatric Neurology, Dicle University, Diyarbakır, Türkiye.
| | - Akçahan Akalın
- Department of Pediatric Genetics, DiyarbakıR Childrens Diseases Hospital, Diyarbakır, Türkiye
| | - Esra Habiloğlu
- Department of Medical Genetics, Batman Training and Research Hospital, Batman, Türkiye
| | | | | |
Collapse
|
2
|
Morciano G, Pinton P. Modulation of mitochondrial permeability transition pores in reperfusion injury: Mechanisms and therapeutic approaches. Eur J Clin Invest 2025; 55:e14331. [PMID: 39387139 PMCID: PMC11628652 DOI: 10.1111/eci.14331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Ischemia/reperfusion injury is attracting continuous interest in science for two reasons: because it affects several clinical conditions and because it has been identified, albeit in broad terms, the molecular entity becoming activated by the reperfusion damage paradoxes. Indeed, calcium, oxygen-dependent oxidative stress and pH would activate conformational changes in the mitochondrial cristae embedded F1/FO ATP synthase, allowing the formation of pores in the inner mitochondrial membrane thus increasing its permeability. This is a key determinant for mitochondrial stress, cell death and tissue dysfunction. Targeting each of these factors has never contributed to improved clinical outcome of the patients affected by reperfusion damage; now, the focus on the PTP opening could represent the closest target to solve this pathway made by extensive cell death when the tissues become revascularized. In this review, we summarized last knowledge about the structure, the modulation and the therapeutic targeting of the PTP, focusing on ATP synthase and cardiac ischemia/reperfusion.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Department of Medical SciencesUniversity of FerraraFerraraItaly
- Maria Cecilia Hospital, GVM Care & ResearchCotignolaItaly
| | - Paolo Pinton
- Department of Medical SciencesUniversity of FerraraFerraraItaly
- Maria Cecilia Hospital, GVM Care & ResearchCotignolaItaly
| |
Collapse
|
3
|
Jiko C, Morimoto Y, Tsukihara T, Gerle C. Large-scale column-free purification of bovine F-ATP synthase. J Biol Chem 2024; 300:105603. [PMID: 38159856 PMCID: PMC10851226 DOI: 10.1016/j.jbc.2023.105603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024] Open
Abstract
Mammalian F-ATP synthase is central to mitochondrial bioenergetics and is present in the inner mitochondrial membrane in a dynamic oligomeric state of higher oligomers, tetramers, dimers, and monomers. In vitro investigations of mammalian F-ATP synthase are often limited by the ability to purify the oligomeric forms present in vivo at a quantity, stability, and purity that meets the demand of the planned experiment. We developed a purification approach for the isolation of bovine F-ATP synthase from heart muscle mitochondria that uses a combination of buffer conditions favoring inhibitor factor 1 binding and sucrose density gradient ultracentrifugation to yield stable complexes at high purity in the milligram range. By tuning the glyco-diosgenin to lauryl maltose neopentyl glycol ratio in a final gradient, fractions that are either enriched in tetrameric or monomeric F-ATP synthase can be obtained. It is expected that this large-scale column-free purification strategy broadens the spectrum of in vitro investigation on mammalian F-ATP synthase.
Collapse
Affiliation(s)
- Chimari Jiko
- Division of Radiation Life Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan.
| | - Yukio Morimoto
- Division of Radiation Life Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan
| | - Tomitake Tsukihara
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Koto, Kamigori, Hyogo, Japan; Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Christoph Gerle
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Osaka, Japan; Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Kouto, Hyogo, Japan.
| |
Collapse
|
4
|
van der Ven AT, Cabrera-Orefice A, Wente I, Feichtinger RG, Tsiakas K, Weiss D, Bierhals T, Scholle L, Prokisch H, Kopajtich R, Santer R, Mayr JA, Hempel M, Wittig I. Expanding the phenotypic and biochemical spectrum of NDUFAF3-related mitochondrial disease. Mol Genet Metab 2023; 140:107675. [PMID: 37572574 DOI: 10.1016/j.ymgme.2023.107675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/14/2023]
Abstract
Recessive variants in NDUFAF3 are a known cause of complex I (CI)-related mitochondrial disorders (MDs). The seven patients reported to date exhibited severe neurologic symptoms and lactic acidosis, followed by a fatal course and death during infancy in most cases. We present a 10-year-old patient with a neurodevelopmental disorder, progressive exercise intolerance, dystonia, basal ganglia abnormalities, and elevated lactate concentration in blood. Trio-exome sequencing revealed compound-heterozygosity for a pathogenic splice-site and a likely pathogenic missense variant in NDUFAF3. Spectrophotometric analysis of fibroblast-derived mitochondria demonstrated a relatively mild reduction of CI activity. Complexome analyses revealed severely reduced NDUFAF3 as well as CI in patient fibroblasts. Accumulation of early sub-assemblies of the membrane arm of CI associated with mitochondrial complex I intermediate assembly (MCIA) complex was observed. The most striking additional findings were both the unusual occurrence of free monomeric CI holding MCIA and other assembly factors. Here we discuss our patient in context of genotype, phenotype and metabolite data from previously reported NDUFAF3 cases. With the atypical presentation of our patient, we provide further insight into the phenotypic spectrum of NDUFAF3-related MDs. Complexome analysis in our patient confirms the previously defined role of NDUFAF3 within CI biogenesis, yet adds new aspects regarding the correct timing of both the association of soluble and membrane arm modules and CI-maturation as well as respiratory supercomplex formation.
Collapse
Affiliation(s)
- Amelie T van der Ven
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Alfredo Cabrera-Orefice
- Functional Proteomics, Institute of Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Isabell Wente
- Functional Proteomics, Institute of Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - René G Feichtinger
- University Children's Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), Salzburg, Austria
| | - Konstantinos Tsiakas
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Deike Weiss
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leila Scholle
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Holger Prokisch
- Institute of Human Genetics, Klinikum Rechts der Isar, TUM, Munich, Germany.; Institute of Neurogenomics, Helmholtz Center Munich, Neuherberg, Germany
| | - Robert Kopajtich
- Institute of Human Genetics, Klinikum Rechts der Isar, TUM, Munich, Germany.; Institute of Neurogenomics, Helmholtz Center Munich, Neuherberg, Germany
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes A Mayr
- University Children's Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), Salzburg, Austria
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Kamradt ML, Makarewich CA. Mitochondrial microproteins: critical regulators of protein import, energy production, stress response pathways, and programmed cell death. Am J Physiol Cell Physiol 2023; 325:C807-C816. [PMID: 37642234 PMCID: PMC11540166 DOI: 10.1152/ajpcell.00189.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Mitochondria rely upon the coordination of protein import, protein translation, and proper functioning of oxidative phosphorylation (OXPHOS) complexes I-V to sustain the activities of life for an organism. Each process is dependent upon the function of profoundly large protein complexes found in the mitochondria [translocase of the outer mitochondrial membrane (TOMM) complex, translocase of the inner mitochondrial membrane (TIMM) complex, OXPHOS complexes, mitoribosomes]. These massive protein complexes, in some instances more than one megadalton, are built up from numerous protein subunits of varying sizes, including many proteins that are ≤100-150 amino acids. However, these small proteins, termed microproteins, not only act as cogs in large molecular machines but also have important steps in inhibiting or promoting the intrinsic pathway of apoptosis, coordinate responses to cellular stress, and even act as hormones. This review focuses on microproteins that occupy the mitochondria and are critical for its function. Although the microprotein field is relatively new, researchers have long recognized the existence of these mitochondrial proteins as critical components of virtually all aspects of mitochondrial biology. Thus, recent studies estimating that hundreds of new microproteins of unknown function exist and are missing from current genome annotations suggests that the mitochondrial "microproteome" is a rich area for future biological investigation.
Collapse
Affiliation(s)
- Michael L Kamradt
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Catherine A Makarewich
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
6
|
Godoy-Hernandez A, Asseri AH, Purugganan AJ, Jiko C, de Ram C, Lill H, Pabst M, Mitsuoka K, Gerle C, Bald D, McMillan DGG. Rapid and Highly Stable Membrane Reconstitution by LAiR Enables the Study of Physiological Integral Membrane Protein Functions. ACS CENTRAL SCIENCE 2023; 9:494-507. [PMID: 36968527 PMCID: PMC10037447 DOI: 10.1021/acscentsci.2c01170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 06/18/2023]
Abstract
Functional reintegration into lipid environments represents a major challenge for in vitro investigation of integral membrane proteins (IMPs). Here, we report a new approach, termed LMNG Auto-insertion Reintegration (LAiR), for reintegration of IMPs into lipid bilayers within minutes. The resulting proteoliposomes displayed an unprecedented capability to maintain proton gradients and long-term stability. LAiR allowed for monitoring catalysis of a membrane-bound, physiologically relevant polyisoprenoid quinone substrate by Escherichia coli cytochromes bo 3 (cbo 3) and bd (cbd) under control of the proton motive force. LAiR also facilitated bulk-phase detection and physiological assessment of the "proton leak" in cbo 3, a controversial catalytic state that previously was only approachable at the single-molecule level. LAiR maintained the multisubunit integrity and higher-order oligomeric states of the delicate mammalian F-ATP synthase. Given that LAiR can be applied to both liposomes and planar membrane bilayers and is compatible with IMPs and lipids from prokaryotic and eukaryotic sources, we anticipate LAiR to be applied broadly across basic research, pharmaceutical applications, and biotechnology.
Collapse
Affiliation(s)
- Albert Godoy-Hernandez
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Amer H. Asseri
- Biochemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
- Amsterdam
Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Aiden J. Purugganan
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Chimari Jiko
- Institute
for Integrated Radiation and Nuclear Science, Kyoto University, Kyoto, 606-8501, Japan
| | - Carol de Ram
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Holger Lill
- Amsterdam
Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Martin Pabst
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Kaoru Mitsuoka
- Research
Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka 565-0871, Japan
| | - Christoph Gerle
- Institute
for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Life
Science Research Infrastructure Group, RIKEN
SPring-8 Center, Kouto, Hyogo 679-5148, Japan
| | - Dirk Bald
- Amsterdam
Institute for Life and Environment (A-LIFE), AIMMS, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Duncan G. G. McMillan
- Department
of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo
City, Tokyo 113-8654, Japan
| |
Collapse
|
7
|
Bernardi P, Carraro M, Lippe G. The mitochondrial permeability transition: Recent progress and open questions. FEBS J 2022; 289:7051-7074. [PMID: 34710270 PMCID: PMC9787756 DOI: 10.1111/febs.16254] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 01/13/2023]
Abstract
Major progress has been made in defining the basis of the mitochondrial permeability transition, a Ca2+ -dependent permeability increase of the inner membrane that has puzzled mitochondrial research for almost 70 years. Initially considered an artefact of limited biological interest by most, over the years the permeability transition has raised to the status of regulator of mitochondrial ion homeostasis and of druggable effector mechanism of cell death. The permeability transition is mediated by opening of channel(s) modulated by matrix cyclophilin D, the permeability transition pore(s) (PTP). The field has received new impulse (a) from the hypothesis that the PTP may originate from a Ca2+ -dependent conformational change of F-ATP synthase and (b) from the reevaluation of the long-standing hypothesis that it originates from the adenine nucleotide translocator (ANT). Here, we provide a synthetic account of the structure of ANT and F-ATP synthase to discuss potential and controversial mechanisms through which they may form high-conductance channels; and review some intriguing findings from the wealth of early studies of PTP modulation that still await an explanation. We hope that this review will stimulate new experiments addressing the many outstanding problems, and thus contribute to the eventual solution of the puzzle of the permeability transition.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience InstituteUniversity of PadovaItaly
| | - Michela Carraro
- Department of Biomedical Sciences and CNR Neuroscience InstituteUniversity of PadovaItaly
| | | |
Collapse
|
8
|
Gerle C, Kishikawa JI, Yamaguchi T, Nakanishi A, Çoruh O, Makino F, Miyata T, Kawamoto A, Yokoyama K, Namba K, Kurisu G, Kato T. Structures of multisubunit membrane complexes with the CRYO ARM 200. Microscopy (Oxf) 2022; 71:249-261. [PMID: 35861182 PMCID: PMC9535789 DOI: 10.1093/jmicro/dfac037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Progress in structural membrane biology has been significantly accelerated by the ongoing 'Resolution Revolution' in cryo-electron microscopy (cryo-EM). In particular, structure determination by single-particle analysis has evolved into the most powerful method for atomic model building of multisubunit membrane protein complexes. This has created an ever-increasing demand in cryo-EM machine time, which to satisfy is in need of new and affordable cryo-electron microscopes. Here, we review our experience in using the JEOL CRYO ARM 200 prototype for the structure determination by single-particle analysis of three different multisubunit membrane complexes: the Thermus thermophilus V-type ATPase VO complex, the Thermosynechococcus elongatus photosystem I monomer and the flagellar motor lipopolysaccharide peptidoglycan ring (LP ring) from Salmonella enterica.
Collapse
Affiliation(s)
- Christoph Gerle
- Institute for Protein Research, Osaka University, 3-2 Yamada Oka, Suita, Osaka 565-0871, Japan
- RIKEN SPring-8 Center, Life Science Research Infrastructure Group, Sayo-gun, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Jun-ichi Kishikawa
- Institute for Protein Research, Osaka University, 3-2 Yamada Oka, Suita, Osaka 565-0871, Japan
| | - Tomoko Yamaguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Atsuko Nakanishi
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Orkun Çoruh
- Institute for Protein Research, Osaka University, 3-2 Yamada Oka, Suita, Osaka 565-0871, Japan
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Niederösterreich 3400, Austria
| | - Fumiaki Makino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- JEOL Ltd., 3 Chome 1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Tomoko Miyata
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Akihiro Kawamoto
- Institute for Protein Research, Osaka University, 3-2 Yamada Oka, Suita, Osaka 565-0871, Japan
| | - Ken Yokoyama
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, 3-2 Yamada Oka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, 3-2 Yamada Oka, Suita, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
9
|
Dewar CE, Oeljeklaus S, Wenger C, Warscheid B, Schneider A. Characterization of a highly diverged mitochondrial ATP synthase F o subunit in Trypanosoma brucei. J Biol Chem 2022; 298:101829. [PMID: 35293314 PMCID: PMC9034290 DOI: 10.1016/j.jbc.2022.101829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
The mitochondrial F1Fo ATP synthase of the parasite Trypanosoma brucei has been previously studied in detail. This unusual enzyme switches direction in functionality during the life cycle of the parasite, acting as an ATP synthase in the insect stages, and as an ATPase to generate mitochondrial membrane potential in the mammalian bloodstream stages. Whereas the trypanosome F1 moiety is relatively highly conserved in structure and composition, the Fo subcomplex and the peripheral stalk have been shown to be more variable. Interestingly, a core subunit of the latter, the normally conserved subunit b, has been resistant to identification by sequence alignment or biochemical methods. Here, we identified a 17 kDa mitochondrial protein of the inner membrane, Tb927.8.3070, that is essential for normal growth, efficient oxidative phosphorylation, and membrane potential maintenance. Pull-down experiments and native PAGE analysis indicated that the protein is both associated with the F1Fo ATP synthase and integral to its assembly. In addition, its knockdown reduced the levels of Fo subunits, but not those of F1, and disturbed the cell cycle. Finally, analysis of structural homology using the HHpred algorithm showed that this protein has structural similarities to Fo subunit b of other species, indicating that this subunit may be a highly diverged form of the elusive subunit b.
Collapse
Affiliation(s)
- Caroline E Dewar
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Silke Oeljeklaus
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Christoph Wenger
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Bettina Warscheid
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
10
|
Carrer A, Laquatra C, Tommasin L, Carraro M. Modulation and Pharmacology of the Mitochondrial Permeability Transition: A Journey from F-ATP Synthase to ANT. Molecules 2021; 26:molecules26216463. [PMID: 34770872 PMCID: PMC8587538 DOI: 10.3390/molecules26216463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/22/2022] Open
Abstract
The permeability transition (PT) is an increased permeation of the inner mitochondrial membrane due to the opening of the PT pore (PTP), a Ca2+-activated high conductance channel involved in Ca2+ homeostasis and cell death. Alterations of the PTP have been associated with many pathological conditions and its targeting represents an incessant challenge in the field. Although the modulation of the PTP has been extensively explored, the lack of a clear picture of its molecular nature increases the degree of complexity for any target-based approach. Recent advances suggest the existence of at least two mitochondrial permeability pathways mediated by the F-ATP synthase and the ANT, although the exact molecular mechanism leading to channel formation remains elusive for both. A full comprehension of this to-pore conversion will help to assist in drug design and to develop pharmacological treatments for a fine-tuned PT regulation. Here, we will focus on regulatory mechanisms that impinge on the PTP and discuss the relevant literature of PTP targeting compounds with particular attention to F-ATP synthase and ANT.
Collapse
|
11
|
Almendro-Vedia V, Natale P, Valdivieso González D, Lillo MP, Aragones JL, López-Montero I. How rotating ATP synthases can modulate membrane structure. Arch Biochem Biophys 2021; 708:108939. [PMID: 34052190 DOI: 10.1016/j.abb.2021.108939] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/03/2023]
Abstract
F1Fo-ATP synthase (ATP synthase) is a central membrane protein that synthetizes most of the ATP in the cell through a rotational movement driven by a proton gradient across the hosting membrane. In mitochondria, ATP synthases can form dimers through specific interactions between some subunits of the protein. The dimeric form of ATP synthase provides the protein with a spontaneous curvature that sustain their arrangement at the rim of the high-curvature edges of mitochondrial membrane (cristae). Also, a direct interaction with cardiolipin, a lipid present in the inner mitochondrial membrane, induces the dimerization of ATP synthase molecules along cristae. The deletion of those biochemical interactions abolishes the protein dimerization producing an altered mitochondrial function and morphology. Mechanically, membrane bending is one of the key deformation modes by which mitochondrial membranes can be shaped. In particular, bending rigidity and spontaneous curvature are important physical factors for membrane remodelling. Here, we discuss a complementary mechanism whereby the rotatory movement of the ATP synthase might modify the mechanical properties of lipid bilayers and contribute to the formation and regulation of the membrane invaginations.
Collapse
Affiliation(s)
- Víctor Almendro-Vedia
- Departamento Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - Paolo Natale
- Departamento Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - David Valdivieso González
- Departamento Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - M Pilar Lillo
- Departamento Química Física Biológica, Instituto de Química-Física "Rocasolano" (CSIC), Serrano 119, 28006, Madrid, Spain
| | - Juan L Aragones
- Departamento de Física Teórica de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Centre (IFIMAC), Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Iván López-Montero
- Departamento Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041, Madrid, Spain.
| |
Collapse
|
12
|
Carrer A, Tommasin L, Šileikytė J, Ciscato F, Filadi R, Urbani A, Forte M, Rasola A, Szabò I, Carraro M, Bernardi P. Defining the molecular mechanisms of the mitochondrial permeability transition through genetic manipulation of F-ATP synthase. Nat Commun 2021; 12:4835. [PMID: 34376679 PMCID: PMC8355262 DOI: 10.1038/s41467-021-25161-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
F-ATP synthase is a leading candidate as the mitochondrial permeability transition pore (PTP) but the mechanism(s) leading to channel formation remain undefined. Here, to shed light on the structural requirements for PTP formation, we test cells ablated for g, OSCP and b subunits, and ρ0 cells lacking subunits a and A6L. Δg cells (that also lack subunit e) do not show PTP channel opening in intact cells or patch-clamped mitoplasts unless atractylate is added. Δb and ΔOSCP cells display currents insensitive to cyclosporin A but inhibited by bongkrekate, suggesting that the adenine nucleotide translocator (ANT) can contribute to channel formation in the absence of an assembled F-ATP synthase. Mitoplasts from ρ0 mitochondria display PTP currents indistinguishable from their wild-type counterparts. In this work, we show that peripheral stalk subunits are essential to turn the F-ATP synthase into the PTP and that the ANT provides mitochondria with a distinct permeability pathway.
Collapse
Affiliation(s)
- Andrea Carrer
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ludovica Tommasin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Justina Šileikytė
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Francesco Ciscato
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy
| | - Andrea Urbani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Michael Forte
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ildikò Szabò
- Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy.,Department of Biology, University of Padova, Padova, Italy
| | - Michela Carraro
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy. .,Consiglio Nazionale delle Ricerche Neuroscience Institute, Padova, Italy.
| |
Collapse
|
13
|
Abstract
The production of ATP in mitochondria requires the oxidation of energy rich compounds to generate a proton motive force (pmf), a chemical potential difference for protons across the inner membrane. This pmf powers the ATP synthase, a molecular machine with a rotary action, to synthesize ATP. The assembly of human ATP synthase from 27 nuclear encoded proteins and two mitochondrially encoded subunits in the inner organellar membrane involves the formation of intermediate modules representing the F1-catalytic domain, the peripheral stalk, associated membrane subunits, and the c8 ring in the membrane part of the rotor. Here, we describe how components of the peripheral stalk and three associated membrane subunits are assembled and introduced into the enzyme complex. The adenosine triphosphate (ATP) synthase in human mitochondria is a membrane bound assembly of 29 proteins of 18 kinds organized into F1-catalytic, peripheral stalk (PS), and c8-rotor ring modules. All but two membrane components are encoded in nuclear genes, synthesized on cytoplasmic ribosomes, imported into the mitochondrial matrix, and assembled into the complex with the mitochondrial gene products ATP6 and ATP8. Intermediate vestigial ATPase complexes formed by disruption of nuclear genes for individual subunits provide a description of how the various domains are introduced into the enzyme. From this approach, it is evident that three alternative pathways operate to introduce the PS module (including associated membrane subunits e, f, and g). In one pathway, the PS is built up by addition to the core subunit b of membrane subunits e and g together, followed by membrane subunit f. Then this b-e-g-f complex is bound to the preformed F1-c8 module by subunits OSCP and F6. The final component of the PS, subunit d, is added subsequently to form a key intermediate that accepts the two mitochondrially encoded subunits. In another route to this key intermediate, first e and g together and then f are added to a preformed F1-c8-OSCP-F6-b-d complex. A third route involves the addition of the c8-ring module to the complete F1-PS complex. The key intermediate then accepts the two mitochondrially encoded subunits, stabilized by the addition of subunit j, leading to an ATP synthase complex that is coupled to the proton motive force and capable of making ATP.
Collapse
|
14
|
Dai D, Shi R, Han S, Jin H, Wang X. Weighted gene coexpression network analysis identifies hub genes related to KRAS mutant lung adenocarcinoma. Medicine (Baltimore) 2020; 99:e21478. [PMID: 32769881 PMCID: PMC7593058 DOI: 10.1097/md.0000000000021478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aim of current study was to use Weighted Gene Coexpression Network Analysis (WGCNA) to identify hub genes related to the incidence and prognosis of KRAS mutant (MT) lung adenocarcinoma (LUAD).We involved 184 stage IIB to IV LUAD samples and 59 normal lung tissue samples from The Cancer Genome Atlas (TCGA) database. The R package "limma" was used to identify differentially expressed genes (DEGs). WGCNA and survival analyses were performed by R packages "WGCNA" and "survival," respectively. The functional analyses were performed by R package "clusterProfiler" and GSEA software. Network construction and MCODE analysis were performed by Cytoscape_v3.6.1.Totally 2590 KRAS MT specific DEGs were found between LUAD and normal lung tissues, and 10 WGCNA modules were identified. Functional analysis of the key module showed the ribosome biogenesis related terms were enriched. We observed the expression of 8 genes were positively correlated to the worse survival of KRAS MT LUAD patients, the 7 of them were validated by Kaplan-Meier plotter database (kmplot.com/) (thymosin Beta 10 [TMSB10], ribosomal Protein S16 [RPS16], mitochondrial ribosomal protein L27 [MRPL27], cytochrome c oxidase subunit 6A1 [COX6A1], HCLS1-associated protein X-1 [HAX1], ribosomal protein L38 [RPL38], and ATP Synthase Membrane Subunit DAPIT [ATP5MD]). The GSEA analysis found mTOR and STK33 pathways were upregulated in KRAS MT LUAD (P < .05, false discovery rate [FDR] < 0.25).In summary, our study firstly used WGCNA to identify hub genes in the development of KRAS MT LUAD. The identified prognostic factors would be potential biomarkers in clinical use. Further molecular studies are required to confirm the mechanism of those genes in KRAS MT LUAD.
Collapse
Affiliation(s)
| | | | | | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | | |
Collapse
|
15
|
Mitochondrial F-ATP synthase as the permeability transition pore. Pharmacol Res 2020; 160:105081. [PMID: 32679179 DOI: 10.1016/j.phrs.2020.105081] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/27/2022]
Abstract
The current state of research on the mitochondrial permeability transition pore (PTP) can be described in terms of three major problems: molecular identity, atomic structure and gating mechanism. In this review these three problems are discussed in the light of recent findings with special emphasis on the discovery that the PTP is mitochondrial F-ATP synthase (mtFoF1). Novel features of the mitochondrial F-ATP synthase emerging from the success of single particle cryo electron microscopy (cryo-EM) to determine F-ATP synthase structures are surveyed along with their possible involvement in pore formation. Also, current findings from the gap junction field concerning the involvement of lipids in channel closure are examined. Finally, an earlier proposal denoted as the 'Death Finger' is discussed as a working model for PTP gating.
Collapse
|
16
|
Carraro M, Carrer A, Urbani A, Bernardi P. Molecular nature and regulation of the mitochondrial permeability transition pore(s), drug target(s) in cardioprotection. J Mol Cell Cardiol 2020; 144:76-86. [DOI: 10.1016/j.yjmcc.2020.05.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/28/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022]
|
17
|
Sanson M, Vu Hong A, Massourides E, Bourg N, Suel L, Amor F, Corre G, Bénit P, Barthélémy I, Blot S, Bigot A, Pinset C, Rustin P, Servais L, Voit T, Richard I, Israeli D. miR-379 links glucocorticoid treatment with mitochondrial response in Duchenne muscular dystrophy. Sci Rep 2020; 10:9139. [PMID: 32499563 PMCID: PMC7272451 DOI: 10.1038/s41598-020-66016-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a lethal muscle disorder, caused by mutations in the DMD gene and affects approximately 1:5000-6000 male births. In this report, we identified dysregulation of members of the Dlk1-Dio3 miRNA cluster in muscle biopsies of the GRMD dog model. Of these, we selected miR-379 for a detailed investigation because its expression is high in the muscle, and is known to be responsive to glucocorticoid, a class of anti-inflammatory drugs commonly used in DMD patients. Bioinformatics analysis predicts that miR-379 targets EIF4G2, a translational factor, which is involved in the control of mitochondrial metabolic maturation. We confirmed in myoblasts that EIF4G2 is a direct target of miR-379, and identified the DAPIT mitochondrial protein as a translational target of EIF4G2. Knocking down DAPIT in skeletal myotubes resulted in reduced ATP synthesis and myogenic differentiation. We also demonstrated that this pathway is GC-responsive since treating mice with dexamethasone resulted in reduced muscle expression of miR-379 and increased expression of EIF4G2 and DAPIT. Furthermore, miR-379 seric level, which is also elevated in the plasma of DMD patients in comparison with age-matched controls, is reduced by GC treatment. Thus, this newly identified pathway may link GC treatment to a mitochondrial response in DMD.
Collapse
Affiliation(s)
- Mathilde Sanson
- Généthon INSERM, UMR_S951, INTEGRARE research unit, Evry, 91000, France
| | - Ai Vu Hong
- Généthon INSERM, UMR_S951, INTEGRARE research unit, Evry, 91000, France
| | | | - Nathalie Bourg
- Généthon INSERM, UMR_S951, INTEGRARE research unit, Evry, 91000, France
| | - Laurence Suel
- Généthon INSERM, UMR_S951, INTEGRARE research unit, Evry, 91000, France
| | - Fatima Amor
- Généthon INSERM, UMR_S951, INTEGRARE research unit, Evry, 91000, France
| | - Guillaume Corre
- Généthon INSERM, UMR_S951, INTEGRARE research unit, Evry, 91000, France
| | - Paule Bénit
- INSERM, UMR S1141, Hôpital Robert Debré, Paris, France
| | - Inès Barthélémy
- Inserm U955-E10, IMRB, Université Paris Est, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Stephane Blot
- Inserm U955-E10, IMRB, Université Paris Est, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Anne Bigot
- Center for Research in Myology UMRS974, Sorbonne Université, INSERM, Myology Institute, Paris, France
| | | | - Pierre Rustin
- INSERM, UMR S1141, Hôpital Robert Debré, Paris, France
| | - Laurent Servais
- MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK
- Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liège & University of Liège, Liège, Belgium
| | - Thomas Voit
- NIHR Great Ormond Street Hospital Biomedical Research Centre and Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Isabelle Richard
- Généthon INSERM, UMR_S951, INTEGRARE research unit, Evry, 91000, France
| | - David Israeli
- Généthon INSERM, UMR_S951, INTEGRARE research unit, Evry, 91000, France.
| |
Collapse
|
18
|
Corrêa MG, Bittencourt LO, Nascimento PC, Ferreira RO, Aragão WAB, Silva MCF, Gomes-Leal W, Fernandes MS, Dionizio A, Buzalaf MR, Crespo-Lopez ME, Lima RR. Spinal cord neurodegeneration after inorganic mercury long-term exposure in adult rats: Ultrastructural, proteomic and biochemical damages associated with reduced neuronal density. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110159. [PMID: 31962214 DOI: 10.1016/j.ecoenv.2019.110159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Mercury chloride (HgCl2) is a chemical pollutant widely found in the environment. This form of mercury is able to promote several damages to the Central Nervous System (CNS), however the effects of HgCl2 on the spinal cord, an important pathway for the communication between the CNS and the periphery, are still poorly understood. The aim of this work was to investigate the effects of HgCl2 exposure on spinal cord of adult rats. For this, animals were exposed to a dose of 0.375 mg/kg/day, for 45 days. Then, they were euthanized, the spinal cord collected and we investigated the mercury concentrations in medullary parenchyma and the effects on oxidative biochemistry, proteomic profile and tissue structures. Our results showed that exposure to this metal promoted increased levels of Hg in the spinal cord, impaired oxidative biochemistry by triggering oxidative stress, mudulated antioxidant system proteins, energy metabolism and myelin structure; as well as caused disruption in the myelin sheath and reduction in neuronal density. Despite the low dose, we conclude that prolonged exposure to HgCl2 triggers biochemical changes and modulates the expression of several proteins, resulting in damage to the myelin sheath and reduced neuronal density in the spinal cord.
Collapse
Affiliation(s)
- Márcio Gonçalves Corrêa
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Railson Oliveira Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Marcia Cristina Freitas Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Walace Gomes-Leal
- Laboratory of Experimental Neuroprotection and Neuroregeneration, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Mileni Silva Fernandes
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, SP, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, SP, Brazil
| | - Marília Rabelo Buzalaf
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, SP, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil.
| |
Collapse
|
19
|
Native aggregation is a common feature among triosephosphate isomerases of different species. Sci Rep 2020; 10:1338. [PMID: 31992784 PMCID: PMC6987189 DOI: 10.1038/s41598-020-58272-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
Triosephosphate isomerase (TIM) is an enzyme of the glycolysis pathway which exists in almost all types of cells. Its structure is the prototype of a motif called TIM-barrel or (α/β)8 barrel, which is the most common fold of all known enzyme structures. The simplest form in which TIM is catalytically active is a homodimer, in many species of bacteria and eukaryotes, or a homotetramer in some archaea. Here we show that the purified homodimeric TIMs from nine different species of eukaryotes and one of an extremophile bacterium spontaneously form higher order aggregates that can range from 3 to 21 dimers per macromolecular complex. We analysed these aggregates with clear native electrophoresis with normal and inverse polarity, blue native polyacrylamide gel electrophoresis, liquid chromatography, dynamic light scattering, thermal shift assay and transmission electron and fluorescence microscopies, we also performed bioinformatic analysis of the sequences of all enzymes to identify and predict regions that are prone to aggregation. Additionally, the capacity of TIM from Trypanosoma brucei to form fibrillar aggregates was characterized. Our results indicate that all the TIMs we studied are capable of forming oligomers of different sizes. This is significant because aggregation of TIM may be important in some of its non-catalytic moonlighting functions, like being a potent food allergen, or in its role associated with Alzheimer’s disease.
Collapse
|
20
|
Kustatscher G, Grabowski P, Schrader TA, Passmore JB, Schrader M, Rappsilber J. Co-regulation map of the human proteome enables identification of protein functions. Nat Biotechnol 2019; 37:1361-1371. [PMID: 31690884 DOI: 10.1038/s41587-019-0298-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 09/27/2019] [Indexed: 01/07/2023]
Abstract
Assigning functions to the vast array of proteins present in eukaryotic cells remains challenging. To identify relationships between proteins, and thereby enable functional annotation of proteins, we determined changes in abundance of 10,323 human proteins in response to 294 biological perturbations using isotope-labeling mass spectrometry. We applied the machine learning algorithm treeClust to reveal functional associations between co-regulated human proteins from ProteomeHD, a compilation of our own data and datasets from the Proteomics Identifications database. This produced a co-regulation map of the human proteome. Co-regulation was able to capture relationships between proteins that do not physically interact or colocalize. For example, co-regulation of the peroxisomal membrane protein PEX11β with mitochondrial respiration factors led us to discover an organelle interface between peroxisomes and mitochondria in mammalian cells. We also predicted the functions of microproteins that are difficult to study with traditional methods. The co-regulation map can be explored at www.proteomeHD.net .
Collapse
Affiliation(s)
- Georg Kustatscher
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Piotr Grabowski
- Division of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.,Data Sciences and Artificial Intelligence, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | | | | | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK. .,Division of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.
| |
Collapse
|
21
|
Giorgio V, Fogolari F, Lippe G, Bernardi P. OSCP subunit of mitochondrial ATP synthase: role in regulation of enzyme function and of its transition to a pore. Br J Pharmacol 2019; 176:4247-4257. [PMID: 30291799 PMCID: PMC6887684 DOI: 10.1111/bph.14513] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/20/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
Abstract
The permeability transition pore (PTP) is a latent, high-conductance channel of the inner mitochondrial membrane. When activated, it plays a key role in cell death and therefore in several diseases. The investigation of the PTP took an unexpected turn after the discovery that cyclophilin D (the target of the PTP inhibitory effect of cyclosporin A) binds to FO F1 (F)-ATP synthase, thus inhibiting its catalytic activity by about 30%. This observation was followed by the demonstration that binding occurs at a particular subunit of the enzyme, the oligomycin sensitivity conferral protein (OSCP), and that F-ATP synthase can form Ca2+ -activated, high-conductance channels with features matching those of the PTP, suggesting that the latter originates from a conformational change in F-ATP synthase. This review is specifically focused on the OSCP subunit of F-ATP synthase, whose unique features make it a potential pharmacological target both for modulation of F-ATP synthase and its transition to a pore. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Valentina Giorgio
- Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Federico Fogolari
- Department of Mathematics, Computer Sciences and PhysicsUniversity of UdineUdineItaly
| | - Giovanna Lippe
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
| | - Paolo Bernardi
- Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| |
Collapse
|
22
|
Barca E, Ganetzky RD, Potluri P, Juanola-Falgarona M, Gai X, Li D, Jalas C, Hirsch Y, Emmanuele V, Tadesse S, Ziosi M, Akman HO, Chung WK, Tanji K, McCormick EM, Place E, Consugar M, Pierce EA, Hakonarson H, Wallace DC, Hirano M, Falk MJ. USMG5 Ashkenazi Jewish founder mutation impairs mitochondrial complex V dimerization and ATP synthesis. Hum Mol Genet 2019; 27:3305-3312. [PMID: 29917077 DOI: 10.1093/hmg/ddy231] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/14/2018] [Indexed: 01/31/2023] Open
Abstract
Leigh syndrome is a frequent, heterogeneous pediatric presentation of mitochondrial oxidative phosphorylation (OXPHOS) disease, manifesting with psychomotor retardation and necrotizing lesions in brain deep gray matter. OXPHOS occurs at the inner mitochondrial membrane through the integrated activity of five protein complexes, of which complex V (CV) functions in a dimeric form to directly generate adenosine triphosphate (ATP). Mutations in several different structural CV subunits cause Leigh syndrome; however, dimerization defects have not been associated with human disease. We report four Leigh syndrome subjects from three unrelated Ashkenazi Jewish families harboring a homozygous splice-site mutation (c.87 + 1G>C) in a novel CV subunit disease gene, USMG5. The Ashkenazi population allele frequency is 0.57%. This mutation produces two USMG5 transcripts, wild-type and lacking exon 3. Fibroblasts from two Leigh syndrome probands had reduced wild-type USMG5 mRNA expression and undetectable protein. The mutation did not alter monomeric CV expression, but reduced both CV dimer expression and ATP synthesis rate. Rescue with wild-type USMG5 cDNA in proband fibroblasts restored USMG5 protein, increased CV dimerization and enhanced ATP production rate. These data demonstrate that a recurrent USMG5 splice-site founder mutation in the Ashkenazi Jewish population causes autosomal recessive Leigh syndrome by reduction of CV dimerization and ATP synthesis.
Collapse
Affiliation(s)
- Emanuele Barca
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Medical Center, New York, NY, USA
| | - Rebecca D Ganetzky
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Prasanth Potluri
- Department of Pathology, Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marti Juanola-Falgarona
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Medical Center, New York, NY, USA
| | - Xiaowu Gai
- Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, LA, USA
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Dong Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | - Valentina Emmanuele
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Medical Center, New York, NY, USA
| | - Saba Tadesse
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Medical Center, New York, NY, USA
| | - Marcello Ziosi
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Medical Center, New York, NY, USA
| | - Hasan O Akman
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Medical Center, New York, NY, USA
| | - Wendy K Chung
- Department of Pediatrics and Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Kurenai Tanji
- Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Elizabeth M McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emily Place
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Mark Consugar
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Eric A Pierce
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Hakon Hakonarson
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Douglas C Wallace
- Department of Pathology, Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Medical Center, New York, NY, USA
| | - Marni J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Galber C, Valente G, von Stockum S, Giorgio V. Purification of Functional F-ATP Synthase from Blue Native PAGE. Methods Mol Biol 2019; 1925:233-243. [PMID: 30674031 DOI: 10.1007/978-1-4939-9018-4_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the presence of Ca2+, F-ATP synthase preparations eluted from Blue Native gels generate electrophysiological currents that are typical of an inner mitochondrial membrane mega-channel, the permeability transition pore. Here we describe an experimental protocol for purification of F-ATP synthase that allows to maintain the enzyme assembly and activity that are essential for catalysis and channel formation.
Collapse
Affiliation(s)
- Chiara Galber
- Neuroscience Institute and Department of Biomedical Sciences, CNR and University of Padua, Padua, Italy
| | - Giulia Valente
- Neuroscience Institute and Department of Biomedical Sciences, CNR and University of Padua, Padua, Italy
| | - Sophia von Stockum
- Department of Biology, University of Padua, Padua, Italy
- Fondazione Ospedale San Camillo, IRCCS, Venezia, Italy
| | - Valentina Giorgio
- Neuroscience Institute and Department of Biomedical Sciences, CNR and University of Padua, Padua, Italy.
| |
Collapse
|
24
|
Salunke R, Mourier T, Banerjee M, Pain A, Shanmugam D. Highly diverged novel subunit composition of apicomplexan F-type ATP synthase identified from Toxoplasma gondii. PLoS Biol 2018; 16:e2006128. [PMID: 30005062 PMCID: PMC6059495 DOI: 10.1371/journal.pbio.2006128] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/25/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
The mitochondrial F-type ATP synthase, a multisubunit nanomotor, is critical for maintaining cellular ATP levels. In T. gondii and other apicomplexan parasites, many subunit components necessary for proper assembly and functioning of this enzyme appear to be missing. Here, we report the identification of 20 novel subunits of T. gondii F-type ATP synthase from mass spectrometry analysis of partially purified monomeric (approximately 600 kDa) and dimeric (>1 MDa) forms of the enzyme. Despite extreme sequence diversification, key FO subunits a, b, and d can be identified from conserved structural features. Orthologs for these proteins are restricted to apicomplexan, chromerid, and dinoflagellate species. Interestingly, their absence in ciliates indicates a major diversion, with respect to subunit composition of this enzyme, within the alveolate clade. Discovery of these highly diversified novel components of the apicomplexan F-type ATP synthase complex could facilitate the development of novel antiparasitic agents. Structural and functional characterization of this unusual enzyme complex will advance our fundamental understanding of energy metabolism in apicomplexan species.
Collapse
Affiliation(s)
- Rahul Salunke
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Tobias Mourier
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, India
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Dhanasekaran Shanmugam
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| |
Collapse
|
25
|
Zebrafish heart failure models: opportunities and challenges. Amino Acids 2018; 50:787-798. [DOI: 10.1007/s00726-018-2578-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/24/2018] [Indexed: 01/03/2023]
|
26
|
He J, Ford HC, Carroll J, Douglas C, Gonzales E, Ding S, Fearnley IM, Walker JE. Assembly of the membrane domain of ATP synthase in human mitochondria. Proc Natl Acad Sci U S A 2018; 115:2988-2993. [PMID: 29440398 PMCID: PMC5866602 DOI: 10.1073/pnas.1722086115] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The ATP synthase in human mitochondria is a membrane-bound assembly of 29 proteins of 18 kinds. All but two membrane components are encoded in nuclear genes, synthesized on cytoplasmic ribosomes, and imported into the matrix of the organelle, where they are assembled into the complex with ATP6 and ATP8, the products of overlapping genes in mitochondrial DNA. Disruption of individual human genes for the nuclear-encoded subunits in the membrane portion of the enzyme leads to the formation of intermediate vestigial ATPase complexes that provide a description of the pathway of assembly of the membrane domain. The key intermediate complex consists of the F1-c8 complex inhibited by the ATPase inhibitor protein IF1 and attached to the peripheral stalk, with subunits e, f, and g associated with the membrane domain of the peripheral stalk. This intermediate provides the template for insertion of ATP6 and ATP8, which are synthesized on mitochondrial ribosomes. Their association with the complex is stabilized by addition of the 6.8 proteolipid, and the complex is coupled to ATP synthesis at this point. A structure of the dimeric yeast Fo membrane domain is consistent with this model of assembly. The human 6.8 proteolipid (yeast j subunit) locks ATP6 and ATP8 into the membrane assembly, and the monomeric complexes then dimerize via interactions between ATP6 subunits and between 6.8 proteolipids (j subunits). The dimers are linked together back-to-face by DAPIT (diabetes-associated protein in insulin-sensitive tissue; yeast subunit k), forming long oligomers along the edges of the cristae.
Collapse
Affiliation(s)
- Jiuya He
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom
| | - Holly C Ford
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom
| | - Joe Carroll
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom
| | - Corsten Douglas
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom
| | - Evvia Gonzales
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom
| | - Shujing Ding
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom
| | - Ian M Fearnley
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom
| | - John E Walker
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
27
|
Nagata Y, Yamagishi M, Konno T, Nakanishi C, Asano Y, Ito S, Nakajima Y, Seguchi O, Fujino N, Kawashiri MA, Takashima S, Kitakaze M, Hayashi K. Heat Failure Phenotypes Induced by Knockdown of DAPIT in Zebrafish: A New Insight into Mechanism of Dilated Cardiomyopathy. Sci Rep 2017; 7:17417. [PMID: 29234032 PMCID: PMC5727169 DOI: 10.1038/s41598-017-17572-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/28/2017] [Indexed: 11/18/2022] Open
Abstract
The pathogenesis of heart failure associated with dilated cardiomyopathy (DCM) may result in part from adenosine triphosphate (ATP) dysregulation in the myocardium. Under these conditions, diabetes-associated protein in insulin-sensitive tissue (DAPIT), which is encoded by the upregulated during skeletal muscle growth 5 (USMG5) gene, plays a crucial role in energy production by mitochondrial ATP synthase. To determine whether USMG5 is related to the development of heart failure, we performed clinical and experimental studies. Microarray analysis showed that the expression levels of USMG5 were positively correlated with those of natriuretic peptide precursor A in the human failed myocardium. When endogenous z-usmg5 in zebrafish was disrupted using morpholino (MO) oligonucleotides, the pericardial sac and atrial areas were larger and ventricular fractional shortening was reduced compared to in the control MO group. The expression levels of natriuretic peptides were upregulated in the z-usmg5 MO group compared to in controls. Further, microarray analysis revealed that genes in the calcium signalling pathway were downregulated in the z-usmg5 MO group. These results demonstrate that DAPIT plays a crucial role in the development of heart failure associated with DCM and thus may be a therapeutic target for heart failure.
Collapse
Affiliation(s)
- Yoji Nagata
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Masakazu Yamagishi
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan.
| | - Tetsuo Konno
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Chiaki Nakanishi
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shin Ito
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yuri Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Osamu Seguchi
- Department of Transplantation, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Noboru Fujino
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Masa-Aki Kawashiri
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masafumi Kitakaze
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kenshi Hayashi
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| |
Collapse
|
28
|
Sánchez-Vásquez L, Vázquez-Acevedo M, de la Mora J, Vega-deLuna F, Cardol P, Remacle C, Dreyfus G, González-Halphen D. Near-neighbor interactions of the membrane-embedded subunits of the mitochondrial ATP synthase of a chlorophycean alga. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:497-509. [DOI: 10.1016/j.bbabio.2017.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/25/2017] [Accepted: 04/29/2017] [Indexed: 12/24/2022]
|
29
|
Sánchez-Vásquez L, González-Halphen D. TOPOLOGÍA Y FUNCIÓN DE LAS SUBUNIDADES INTRÍNSECAS DE LA MEMBRANA DE LAS F 1 F O -ATP SINTASA MITOCONDRIALES. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2017. [DOI: 10.1016/j.recqb.2017.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
30
|
Sepehrimanesh M, Kazemipour N, Saeb M, Nazifi S, Davis DL. Proteomic analysis of continuous 900-MHz radiofrequency electromagnetic field exposure in testicular tissue: a rat model of human cell phone exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:13666-13673. [PMID: 28397118 DOI: 10.1007/s11356-017-8882-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 03/20/2017] [Indexed: 06/07/2023]
Abstract
Although cell phones have been used worldwide, some adverse and toxic effects were reported for this communication technology apparatus. To analyze in vivo effects of exposure to radiofrequency-electromagnetic field (RF-EMF) on protein expression in rat testicular proteome, 20 Sprague-Dawley rats were exposed to 900 MHz RF-EMF for 0, 1, 2, or 4 h/day for 30 consecutive days. Protein content of rat testes was separated by high-resolution two-dimensional electrophoresis using immobilized pH gradient (pI 4-7, 7 cm) and 12% acrylamide and identified by MALDI-TOF/TOF-MS. Two protein spots were found differentially overexpressed (P < 0.05) in intensity and volume with induction factors 1.7 times greater after RF-EMF exposure. After 4 h of daily exposure for 30 consecutive days, ATP synthase beta subunit (ASBS) and hypoxia up-regulated protein 1 precursor (HYOU1) were found to be significantly up-regulated. These proteins affect signaling pathways in rat testes and spermatogenesis and play a critical role in protein folding and secretion in the endoplasmic reticulum. Our results indicate that exposure to RF-EMF produces increases in testicular proteins in adults that are related to carcinogenic risk and reproductive damage. In light of the widespread practice of men carrying phones in their pockets near their gonads, where exposures can exceed as-tested guidelines, further study of these effects should be a high priority.
Collapse
Affiliation(s)
- Masood Sepehrimanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Po. Box: 17935-1311, Shiraz, Iran.
- Department of Biochemistry, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Nasrin Kazemipour
- Department of Biochemistry, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mehdi Saeb
- Department of Biochemistry, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saeed Nazifi
- Department of Clinical Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
31
|
He J, Ford HC, Carroll J, Ding S, Fearnley IM, Walker JE. Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase. Proc Natl Acad Sci U S A 2017; 114:3409-3414. [PMID: 28289229 PMCID: PMC5380099 DOI: 10.1073/pnas.1702357114] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The permeability transition in human mitochondria refers to the opening of a nonspecific channel, known as the permeability transition pore (PTP), in the inner membrane. Opening can be triggered by calcium ions, leading to swelling of the organelle, disruption of the inner membrane, and ATP synthesis, followed by cell death. Recent proposals suggest that the pore is associated with the ATP synthase complex and specifically with the ring of c-subunits that constitute the membrane domain of the enzyme's rotor. The c-subunit is produced from three nuclear genes, ATP5G1, ATP5G2, and ATP5G3, encoding identical copies of the mature protein with different mitochondrial-targeting sequences that are removed during their import into the organelle. To investigate the involvement of the c-subunit in the PTP, we generated a clonal cell, HAP1-A12, from near-haploid human cells, in which ATP5G1, ATP5G2, and ATP5G3 were disrupted. The HAP1-A12 cells are incapable of producing the c-subunit, but they preserve the characteristic properties of the PTP. Therefore, the c-subunit does not provide the PTP. The mitochondria in HAP1-A12 cells assemble a vestigial ATP synthase, with intact F1-catalytic and peripheral stalk domains and the supernumerary subunits e, f, and g, but lacking membrane subunits ATP6 and ATP8. The same vestigial complex plus associated c-subunits was characterized from human 143B ρ0 cells, which cannot make the subunits ATP6 and ATP8, but retain the PTP. Therefore, none of the membrane subunits of the ATP synthase that are involved directly in transmembrane proton translocation is involved in forming the PTP.
Collapse
Affiliation(s)
- Jiuya He
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom
| | - Holly C Ford
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom
| | - Joe Carroll
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom
| | - Shujing Ding
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom
| | - Ian M Fearnley
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom
| | - John E Walker
- The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
32
|
Balakrishnan P, Vaidya D, Franceschini N, Voruganti VS, Gribble MO, Haack K, Laston S, Umans JG, Francesconi KA, Goessler W, North KE, Lee E, Yracheta J, Best LG, MacCluer JW, Kent J, Cole SA, Navas-Acien A. Association of Cardiometabolic Genes with Arsenic Metabolism Biomarkers in American Indian Communities: The Strong Heart Family Study (SHFS). ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:15-22. [PMID: 27352405 PMCID: PMC5226702 DOI: 10.1289/ehp251] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/27/2016] [Accepted: 05/19/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Metabolism of inorganic arsenic (iAs) is subject to inter-individual variability, which is explained partly by genetic determinants. OBJECTIVES We investigated the association of genetic variants with arsenic species and principal components of arsenic species in the Strong Heart Family Study (SHFS). METHODS We examined variants previously associated with cardiometabolic traits (~ 200,000 from Illumina Cardio MetaboChip) or arsenic metabolism and toxicity (670) among 2,428 American Indian participants in the SHFS. Urine arsenic species were measured by high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS), and percent arsenic species [iAs, monomethylarsonate (MMA), and dimethylarsinate (DMA), divided by their sum × 100] were logit transformed. We created two orthogonal principal components that summarized iAs, MMA, and DMA and were also phenotypes for genetic analyses. Linear regression was performed for each phenotype, dependent on allele dosage of the variant. Models accounted for familial relatedness and were adjusted for age, sex, total arsenic levels, and population stratification. Single nucleotide polymorphism (SNP) associations were stratified by study site and were meta-analyzed. Bonferroni correction was used to account for multiple testing. RESULTS Variants at 10q24 were statistically significant for all percent arsenic species and principal components of arsenic species. The index SNP for iAs%, MMA%, and DMA% (rs12768205) and for the principal components (rs3740394, rs3740393) were located near AS3MT, whose gene product catalyzes methylation of iAs to MMA and DMA. Among the candidate arsenic variant associations, functional SNPs in AS3MT and 10q24 were most significant (p < 9.33 × 10-5). CONCLUSIONS This hypothesis-driven association study supports the role of common variants in arsenic metabolism, particularly AS3MT and 10q24. Citation: Balakrishnan P, Vaidya D, Franceschini N, Voruganti VS, Gribble MO, Haack K, Laston S, Umans JG, Francesconi KA, Goessler W, North KE, Lee E, Yracheta J, Best LG, MacCluer JW, Kent J Jr., Cole SA, Navas-Acien A. 2017. Association of cardiometabolic genes with arsenic metabolism biomarkers in American Indian communities: the Strong Heart Family Study (SHFS). Environ Health Perspect 125:15-22; http://dx.doi.org/10.1289/EHP251.
Collapse
Affiliation(s)
- Poojitha Balakrishnan
- Department of Environmental Health Sciences, and
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- The Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Dhananjay Vaidya
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Clinical and Translational Research, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | - V. Saroja Voruganti
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Matthew O. Gribble
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Karin Haack
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Sandra Laston
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Jason G. Umans
- MedStar Health Research Institute, Hyattsville, Maryland, USA
- Georgetown and Howard Universities Center for Clinical and Translational Science, Washington, DC, USA
| | | | - Walter Goessler
- Institute of Chemistry - Analytical Chemistry, University of Graz, Austria
| | | | - Elisa Lee
- Center for American Indian Health Research, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Joseph Yracheta
- Missouri Breaks Industries Research, Inc., Timber Lake, South Dakota, USA
| | - Lyle G. Best
- Missouri Breaks Industries Research, Inc., Timber Lake, South Dakota, USA
| | - Jean W. MacCluer
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jack Kent
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Shelley A. Cole
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, and
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- The Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Zhang X. Detergents: Friends not foes for high-performance membrane proteomics toward precision medicine. Proteomics 2016; 17. [PMID: 27633951 DOI: 10.1002/pmic.201600209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/31/2016] [Accepted: 09/13/2016] [Indexed: 01/05/2023]
Abstract
Precision medicine, particularly therapeutics, emphasizes the atomic-precise, dynamic, and systems visualization of human membrane proteins and their endogenous modifiers. For years, bottom-up proteomics has grappled with removing and avoiding detergents, yet faltered at the therapeutic-pivotal membrane proteins, which have been tackled by classical approaches and are known for decades refractory to single-phase aqueous or organic denaturants. Hydrophobicity and aggregation commonly challenge tissue and cell lysates, biofluids, and enriched samples. Frequently, expected membrane proteins and peptides are not identified by shotgun bottom-up proteomics, let alone robust quantitation. This review argues the cause of this proteomic crisis is not detergents per se, but the choice of detergents. Recently, inclusion of compatible detergents for membrane protein extraction and digestion has revealed stark improvements in both quantitative and structural proteomics. This review analyzes detergent properties behind recent proteomic advances, and proposes that rational use of detergents may reconcile outstanding membrane proteomics dilemmas, enabling ultradeep coverage and minimal artifacts for robust protein and endogenous PTM measurements. The simplicity of detergent tools confers bottom-up membrane proteomics the sophistication toward precision medicine.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Ferreira MAR, Jansen R, Willemsen G, Penninx B, Bain LM, Vicente CT, Revez JA, Matheson MC, Hui J, Tung JY, Baltic S, Le Souëf P, Montgomery GW, Martin NG, Robertson CF, James A, Thompson PJ, Boomsma DI, Hopper JL, Hinds DA, Werder RB, Phipps S. Gene-based analysis of regulatory variants identifies 4 putative novel asthma risk genes related to nucleotide synthesis and signaling. J Allergy Clin Immunol 2016; 139:1148-1157. [PMID: 27554816 DOI: 10.1016/j.jaci.2016.07.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Hundreds of genetic variants are thought to contribute to variation in asthma risk by modulating gene expression. Methods that increase the power of genome-wide association studies (GWASs) to identify risk-associated variants are needed. OBJECTIVE We sought to develop a method that aggregates the evidence for association with disease risk across expression quantitative trait loci (eQTLs) of a gene and use this approach to identify asthma risk genes. METHODS We developed a gene-based test and software package called EUGENE that (1) is applicable to GWAS summary statistics; (2) considers both cis- and trans-eQTLs; (3) incorporates eQTLs identified in different tissues; and (4) uses simulations to account for multiple testing. We applied this approach to 2 published asthma GWASs (combined n = 46,044) and used mouse studies to provide initial functional insights into 2 genes with novel genetic associations. RESULTS We tested the association between asthma and 17,190 genes that were found to have cis- and/or trans-eQTLs across 16 published eQTL studies. At an empirical FDR of 5%, 48 genes were associated with asthma risk. Of these, for 37, the association was driven by eQTLs located in established risk loci for allergic disease, including 6 genes not previously implicated in disease cause (eg, LIMS1, TINF2, and SAFB). The remaining 11 significant genes represent potential novel genetic associations with asthma. The association with 4 of these replicated in an independent GWAS: B4GALT3, USMG5, P2RY13, and P2RY14, which are genes involved in nucleotide synthesis or nucleotide-dependent cell activation. In mouse studies, P2ry13 and P2ry14-purinergic receptors activated by adenosine 5-diphosphate and UDP-sugars, respectively-were upregulated after allergen challenge, notably in airway epithelial cells, eosinophils, and neutrophils. Intranasal exposure with receptor agonists induced the release of IL-33 and subsequent eosinophil infiltration into the lungs. CONCLUSION We identified novel associations between asthma and eQTLs for 4 genes related to nucleotide synthesis/signaling and demonstrated the power of gene-based analyses of GWASs.
Collapse
Affiliation(s)
| | - Rick Jansen
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije University Amsterdam, Amsterdam, The Netherlands
| | - Brenda Penninx
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - Lisa M Bain
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Joana A Revez
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Melanie C Matheson
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Jennie Hui
- PathWest Laboratory Medicine of Western Australia, Nedlands, Australia; School of Population Health, University of Western Australia, Nedlands, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Australia; Busselton Population Medical Research Foundation, Sir Charles Gairdner Hospital, Nedlands, Australia
| | | | - Svetlana Baltic
- Institute for Respiratory Health, Harry Perkins Institute of Medical Research, Nedlands, Australia
| | - Peter Le Souëf
- School of Paediatrics and Child Health, Princess Margaret Hospital for Children, Subiaco, Australia
| | | | | | - Colin F Robertson
- Respiratory Medicine, Murdoch Children's Research Institute, Melbourne, Australia
| | - Alan James
- Busselton Population Medical Research Foundation, Sir Charles Gairdner Hospital, Nedlands, Australia; School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia; Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Nedlands, Australia
| | - Philip J Thompson
- Institute for Respiratory Health, Harry Perkins Institute of Medical Research, Nedlands, Australia; School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije University Amsterdam, Amsterdam, The Netherlands
| | - John L Hopper
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | | | - Rhiannon B Werder
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Simon Phipps
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
35
|
Strecker V, Kadeer Z, Heidler J, Cruciat CM, Angerer H, Giese H, Pfeiffer K, Stuart RA, Wittig I. Supercomplex-associated Cox26 protein binds to cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:1643-52. [PMID: 27091403 PMCID: PMC7140176 DOI: 10.1016/j.bbamcr.2016.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
Here we identified a hydrophobic 6.4kDa protein, Cox26, as a novel component of yeast mitochondrial supercomplex comprising respiratory complexes III and IV. Multi-dimensional native and denaturing electrophoretic techniques were used to identify proteins interacting with Cox26. The majority of the Cox26 protein was found non-covalently bound to the complex IV moiety of the III-IV supercomplexes. A population of Cox26 was observed to exist in a disulfide bond partnership with the Cox2 subunit of complex IV. No pronounced growth phenotype for Cox26 deficiency was observed, indicating that Cox26 may not play a critical role in the COX enzymology, and we speculate that Cox26 may serve to regulate or support the Cox2 protein. Respiratory supercomplexes are assembled in the absence of the Cox26 protein, however their pattern slightly differs to the wild type III-IV supercomplex appearance. The catalytic activities of complexes III and IV were observed to be normal and respiration was comparable to wild type as long as cells were cultivated under normal growth conditions. Stress conditions, such as elevated temperatures resulted in mild decrease of respiration in non-fermentative media when the Cox26 protein was absent.
Collapse
Affiliation(s)
- Valentina Strecker
- Molekulare Bioenergetik, Zentrum der Biologischen Chemie, Cluster of Excellence Frankfurt Macromolecular Complexes Goethe-Universität Frankfurt, D-60590 Frankfurt, Germany; Functional Proteomics, Institute of Biochemistry I, Faculty of Medicine, Goethe-University of Frankfurt, D-60590 Frankfurt, Germany
| | - Zibirnisa Kadeer
- Molekulare Bioenergetik, Zentrum der Biologischen Chemie, Cluster of Excellence Frankfurt Macromolecular Complexes Goethe-Universität Frankfurt, D-60590 Frankfurt, Germany
| | - Juliana Heidler
- Functional Proteomics, Institute of Biochemistry I, Faculty of Medicine, Goethe-University of Frankfurt, D-60590 Frankfurt, Germany
| | - Cristina-Maria Cruciat
- Fakultät Angewandte Naturwissenschaften, Hochschule Esslingen, University of Applied Sciences, D-73728 Esslingen, Germany
| | - Heike Angerer
- Molekulare Bioenergetik, Zentrum der Biologischen Chemie, Cluster of Excellence Frankfurt Macromolecular Complexes Goethe-Universität Frankfurt, D-60590 Frankfurt, Germany; Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe University of Frankfurt, Germany
| | - Heiko Giese
- Molecular Bioinformatics, Institute of Computer Science, Johann Wolfgang Goethe-University, D-60325 Frankfurt am Main, Germany
| | - Kathy Pfeiffer
- Department of Functional Proteomics, Medizinisches Proteom-Center, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - Rosemary A Stuart
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Ilka Wittig
- Molekulare Bioenergetik, Zentrum der Biologischen Chemie, Cluster of Excellence Frankfurt Macromolecular Complexes Goethe-Universität Frankfurt, D-60590 Frankfurt, Germany; Functional Proteomics, Institute of Biochemistry I, Faculty of Medicine, Goethe-University of Frankfurt, D-60590 Frankfurt, Germany.
| |
Collapse
|
36
|
Müller CS, Bildl W, Haupt A, Ellenrieder L, Becker T, Hunte C, Fakler B, Schulte U. Cryo-slicing Blue Native-Mass Spectrometry (csBN-MS), a Novel Technology for High Resolution Complexome Profiling. Mol Cell Proteomics 2015; 15:669-81. [PMID: 26598645 DOI: 10.1074/mcp.m115.054080] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Indexed: 11/06/2022] Open
Abstract
Blue native (BN) gel electrophoresis is a powerful method for protein separation. Combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), it enables large scale identification of protein complexes and their subunits. Current BN-MS approaches, however, are limited in size resolution, comprehensiveness, and quantification. Here, we present a new methodology combining defined sub-millimeter slicing of BN gels by a cryo-microtome with high performance LC-MS/MS and label-free quantification of protein amounts. Application of this cryo-slicing BN-MS approach to mitochondria from rat brain demonstrated a high degree of comprehensiveness, accuracy, and size resolution. The technique provided abundance-mass profiles for 774 mitochondrial proteins, including all canonical subunits of the oxidative respiratory chain assembled into 13 distinct (super-)complexes. Moreover, the data revealed COX7R as a constitutive subunit of distinct super-complexes and identified novel assemblies of voltage-dependent anion channels/porins and TOM proteins. Together, cryo-slicing BN-MS enables quantitative profiling of complexomes with resolution close to the limits of native gel electrophoresis.
Collapse
Affiliation(s)
- Catrin S Müller
- From the ‡Institute of Physiology, University of Freiburg, Hermann-Herder-Strasse 7, 79104 Freiburg
| | - Wolfgang Bildl
- From the ‡Institute of Physiology, University of Freiburg, Hermann-Herder-Strasse 7, 79104 Freiburg
| | - Alexander Haupt
- From the ‡Institute of Physiology, University of Freiburg, Hermann-Herder-Strasse 7, 79104 Freiburg
| | - Lars Ellenrieder
- §Institute for Biochemistry and Molecular Biology, Stefan-Meier-Strasse 17, 79104 Freiburg
| | - Thomas Becker
- §Institute for Biochemistry and Molecular Biology, Stefan-Meier-Strasse 17, 79104 Freiburg; ¶Center for Biological Signaling Studies (BIOSS), Schänzlestrasse 18, 79104 Freiburg
| | - Carola Hunte
- §Institute for Biochemistry and Molecular Biology, Stefan-Meier-Strasse 17, 79104 Freiburg; ¶Center for Biological Signaling Studies (BIOSS), Schänzlestrasse 18, 79104 Freiburg
| | - Bernd Fakler
- From the ‡Institute of Physiology, University of Freiburg, Hermann-Herder-Strasse 7, 79104 Freiburg; ¶Center for Biological Signaling Studies (BIOSS), Schänzlestrasse 18, 79104 Freiburg
| | - Uwe Schulte
- From the ‡Institute of Physiology, University of Freiburg, Hermann-Herder-Strasse 7, 79104 Freiburg; ¶Center for Biological Signaling Studies (BIOSS), Schänzlestrasse 18, 79104 Freiburg; ‖Logopharm GmbH, Schlossstrasse 14, 79232 March-Buchheim, Germany
| |
Collapse
|
37
|
Bernardi P, Rasola A, Forte M, Lippe G. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Physiol Rev 2015; 95:1111-55. [PMID: 26269524 DOI: 10.1152/physrev.00001.2015] [Citation(s) in RCA: 439] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mitochondrial permeability transition (PT) is a permeability increase of the inner mitochondrial membrane mediated by a channel, the permeability transition pore (PTP). After a brief historical introduction, we cover the key regulatory features of the PTP and provide a critical assessment of putative protein components that have been tested by genetic analysis. The discovery that under conditions of oxidative stress the F-ATP synthases of mammals, yeast, and Drosophila can be turned into Ca(2+)-dependent channels, whose electrophysiological properties match those of the corresponding PTPs, opens new perspectives to the field. We discuss structural and functional features of F-ATP synthases that may provide clues to its transition from an energy-conserving into an energy-dissipating device as well as recent advances on signal transduction to the PTP and on its role in cellular pathophysiology.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Michael Forte
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Giovanna Lippe
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| |
Collapse
|
38
|
Assembly of human mitochondrial ATP synthase through two separate intermediates, F1-c-ring andb-e-gcomplex. FEBS Lett 2015; 589:2707-12. [DOI: 10.1016/j.febslet.2015.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/04/2015] [Accepted: 08/09/2015] [Indexed: 12/22/2022]
|
39
|
Mitochondrial ATP synthasome: Expression and structural interaction of its components. Biochem Biophys Res Commun 2015; 464:787-93. [PMID: 26168732 DOI: 10.1016/j.bbrc.2015.07.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/07/2015] [Indexed: 11/20/2022]
Abstract
Mitochondrial ATP synthase, ADP/ATP translocase (ANT), and inorganic phosphate carrier (PiC) are supposed to form a supercomplex called ATP synthasome. Our protein and transcript analysis of rat tissues indicates that the expression of ANT and PiC is transcriptionally controlled in accordance with the biogenesis of ATP synthase. In contrast, the content of ANT and PiC is increased in ATP synthase deficient patients' fibroblasts, likely due to a post-transcriptional adaptive mechanism. A structural analysis of rat heart mitochondria by immunoprecipitation, blue native/SDS electrophoresis, immunodetection and MS analysis revealed the presence of ATP synthasome. However, the majority of PiC and especially ANT did not associate with ATP synthase, suggesting that most of PiC, ANT and ATP synthase exist as separate entities.
Collapse
|
40
|
Kontro H, Cannino G, Rustin P, Dufour E, Kainulainen H. DAPIT Over-Expression Modulates Glucose Metabolism and Cell Behaviour in HEK293T Cells. PLoS One 2015; 10:e0131990. [PMID: 26161955 PMCID: PMC4498893 DOI: 10.1371/journal.pone.0131990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 06/09/2015] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Diabetes Associated Protein in Insulin-sensitive Tissues (DAPIT) is a subunit of mitochondrial ATP synthase and has also been found to associate with the vacuolar H+-ATPase. Its expression is particularly high in cells with elevated aerobic metabolism and in epithelial cells that actively transport nutrients and ions. Deletion of DAPIT is known to induce loss of mitochondrial ATP synthase but the effects of its over-expression are obscure. RESULTS In order to study the consequences of high expression of DAPIT, we constructed a transgenic cell line that constitutively expressed DAPIT in human embryonal kidney cells, HEK293T. Enhanced DAPIT expression decreased mtDNA content and mitochondrial mass, and saturated respiratory chain by decreasing H+-ATP synthase activity. DAPIT over-expression also increased mitochondrial membrane potential and superoxide level, and translocated the transcription factors hypoxia inducible factor 1α (Hif1α) and β-catenin to the nucleus. Accordingly, cells over-expressing DAPIT used more glucose and generated a larger amount of lactate compared to control cells. Interestingly, these changes were associated with an epithelial to mesenchymal (EMT)-like transition by changing E-cadherin to N-cadherin and up-regulating several key junction/adhesion proteins. At physiological level, DAPIT over-expression slowed down cell growth by G1 arrest and migration, and enhanced cell detachment. Several cancers also showed an increase in genomic copy number of Usmg5 (gene encoding DAPIT), thereby providing strong correlative evidence for DAPIT possibly having oncogenic function in cancers. CONCLUSIONS DAPIT over-expression thus appears to modulate mitochondrial functions and alter cellular regulations, promote anaerobic metabolism and induce EMT-like transition. We propose that DAPIT over-expression couples the changes in mitochondrial metabolism to physiological and pathophysiological regulations, and suggest it could play a critical role in H+-ATP synthase dysfunctions.
Collapse
Affiliation(s)
- Heidi Kontro
- Tampere Centre for Child Health Research, University of Tampere, Tampere, Finland
| | - Giuseppe Cannino
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - Pierre Rustin
- INSERM UMR 1141, Paris, France; Université Paris 7, Paris, France
| | - Eric Dufour
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - Heikki Kainulainen
- Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
41
|
Yang JH, Sarrou I, Martin-Garcia JM, Zhang S, Redding KE, Fromme P. Purification and biochemical characterization of the ATP synthase from Heliobacterium modesticaldum. Protein Expr Purif 2015; 114:1-8. [PMID: 25979464 DOI: 10.1016/j.pep.2015.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/28/2015] [Accepted: 05/06/2015] [Indexed: 11/26/2022]
Abstract
Heliobacterium modesticaldum is an anaerobic photosynthetic bacterium that grows optimally at pH 6-7 and 52°C and is the only phototrophic member of the Firmicutes phylum family (gram-positive bacteria with low GC content). The ATP synthase of H. modesticaldum was isolated and characterized at the biochemical and biophysical levels. The isolated holoenzyme exhibited the subunit patterns of F-type ATP synthases containing a 5-subunit hydrophilic F1 subcomplex and a 3-subunit hydrophobic F0 subcomplex. ATP hydrolysis by the isolated HF1F0 ATP synthase was successfully detected after pretreatment with different detergents by an in-gel ATPase activity assay, which showed that the highest activity was detected in the presence of mild detergents such as LDAO; moreover, high catalytic activity in the gel was already detected after the initial incubation period of 0.5h. In contrast, HF1F0 showed extremely low ATPase activity in harsher detergents such as TODC. The isolated fully functional enzyme will form the basis for future structural studies.
Collapse
Affiliation(s)
- Jay-How Yang
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Iosifina Sarrou
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA; Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology-Hellas, Nikolaou Plastira 100, GR-70013 Heraklion, Crete, Greece
| | - Jose M Martin-Garcia
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Shangji Zhang
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Kevin E Redding
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Petra Fromme
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
42
|
Lee J, Ding S, Walpole TB, Holding AN, Montgomery MG, Fearnley IM, Walker JE. Organization of Subunits in the Membrane Domain of the Bovine F-ATPase Revealed by Covalent Cross-linking. J Biol Chem 2015; 290:13308-20. [PMID: 25851905 PMCID: PMC4505582 DOI: 10.1074/jbc.m115.645283] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Indexed: 12/21/2022] Open
Abstract
The F-ATPase in bovine mitochondria is a membrane-bound complex of about 30 subunits of 18 different kinds. Currently, ∼85% of its structure is known. The enzyme has a membrane extrinsic catalytic domain, and a membrane intrinsic domain where the turning of the enzyme's rotor is generated from the transmembrane proton-motive force. The domains are linked by central and peripheral stalks. The central stalk and a hydrophobic ring of c-subunits in the membrane domain constitute the enzyme's rotor. The external surface of the catalytic domain and membrane subunit a are linked by the peripheral stalk, holding them static relative to the rotor. The membrane domain contains six additional subunits named ATP8, e, f, g, DAPIT (diabetes-associated protein in insulin-sensitive tissues), and 6.8PL (6.8-kDa proteolipid), each with a single predicted transmembrane α-helix, but their orientation and topography are unknown. Mutations in ATP8 uncouple the enzyme and interfere with its assembly, but its roles and the roles of the other five subunits are largely unknown. We have reacted accessible amino groups in the enzyme with bifunctional cross-linking agents and identified the linked residues. Cross-links involving the supernumerary subunits, where the structures are not known, show that the C terminus of ATP8 extends ∼70 Å from the membrane into the peripheral stalk and that the N termini of the other supernumerary subunits are on the same side of the membrane, probably in the mitochondrial matrix. These experiments contribute significantly toward building up a complete structural picture of the F-ATPase.
Collapse
Affiliation(s)
- Jennifer Lee
- From the The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom and
| | - ShuJing Ding
- From the The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom and
| | - Thomas B Walpole
- From the The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom and
| | - Andrew N Holding
- The Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Martin G Montgomery
- From the The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom and
| | - Ian M Fearnley
- From the The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom and
| | - John E Walker
- From the The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom and
| |
Collapse
|
43
|
Jiko C, Davies KM, Shinzawa-Itoh K, Tani K, Maeda S, Mills DJ, Tsukihara T, Fujiyoshi Y, Kühlbrandt W, Gerle C. Bovine F1Fo ATP synthase monomers bend the lipid bilayer in 2D membrane crystals. eLife 2015; 4:e06119. [PMID: 25815585 PMCID: PMC4413875 DOI: 10.7554/elife.06119] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/26/2015] [Indexed: 01/06/2023] Open
Abstract
We have used a combination of electron cryo-tomography, subtomogram averaging, and electron crystallographic image processing to analyse the structure of intact bovine F1Fo ATP synthase in 2D membrane crystals. ATPase assays and mass spectrometry analysis of the 2D crystals confirmed that the enzyme complex was complete and active. The structure of the matrix-exposed region was determined at 24 Å resolution by subtomogram averaging and repositioned into the tomographic volume to reveal the crystal packing. F1Fo ATP synthase complexes are inclined by 16° relative to the crystal plane, resulting in a zigzag topology of the membrane and indicating that monomeric bovine heart F1Fo ATP synthase by itself is sufficient to deform lipid bilayers. This local membrane curvature is likely to be instrumental in the formation of ATP synthase dimers and dimer rows, and thus for the shaping of mitochondrial cristae. DOI:http://dx.doi.org/10.7554/eLife.06119.001 Cells use a molecule called adenosine triphosphate (or ATP for short) to power many processes that are vital for life. Animals, plants, and fungi primarily make their ATP in a specialised compartment called the mitochondrion, which is found inside their cells. The mitochondrion is often referred to as the powerhouse of cells as it captures and stores the energy that animals gain from eating food in the molecule ATP. Other enzymes in the cell break apart ATP to release the stored energy, which they use to power various cellular processes. The interior architecture of the mitochondrion includes a highly folded inner membrane where electrical energy is transformed into chemical energy. The tight folding of the inner membrane is thought to make this process more efficient. An enzyme named ATP synthase performs the final steps of the energy transformation process by producing ATP (ATP synthase literally means ‘ATP maker’). This enzyme sits in pairs along the edges of the inner membrane folds. This raises the question: does the ATP synthase cause the membrane to fold or does this enzyme just ‘prefer’ these folded edges (which are instead caused by something else inside the mitochondrion)? To investigate this question, Jiko, Davies et al. extracted ATP synthase from the mitochondria of cow hearts and mixed them with modified fat molecules to form a ‘2D membrane crystal’: a membrane containing an ordered pattern of enzymes. An electron microscope was used to generate a three-dimensional volume of the 2D membrane crystal via a process similar to a MRI or CAT scan that one might have in hospital. In the three-dimensional volume of the membrane crystal, Jiko, Davies et al. discovered that instead of being flat as expected, the membrane of the 2D membrane crystal was rippled and that this ripple was caused by the membrane-embedded part of the ATP synthase. The geometry of the ripple exactly matched half of the bend at the edge of the membrane folds in the mitochondrion. Therefore, Jiko, Davies et al. concluded that a pair of ATP synthases, as found in mitochondria, was responsible for defining the tight folds of the inner mitochondrial membrane. DOI:http://dx.doi.org/10.7554/eLife.06119.002
Collapse
Affiliation(s)
- Chimari Jiko
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Karen M Davies
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Kyoko Shinzawa-Itoh
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | - Kazutoshi Tani
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan
| | - Shintaro Maeda
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | - Deryck J Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Tomitake Tsukihara
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | - Yoshinori Fujiyoshi
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Christoph Gerle
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| |
Collapse
|
44
|
Šubrtová K, Panicucci B, Zíková A. ATPaseTb2, a unique membrane-bound FoF1-ATPase component, is essential in bloodstream and dyskinetoplastic trypanosomes. PLoS Pathog 2015; 11:e1004660. [PMID: 25714685 PMCID: PMC4340940 DOI: 10.1371/journal.ppat.1004660] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 01/06/2015] [Indexed: 12/21/2022] Open
Abstract
In the infectious stage of Trypanosoma brucei, an important parasite of humans and livestock, the mitochondrial (mt) membrane potential (Δψm) is uniquely maintained by the ATP hydrolytic activity and subsequent proton pumping of the essential FoF1-ATPase. Intriguingly, this multiprotein complex contains several trypanosome-specific subunits of unknown function. Here, we demonstrate that one of the largest novel subunits, ATPaseTb2, is membrane-bound and localizes with monomeric and multimeric assemblies of the FoF1-ATPase. Moreover, RNAi silencing of ATPaseTb2 quickly leads to a significant decrease of the Δψm that manifests as a decreased growth phenotype, indicating that the FoF1-ATPase is impaired. To further explore the function of this protein, we employed a trypanosoma strain that lacks mtDNA (dyskinetoplastic, Dk) and thus subunit a, an essential component of the proton pore in the membrane Fo-moiety. These Dk cells generate the Δψm by combining the hydrolytic activity of the matrix-facing F1-ATPase and the electrogenic exchange of ATP4- for ADP3- by the ATP/ADP carrier (AAC). Surprisingly, in addition to the expected presence of F1-ATPase, the monomeric and multimeric FoF1-ATPase complexes were identified. In fact, the immunoprecipitation of a F1-ATPase subunit demonstrated that ATPaseTb2 was a component of these complexes. Furthermore, RNAi studies established that the membrane-bound ATPaseTb2 subunit is essential for maintaining normal growth and the Δψm of Dk cells. Thus, even in the absence of subunit a, a portion of the FoF1-ATPase is assembled in Dk cells.
Collapse
Affiliation(s)
- Karolína Šubrtová
- Institute of Parasitology, Biology Centre, CAS, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre, CAS, České Budějovice, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, CAS, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
45
|
Wen W, Zheng W, Okada Y, Takeuchi F, Tabara Y, Hwang JY, Dorajoo R, Li H, Tsai FJ, Yang X, He J, Wu Y, He M, Zhang Y, Liang J, Guo X, Sheu WHH, Delahanty R, Guo X, Kubo M, Yamamoto K, Ohkubo T, Go MJ, Liu JJ, Gan W, Chen CC, Gao Y, Li S, Lee NR, Wu C, Zhou X, Song H, Yao J, Lee IT, Long J, Tsunoda T, Akiyama K, Takashima N, Cho YS, Ong RT, Lu L, Chen CH, Tan A, Rice TK, Adair LS, Gui L, Allison M, Lee WJ, Cai Q, Isomura M, Umemura S, Kim YJ, Seielstad M, Hixson J, Xiang YB, Isono M, Kim BJ, Sim X, Lu W, Nabika T, Lee J, Lim WY, Gao YT, Takayanagi R, Kang DH, Wong TY, Hsiung CA, Wu IC, Juang JMJ, Shi J, Choi BY, Aung T, Hu F, Kim MK, Lim WY, Wang TD, Shin MH, Lee J, Ji BT, Lee YH, Young TL, Shin DH, Chun BY, Cho MC, Han BG, Hwu CM, Assimes TL, Absher D, Yan X, Kim E, Kuo JZ, Kwon S, Taylor KD, Chen YDI, Rotter JI, Qi L, Zhu D, Wu T, Mohlke KL, Gu D, et alWen W, Zheng W, Okada Y, Takeuchi F, Tabara Y, Hwang JY, Dorajoo R, Li H, Tsai FJ, Yang X, He J, Wu Y, He M, Zhang Y, Liang J, Guo X, Sheu WHH, Delahanty R, Guo X, Kubo M, Yamamoto K, Ohkubo T, Go MJ, Liu JJ, Gan W, Chen CC, Gao Y, Li S, Lee NR, Wu C, Zhou X, Song H, Yao J, Lee IT, Long J, Tsunoda T, Akiyama K, Takashima N, Cho YS, Ong RT, Lu L, Chen CH, Tan A, Rice TK, Adair LS, Gui L, Allison M, Lee WJ, Cai Q, Isomura M, Umemura S, Kim YJ, Seielstad M, Hixson J, Xiang YB, Isono M, Kim BJ, Sim X, Lu W, Nabika T, Lee J, Lim WY, Gao YT, Takayanagi R, Kang DH, Wong TY, Hsiung CA, Wu IC, Juang JMJ, Shi J, Choi BY, Aung T, Hu F, Kim MK, Lim WY, Wang TD, Shin MH, Lee J, Ji BT, Lee YH, Young TL, Shin DH, Chun BY, Cho MC, Han BG, Hwu CM, Assimes TL, Absher D, Yan X, Kim E, Kuo JZ, Kwon S, Taylor KD, Chen YDI, Rotter JI, Qi L, Zhu D, Wu T, Mohlke KL, Gu D, Mo Z, Wu JY, Lin X, Miki T, Tai ES, Lee JY, Kato N, Shu XO, Tanaka T. Meta-analysis of genome-wide association studies in East Asian-ancestry populations identifies four new loci for body mass index. Hum Mol Genet 2014; 23:5492-5504. [PMID: 24861553 PMCID: PMC4168820 DOI: 10.1093/hmg/ddu248] [Show More Authors] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 03/22/2014] [Accepted: 05/19/2014] [Indexed: 12/28/2022] Open
Abstract
Recent genetic association studies have identified 55 genetic loci associated with obesity or body mass index (BMI). The vast majority, 51 loci, however, were identified in European-ancestry populations. We conducted a meta-analysis of associations between BMI and ∼2.5 million genotyped or imputed single nucleotide polymorphisms among 86 757 individuals of Asian ancestry, followed by in silico and de novo replication among 7488-47 352 additional Asian-ancestry individuals. We identified four novel BMI-associated loci near the KCNQ1 (rs2237892, P = 9.29 × 10(-13)), ALDH2/MYL2 (rs671, P = 3.40 × 10(-11); rs12229654, P = 4.56 × 10(-9)), ITIH4 (rs2535633, P = 1.77 × 10(-10)) and NT5C2 (rs11191580, P = 3.83 × 10(-8)) genes. The association of BMI with rs2237892, rs671 and rs12229654 was significantly stronger among men than among women. Of the 51 BMI-associated loci initially identified in European-ancestry populations, we confirmed eight loci at the genome-wide significance level (P < 5.0 × 10(-8)) and an additional 14 at P < 1.0 × 10(-3) with the same direction of effect as reported previously. Findings from this analysis expand our knowledge of the genetic basis of obesity.
Collapse
Affiliation(s)
- Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Yukinori Okada
- Laboratory for Statistical Analysis, Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Joo-Yeon Hwang
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore, Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, UK
| | - Huaixing Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Fuu-Jen Tsai
- School of Chinese Medicine, Department of Medical Genetics, Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Ying Wu
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Meian He
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yi Zhang
- State Key Laboratory of Medical Genetics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, Shanghai Institute of Hypertension, Shanghai, China
| | - Jun Liang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu 221009, China
| | - Xiuqing Guo
- Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Institute for Translational Genomics and Populations Sciences, Torrance, CA, USA
| | - Wayne Huey-Herng Sheu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, National Defense Medical Center, College of Medicine, Taipei, Taiwan, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ryan Delahanty
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | | | - Ken Yamamoto
- Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takayoshi Ohkubo
- Department of Planning for Drug Development and Clinical Evaluation, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan, Department of Health Science, Shiga University of Medical Science, Otsu, Japan
| | - Min Jin Go
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea
| | - Jian Jun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wei Gan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Ching-Chu Chen
- School of Chinese Medicine, Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yong Gao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China, College of General Practice, Guangxi Medical University, Nanning, Guangxi, China
| | - Shengxu Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Nanette R Lee
- USC-Office of Population Studies Foundation, Inc., University of San Carlos, Cebu, Philippines
| | - Chen Wu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueya Zhou
- Bioinformatics Division, Tsinghua National Laboratory of Information Science and Technology, Beijing, China
| | - Huaidong Song
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Molecular Medical Center, Shanghai Institute of Endocrinology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Yao
- Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Institute for Translational Genomics and Populations Sciences, Torrance, CA, USA
| | - I-Te Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Department of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | | | - Koichi Akiyama
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Naoyuki Takashima
- Department of Health Science, Shiga University of Medical Science, Otsu, Japan
| | - Yoon Shin Cho
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea, Department of Biomedical Science, Hallym University, Gangwon-do, Republic of Korea
| | - Rick Th Ong
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore, NUS Graduate School for Integrative Science and Engineering, Centre for Molecular Epidemiology, National University of Singapore, Singapore, Singapore
| | - Ling Lu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Chien-Hsiun Chen
- School of Chinese Medicine, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Aihua Tan
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Treva K Rice
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Linda S Adair
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Lixuan Gui
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | | | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, Department of Social Work, Tunghai University, Taichung, Taiwan
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Minoru Isomura
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| | - Satoshi Umemura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | - Young Jin Kim
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea
| | - Mark Seielstad
- Institute of Human Genetics, University of California, San Francisco, USA
| | - James Hixson
- Human Genetics Center, University of Texas School of Public Health, Houston, TX, USA
| | - Yong-Bing Xiang
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Masato Isono
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Bong-Jo Kim
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea
| | - Xueling Sim
- Centre for Molecular Epidemiology, National University of Singapore, Singapore, Singapore
| | - Wei Lu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Toru Nabika
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| | - Juyoung Lee
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea
| | | | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ryoichi Takayanagi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Dae-Hee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore, Department of Ophthalmology, Yong Loo Lin School of Medicine
| | - Chao Agnes Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - I-Chien Wu
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Jyh-Ming Jimmy Juang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiajun Shi
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Bo Youl Choi
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore, Department of Ophthalmology, Yong Loo Lin School of Medicine
| | - Frank Hu
- Department of Epidemiology, Department of Nutrition, Harvard University School of Public Health, Boston, MA, USA
| | - Mi Kyung Kim
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | | | - Tzung-Dao Wang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | | | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Young-Hoon Lee
- Department of Preventive Medicine & Institute of Wonkwang Medical Science, Wonkwang University College of Medicine, Iksan, Republic of Korea
| | - Terri L Young
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA, Division of Neuroscience, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Dong Hoon Shin
- Department of Preventive Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Byung-Yeol Chun
- Department of Preventive Medicine, School of Medicine, and Health Promotion Research Center, Kyungpook National University, Daegu, Republic of Korea
| | - Myeong-Chan Cho
- National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea
| | - Bok-Ghee Han
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea
| | - Chii-Min Hwu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Xiaofei Yan
- Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Institute for Translational Genomics and Populations Sciences, Torrance, CA, USA
| | - Eric Kim
- Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Institute for Translational Genomics and Populations Sciences, Torrance, CA, USA
| | - Jane Z Kuo
- NShiley Eye Center, Department of Ophthalmology, University of California at San Diego, La Jolla, CA, USA
| | - Soonil Kwon
- Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Institute for Translational Genomics and Populations Sciences, Torrance, CA, USA
| | - Kent D Taylor
- Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Institute for Translational Genomics and Populations Sciences, Torrance, CA, USA
| | - Yii-Der I Chen
- Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Institute for Translational Genomics and Populations Sciences, Torrance, CA, USA
| | - Jerome I Rotter
- Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Institute for Translational Genomics and Populations Sciences, Torrance, CA, USA
| | - Lu Qi
- Department of Nutrition, Harvard University School of Public Health, Boston, MA, USA, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Dingliang Zhu
- State Key Laboratory of Medical Genetics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, Shanghai Institute of Hypertension, Shanghai, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Dongfeng Gu
- Department of Evidence Based Medicine, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and National Center for Cardiovascular Diseases, Beijing, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China, Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jer-Yuarn Wu
- School of Chinese Medicine, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Xu Lin
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Tetsuro Miki
- Department of Geriatric Medicine, Ehime University Graduate School of Medicine, Toon, Japan
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, and National University Health System, Singapore, Singapore Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Jong-Young Lee
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA,
| | - Toshihiro Tanaka
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan, Laboratory for Cardiovascular Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan, Division of Disease Diversity, Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
46
|
Antoniel M, Giorgio V, Fogolari F, Glick GD, Bernardi P, Lippe G. The oligomycin-sensitivity conferring protein of mitochondrial ATP synthase: emerging new roles in mitochondrial pathophysiology. Int J Mol Sci 2014; 15:7513-36. [PMID: 24786291 PMCID: PMC4057687 DOI: 10.3390/ijms15057513] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 01/08/2023] Open
Abstract
The oligomycin-sensitivity conferring protein (OSCP) of the mitochondrial F(O)F1 ATP synthase has long been recognized to be essential for the coupling of proton transport to ATP synthesis. Located on top of the catalytic F1 sector, it makes stable contacts with both F1 and the peripheral stalk, ensuring the structural and functional coupling between F(O) and F1, which is disrupted by the antibiotic, oligomycin. Recent data have established that OSCP is the binding target of cyclophilin (CyP) D, a well-characterized inducer of the mitochondrial permeability transition pore (PTP), whose opening can precipitate cell death. CyPD binding affects ATP synthase activity, and most importantly, it decreases the threshold matrix Ca²⁺ required for PTP opening, in striking analogy with benzodiazepine 423, an apoptosis-inducing agent that also binds OSCP. These findings are consistent with the demonstration that dimers of ATP synthase generate Ca²⁺-dependent currents with features indistinguishable from those of the PTP and suggest that ATP synthase is directly involved in PTP formation, although the underlying mechanism remains to be established. In this scenario, OSCP appears to play a fundamental role, sensing the signal(s) that switches the enzyme of life in a channel able to precipitate cell death.
Collapse
Affiliation(s)
- Manuela Antoniel
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35121 Padua, Italy.
| | - Valentina Giorgio
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35121 Padua, Italy.
| | - Federico Fogolari
- Department of Biomedical Sciences, University of Udine, p.le Kolbe, 33100 Udine, Italy.
| | - Gary D Glick
- Department of Chemistry, Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35121 Padua, Italy.
| | - Giovanna Lippe
- Department of Food Science, University of Udine, via Sondrio 2/A, 33100 Udine, Italy.
| |
Collapse
|
47
|
Zhao X, Bak S, Pedersen AJT, Jensen ON, Højlund K. Insulin Increases Phosphorylation of Mitochondrial Proteins in Human Skeletal Muscle in Vivo. J Proteome Res 2014; 13:2359-69. [DOI: 10.1021/pr401163t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaolu Zhao
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
- College
of Life Science, Wuhan University, Wuhan, P. R. China 430072
| | - Steffen Bak
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
- Section of Molecular Diabetes & Metabolism, Institute of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
| | | | - Ole Nørregaard Jensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Kurt Højlund
- Section of Molecular Diabetes & Metabolism, Institute of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
- Department
of Endocrinology, Odense University Hospital, DK-5000 Odense
M, Denmark
- Section
of Molecular Physiology, The August Krogh Centre, Department of Nutrition,
Exercise and Sports, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
48
|
Kratochvílová H, Hejzlarová K, Vrbacký M, Mráček T, Karbanová V, Tesařová M, Gombitová A, Cmarko D, Wittig I, Zeman J, Houštěk J. Mitochondrial membrane assembly of TMEM70 protein. Mitochondrion 2014; 15:1-9. [DOI: 10.1016/j.mito.2014.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/04/2014] [Accepted: 02/18/2014] [Indexed: 01/09/2023]
|
49
|
HEJZLAROVÁ K, MRÁČEK T, VRBACKÝ M, KAPLANOVÁ V, KARBANOVÁ V, NŮSKOVÁ H, PECINA P, HOUŠTĚK J. Nuclear Genetic Defects of Mitochondrial ATP Synthase. Physiol Res 2014; 63:S57-71. [DOI: 10.33549/physiolres.932643] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Disorders of ATP synthase, the key enzyme of mitochondrial energy provision belong to the most severe metabolic diseases presenting as early-onset mitochondrial encephalo-cardiomyopathies. Up to now, mutations in four nuclear genes were associated with isolated deficiency of ATP synthase. Two of them, ATP5A1 and ATP5E encode enzyme’s structural subunits α and ε, respectively, while the other two ATPAF2 and TMEM70 encode specific ancillary factors that facilitate the biogenesis of ATP synthase. All these defects share a similar biochemical phenotype with pronounced decrease in the content of fully assembled and functional ATP synthase complex. However, substantial differences can be found in their frequency, molecular mechanism of pathogenesis, clinical manifestation as well as the course of the disease progression. While for TMEM70 the number of reported patients as well as spectrum of the mutations is steadily increasing, mutations in ATP5A1, ATP5E and ATPAF2 genes are very rare. Apparently, TMEM70 gene is highly prone to mutagenesis and this type of a rare mitochondrial disease has a rather frequent incidence. Here we present overview of individual reported cases of nuclear mutations in ATP synthase and discuss, how their analysis can improve our understanding of the enzyme biogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - J. HOUŠTĚK
- Department of Bioenergetics, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
50
|
Matsunami N, Hensel CH, Baird L, Stevens J, Otterud B, Leppert T, Varvil T, Hadley D, Glessner JT, Pellegrino R, Kim C, Thomas K, Wang F, Otieno FG, Ho K, Christensen GB, Li D, Prekeris R, Lambert CG, Hakonarson H, Leppert MF. Identification of rare DNA sequence variants in high-risk autism families and their prevalence in a large case/control population. Mol Autism 2014; 5:5. [PMID: 24467814 PMCID: PMC4098669 DOI: 10.1186/2040-2392-5-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/24/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Genetics clearly plays a major role in the etiology of autism spectrum disorders (ASDs), but studies to date are only beginning to characterize the causal genetic variants responsible. Until recently, studies using multiple extended multi-generation families to identify ASD risk genes had not been undertaken. METHODS We identified haplotypes shared among individuals with ASDs in large multiplex families, followed by targeted DNA capture and sequencing to identify potential causal variants. We also assayed the prevalence of the identified variants in a large ASD case/control population. RESULTS We identified 584 non-conservative missense, nonsense, frameshift and splice site variants that might predispose to autism in our high-risk families. Eleven of these variants were observed to have odds ratios greater than 1.5 in a set of 1,541 unrelated children with autism and 5,785 controls. Three variants, in the RAB11FIP5, ABP1, and JMJD7-PLA2G4B genes, each were observed in a single case and not in any controls. These variants also were not seen in public sequence databases, suggesting that they may be rare causal ASD variants. Twenty-eight additional rare variants were observed only in high-risk ASD families. Collectively, these 39 variants identify 36 genes as ASD risk genes. Segregation of sequence variants and of copy number variants previously detected in these families reveals a complex pattern, with only a RAB11FIP5 variant segregating to all affected individuals in one two-generation pedigree. Some affected individuals were found to have multiple potential risk alleles, including sequence variants and copy number variants (CNVs), suggesting that the high incidence of autism in these families could be best explained by variants at multiple loci. CONCLUSIONS Our study is the first to use haplotype sharing to identify familial ASD risk loci. In total, we identified 39 variants in 36 genes that may confer a genetic risk of developing autism. The observation of 11 of these variants in unrelated ASD cases further supports their role as ASD risk variants.
Collapse
Affiliation(s)
- Nori Matsunami
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | | | - Lisa Baird
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Jeff Stevens
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Brith Otterud
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Tami Leppert
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Tena Varvil
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Dexter Hadley
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph T Glessner
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Renata Pellegrino
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cecilia Kim
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kelly Thomas
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fengxiang Wang
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Frederick G Otieno
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Karen Ho
- Lineagen, Inc, Salt Lake City, UT, USA
| | | | - Dongying Li
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Mark F Leppert
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|