1
|
Roca Suarez AA, Jühling F, Moehlin J, Mailly L, Virzì A, Brignon N, Durand SC, Oudot MA, Schaeffer E, Martin R, Meiss-Heydmann L, Bach C, Boulahtouf Z, Girard L, Osswald E, Jamey C, Brumaru D, Dali-Youcef N, Mukherji A, Saez-Palma M, Testoni B, Zoulim F, Koneru B, Fujiwara N, Hoshida Y, Felli E, Pessaux P, Tremblay ML, Parent R, Schuster C, Baumert TF, Lupberger J. Protein tyrosine phosphatase delta is a STAT3-phosphatase and suppressor of metabolic liver disease. EGASTROENTEROLOGY 2025; 3:e100159. [PMID: 40124988 PMCID: PMC11927410 DOI: 10.1136/egastro-2024-100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/08/2025] [Indexed: 03/25/2025]
Abstract
ABSTRACT Objective Impaired hepatic expression of protein tyrosine phosphatase delta (PTPRD) is associated with increased STAT3 transcriptional activity and reduced survival from hepatocellular carcinoma in patients with chronic hepatitis C virus infection. However, the PTPRD-expressing hepatic cell types, signalling pathways responsive to PTPRD and their role in non-viral liver disease are largely unknown. Methods We studied PTPRD expression in single-cell and bulk liver transcriptomic data from mice and humans, and established a Ptprd-deficient mouse model for metabolic dysfunction-associated steatohepatitis (MASH). Identified pathways were validated by perturbation studies in human hepatocytes and PTPRD substrates by pull-down assays. The clinical relevance was further explored in a cohort with metabolic disease by ranking patients according to PTPRD expression and analysing its association with metabolic disease markers. Results The analysis of individuals ranked according to PTPRD expression and Ptprd-deficient mice, showed that PTPRD levels were associated with hepatic glucose/lipid signalling and peroxisome function. Hepatic PTPRD expression is impaired in aetiologies of chronic liver diseases that are associated with metabolic disease. We further validated PTPRD as a STAT3 phosphatase in the liver, acting as a regulator of peroxisomal fatty acid metabolism. During MASH, low PTPRD led to increased liver steatosis in Ptprd+/- mice and a pronounced unfolded protein response, which impacts insulin signalling. Accordingly, silencing of PTPRD blunted insulin-induced AKT phosphorylation. Patients with obesity and low hepatic PTPRD expression exhibit increased levels of metabolic risk factors. Conclusion Our data revealed an important regulatory role of the hepatic PTPRD-STAT3 axis in maintaining glucose/lipid homeostasis, which is recapitulated in clinical manifestations of metabolic liver disease.
Collapse
Affiliation(s)
- Armando Andres Roca Suarez
- Institute for Translational Medicine and Liver Disease (ITM), Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
- Inserm U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute, IHU EVEREST, Lyon, France
| | - Frank Jühling
- Institute for Translational Medicine and Liver Disease (ITM), Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
| | - Julien Moehlin
- Institute for Translational Medicine and Liver Disease (ITM), Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
| | - Laurent Mailly
- Institute for Translational Medicine and Liver Disease (ITM), Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
- ÆPIC Animal Facility Platform, Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
| | - Alessia Virzì
- Institute for Translational Medicine and Liver Disease (ITM), Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
| | - Nicolas Brignon
- Institute for Translational Medicine and Liver Disease (ITM), Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
- ÆPIC Animal Facility Platform, Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
| | - Sarah C Durand
- Institute for Translational Medicine and Liver Disease (ITM), Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
| | - Marine A Oudot
- Institute for Translational Medicine and Liver Disease (ITM), Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
| | - Eugenie Schaeffer
- Institute for Translational Medicine and Liver Disease (ITM), Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
| | - Romain Martin
- Institute for Translational Medicine and Liver Disease (ITM), Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
- ÆPIC Animal Facility Platform, Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
| | - Laura Meiss-Heydmann
- Institute for Translational Medicine and Liver Disease (ITM), Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
| | - Charlotte Bach
- Institute for Translational Medicine and Liver Disease (ITM), Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
| | - Zakaria Boulahtouf
- Institute for Translational Medicine and Liver Disease (ITM), Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
| | - Lea Girard
- Institute for Translational Medicine and Liver Disease (ITM), Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
| | - Emma Osswald
- Institute for Translational Medicine and Liver Disease (ITM), Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
| | - Carole Jamey
- Laboratoire de Biochimie et de Biologie Moléculaire, Pôle de biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Daniel Brumaru
- Laboratoire de Biochimie et de Biologie Moléculaire, Pôle de biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Nassim Dali-Youcef
- Laboratoire de Biochimie et de Biologie Moléculaire, Pôle de biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch-Graffenstaden, France
| | - Atish Mukherji
- Institute for Translational Medicine and Liver Disease (ITM), Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
| | - Maria Saez-Palma
- Inserm U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute, IHU EVEREST, Lyon, France
| | - Barbara Testoni
- Inserm U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute, IHU EVEREST, Lyon, France
| | - Fabien Zoulim
- Inserm U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute, IHU EVEREST, Lyon, France
- Hospices Civils de Lyon (HCL), Lyon, France
| | - Bhuvaneswari Koneru
- Liver Tumor Translational Research Program, Harold C. Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Naoto Fujiwara
- Liver Tumor Translational Research Program, Harold C. Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Harold C. Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Emanuele Felli
- Institute for Translational Medicine and Liver Disease (ITM), Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Service Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Patrick Pessaux
- Institute for Translational Medicine and Liver Disease (ITM), Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Service Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Michel L Tremblay
- Rosalind and Morris Goodman Cancer Institute, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Romain Parent
- Inserm U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute, IHU EVEREST, Lyon, France
| | - Catherine Schuster
- Institute for Translational Medicine and Liver Disease (ITM), Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
| | - Thomas F Baumert
- Institute for Translational Medicine and Liver Disease (ITM), Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Joachim Lupberger
- Institute for Translational Medicine and Liver Disease (ITM), Inserm UMR_S1110, University of Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
Fu Q, Dai H, Shen S, He Y, Zheng S, Jiang H, Gu P, Sun M, Zhu X, Xu K, Yang T. Interactions of genes with alcohol consumption affect insulin sensitivity and beta cell function. Diabetologia 2025; 68:116-127. [PMID: 39425782 DOI: 10.1007/s00125-024-06291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/12/2024] [Indexed: 10/21/2024]
Abstract
AIMS/HYPOTHESIS Alcohol consumption has complex effects on diabetes and metabolic disease, but there is widespread heterogeneity within populations and the specific reasons are unclear. Genetic factors may play a role and warrant exploration. The aim of this study was to elucidate genetic variants modulating the impact of alcohol consumption on insulin sensitivity and pancreatic beta cell function within populations presenting normal glucose tolerance (NGT). METHODS We recruited 4194 volunteers in Nanjing, 854 in Jurong and an additional 5833 in Nanjing for Discovery cohorts 1 and 2 and a Validation cohort, respectively. We performed an OGTT on all participants, establishing a stringent NGT group, and then assessed insulin sensitivity and beta cell function. Alcohol consumption was categorised as abstinent, light-to-moderate (<210 g per week) or heavy (≥210 g per week). After excluding ineligible individuals, an exploratory genome-wide association study identified potential variants interacting with alcohol consumption in 1862 NGT individuals. These findings were validated in an additional cohort of 2169 NGT individuals. Cox proportional hazard regression was further employed to evaluate the effect of the interaction between the potential variants and alcohol consumption on the risk of type 2 diabetes within the UK Biobank cohort. RESULTS A significant correlation was observed between drinking levels and insulin sensitivity, accompanied by a consequent inverse relationship with insulin resistance and beta cell insulin secretion after adjusting for confounding factors in NGT individuals. However, no significant associations were noted in the disposition indexes. The interaction of variant rs56221195 with alcohol intake exhibited a pronounced effect on the liver insulin resistance index (LIRI) in the discovery set, corroborated in the validation set (combined p=1.32 × 10-11). Alcohol consumption did not significantly affect LIRI in rs56221195 wild-type (TT) carriers, but a strong negative association emerged in heterozygous (TA) and homozygous (AA) individuals. The rs56221195 variant also significantly interacts with alcohol consumption, influencing the total insulin secretion index INSR120 (the ratio of the AUC of insulin to glucose from 0 to 120 min) (p=2.06 × 10-9) but not disposition index. In the UK Biobank, we found a significant interaction between rs56221195 and alcohol consumption, which was linked to the risk of type 2 diabetes (HR 0.897, p=0.008). CONCLUSIONS/INTERPRETATION Our findings reveal the effects of the interaction of alcohol and rs56221195 on hepatic insulin sensitivity in NGT individuals. It is imperative to weigh potential benefits and detriments thoughtfully when considering alcohol consumption across diverse genetic backgrounds.
Collapse
Affiliation(s)
- Qi Fu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Dai
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sipeng Shen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yunqiang He
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuai Zheng
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hemin Jiang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pan Gu
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Min Sun
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaowei Zhu
- Department of Endocrinology and Metabolism, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.
- Department of Endocrinology and Metabolism, Wuxi People's Hospital, Wuxi, China.
- Department of Endocrinology and Metabolism, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| | - Kuanfeng Xu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Tao Yang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Department of Endocrinology and Metabolism, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.
- Department of Endocrinology and Metabolism, Wuxi People's Hospital, Wuxi, China.
- Department of Endocrinology and Metabolism, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
3
|
DiGuilio A, Cheng B, Zhong F, Jha R, Wan Y, Anghel S, Hu H, Shishkova E, Ji Z, Coon JJ, Keenan RJ. The prolyl isomerase FKBP11 is a secretory translocon accessory factor. Mol Biol Cell 2024; 35:ar135. [PMID: 39259761 PMCID: PMC11617091 DOI: 10.1091/mbc.e24-07-0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
Eukaryotic cells encode thousands of secretory and membrane proteins, many of which are cotranslationally translocated into the endoplasmic reticulum (ER). Nascent polypeptides entering the ER encounter a network of molecular chaperones and enzymes that facilitate their folding. A rate-limiting step for some proteins is the trans-to-cis isomerization of the peptide bond between proline and the residue preceding it. The human ER contains six prolyl isomerases, but the function, organization, and substrate range of these proteins is not clear. Here we show that the metazoan-specific, prolyl isomerase FKBP11 binds to ribosome-translocon complexes (RTCs) in the ER membrane, dependent on its single transmembrane domain and a conserved, positively charged region at its cytosolic C-terminus. High-throughput mRNA sequencing shows selective engagement with ribosomes synthesizing secretory and membrane proteins with long translocated segments, and functional analysis shows reduced stability of two such proteins, EpCAM and PTTG1IP, in cells depleted of FKBP11. We propose that FKBP11 is a translocon accessory factor that acts on a broad range of soluble secretory and transmembrane proteins during their synthesis at the ER.
Collapse
Affiliation(s)
- Amanda DiGuilio
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Ben Cheng
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Frank Zhong
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Roshan Jha
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Yu Wan
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60628
| | - S. Andrei Anghel
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Hong Hu
- Center for Research Informatics, The University of Chicago, Chicago, IL 60637
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706
| | - Zhe Ji
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60628
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Joshua J. Coon
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706
- Morgridge Institute for Research, Madison, WI 53515
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53506
| | - Robert J. Keenan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
4
|
Jaber M, Schmidt J, Kalkhof S, Gerstenfeld L, Duda GN, Checa S. OMIBONE: Omics-driven computer model of bone regeneration for personalized treatment. Bone 2024; 190:117288. [PMID: 39426580 DOI: 10.1016/j.bone.2024.117288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Treatment of bone fractures are standardized according to the AO classification, which mainly refers to the mechanical stabilization required in a given situation but neglect individual differences due to patient's healing potential or accompanying diseases. Specially in elderly or immune-compromised patients, the complexity of individual constrains on a biological as well as mechanical level are hard to account for. Here, we introduce a novel framework that allows to predict bone regeneration outcome using combined proteomic and mechanical analyses in a computer model. The framework uses Ingenuity Pathway Analysis (IPA) software to link protein changes to alterations in biological processes and integrates these in an Agent-Based Model (ABM) of bone regeneration. This combined framework allows to predict bone formation and the potential of an individual to heal a given fracture setting. The performance of the framework was evaluated by replicating the experimental setup of a mouse femur fracture stabilized with an intramedullary pin. The model was informed by serum derived proteomics data. The tissue formation patterns were compared against experimental data based on x-ray and histology images. The results indicate the framework potential in predicting an individual's bone formation potential and hold promise as a concept to enable personalized bone healing predictions for a chosen fracture fixation.
Collapse
Affiliation(s)
- Mahdi Jaber
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - Johannes Schmidt
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Stefan Kalkhof
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Louis Gerstenfeld
- Department of Orthopaedic Surgery, Boston University of Medicine, Boston, MA, United States of America
| | - Georg N Duda
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany; BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Germany
| | - Sara Checa
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
5
|
Yan Y, Huang J, Chen X, Li Y, Zhao W, Li C. UFL1 regulates cellular homeostasis by targeting endoplasmic reticulum and mitochondria in NEFA-stimulated bovine mammary epithelial cells via the IRE1α/XBP1 pathway. Free Radic Biol Med 2024; 222:16-26. [PMID: 38821134 DOI: 10.1016/j.freeradbiomed.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Elevated levels of NEFA caused by negative energy balance in transition cows induce cellular dyshomeostasis. Ubiquitin-like modifier 1 ligating enzyme 1 (UFL1) can maintain cellular homeostasis and act as a critical regulator of stress responses besides functioning in the ubiquitin-like system. The objective of this study was to elucidate the UFL1 working mechanism on promoting cellular adaptations in bovine mammary epithelial cells (BMECs) in response to NEFA challenge, with an emphasis on the ER and mitochondrial function. The results showed that exogenous NEFA and UFL1 depletion resulted in the disorder of ER and mitochondrial homeostasis and the damage of BMEC integrity, overexpression of UFL1 effectively alleviated the NEFA-induced cellular dyshomeostasis. Mechanistically, our study found that UFL1 had a strong interaction with IRE1α and could modulate the IRE1α/XBP1 pathway of unfolded protein response in NEFA-stimulated BMECs, thereby contributing to the modulation of cellular homeostasis. These findings imply that targeting UFL1 may be a therapeutic alternative to relieve NEB-induced metabolic changes in perinatal dairy cows.
Collapse
Affiliation(s)
- Yexiao Yan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Junpeng Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Xiangxing Chen
- Zibo Service Center for Animal Husbandry and Fishery, Zibo, 255000, China
| | - Yuan Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Chengmin Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| |
Collapse
|
6
|
Michaels TM, Essop MF, Joseph DE. Potential Effects of Hyperglycemia on SARS-CoV-2 Entry Mechanisms in Pancreatic Beta Cells. Viruses 2024; 16:1243. [PMID: 39205219 PMCID: PMC11358987 DOI: 10.3390/v16081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The COVID-19 pandemic has revealed a bidirectional relationship between SARS-CoV-2 infection and diabetes mellitus. Existing evidence strongly suggests hyperglycemia as an independent risk factor for severe COVID-19, resulting in increased morbidity and mortality. Conversely, recent studies have reported new-onset diabetes following SARS-CoV-2 infection, hinting at a potential direct viral attack on pancreatic beta cells. In this review, we explore how hyperglycemia, a hallmark of diabetes, might influence SARS-CoV-2 entry and accessory proteins in pancreatic β-cells. We examine how the virus may enter and manipulate such cells, focusing on the role of the spike protein and its interaction with host receptors. Additionally, we analyze potential effects on endosomal processing and accessory proteins involved in viral infection. Our analysis suggests a complex interplay between hyperglycemia and SARS-CoV-2 in pancreatic β-cells. Understanding these mechanisms may help unlock urgent therapeutic strategies to mitigate the detrimental effects of COVID-19 in diabetic patients and unveil if the virus itself can trigger diabetes onset.
Collapse
Affiliation(s)
- Tara M. Michaels
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - M. Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa;
| | - Danzil E. Joseph
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| |
Collapse
|
7
|
Wang X, Lv X, Ma J, Xu G. UFMylation: An integral post-translational modification for the regulation of proteostasis and cellular functions. Pharmacol Ther 2024; 260:108680. [PMID: 38878974 DOI: 10.1016/j.pharmthera.2024.108680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is covalently conjugated to protein substrates via a cascade of enzymatic reactions, a process known as UFMylation. UFMylation orchestrates an array of vital biological functions, including maintaining endoplasmic reticulum (ER) homeostasis, facilitating protein biogenesis, promoting cellular differentiation, regulating DNA damage response, and participating in cancer-associated signaling pathways. UFMylation has rapidly evolved into one of the forefront research areas within the last few years, yet much remains to be uncovered. In this review, first, UFMylation and its cellular functions associated with diseases are briefly introduced. Then, we summarize the proteomic approaches for identifying UFMylation substrates and explore the impact of UFMylation on gene transcription, protein translation, and maintenance of ER homeostasis. Next, we highlight the intricate regulation between UFMylation and two protein degradation pathways, the ubiquitin-proteasome system and the autophagy-lysosome pathway, and explore the potential of UFMylation system as a drug target. Finally, we discuss emerging perspectives in the UFMylation field. This review may provide valuable insights for drug discovery targeting the UFMylation system.
Collapse
Affiliation(s)
- Xiaohui Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Xiaowei Lv
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Jingjing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China; Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China.
| |
Collapse
|
8
|
Jing Y, Ye K, Zhang G, Zhu J, Mao Z, Zhang Q, Chen F. UFM1 inhibits hypoxia-induced angiogenesis via promoting proteasome degradation of HIF-1α. Mol Cell Biochem 2024; 479:1833-1852. [PMID: 38722467 DOI: 10.1007/s11010-024-05013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/16/2024] [Indexed: 07/18/2024]
Abstract
Angiogenesis is crucial for blood flow recovery and ischemic tissue repair of peripheral artery disease (PAD). Exploration of new mechanisms underlying angiogenesis will shed light on the treatment of PAD. Ubiquitin-fold modifier 1 (UFM1), a newly identified ubiquitin-like molecule, has been discovered to be involved in various pathophysiological processes. However, the role of UFM1 in the pathogenesis of PAD, especially in endothelial angiogenesis remains obscure, and we aimed to clarify this issue in this study. We initially found UFM1 was significantly upregulated in gastrocnemius muscles of PAD patients and hind limb ischemia mice. And UFM1 was mainly colocalized with endothelial cells in ischemic muscle tissues. Further, elevated expression of UFM1 was observed in hypoxic endothelial cells. Subsequent genetic inhibition of UFM1 dramatically enhanced migration, invasion, adhesion, and tube formation of endothelial cells under hypoxia. Mechanistically, UFM1 reduced the stability of hypoxia-inducible factor-1α (HIF-1α) and promoted the von Hippel-Lindau-mediated K48-linked ubiquitin-proteasome degradation of HIF-1α, which in turn decreased angiogenic factor VEGFA expression and suppressed VEGFA related signaling pathway. Consistently, overexpression of UFM1 inhibited the angiogenesis of endothelial cells under hypoxic conditions, whereas overexpression of HIF-1α reversed this effect. Collectively, our data reveal that UFM1 inhibits the angiogenesis of endothelial cells under hypoxia through promoting ubiquitin-proteasome degradation of HIF-1α, suggesting UFM1 might serve as a potential therapeutic target for PAD.
Collapse
Affiliation(s)
- Yu Jing
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China
| | - Kuanping Ye
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China
| | - Guangya Zhang
- Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai JiaoTong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Jing Zhu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China
| | - Ziming Mao
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China
| | - Qianru Zhang
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China
| | - Fengling Chen
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China.
| |
Collapse
|
9
|
Wang N, Ren L, Danser AHJ. Vacuolar H +-ATPase in Diabetes, Hypertension, and Atherosclerosis. Microcirculation 2024; 31:e12855. [PMID: 38683673 DOI: 10.1111/micc.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Vacuolar H+-ATPase (V-ATPase) is a multisubunit protein complex which, along with its accessory proteins, resides in almost every eukaryotic cell. It acts as a proton pump and as such is responsible for regulating pH in lysosomes, endosomes, and the extracellular space. Moreover, V-ATPase has been implicated in receptor-mediated signaling. Although numerous studies have explored the role of V-ATPase in cancer, osteoporosis, and neurodegenerative diseases, research on its involvement in vascular disease remains limited. Vascular diseases pose significant challenges to human health. This review aimed to shed light on the role of V-ATPase in hypertension and atherosclerosis. Furthermore, given that vascular complications are major complications of diabetes, this review also discusses the pathways through which V-ATPase may contribute to such complications. Beginning with an overview of the structure and function of V-ATPase in hypertension, atherosclerosis, and diabetes, this review ends by exploring the pharmacological potential of targeting V-ATPase.
Collapse
Affiliation(s)
- Na Wang
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Liwei Ren
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Guo B, Li QY, Liu XJ, Luo GH, Wu YJ, Nie J. Diabetes mellitus and Alzheimer's disease: Vacuolar adenosine triphosphatase as a potential link. Eur J Neurosci 2024; 59:2577-2595. [PMID: 38419188 DOI: 10.1111/ejn.16286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Globally, the incidence of diabetes mellitus (DM) and Alzheimer's disease (AD) is increasing year by year, causing a huge economic and social burden, and their pathogenesis and aetiology have been proven to have a certain correlation. In recent years, more and more studies have shown that vacuolar adenosine triphosphatases (v-ATPases) in eukaryotes, which are biomolecules regulating lysosomal acidification and glycolipid metabolism, play a key role in DM and AD. This article describes the role of v-ATPase in DM and AD, including its role in glycolysis, insulin secretion and insulin resistance (IR), as well as its relationship with lysosomal acidification, autophagy and β-amyloid (Aβ). In DM, v-ATPase is involved in the regulation of glucose metabolism and IR. v-ATPase is closely related to glycolysis. On the one hand, v-ATPase affects the rate of glycolysis by affecting the secretion of insulin and changing the activities of key glycolytic enzymes hexokinase (HK) and phosphofructokinase 1 (PFK-1). On the other hand, glucose is the main regulator of this enzyme, and the assembly and activity of v-ATPase depend on glucose, and glucose depletion will lead to its decomposition and inactivation. In addition, v-ATPase can also regulate free fatty acids, thereby improving IR. In AD, v-ATPase can not only improve the abnormal brain energy metabolism by affecting lysosomal acidification and autophagy but also change the deposition of Aβ by affecting the production and degradation of Aβ. Therefore, v-ATPase may be the bridge between DM and AD.
Collapse
Affiliation(s)
- Bin Guo
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qi-Ye Li
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xue-Jia Liu
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guo-Hui Luo
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ya-Juan Wu
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jing Nie
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
11
|
Seo H, Park JH, Hwang JT, Choi HK, Park SH, Lee J. Epigenetic Profiling of Type 2 Diabetes Mellitus: An Epigenome-Wide Association Study of DNA Methylation in the Korean Genome and Epidemiology Study. Genes (Basel) 2023; 14:2207. [PMID: 38137029 PMCID: PMC10743302 DOI: 10.3390/genes14122207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes is characterized by persistently high blood glucose levels and severe complications and affects millions of people worldwide. In this study, we explored the epigenetic landscape of diabetes using data from the Korean Genome and Epidemiology Study (KoGES), specifically the Ansung-Ansan (AS-AS) cohort. Using epigenome-wide association studies, we investigated DNA methylation patterns in patients with type 2 diabetes mellitus (T2DM) and those with normal glucose regulation. Differential methylation analysis revealed 106 differentially methylated probes (DMPs), with the 10 top DMPs prominently associated with TXNIP, PDK4, NBPF20, ARRDC4, UFM1, PFKFB2, C7orf50, and ABCG1, indicating significant changes in methylation. Correlation analysis highlighted the association between the leading DMPs (e.g., cg19693031 and cg26974062 for TXNIP and cg26823705 for NBPF20) and key glycemic markers (fasting plasma glucose and hemoglobin A1c), confirming their relevance in T2DM. Moreover, we identified 62 significantly differentially methylated regions (DMRs) spanning 61 genes. A DMR associated with PDE1C showed hypermethylation, whereas DMRs associated with DIP2C, FLJ90757, PRSS50, and TDRD9 showed hypomethylation. PDE1C and TDRD9 showed a strong positive correlation between the CpG sites included in each DMR, which have previously been implicated in T2DM-related processes. This study contributes to the understanding of epigenetic modifications in T2DM. These valuable insights can be utilized in identifying potential biomarkers and therapeutic targets for effective management and prevention of diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | - Jangho Lee
- Korea Food Research Institute, Wanju-gun 55365, Jeollabuk-do, Republic of Korea; (H.S.); (J.-H.P.); (J.-T.H.); (H.-K.C.); (S.-H.P.)
| |
Collapse
|
12
|
Luo H, Jiao QB, Shen CB, Gong WY, Yuan JH, Liu YY, Chen Z, Liu J, Xu XL, Cong YS, Zhang XW. UFMylation of HRD1 regulates endoplasmic reticulum homeostasis. FASEB J 2023; 37:e23221. [PMID: 37795761 DOI: 10.1096/fj.202300004rrrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
Ubiquitin fold modifier 1 is a small ubiquitin-like protein modifier that is essential for embryonic development of metazoans. Although UFMylation has been connected to endoplasmic reticulum homeostasis, the underlying mechanisms and the relevant cellular targets are largely unknown. Here, we show that HRD1, a ubiquitin ligase of ER-associated protein degradation (ERAD), is a novel substrate of UFM1 conjugation. HRD1 interacts with UFMylation components UFL1 and DDRGK1 and is UFMylated at Lys610 residue. In UFL1-depleted cells, the stability of HRD1 is increased and its ubiquitination modification is reduced. In the event of ER stress, the UFMylation and ubiquitination modification of HRD1 is gradually inhibited over time. Alteration of HRD1 Lys610 residue to arginine impairs its ability to degrade unfolded or misfolded proteins to disturb protein processing in ER. These results suggest that UFMylation of HRD1 facilitates ERAD function to maintain ER homeostasis.
Collapse
Affiliation(s)
- Hui Luo
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Qi-Bin Jiao
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Chuan-Bin Shen
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Wen-Yan Gong
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Jing-Hua Yuan
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Ying-Ying Liu
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Zhen Chen
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Jiang Liu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiao-Ling Xu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yu-Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xing-Wei Zhang
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
13
|
Hrovatin K, Bastidas-Ponce A, Bakhti M, Zappia L, Büttner M, Salinno C, Sterr M, Böttcher A, Migliorini A, Lickert H, Theis FJ. Delineating mouse β-cell identity during lifetime and in diabetes with a single cell atlas. Nat Metab 2023; 5:1615-1637. [PMID: 37697055 PMCID: PMC10513934 DOI: 10.1038/s42255-023-00876-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/26/2023] [Indexed: 09/13/2023]
Abstract
Although multiple pancreatic islet single-cell RNA-sequencing (scRNA-seq) datasets have been generated, a consensus on pancreatic cell states in development, homeostasis and diabetes as well as the value of preclinical animal models is missing. Here, we present an scRNA-seq cross-condition mouse islet atlas (MIA), a curated resource for interactive exploration and computational querying. We integrate over 300,000 cells from nine scRNA-seq datasets consisting of 56 samples, varying in age, sex and diabetes models, including an autoimmune type 1 diabetes model (NOD), a glucotoxicity/lipotoxicity type 2 diabetes model (db/db) and a chemical streptozotocin β-cell ablation model. The β-cell landscape of MIA reveals new cell states during disease progression and cross-publication differences between previously suggested marker genes. We show that β-cells in the streptozotocin model transcriptionally correlate with those in human type 2 diabetes and mouse db/db models, but are less similar to human type 1 diabetes and mouse NOD β-cells. We also report pathways that are shared between β-cells in immature, aged and diabetes models. MIA enables a comprehensive analysis of β-cell responses to different stressors, providing a roadmap for the understanding of β-cell plasticity, compensation and demise.
Collapse
Affiliation(s)
- Karin Hrovatin
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Medical Faculty, Technical University of Munich, Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Luke Zappia
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Maren Büttner
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Medical Faculty, Technical University of Munich, Munich, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Adriana Migliorini
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- McEwen Stem Cell Institute, University Health Network (UHN), Toronto, Ontario, Canada
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Medical Faculty, Technical University of Munich, Munich, Germany.
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- Department of Mathematics, Technical University of Munich, Garching, Germany.
| |
Collapse
|
14
|
Chen YC, Taylor AJ, Fulcher JM, Swensen AC, Dai XQ, Komba M, Wrightson KL, Fok K, Patterson AE, Klein Geltink RI, MacDonald PE, Qian WJ, Verchere CB. Deletion of Carboxypeptidase E in β-Cells Disrupts Proinsulin Processing but Does Not Lead to Spontaneous Development of Diabetes in Mice. Diabetes 2023; 72:1277-1288. [PMID: 37364047 PMCID: PMC10450824 DOI: 10.2337/db22-0945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Carboxypeptidase E (CPE) facilitates the conversion of prohormones into mature hormones and is highly expressed in multiple neuroendocrine tissues. Carriers of CPE mutations have elevated plasma proinsulin and develop severe obesity and hyperglycemia. We aimed to determine whether loss of Cpe in pancreatic β-cells disrupts proinsulin processing and accelerates development of diabetes and obesity in mice. Pancreatic β-cell-specific Cpe knockout mice (βCpeKO; Cpefl/fl x Ins1Cre/+) lack mature insulin granules and have elevated proinsulin in plasma; however, glucose-and KCl-stimulated insulin secretion in βCpeKO islets remained intact. High-fat diet-fed βCpeKO mice showed weight gain and glucose tolerance comparable with those of Wt littermates. Notably, β-cell area was increased in chow-fed βCpeKO mice and β-cell replication was elevated in βCpeKO islets. Transcriptomic analysis of βCpeKO β-cells revealed elevated glycolysis and Hif1α-target gene expression. On high glucose challenge, β-cells from βCpeKO mice showed reduced mitochondrial membrane potential, increased reactive oxygen species, reduced MafA, and elevated Aldh1a3 transcript levels. Following multiple low-dose streptozotocin injections, βCpeKO mice had accelerated development of hyperglycemia with reduced β-cell insulin and Glut2 expression. These findings suggest that Cpe and proper proinsulin processing are critical in maintaining β-cell function during the development of hyperglycemia. ARTICLE HIGHLIGHTS Carboxypeptidase E (Cpe) is an enzyme that removes the carboxy-terminal arginine and lysine residues from peptide precursors. Mutations in CPE lead to obesity and type 2 diabetes in humans, and whole-body Cpe knockout or mutant mice are obese and hyperglycemic and fail to convert proinsulin to insulin. We show that β-cell-specific Cpe deletion in mice (βCpeKO) does not lead to the development of obesity or hyperglycemia, even after prolonged high-fat diet treatment. However, β-cell proliferation rate and β-cell area are increased, and the development of hyperglycemia induced by multiple low-dose streptozotocin injections is accelerated in βCpeKO mice.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Austin J. Taylor
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - James M. Fulcher
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Adam C. Swensen
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Xiao-Qing Dai
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Mitsuhiro Komba
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | | | - Kenny Fok
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Annette E. Patterson
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ramon I. Klein Geltink
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Wei-Jun Qian
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - C. Bruce Verchere
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Kipp A, Marti HP, Babickova J, Nakken S, Leh S, Halden TAS, Jenssen T, Vikse BE, Åsberg A, Spagnoli G, Furriol J. Glomerular proteomic profiling reveals early differences between preexisting and de novo type 2 diabetes in human renal allografts. BMC Nephrol 2023; 24:254. [PMID: 37626301 PMCID: PMC10464146 DOI: 10.1186/s12882-023-03294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM), either preexisting or developing after transplantation, remains a crucial clinical problem in kidney transplantation. To obtain insights into the molecular mechanisms underlying PTDM development and early glomerular damage before the development of histologically visible diabetic kidney disease, we comparatively analysed the proteome of histologically normal glomeruli from patients with PTDM and normoglycaemic (NG) transplant recipients. Moreover, to assess specificities inherent in PTDM, we also comparatively evaluated glomerular proteomes from transplant recipients with preexisting type 2 DM (T2DM). METHODS Protocol biopsies were obtained from adult NG, PTDM and T2DM patients one year after kidney transplantation. Biopsies were formalin-fixed and embedded in paraffin, and glomerular cross-sections were microdissected. A total of 4 NG, 7 PTDM and 6 T2DM kidney biopsies were used for the analysis. The proteome was determined by liquid chromatography-tandem mass spectrometry. Relative differences in protein abundance and significantly dysregulated pathways were analysed. RESULTS Proteins involved in cell adhesion, immune response, leukocyte transendothelial filtration, and cell localization and organization were less abundant in glomeruli from PTDM patients than in those from NG patients, and proteins associated with supramolecular fibre organization and protein-containing complex binding were more abundant in PTDM patients. Overall, proteins related to adherens and tight junctions and those related to the immune system, including leukocyte transendothelial migration, were more abundant in NG patients than in transplanted patients with DM, irrespective of the timing of its development. However, proteins included in cell‒cell junctions and adhesion, insulin resistance, and vesicle-mediated transport were all less abundant in PTDM patients than in T2DM patients. CONCLUSIONS The glomerular proteome profile differentiates PTDM from NG and T2DM, suggesting specific pathogenetic mechanisms. Further studies are warranted to validate these results, potentially leading to an improved understanding of PTDM kidney transplant pathophysiology and to the identification of novel biomarkers.
Collapse
Affiliation(s)
- Anne Kipp
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Janka Babickova
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Sigrid Nakken
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Sabine Leh
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Thea A S Halden
- Department of Transplantation Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - Trond Jenssen
- Department of Transplantation Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
- Metabolic and Renal Research Group, Faculty of Health Sciences UiT, The Arctic University of Norway, Tromsø, Norway
| | - Bjørn Egil Vikse
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haugesund Hospital, Haugesund, Norway
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Giulio Spagnoli
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Jessica Furriol
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
- Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
16
|
Klyosova E, Azarova I, Buikin S, Polonikov A. Differentially Expressed Genes Regulating Glutathione Metabolism, Protein-Folding, and Unfolded Protein Response in Pancreatic β-Cells in Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:12059. [PMID: 37569434 PMCID: PMC10418503 DOI: 10.3390/ijms241512059] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Impaired redox homeostasis in the endoplasmic reticulum (ER) may contribute to proinsulin misfolding and thus to activate the unfolded protein response (UPR) and apoptotic pathways, culminating in pancreatic β-cell loss and type 2 diabetes (T2D). The present study was designed to identify differentially expressed genes (DEGs) encoding enzymes for glutathione metabolism and their impact on the expression levels of genes regulating protein folding and UPR in β-cells of T2D patients. The GEO transcriptome datasets of β-cells of diabetics and non-diabetics, GSE20966 and GSE81608, were analyzed for 142 genes of interest using limma and GREIN software, respectively. Diabetic β-cells showed dataset-specific patterns of DEGs (FDR ≤ 0.05) implicated in the regulation of glutathione metabolism (ANPEP, PGD, IDH2, and CTH), protein-folding (HSP90AB1, HSP90AA1, HSPA1B, HSPA8, BAG3, NDC1, NUP160, RLN1, and RPS19BP1), and unfolded protein response (CREB3L4, ERP27, and BID). The GCLC gene, encoding the catalytic subunit of glutamate-cysteine ligase, the first rate-limiting enzyme of glutathione biosynthesis, was moderately down-regulated in diabetic β-cells from both datasets (p ≤ 0.05). Regression analysis established that genes involved in the de novo synthesis of glutathione, GCLC, GCLM, and GSS affect the expression levels of genes encoding molecular chaperones and those involved in the UPR pathway. This study showed for the first time that diabetic β-cells exhibit alterations in the expression of genes regulating glutathione metabolism, protein-folding, and UPR and provided evidence for the molecular crosstalk between impaired redox homeostasis and abnormal protein folding, underlying ER stress in type 2 diabetes.
Collapse
Affiliation(s)
- Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia; (E.K.); (I.A.)
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
| | - Iuliia Azarova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia; (E.K.); (I.A.)
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
| | - Stepan Buikin
- Centre of Omics Technology, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia;
- Department of Internal Diseases, Yaroslav the Wise Novgorod State University, 41 Bolshaya St. Petersburg Street, 173003 Veliky Novgorod, Russia
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| |
Collapse
|
17
|
Akintade DD, Chaudhuri B. FK506-binding protein 2 (FKBP13) inhibit Bax-induced apoptosis in Saccharomyces cerevisiae (yeast). Cell Biol Toxicol 2023; 39:719-728. [PMID: 34342774 PMCID: PMC10406727 DOI: 10.1007/s10565-021-09633-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 07/13/2021] [Indexed: 11/26/2022]
Abstract
FK506-binding protein 2 (FKBP13) is a part of the immunophilin protein family involved in immunoregulation. It is also believed to operate as a factor in membrane cytoskeletal framework and as an ER chaperone. FKBP2 (FKBP13) and FKBP1 (FKBP12), known as immunophilins, are binding proteins for rapamycin and FK506, which are immunosuppressive drugs. It was suggested that immunophilin-like and immunophilin proteins play significant roles in regulating intracellular calcium and protein folding/sorting, acting as molecular chaperones. Within the 15 mammalian FKBPs known, FKBP1 is merely the only one proven to form complexes with rapamycin and FK506 in the cytosol and facilitate their T cells immunosuppressive effects, FKBP2 is a luminal protein of the endoplasmic reticulum (ER) and is reported to take part in protein folding in the ER. However, little is known about FKBP2 link with apoptosis (either as a pro or anti-apoptotic protein). In this study, FKPB2 protein was co-expressed with the pro-apoptotic protein Bax after a yeast-based human hippocampal cDNA library screening. The yeast strain carrying the Bax gene was transformed with an episomal 2-micron plasmid that encodes the HA-tagged FKBP2 gene. The resultant strain would allow co-expression of Bax and FKBP2 in yeast cells. The results presented here show that a protein involved in protein folding can play a role in protecting yeast cell from Bax-induced apoptosis.
Collapse
Affiliation(s)
- Damilare D Akintade
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, LS1 3HE, UK.
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK.
| | - Bhabatosh Chaudhuri
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| |
Collapse
|
18
|
Zhou J, Ma X, He X, Chen B, Yuan J, Jin Z, Li L, Wang Z, Xiao Q, Cai Y, Zou Y. Dysregulation of PD-L1 by UFMylation imparts tumor immune evasion and identified as a potential therapeutic target. Proc Natl Acad Sci U S A 2023; 120:e2215732120. [PMID: 36893266 PMCID: PMC10089188 DOI: 10.1073/pnas.2215732120] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/18/2023] [Indexed: 03/11/2023] Open
Abstract
Immunotherapy of PD-L1/PD-1 blockage elicited impressive clinical benefits for cancer treatment. However, the relative low response and therapy resistance highlight the need to better understand the molecular regulation of PD-L1 in tumors. Here, we report that PD-L1 is a target of UFMylation. UFMylation of PD-L1 destabilizes PD-L1 by synergizing its ubiquitination. Inhibition of PD-L1 UFMylation via silencing of UFL1 or Ubiquitin-fold modifier 1 (UFM1), or the defective UFMylation of PD-L1, stabilizes the PD-L1 in multiple human and murine cancer cells, and undermines antitumor immunity in vitro and mice, respectively. Clinically, UFL1 expression was decreased in multiple cancers and lower expression of UFL1 negatively correlated with the response of anti-PD1 therapy in melanoma patients. Moreover, we identified a covalent inhibitor of UFSP2 that promoted the UFMylation activity and contributed to the combination therapy with PD-1 blockade. Our findings identified a previously unrecognized regulator of PD-L1 and highlighted UFMylation as a potential therapeutic target.
Collapse
Affiliation(s)
- Junzhi Zhou
- School of Basic Medicine, Hangzhou Normal University, Hangzhou311121, China
| | - Xiaohe Ma
- School of Basic Medicine, Hangzhou Normal University, Hangzhou311121, China
| | - Xingrui He
- School of Pharmacy, Hangzhou Normal University, Hangzhou311121, China
| | - Beiying Chen
- School of Basic Medicine, Hangzhou Normal University, Hangzhou311121, China
| | - Jiao Yuan
- GMU-GIBH Joint School of Life Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou510005, China
| | - Zhemin Jin
- Yongkang Maternity and Child Care hospital, Yongkang321300, China
| | - Lijing Li
- Yongkang Maternity and Child Care hospital, Yongkang321300, China
| | - Zhiguo Wang
- School of Basic Medicine, Hangzhou Normal University, Hangzhou311121, China
| | - Qian Xiao
- Rutgers Cancer Institute of New Jersey, New Jersey, NJ08901
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Yongkang Zou
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen518107, China
| |
Collapse
|
19
|
Hazarika A, Nongkhlaw B, Mukhopadhyay A. Identification of stable reference genes in peripheral blood mononuclear cells from type 2 diabetes mellitus patients. Sci Rep 2023; 13:486. [PMID: 36627346 PMCID: PMC9831022 DOI: 10.1038/s41598-023-27460-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023] Open
Abstract
Reference genes are obligatory for accurate normalization of mRNA transcript levels across samples and experimental conditions in Real Time-polymerase chain reaction (qRT-PCR) based quantitative gene expression assays. Selection of stably expressed reference genes is therefore crucial for ensuring reproducibility of such assays. However, there is a complete dearth of data on stability of commonly used reference genes in Peripheral Blood Mononuclear Cells (PBMCs) from Type 2 diabetes mellitus (T2DM) patients. We have evaluated the gene expression stability of 4 widely used reference genes (Beta-actin, ACTB; Peptidylprolyl Isomerase B, PPIB; Tyrosine 3 Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Zeta, YWHAZ; and Glyceraldehyde-3-Phosphate Dehydrogenase, GAPDH); in PBMCs from 39 T2DM patients and 47 normoglycemic (NGT) subjects. ACTB and YWHAZ were found to be the most stable genes in PBMCs from T2DM patients and therefore, can be recommended as suitable reference genes in similar contexts. GAPDH and PPIB expressions were not stable in PBMCs from T2DM patients. On using ACTB and YWHAZ as reference genes for measuring relative expression of GAPDH and PPIB in these subjects, relative GAPDH expression was found to be significantly lower in female T2DM patients, compared to female NGT subjects [GAPDH relative normalization unit (RNU): female T2DM (n = 19), median (Q1, Q3): 9.0 (8.1, 9.9); female NGT (n = 18): median (Q1, Q3): 10.1 (9.1, 11.0); P = 0.034]. Dysregulation of GAPDH in PBMCs from female T2DM patients could be associated with sex-specific differences in pathogenesis and outcomes of T2DM.
Collapse
Affiliation(s)
- Ankita Hazarika
- grid.418280.70000 0004 1794 3160Division of Nutrition, St. John’s Research Institute, St. John’s National Academy of Health Sciences, Sarjapur Road, Bangalore, India
| | - Bajanai Nongkhlaw
- grid.418280.70000 0004 1794 3160Division of Nutrition, St. John’s Research Institute, St. John’s National Academy of Health Sciences, Sarjapur Road, Bangalore, India ,grid.464649.d0000 0004 1792 1201Present Address: Department of Pathology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya India
| | - Arpita Mukhopadhyay
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Sarjapur Road, Bangalore, India.
| |
Collapse
|
20
|
Shi H, Liu S, Tan Z, Yin L, Zeng L, Liu T, Zhang S, Zhang L. Proteomic and metabonomic analysis uncovering Enterovirus A71 reprogramming host cell metabolic pathway. Proteomics 2023; 23:e2200362. [PMID: 36254857 DOI: 10.1002/pmic.202200362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/04/2022] [Indexed: 01/19/2023]
Abstract
Enterovirus A71 (EV71) infection can cause hand, foot, and mouth disease (HFMD) and severe neurological complications in children. However, the biological processes regulated by EV71 remain poorly understood. Herein, proteomics and metabonomics studies were conducted to uncover the mechanism of EV71 infection in rhabdomyosarcoma (RD) cells and identify potential drug targets. Differential expressed proteins from enriched membrane were analyzed by isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics technology. Twenty-six differential proteins with 1.5-fold (p < 0.05) change were detected, including 14 upregulated proteins and 12 downregulated proteins. The upregulated proteins are mainly involved in metabolic process, especially in the glycolysis pathway. Alpha-enolase (ENO1) protein was found to increase with temporal dependence following EV71 infection. The targeted metabolomics analysis revealed that glucose absorption and glycolysis metabolites were increased after EV71 infection. The glycolysis pathway was inhibited by knocking down ENO1 or the use of a glycolysis inhibitor (dichloroacetic acid [DCA]); and we found that EV71 infection was inhibited by depleting ENO1 or using DCA. Our study indicates that EV71 may reprogram glucose metabolism by activating glycolysis, and EV71 infection can be inhibited by interrupting the glycolysis pathway. ENO1 may be a potential target against EV71, and DCA could act as an inhibitor of EV71.
Collapse
Affiliation(s)
- Huichun Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Siyuan Liu
- The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai, China
| | - Zhimi Tan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lin Yin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Liyan Zeng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tiefu Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Jiang Q, Wang Y, Xiang M, Hua J, Zhou T, Chen F, Lv X, Huang J, Cai Y. UFL1, a UFMylation E3 ligase, plays a crucial role in multiple cellular stress responses. Front Endocrinol (Lausanne) 2023; 14:1123124. [PMID: 36843575 PMCID: PMC9950256 DOI: 10.3389/fendo.2023.1123124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
The UFM1 conjugation system(UFMylation)is a novel type of ubiquitin-like system that plays an indispensable role in maintaining cell homeostasis under various cellular stress. Similar to ubiquitination, UFMylation consists of a three-step enzymatic reaction with E1-like enzymes ubiquitin-like modifier activating enzyme5 (UBA5), E2-like enzymes ubiquitin-fold modifier-conjugating enzyme 1(UFC1), and E3-like ligase UFM1-specific ligase 1 (UFL1). As the only identified E3 ligase, UFL1 is responsible for specific binding and modification of the substrates to mediate numerous hormone signaling pathways and endocrine regulation under different physiological or pathological stress, such as ER stress, genotoxic stress, oncogenic stress, and inflammation. Further elucidation of the UFL1 working mechanism in multiple cellular stress responses is essential for revealing the disease pathogenesis and providing novel potential therapeutic targets. In this short review, we summarize the recent advances in novel UFL1 functions and shed light on the potential challenges ahead, thus hopefully providing a better understanding of UFMylation-mediated cellular stress.
Collapse
Affiliation(s)
- Qiang Jiang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yongsheng Wang
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Minghui Xiang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiamin Hua
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tianci Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fanghui Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Xiaoyang Lv
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou, China
| | - Jinming Huang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- *Correspondence: Yafei Cai, ; Jinming Huang,
| | - Yafei Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yafei Cai, ; Jinming Huang,
| |
Collapse
|
22
|
Urbanczyk M, Jeyagaran A, Zbinden A, Lu CE, Marzi J, Kuhlburger L, Nahnsen S, Layland SL, Duffy G, Schenke-Layland K. Decorin improves human pancreatic β-cell function and regulates ECM expression in vitro. Matrix Biol 2023; 115:160-183. [PMID: 36592738 DOI: 10.1016/j.matbio.2022.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Transplantation of islets of Langerhans is a promising alternative treatment strategy in severe cases of type 1 diabetes mellitus; however, the success rate is limited by the survival rate of the cells post-transplantation. Restoration of the native pancreatic niche during transplantation potentially can help to improve cell viability and function. Here, we assessed for the first time the regulatory role of the small leucine-rich proteoglycan decorin (DCN) in insulin secretion in human β-cells, and its impact on pancreatic extracellular matrix (ECM) protein expression in vitro. In depth analyses utilizing next-generation sequencing as well as Raman microspectroscopy and Raman imaging identified pathways related to glucose metabolism to be upregulated in DCN-treated cells, including oxidative phosphorylation within the mitochondria as well as proteins and lipids of the endoplasmic reticulum. We further showed the effectiveness of DCN in a transplantation setting by treating collagen type 1-encapsulated β-cell-containing pseudo-islets with DCN. Taken together, in this study, we demonstrate the potential of DCN to improve the function of insulin-secreting β-cells while reducing the expression of ECM proteins affiliated with fibrotic capsule formation, making DCN a highly promising therapeutic agent for islet transplantation.
Collapse
Affiliation(s)
- Max Urbanczyk
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany
| | - Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Aline Zbinden
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany; Department of Immunology, Leiden University Medical Center Leiden, ZA 2333, the Netherlands
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany
| | - Julia Marzi
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, Germany
| | - Laurence Kuhlburger
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, Tübingen, Germany; Biomedical Data Science, Department of Computer Science, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, Tübingen, Germany; Biomedical Data Science, Department of Computer Science, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany; Department of Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Garry Duffy
- Discipline of Anatomy and the Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Advanced Materials for Biomedical Engineering (AMBER), Trinity College Dublin & National University of Ireland Galway, Galway, Ireland
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
23
|
Su SC, Hung YJ, Lin FH, Hsieh CH, Lu CH, Chien CY, Chen YC, Li PF, Kuo FC, Liu JS, Chu NF, Lee CH. Circulating protein disulfide isomerase family member 4 is associated with type 2 diabetes mellitus, insulin sensitivity, and obesity. Acta Diabetol 2022; 59:1001-1009. [PMID: 35460376 DOI: 10.1007/s00592-022-01892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/09/2022] [Indexed: 11/01/2022]
Abstract
AIMS Endoplasmic reticulum (ER) stress is associated with obesity and type 2 diabetes mellitus (T2DM) and increasing evidence demonstrates that some ER stress markers can represent the severity of metabolic dysfunction in either cellular or animal models. However, no appropriate molecule has been identified to demonstrate these relationships in clinical practice. METHODS To determine whether the serum level of the ER chaperone, protein disulfide isomerase family A, member 4 (PDIA4), is associated with type 2 diabetes mellitus, obesity, and insulin sensitivity, we conducted a cross-sectional study for which a total of 553 adults, including 159 with normal glucose tolerance (NGT), 169 with prediabetes (Pre-DM), and 225 with newly diagnosed T2DM, were recruited. RESULTS Serum PDIA4 levels were significantly higher in patients with T2DM than in those with NGT (P < 0.001), even after adjustment for potential confounders. These levels correlated positively with fasting plasma glucose, BMI, waist circumference as well as high-sensitivity C-reactive protein levels, and negatively and strongly correlated with insulin sensitivity. In a multivariate logistic regression analysis, higher serum PDIA4 concentration was observed to be significantly associated with an increased risk of T2DM. CONCLUSIONS Our findings provide new mechanistic insights linking ER stress, T2DM, insulin sensitivity, and obesity, which may, in part, account for the ER chaperone properties associated with PDIA4. The results suggest that PDIA4 may serve as a potential instigator of and a putative therapeutic target for T2DM.
Collapse
Affiliation(s)
- Sheng-Chiang Su
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd, Neihu District, Taipei City, 114, Taiwan, ROC
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd, Neihu District, Taipei City, 114, Taiwan, ROC
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Fu-Huang Lin
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chang-Hsun Hsieh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd, Neihu District, Taipei City, 114, Taiwan, ROC
| | - Chieh-Hua Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd, Neihu District, Taipei City, 114, Taiwan, ROC
| | - Chu-Yen Chien
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Ying-Chen Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd, Neihu District, Taipei City, 114, Taiwan, ROC
| | - Peng-Fei Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd, Neihu District, Taipei City, 114, Taiwan, ROC
| | - Feng-Chih Kuo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd, Neihu District, Taipei City, 114, Taiwan, ROC
| | - Jhih-Syuan Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd, Neihu District, Taipei City, 114, Taiwan, ROC
| | - Nain-Feng Chu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd, Neihu District, Taipei City, 114, Taiwan, ROC
| | - Chien-Hsing Lee
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC.
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd, Neihu District, Taipei City, 114, Taiwan, ROC.
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
24
|
Monascus-fermented grain vinegar enhances glucose homeostasis through the IRS-1/PI3K/Akt and AMPK signaling pathways in HepG2 cell and db/db mice. Food Sci Biotechnol 2022; 31:1583-1591. [PMID: 36278136 PMCID: PMC9582056 DOI: 10.1007/s10068-022-01146-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 11/04/2022] Open
Abstract
MV was reported to have beneficial effects in ameliorating insulin resistance in db/db mice, but the intrinsic mechanisms for glucose homeostasis are unclear. This study examined the anti-diabetic mechanism of MV using HepG2 cells and C57BL/KsJ-db/db mice. MV increased insulin sensitivity by promoting insulin-dependent glucose uptake and activating glycogen accumulation in HepG2 cells. Furthermore, the glucose homeostasis was enhanced in db/db mice administered 1 mg/kg/day of MV for eight weeks by activating the IRS-1/PI3K/Akt and AMPK pathways in the skeletal muscle and liver tissue. In addition, MV promoted glycogen synthesis by regulating the key enzymes, including GSK-3β and GS, and suppressed gluconeogenesis by inhibiting the mRNA expressions of G6pase and PEPCK. These findings show that MV regulates both signaling pathways and improves the glucose metabolism disorder. Thus, MV might be an alternative functional food or nutraceutical in ameliorating T2DM. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01146-4.
Collapse
|
25
|
Jing Y, Mao Z, Chen F. UFMylation System: An Emerging Player in Tumorigenesis. Cancers (Basel) 2022; 14:3501. [PMID: 35884562 PMCID: PMC9323365 DOI: 10.3390/cancers14143501] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Ubiquitin-fold modifier 1 (UFM1), a newly identified ubiquitin-like molecule (UBLs), is evolutionarily expressed in multiple species except yeast. Similarly to ubiquitin, UFM1 is covalently attached to its substrates through a well-orchestrated three-step enzymatic reaction involving E1, the UFM1-activating enzyme (ubiquitin-like modifier-activating enzyme 5, UBA5); E2, the UFM1-conjugating enzyme 1 (UFC1); and E3, the UFM1-specific ligase 1 (UFL1). To date, numerous studies have shown that UFM1 modification is implicated in various cellular processes, including endoplasmic reticulum (ER) stress, DNA damage response and erythroid development. An abnormal UFM1 cascade is closely related to a variety of diseases, especially tumors. Herein, we summarize the process and functions of UFM1 modification, illustrating the relationship and mechanisms between aberrant UFMylation and diversified tumors, aiming to provide novel diagnostic biomarkers or therapeutic targets for cancer treatments.
Collapse
Affiliation(s)
| | | | - Fengling Chen
- Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China; (Y.J.); (Z.M.)
| |
Collapse
|
26
|
Hong H, Xu J, He H, Wang X, Yang L, Deng P, Yang L, Tan M, Zhang J, Xu Y, Tong T, Lin X, Pi H, Lu Y, Zhou Z. Cadmium perturbed metabolomic signature in pancreatic beta cells correlates with disturbed metabolite profile in human urine. ENVIRONMENT INTERNATIONAL 2022; 161:107139. [PMID: 35172228 DOI: 10.1016/j.envint.2022.107139] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Cd exposure has been demonstrated to induce a variety of metabolic disorders accompanied with imbalance of glucose and lipid homeostasis. The metabolic toxicity of Cd exposure at metabolome-wide level remains elusive. In our study, we demonstrated that Cd exposure via drinking water increased blood glucose levels, decreased serum insulin levels, led to glucose intolerance and suppressed insulin expression in the pancreas of C57/6J mice. Cd exposure significantly inhibited cell viability and suppressed insulin secretion in MIN6 cells in vitro. Since pancreatic β-cells are the only source of insulin production in the body and play a pivotal role in modulating glucose and lipid metabolisms, we further delineated the metabolomic signatures of Cd exposure in insulin-secreting MIN6 cells by using non-target metabolomics. PCA and OPLS-DA analysis clearly suggested that Cd exposure led to a marked metabolic alteration in MIN6 cells. 76 perturbed metabolites were identified after Cd exposure. Classification of metabolites suggested that Cd perturbed metabolites belong to nucleosides, nucleotides and analogues, organic acids and derivatives, and lipids and lipid-like molecules. 28 perturbed metabolites existed in mitochondrion, suggesting mitochondrion as the major target organelle in metabolic toxicity of Cd exposure. KEGG pathway analysis revealed that 20 metabolic pathways were disturbed by Cd exposure. Mitochondrial TCA cycle and glycerophospholipid metabolism were remarkably disturbed. The mRNA expressions of genes in mitochondrial TCA cycle and fatty acid oxidation in pancreas and MIN6 cells were significantly dysregulated by Cd exposure. Disturbances in mitochondrial TCA cycle and glycerophospholipid metabolism result in producing perturbed metabolites in pancreatic β-cells. Moreover, 14 perturbed metabolites identified in MIN6 cells co-existed in the urine of Cd exposed workers. 11 biomarkers of diabetes mellitus were also found to be significantly altered in the urine of Cd exposed workers. In conclusion, findings of this study greatly extend our understanding of metabolic toxicity of Cd exposure in pancreatic β-cells at metabolome-wide level and offer some new clues for linking Cd exposure to development of diabetes mellitus. Results of this study also support the notion that Cd induced metabolic toxicity could be monitored by examining perturbed urinary metabolites in humans and highlight the significance of reducing Cd exposure via drinking water at population level.
Collapse
Affiliation(s)
- Huihui Hong
- Department of Emergency Medicine, The First Affiliated Hospital and Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jia Xu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haotian He
- Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xue Wang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Lingling Yang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Lu Yang
- Hunan Province Prevention and Treatment Hospital for Occupational Diseases, Hunan, China
| | - Miduo Tan
- Department of Galactophore, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Jingjing Zhang
- Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yudong Xu
- Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tong Tong
- Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiqin Lin
- Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing, China.
| | - Yuanqiang Lu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhou Zhou
- Department of Emergency Medicine, The First Affiliated Hospital and Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
27
|
Yang S, Hou Y, Zhang H, Hao Y, Zhang Y, Zhao Z, Ruan W, Duan X. ATP6V1H deficiency impairs glucose tolerance by augmenting endoplasmic reticulum stress in high fat diet fed mice. Arch Biochem Biophys 2022; 716:109116. [PMID: 34990584 DOI: 10.1016/j.abb.2022.109116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/19/2021] [Accepted: 12/31/2021] [Indexed: 11/18/2022]
Abstract
Vacuolar H+-ATPase (V-ATPase) is a ubiquitous proton pump that mediates the proton transmembrane transportation in various cells. Previously, H subunit of V-ATPase (ATP6V1H) was found to be related with insulin secretion and diabetes. However, the mechanism by which ATP6V1H regulates insulin secretion and glucose metabolism remains unclear. Herein, we established a high-fat-diet (HFD) fed model with Atp6v1h+/- mice and detected the expression and secretion of insulin and some biochemical indices of glucose metabolism, in order to explore the related mechanisms in β-cells. Transcriptome sequencing, qPCR and western blot analysis showed that ATP6V1H deficiency worsened fatty acid-induced glucose tolerance impairment by augmenting endoplasmic reticulum stress in β-cells, and alternative splicing of ATP6V1H might be involved in this process. These results indicated that ATP6V1H deficiency increased the susceptibility to T2DM.
Collapse
Affiliation(s)
- Shaoqing Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University. Xi'an, 710032, China
| | - Yuzhuan Hou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University. Xi'an, 710032, China; College of Stomatology, Ningxia Medical University, Yinchuan, 750004, China
| | - Hengwei Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University. Xi'an, 710032, China
| | - Ying Hao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University. Xi'an, 710032, China
| | - Yanli Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University. Xi'an, 710032, China
| | - Zanyan Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University. Xi'an, 710032, China; School of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Wenyan Ruan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University. Xi'an, 710032, China; College of Stomatology, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaohong Duan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University. Xi'an, 710032, China.
| |
Collapse
|
28
|
Cheng Y, Niu Z, Cai Y, Zhang W. Emerging role of UFMylation in secretory cells involved in the endocrine system by maintaining ER proteostasis. Front Endocrinol (Lausanne) 2022; 13:1085408. [PMID: 36743909 PMCID: PMC9894094 DOI: 10.3389/fendo.2022.1085408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/13/2022] [Indexed: 01/21/2023] Open
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a ubiquitin-like molecule (UBL) discovered almost two decades ago, but our knowledge about the cellular and molecular mechanisms of this novel protein post-translational modification is still very fragmentary. In this review, we first summarize the core enzymes and factors involved in the UFMylation cascade, which, similar to ubiquitin, is consecutively catalyzed by UFM1-activating enzyme 5 (UBA5), UFM1-conjugating enzyme 1 (UFC1) and UFM1-specific ligase 1 (UFL1). Inspired by the substantial implications of UFM1 machinery in the secretory pathway, we next concentrate on the puzzling role of UFMylation in maintaining ER protein homeostasis, intending to illustrate the underlying mechanisms and future perspectives. At last, given a robust ER network is a hallmark of healthy endocrine secretory cells, we emphasize the function of UFM1 modification in physiology and pathology in the context of endocrine glands pancreas and female ovaries, aiming to provide precise insight into other internal glands of the endocrine system.
Collapse
Affiliation(s)
- Yun Cheng
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zikang Niu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Wei Zhang,
| |
Collapse
|
29
|
Louis JM, Agarwal A, Mondal S, Talukdar I. A global analysis on the differential regulation of RNA binding proteins (RBPs) by TNF–α as potential modulators of metabolic syndromes. BBA ADVANCES 2022; 2:100037. [PMID: 37082594 PMCID: PMC10074950 DOI: 10.1016/j.bbadva.2021.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
Metabolic syndrome (MetS) is associated with a group of conditions, which enhances the risk of diabetes, heart diseases and stroke in the affected individuals. Earlier reports from our lab have shown that Tumor necrosis factor-α (TNF-α) significantly modulates the expression of 56 genes at the alternative splicing level which are involved in various signaling and metabolic pathways (MetS genes) connected to MetS. These MetS genes were predicted to interact with various RNA-binding proteins (RBPs) when exposed to TNF-α, resulting changes in their alternative splicing patterns. Here we are presenting data of an RNA-Seq analysis, which identified 1218 unique, and significantly regulated genes by TNF-α, 15% of which are RBPs . Among the 1218 genes, 204 genes have been identified as MetS genes by the ingenuity pathway analysis, and 10% of the MetS genes are found as RBPs. Our results also show that TNF-α changes the phosphorylation status of certain RBPs such as SR proteins, crucial players in alternative splicing, possibly via changing the activation status of certain upstream signaling molecules which also act as upstream kinases for these proteins. Taken together, these findings suggest that TNF-α influences the regulation of the RBPs at the various levels for their expression, which may lead to the alteration of the splicing pattern of the MetS genes. MetS genes acting as RBPs and are modulated by TNF-α, predict the existence of highly interconnected mechanisms which require further analysis to understand their dual roles on the onset of these diseases.
Collapse
|
30
|
The Ginsenoside Rg 1 Rescues Mitochondrial Disorders in Aristolochic Acid-Induced Nephropathic Mice. Life (Basel) 2021; 11:life11101018. [PMID: 34685389 PMCID: PMC8539135 DOI: 10.3390/life11101018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 01/15/2023] Open
Abstract
Chronic exposure to aristolochic acid (AA) leads to renal interstitial fibrosis and nephropathy. In this study, we aimed to investigate the renoprotective effects of Panax ginseng extract (GE) and ginsenoside saponin (GS) on AA-induced nephropathy (AAN) in mice. Eighty female C3H/He mice were randomly divided into eight groups, including normal; AA (3 μg/mL for 56 days); AA with GE (125, 250, or 500 mg/kg/d for 14 days); and AA with important GE ingredients, Rg1, Rb1, or Rd (5 mg/kg/d for 14 days). Compared with the AA group, renal injuries were significantly decreased in the GE (250 mg/kg/d), Rb1, and Rg1 treatment groups. Rg1 exhibited the best renoprotection among all GS-treated groups. There were 24 peaks significantly altered among normal, AA, and AA + Rg1 groups, and four mitochondrial proteins were identified, including acyl-CoA synthetase medium-chain family member 2, upregulated during skeletal muscle growth 5 (Usmg5), mitochondrial aconitase 2 (ACO2), and cytochrome c oxidase subunit Va preprotein (COX5a). We demonstrated for the first time that the AAN mechanism and renoprotective effects of Rg1 are associated with expression of mitochondrial proteins, especially ACO2, Usmg5, and COX5a.
Collapse
|
31
|
Rao VKS, Eipper BA, Mains RE. Multiple roles for peptidylglycine α-amidating monooxygenase in the response to hypoxia. J Cell Physiol 2021; 236:7745-7758. [PMID: 34061983 DOI: 10.1002/jcp.30457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 11/11/2022]
Abstract
The biosynthesis of many of the peptides involved in homeostatic control requires peptidylglycine α-amidating monooxygenase (PAM), an ancient, highly conserved copper- and ascorbate-dependent enzyme. Using the production of amidated chromogranin A to monitor PAM function in tumor cells, physiologically relevant levels of hypoxia were shown to inhibit this monooxygenase. The ability of primary pituitary cells exposed to hypoxic conditions for 4 h to produce amidated chromogranin A was similarly inhibited. The affinity of the purified monooxygenase for oxygen (Km = 99 ± 19 μM) was consistent with this result. The ability of PAM to alter secretory pathway behavior under normoxic conditions required its monooxygenase activity. Under normoxic conditions, hypoxia-inducible factor 1a levels in dense cultures of corticotrope tumor cells expressing high levels of PAM exceeded those in control cells; expression of inactive monooxygenase did not have this effect. The effects of hypoxia on levels of two PAM-regulated genes (activating transcription factor 3 [Atf3] and FK506 binding protein 2 [Fkbp2]) differed in cells expressing high versus low levels of PAM. Putative hypoxia response elements occur in both human and mouse PAM, and hPAM has consistently been identified as one of the genes upregulated in response to hypoxia. Expression of PAM is also known to alter gene expression. A quarter of the genes consistently upregulated in response to hypoxia were downregulated following increased expression of PAM. Taken together, our data suggest roles for PAM and amidated peptide secretion in the coordination of tissue-specific responses to hypoxia.
Collapse
Affiliation(s)
- Vishwanatha K S Rao
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA.,Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
32
|
Diane A, Abunada H, Khattab N, Moin ASM, Butler AE, Dehbi M. Role of the DNAJ/HSP40 family in the pathogenesis of insulin resistance and type 2 diabetes. Ageing Res Rev 2021; 67:101313. [PMID: 33676026 DOI: 10.1016/j.arr.2021.101313] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022]
Abstract
Insulin resistance (IR) underpins a wide range of metabolic disorders including type 2 diabetes (T2D), metabolic syndrome and cardiovascular diseases. IR is characterized by a marked reduction in the magnitude and/or delayed onset of insulin to stimulate glucose disposal. This condition is due to defects in one or several intracellular intermediates of the insulin signaling cascade, ranging from insulin receptor substrate (IRS) inactivation to reduced glucose phosphorylation and oxidation. Genetic predisposition, as well as other precipitating factors such as aging, obesity, and sedentary lifestyles are among the risk factors underlying the pathogenesis of IR and its subsequent progression to T2D. One of the cardinal hallmarks of T2D is the impairment of the heat shock response (HSR). Human and animal studies provided compelling evidence of reduced expression of several components of the HSR (i.e. Heat shock proteins or HSPs) in diabetic samples in a manner that correlates with the degree of IR. Interventions that induce the HSR, irrespective of the means to achieve it, proved their effectiveness in enhancing insulin sensitivity and improving glycemic index. However, most of these studies have been focused on HSP70 family. In this review, we will focus on the novel role of DNAJ/HSP40 cochaperone family in metabolic diseases associated with IR.
Collapse
|
33
|
Hondius DC, Koopmans F, Leistner C, Pita-Illobre D, Peferoen-Baert RM, Marbus F, Paliukhovich I, Li KW, Rozemuller AJM, Hoozemans JJM, Smit AB. The proteome of granulovacuolar degeneration and neurofibrillary tangles in Alzheimer's disease. Acta Neuropathol 2021; 141:341-358. [PMID: 33492460 PMCID: PMC7882576 DOI: 10.1007/s00401-020-02261-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
Abstract
Granulovacuolar degeneration (GVD) is a common feature in Alzheimer's disease (AD). The occurrence of GVD is closely associated with that of neurofibrillary tangles (NFTs) and GVD is even considered to be a pre-NFT stage in the disease process of AD. Currently, the composition of GVD bodies, the mechanisms associated with GVD and how GVD exactly relates to NFTs is not well understood. By combining immunohistochemistry (IHC) and laser microdissection (LMD) we isolated neurons with GVD and those bearing tangles separately from human post-mortem AD hippocampus (n = 12) using their typical markers casein kinase (CK)1δ and phosphorylated tau (AT8). Control neurons were isolated from cognitively healthy cases (n = 12). 3000 neurons per sample were used for proteome analysis by label free LC-MS/MS. In total 2596 proteins were quantified across samples and a significant change in abundance of 115 proteins in GVD and 197 in tangle bearing neurons was observed compared to control neurons. With IHC the presence of PPIA, TOMM34, HSP70, CHMP1A, TPPP and VXN was confirmed in GVD containing neurons. We found multiple proteins localizing specifically to the GVD bodies, with VXN and TOMM34 being the most prominent new protein markers for GVD bodies. In general, protein groups related to protein folding, proteasomal function, the endolysosomal pathway, microtubule and cytoskeletal related function, RNA processing and glycolysis were found to be changed in GVD neurons. In addition to these protein groups, tangle bearing neurons show a decrease in ribosomal proteins, as well as in various proteins related to protein folding. This study, for the first time, provides a comprehensive human based quantitative assessment of protein abundances in GVD and tangle bearing neurons. In line with previous functional data showing that tau pathology induces GVD, our data support the model that GVD is part of a pre-NFT stage representing a phase in which proteostasis and cellular homeostasis is disrupted. Elucidating the molecular mechanisms and cellular processes affected in GVD and its relation to the presence of tau pathology is highly relevant for the identification of new drug targets for therapy.
Collapse
Affiliation(s)
- David C Hondius
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, PO Box 7057, Amsterdam, 1007 MB, The Netherlands.
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands.
| | - Frank Koopmans
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Conny Leistner
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Débora Pita-Illobre
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Regina M Peferoen-Baert
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, PO Box 7057, Amsterdam, 1007 MB, The Netherlands
| | - Fenna Marbus
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, PO Box 7057, Amsterdam, 1007 MB, The Netherlands
| | - Iryna Paliukhovich
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, PO Box 7057, Amsterdam, 1007 MB, The Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, PO Box 7057, Amsterdam, 1007 MB, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Zhao L, Deng J, Ma LB, Zhang WP, Khalil MM, Karrow NA, Qi DS, Sun LH. Dietary Se deficiency dysregulates metabolic and cell death signaling in aggravating the AFB1 hepatotoxicity of chicks. Food Chem Toxicol 2020; 149:111938. [PMID: 33348051 DOI: 10.1016/j.fct.2020.111938] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022]
Abstract
The objective of this study was to use isobaric tags for relative and absolute quantitation (iTRAQ) proteomic technology to systematically analyze the hepatotoxic mechanism of aflatoxin B1 (AFB1) and its prevention by Se in broilers. Four groups of day-old broilers were allocated into a 2 × 2 factorial design trial that fed a Se-deficient based diet (BD) or the BD + 1.0 mg AFB1/kg, 0.3 mg Se/kg, or 1.0 mg AFB1/kg plus 0.3 mg Se/kg for 3 wk. Dietary AFB1 increased serum ALT and decreased total protein and albumin concentrations, and induced hepatic histopathological lesions in Se adequate groups. Notably, Se deficiency exacerbated these AFB1-induced changes. Furthermore, Se deficiency reduced hepatic glutathione peroxidase but increased thioredoxin reductase and glutathione S-transferase activities and 8-hydroxydeoxyguanosine concentration in AFB1 administrated groups. Moreover, AFB1 dysregulated 261 co-differentially expressed proteins (DEPs) in both Se adequate and deficiency diets, and Se deficiency dysregulated 64 DEPs in AFB1 administrated diets. These DEPs are mainly related to phase I and II metabolizing enzymes, heat shock proteins, DNA repair, fatty acid metabolism and apoptosis. The in vitro study has verified that aldo-keto reductase family1, member10 plays an important role in AFB1-induced hepatotoxicity and Se-mediated detoxification of AFB1 in a chicken leghorn male hepatoma cells. Conclusively, this study has analyzed the hepatic proteome response to dietary AFB1 and Se, and thus shed new light on the mechanisms of hepatotoxicity of AFB1 and its detoxification by Se in broilers.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jiang Deng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Li-Bao Ma
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wan-Po Zhang
- Department of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | - De-Sheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Lv-Hui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
35
|
Zou X, Wang S, Zhang P, Lu L, Zou H. Quantitative Proteomics and Weighted Correlation Network Analysis of Tear Samples in Adults and Children With Diabetes and Dry Eye. Transl Vis Sci Technol 2020; 9:8. [PMID: 33344052 PMCID: PMC7718812 DOI: 10.1167/tvst.9.13.8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose Diabetics are more prone to suffer from dry eye (DE). The ages of diabetes are decreasing, so ocular surface status in younger generations is worthy of attention. We used tandem mass tag (TMT)–labeled proteomics and weighted correlation network analysis (WGCNA) to identify differentially expressed proteins in the tear proteome of adults and children with diabetic DE. Methods Study subjects were divided into six groups of 10, including three groups each for adults and children. The adult groups included diabetics with DE (A), diabetics without DE (B), and normal controls (C); the corresponding groups of children were identified as (D), (E), and (F). DE tests were performed on all subjects. We extracted total proteins and labeled them with TMTs for analysis. WGCNA was used to recognize hub genes. Results Tear film function was poorer in patients with diabetic DE. In adults, 1922 proteins were identified, and WGCNA analysis revealed three hub genes related to diabetic DE. For children, 2709 proteins were identified, and WGCNA analysis identified one hub gene related to diabetic DE. Kyoto Encyclopedia of Genes and Genomes analysis found similarities among metabolic pathways involved in differential expression of proteins in adult and child tear samples. Conclusions The pathogenesis of diabetic DE was highly similar in adults and children. The differentially expressed tear proteins in type 2 diabetes of adults and children was associated with inflammation, immune factors, and lipid metabolism. Translational Relevance Our findings found high similarities in the pathogenesis of diabetic DE in adults and children.
Collapse
Affiliation(s)
- Xinrong Zou
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai, China.,Department of Ophthalmology, Fengcheng Hospital, Fengxian District, Shanghai, China
| | - Shanshan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Zhang
- Department of Ophthalmology, Gonghui Hospital, Jingan District, Shanghai, China
| | - Lina Lu
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai, China
| | - Haidong Zou
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Ubiquitin fold modifier 1 activates NF-κB pathway by down-regulating LZAP expression in the macrophage of diabetic mouse model. Biosci Rep 2020; 40:221481. [PMID: 31829413 PMCID: PMC6944655 DOI: 10.1042/bsr20191672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammatory response is closely related with the development of many serious health problems worldwide including diabetes mellitus (DM). Ubiquitin-fold modifer 1 (Ufm1) is a newly discovered ubiquitin-like protein, while its function remains poorly investigated, especially in inflammatory response and DM. In the present study, we analyzed the role of Ufm1 on inflammatory response in DM, and found that the proinflammatory cytokine levels (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β) and Ufm1 expression were highly increased both in the peritoneal macrophages of db/db mice and Raw264.7 cells induced by lipopolysaccharide (LPS). Western blot and luciferase reporter assay showed that NF-κB pathway was obviously activated in macrophages and the expression of LZAP, an inhibitor of NF-κB pathway, was down-regulated. With the LZAP knockdown plasmid and activation plasmid, we demonstrated that NF-κB/p65 activation was inhibited by LZAP in macrophages. The interaction of Ufm1 and LZAP was further proved with co-immunoprecipitation assay in HEK293 and Raw264.7 cells. The LZAP expression was also related with the presence of Ufm1 demonstrated by Ufm1 knockdown plasmid and activation plasmid. Besides that, we finally proved that the expression and activation of Ufm1 induced by LPS were regulated by JNK/ATF2 and JNK/c-Jun pathway with the use of SP600125. In conclusion, the present study demonstrated that Ufm 1 could activate NF-κB pathway by down-regulating LZAP in macrophage of diabetes, and its expression and activation were regulated by JNK/ATF2 and c-Jun pathway.
Collapse
|
37
|
Banerjee S, Kumar M, Wiener R. Decrypting UFMylation: How Proteins Are Modified with UFM1. Biomolecules 2020; 10:E1442. [PMID: 33066455 PMCID: PMC7602216 DOI: 10.3390/biom10101442] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Besides ubiquitin (Ub), humans have a set of ubiquitin-like proteins (UBLs) that can also covalently modify target proteins. To date, less is known about UBLs than Ub and even less is known about the UBL called ubiquitin-fold modifier 1 (UFM1). Currently, our understanding of protein modification by UFM1 (UFMylation) is like a jigsaw puzzle with many missing pieces, and in some cases it is not even clear whether these pieces of data are in the right place. Here we review the current data on UFM1 from structural biology to biochemistry and cell biology. We believe that the physiological significance of protein modification by UFM1 is currently underestimated and there is more to it than meets the eye.
Collapse
Affiliation(s)
| | | | - Reuven Wiener
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (S.B.); (M.K.)
| |
Collapse
|
38
|
Shen Z, Tang Y, Song Y, Shen W, Zou C. Differences of DNA methylation patterns in the placenta of large for gestational age infant. Medicine (Baltimore) 2020; 99:e22389. [PMID: 32991460 PMCID: PMC7523834 DOI: 10.1097/md.0000000000022389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
To investigate the molecular mechanisms of later metabolic health changes in large for gestational age (LGA) newborns by analyzing deoxyribonucleic acid (DNA) methylation patterns in the placenta of LGA and appropriate for gestational age (AGA) newborns.A total of 6 placentas of LGA and 6 placentas of AGA newborns were enrolled as LGA group and AGA group. DNA methylation was analyzed using the Illumina Infinium Human MethylationEPIC BeadChip microarrays and verified via pyrosequencing and reverse transcription-quantitative real-time polymerase chain reaction. Functional enrichment analysis were constructed by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis based on the differentially methylated regions between LGA and AGA groups.Clinical investigation showed that LGA newborns had significantly lower hemoglobin and blood glucose compared to AGA newborns. Birth weight was negatively correlated to hemoglobin and blood glucose. Genome-wide DNA methylation analysis identified 17 244 methylation variable positions achieving genome-wide significance (adjusted P < .05). 34% methylation variable positions were located in the gene promoter region. A total of 117 differentially methylated regions were revealed by bump hunting analysis, which mapped to 107 genes. Function analysis showed 13 genes enriched in "adhesion and infection process, endocrine and other factor-regulated calcium reabsorption, calcium signaling pathway and transmembrane transport". Four genes linked to type II diabetes mellitus. Among the 13 genes, we selected GNAS and calcium voltage-gated channel subunit alpha1 G for independent verification of pyrosequencing, and the messenger ribonucleic acid levels of guanine nucleotide binding protein, calcium voltage-gated channel subunit alpha1 G, DECR1, and FK506 binding protein 11 were verified by reverse transcription-quantitative real-time polymerase chain reaction.DNA methylation variation and gene expression differences in placental samples were associated with LGA newborns, which linking the effect of intrauterine environment to regulation of the offspring's gene expression. Furthermore, pathway analysis suggested that intrauterine environment affecting fetal growth might had a functional impact on multiple signaling pathways involved in fetal growth, metabolism, and inflammation. Further studies were required to understand the differences of methylation patterns.
Collapse
Affiliation(s)
- Zheng Shen
- Department of Clinical laboratory, Zhejiang University School of Medicine Children's Hospital
- National Clinical Research Center for Child Health
| | - Yanfei Tang
- Department of Endocrinology, Zhejiang University School of Medicine Children's Hospital
- Second Hospital of Jiaxing
| | - Yemei Song
- Department of Endocrinology, Zhejiang University School of Medicine Children's Hospital
- Huzhou Central Hospital
| | - Wenxia Shen
- Department of Endocrinology, Zhejiang University School of Medicine Children's Hospital
- Women and Children's Hospital of Shaoxin
| | - Chaochun Zou
- National Clinical Research Center for Child Health
- Department of Endocrinology, Zhejiang University School of Medicine Children's Hospital
| |
Collapse
|
39
|
Liu Q, Yu J, Wang L, Tang Y, Zhou Q, Ji S, Wang Y, Santos L, Haeusler RA, Que J, Rajbhandari P, Lei X, Valenti L, Pajvani UB, Qin J, Qiang L. Inhibition of PU.1 ameliorates metabolic dysfunction and non-alcoholic steatohepatitis. J Hepatol 2020; 73:361-370. [PMID: 32135178 DOI: 10.1016/j.jhep.2020.02.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Obesity is a well-established risk factor for type 2 diabetes (T2D) and non-alcoholic steatohepatitis (NASH), but the underlying mechanisms remain incompletely understood. Herein, we aimed to identify novel pathogenic factors (and possible therapeutic targets) underlying metabolic dysfunction in the liver. METHODS We applied a tandem quantitative proteomics strategy to enrich and identify transcription factors (TFs) induced in the obese liver. We used flow cytometry of liver cells to analyze the source of the induced TFs. We employed conditional knockout mice, shRNA, and small-molecule inhibitors to test the metabolic consequences of the induction of identified TFs. Finally, we validated mouse data in patient liver biopsies. RESULTS We identified PU.1/SPI1, the master hematopoietic regulator, as one of the most upregulated TFs in livers from diet-induced obese (DIO) and genetically obese (db/db) mice. Targeting PU.1 in the whole liver, but not hepatocytes alone, significantly improved glucose homeostasis and suppressed liver inflammation. Consistently, treatment with the PU.1 inhibitor DB1976 markedly reduced inflammation and improved glucose homeostasis and dyslipidemia in DIO mice, and strongly suppressed glucose intolerance, liver steatosis, inflammation, and fibrosis in a dietary NASH mouse model. Furthermore, hepatic PU.1 expression was positively correlated with insulin resistance and inflammation in liver biopsies from patients. CONCLUSIONS These data suggest that the elevated hematopoietic factor PU.1 promotes liver metabolic dysfunction, and may be a useful therapeutic target for obesity, insulin resistance/T2D, and NASH. LAY SUMMARY Expression of the immune regulator PU.1 is increased in livers of obese mice and people. Blocking PU.1 improved glucose homeostasis, and reduced liver steatosis, inflammation and fibrosis in mouse models of non-alcoholic steatohepatitis. Inhibition of PU.1 is thus a potential therapeutic strategy for treating obesity-associated liver dysfunction and metabolic diseases.
Collapse
Affiliation(s)
- Qiongming Liu
- Naomi Berrie Diabetes Center, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, 10032, USA; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center at Beijing), Beijing 102206, China
| | - Junjie Yu
- Naomi Berrie Diabetes Center, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, USA
| | - Liheng Wang
- Naomi Berrie Diabetes Center, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, USA
| | - Yuliang Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Quan Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center at Beijing), Beijing 102206, China
| | - Shuhui Ji
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center at Beijing), Beijing 102206, China
| | - Yi Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Luis Santos
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, 10032, USA
| | - Jianwen Que
- Columbia Center for Human Development and Department of Medicine, Columbia University, New York, NY 10032
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi Milano, and Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Policlinico, Milan, Italy
| | - Utpal B Pajvani
- Naomi Berrie Diabetes Center, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, 10032, USA.
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center at Beijing), Beijing 102206, China; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA.
| | - Li Qiang
- Naomi Berrie Diabetes Center, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, 10032, USA.
| |
Collapse
|
40
|
Johnson R, Nxele X, Cour M, Sangweni N, Jooste T, Hadebe N, Samodien E, Benjeddou M, Mazino M, Louw J, Lecour S. Identification of potential biomarkers for predicting the early onset of diabetic cardiomyopathy in a mouse model. Sci Rep 2020; 10:12352. [PMID: 32703998 PMCID: PMC7378836 DOI: 10.1038/s41598-020-69254-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/23/2020] [Indexed: 01/10/2023] Open
Abstract
Type 2 diabetes (T2D) is characterized by metabolic derangements that cause a shift in substrate preference, inducing cardiac interstitial fibrosis. Interstitial fibrosis plays a key role in aggravating left ventricular diastolic dysfunction (LVDD), which has previously been associated with the asymptomatic onset of heart failure. The latter is responsible for 80% of deaths among diabetic patients and has been termed diabetic cardiomyopathy (DCM). Through in silico prediction and subsequent detection in a leptin receptor-deficient db/db mice model (db/db), we confirmed the presence of previously identified potential biomarkers to detect the early onset of DCM. Differential expression of Lysyl Oxidase Like 2 (LOXL2) and Electron Transfer Flavoprotein Beta Subunit (ETFβ), in both serum and heart tissue of 6–16-week-old db/db mice, correlated with a reduced left-ventricular diastolic dysfunction as assessed by high-resolution Doppler echocardiography. Principal component analysis of the combined biomarkers, LOXL2 and ETFβ, further displayed a significant difference between wild type and db/db mice from as early as 9 weeks of age. Knockdown in H9c2 cells, utilising siRNA of either LOXL2 or ETFβ, revealed a decrease in the expression of Collagen Type I Alpha1 (COL1A1), a marker known to contribute to enhanced myocardial fibrosis. Additionally, receiver-operating curve (ROC) analysis of the proposed diagnostic profile showed that the combination of LOXL2 and ETFβ resulted in an area under the curve (AUC) of 0.813, with a cut-off point of 0.824, thus suggesting the favorable positive predictive power of the model and further supporting the use of LOXL2 and ETFβ as possible early predictive DCM biomarkers.
Collapse
Affiliation(s)
- Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa. .,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | - Xolisa Nxele
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa.,Department of Biotechnology, University of Western Cape, Cape Town, South Africa
| | - Martin Cour
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, Lyon Cedex 03, France.,Hatter Institute for Cardiovascular Research in Africa (HICRA), Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Nonhlakanipho Sangweni
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Tracey Jooste
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Nkanyiso Hadebe
- Hatter Institute for Cardiovascular Research in Africa (HICRA), Faculty of Health Sciences, University of Cape Town, Observatory, South Africa.,Department of Anaesthesia, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Ebrahim Samodien
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa
| | - Mongi Benjeddou
- Department of Biotechnology, University of Western Cape, Cape Town, South Africa
| | - Mikateko Mazino
- Biostatistics Research Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, Richards Bay, South Africa
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa (HICRA), Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| |
Collapse
|
41
|
Interaction between Bifidobacterium bifidum and Listeria monocytogenes enhances antioxidant activity through oxidoreductase system. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
42
|
Abstract
The environment within the Endoplasmic Reticulum (ER) influences Insulin biogenesis. In particular, ER stress may contribute to the development of Type 2 Diabetes (T2D) and Cystic Fibrosis Related Diabetes (CFRD), where evidence of impaired Insulin processing, including elevated secreted Proinsulin/Insulin ratios, are observed. Our group has established the role of a novel ER chaperone ERp29 (ER protein of 29 kDa) in the biogenesis of the Epithelial Sodium Channel, ENaC. The biogenesis of Insulin and ENaC share may key features, including their potential association with COP II machinery, their cleavage into a more active form in the Golgi or later compartments, and their ability to bypass such cleavage and remain in a less active form. Given these similarities we hypothesized that ERp29 is a critical factor in promoting the efficient conversion of Proinsulin to Insulin. Here, we confirmed that Proinsulin associates with the COP II vesicle cargo recognition component, Sec24D. When Sec24D expression was decreased, we observed a corresponding decrease in whole cell Proinsulin levels. In addition, we found that Sec24D associates with ERp29 in co-precipitation experiments and that ERp29 associates with Proinsulin in co-precipitation experiments. When ERp29 was overexpressed, a corresponding increase in whole cell Proinsulin levels was observed, while depletion of ERp29 decreased whole cell Proinsulin levels. Together, these data suggest a potential role for ERp29 in regulating Insulin biosynthesis, perhaps in promoting the exit of Proinsulin from the ER via Sec24D/COPII vesicles.
Collapse
|
43
|
Wang Z, Zhang H, Cheng Q. PDIA4: The basic characteristics, functions and its potential connection with cancer. Biomed Pharmacother 2020; 122:109688. [PMID: 31794946 DOI: 10.1016/j.biopha.2019.109688] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/07/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022] Open
Abstract
Disulfide bond formation is catalyzed by the protein disulfide Isomerases (PDI) family. This is a critical step in protein folding which occurs within the endoplasmic reticulum. PDIA4, as a member of the PDI family, can cause the adjustment of αIIβ 3 affinities which activate platelet and promote thrombosis formation. Endoplasmic reticulum response is triggered by accumulation of abnormal folding proteins concomitant with increasing PDIA4 expression. Besides, current researches indicate that activated platelets and ERS response affect tumor progression. And PDIA4, as previous reported, also participates in tumor progression by affecting cell apoptosis and DNA repair machinery without specific mechanisms revealed.Therefore, PDI inhibitor might possess great potential value in against tumor progression. In this review, we summarize information on PDIA4 including its the basic characteristics and its implication on tumor.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China.
| |
Collapse
|
44
|
Zou X, Zhang P, Xu Y, Lu L, Zou H. Quantitative Proteomics and Weighted Correlation Network Analysis of Tear Samples in Type 2 Diabetes Patients Complicated with Dry Eye. Proteomics Clin Appl 2020; 14:e1900083. [PMID: 31951085 DOI: 10.1002/prca.201900083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 12/30/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Diabetic patients are more likely to experience dry eye (DE). TMT-based proteomics and WGCNA are used to identify the differentially expressed proteins in tear proteome of type 2 diabetes with DE. The aim is to provide a molecular basis for exploring possible mechanisms underlying the pathogenesis of diabetic DE. EXPERIMENTAL DESIGN Subjects are divided into four groups (ten in each): type 2 diabetes with DE; type 2 diabetes without DE; non-diabetes with DE and normal controls. All subjects undergo DE tests. Total proteins are extracted and quantitatively labeled with TMT, then analyzed using liquid chromatography-mass spectrometry. WGCNA is used to identify the hub genes. Finally, differentially expressed proteins are validated by ELISA. RESULTS A total of 1922 proteins are identified, of which 1814 contain quantitative information. Ultimately, 650 of these proteins yield quantitative values. WGCNA performed on these 650 proteins reveal four distinct hub genes of diabetic DE. CONCLUSIONS AND CLINICAL RELEVANCE DE is associated with the differential expression of tear proteins in type 2 diabetes. Inflammation, immune factors, and lipid metabolism may play a role in the development of diabetic DE. LTF, LYZ, ZAG, and DNAJC3 have the potential to be the biomarkers of DE in diabetes.
Collapse
Affiliation(s)
- Xinrong Zou
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai, 200040, China.,Department of Ophthalmology, Fengcheng Hospital, Fengxian District, Shanghai, 201411, China
| | - Pei Zhang
- Department of Ophthalmology, Gonghui Hospital, Jingan District, Shanghai, 200041, China
| | - Yi Xu
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai, 200040, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Lina Lu
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai, 200040, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Haidong Zou
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai, 200040, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| |
Collapse
|
45
|
Gerakis Y, Quintero M, Li H, Hetz C. The UFMylation System in Proteostasis and Beyond. Trends Cell Biol 2019; 29:974-986. [PMID: 31703843 PMCID: PMC6917045 DOI: 10.1016/j.tcb.2019.09.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022]
Abstract
Post-translational modifications are at the apex of cellular communication and eventually regulate every aspect of life. The identification of new post-translational modifiers is opening alternative avenues in understanding fundamental cell biology processes and may ultimately provide novel therapeutic opportunities. The ubiquitin-fold modifier 1 (UFM1) is a post-translational modifier discovered a decade ago but its biological significance has remained mostly unknown. The field has recently witnessed an explosion of research uncovering the implications of the pathway to cellular homeostasis in living organisms. We overview recent advances in the function and regulation of the UFM1 pathway, and its implications for cell physiology and disease.
Collapse
Affiliation(s)
- Yannis Gerakis
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP (Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias) Center for Geroscience (GERO), Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Michaela Quintero
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP (Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias) Center for Geroscience (GERO), Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Cellular and Molecular Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.
| |
Collapse
|
46
|
Li L, Yan G, Zhang X. A rapid and efficient method for N-termini analysis in short-lived proteins. Talanta 2019; 204:367-371. [DOI: 10.1016/j.talanta.2019.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/02/2019] [Accepted: 06/08/2019] [Indexed: 02/05/2023]
|
47
|
Zhong H, Ren H, Lu Y, Fang C, Hou G, Yang Z, Chen B, Yang F, Zhao Y, Shi Z, Zhou B, Wu J, Zou H, Zi J, Chen J, Bao X, Hu Y, Gao Y, Zhang J, Xu X, Hou Y, Yang H, Wang J, Liu S, Jia H, Madsen L, Brix S, Kristiansen K, Liu F, Li J. Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naïve type 2 diabetics. EBioMedicine 2019; 47:373-383. [PMID: 31492563 PMCID: PMC6796533 DOI: 10.1016/j.ebiom.2019.08.048] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Background The gut microbiota plays important roles in modulating host metabolism. Previous studies have demonstrated differences in the gut microbiome of T2D and prediabetic individuals compared to healthy individuals, with distinct disease-related microbial profiles being reported in groups of different age and ethnicity. However, confounding factors such as anti-diabetic medication hamper identification of the gut microbial changes in disease development. Method We used a combination of in-depth metagenomics and metaproteomics analyses of faecal samples from treatment-naïve type 2 diabetic (TN-T2D, n = 77), pre-diabetic (Pre-DM, n = 80), and normal glucose tolerant (NGT, n = 97) individuals to investigate compositional and functional changes of the gut microbiota and the faecal content of microbial and host proteins in Pre-DM and treatment-naïve T2D individuals to elucidate possible host-microbial interplays characterizing different disease stages. Findings We observed distinct differences characterizing the gut microbiota of these three groups and validated several key features in an independent TN-T2D cohort. We also demonstrated that the content of several human antimicrobial peptides and pancreatic enzymes differed in faecal samples between three groups. Interpretation Our findings suggest a complex, disease stage-dependent interplay between the gut microbiota and the host and point to the value of metaproteomics to gain further insight into interplays between the gut microbiota and the host. Fund The study was supported by the National Natural Science Foundation of China (No. 31601073), the National Key Research and Development Program of China (No. 2017YFC0909703) and the Shenzhen Municipal Government of China (No. JCYJ20170817145809215). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Collapse
Affiliation(s)
- Huanzi Zhong
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Huahui Ren
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Yan Lu
- Suzhou Centre for Disease Control and Prevention, Suzhou 215007, China
| | - Chao Fang
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Guixue Hou
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China
| | - Ziyi Yang
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China
| | - Bing Chen
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China
| | - Fangming Yang
- BGI-Shenzhen, Shenzhen 518083, China; BGI Education Centre, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Yue Zhao
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China
| | - Zhun Shi
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China
| | - Baojin Zhou
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China
| | - Jiegen Wu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Hua Zou
- BGI-Shenzhen, Shenzhen 518083, China; BGI Education Centre, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Jin Zi
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China
| | - Jiayu Chen
- China National GeneBank, Shenzhen 518120, China
| | - Xiao Bao
- China National GeneBank, Shenzhen 518120, China
| | - Yihe Hu
- Suzhou Centre for Disease Control and Prevention, Suzhou 215007, China
| | - Yan Gao
- Suzhou Centre for Disease Control and Prevention, Suzhou 215007, China
| | - Jun Zhang
- Suzhou Centre for Disease Control and Prevention, Suzhou 215007, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China
| | - Yong Hou
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China; James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China; James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Siqi Liu
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China
| | - Huijue Jia
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China
| | - Lise Madsen
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark; Institute of Marine Research, P.O. Box 7800, 5020 Bergen, Norway
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Soltofts Plads, 2800 Kgs. Lyngby, Denmark
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Fang Liu
- Suzhou Centre for Disease Control and Prevention, Suzhou 215007, China.
| | - Junhua Li
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
48
|
Fang Z, Pan Z. Essential Role of Ubiquitin-Fold Modifier 1 Conjugation in DNA Damage Response. DNA Cell Biol 2019; 38:1030-1039. [PMID: 31368785 DOI: 10.1089/dna.2019.4861] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Both endogenous and exogenous factors can cause DNA damage that compromises genomic integrity and cell viability. A proper DNA damage response (DDR) plays a role in maintaining genome stability and preventing tumorigenesis. DNA double-strand breaks (DSBs) are the most toxic DNA lesion, whose response is dominated by the ataxia-telangiectasia mutated (ATM) protein kinase. After being activated by the sensor Mre11-Rad50-Nbs1 (MRN) complex or acetyltransferase Tip60, ATM rapidly phosphorylates downstream targets to launch DDR signaling when DNA is damaged. However, the exact mechanism of DDR is complex and ambiguous. Ufmylation, one type of ubiquitin-like modification, proceeds mainly through a three-step enzymatic reaction to help ubiquitin-fold modifier 1 (Ufm1), attach to substrates with ubiquitin-like modifier-activating enzyme 5 (Uba5), Ufm1-conjugating enzyme 1 (Ufc1) and Ufm1-specific ligase 1 (Ufl1). Although ubiquitination is essential to the DSBs response, the potential function of ufmylation in DDR is largely unknown. Herein, we review the relationship between ufmylation and DDR to elucidate the function and mechanism of ufmylation in DDR, which would reveal the pathogenesis of some diseases and provide new guidance to create a therapeutic method.
Collapse
Affiliation(s)
- Zhi Fang
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zezheng Pan
- Faculty of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
49
|
Del Puerto-Nevado L, Santiago-Hernandez A, Solanes-Casado S, Gonzalez N, Ricote M, Corton M, Prieto I, Mas S, Sanz AB, Aguilera O, Gomez-Guerrero C, Ayuso C, Ortiz A, Rojo F, Egido J, Garcia-Foncillas J, Minguez P, Alvarez-Llamas G. Diabetes-mediated promotion of colon mucosa carcinogenesis is associated with mitochondrial dysfunction. Mol Oncol 2019; 13:1887-1897. [PMID: 31199051 PMCID: PMC6717745 DOI: 10.1002/1878-0261.12531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 01/28/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) has been associated with an increased risk of cancer, including colon cancer (CC). However, we recently reported no influence of T2DM on CC prognosis, suggesting that any effect might be at the early stages of tumor development. We hypothesized that T2DM may create an environment in the healthy tissue, which acts as a carcinogenesis driver in agreement with the field of cancerization concept. Here, we focused on early carcinogenesis by analyzing paired tumor and normal colonic mucosa samples from the same patients. The proteome of CC and paired mucosa was quantitatively analyzed in 28 individuals (12 diabetics and 16 nondiabetics) by mass spectrometry with isobaric labeling. Out of 3076 identified proteins, 425 were differentially expressed at the tumor in diabetics compared with nondiabetics. In the adjacent mucosa, 143 proteins were differentially expressed in diabetics and nondiabetics. An enrichment analysis of this signature pointed to mitochondria, ribosome, and translation. Only six proteins were upregulated by diabetes both in tumor and mucosa, of which five were mitochondrial proteins. Differential expression in diabetic versus nondiabetic mucosa was confirmed for MRPL53, MRPL18, and TIMM8B. Higher levels of MRPL18, TIMM8B, and EIF1A were also found in normal colon epithelial cells exposed to high‐glucose conditions. We conclude that T2DM is associated with specific molecular changes in the normal mucosa of CC patients, consistent with field of cancerization in a diabetic environment. The mitochondrial protein signature identifies a potential therapeutic target that could underlie the higher risk of CC in diabetics.
Collapse
Affiliation(s)
- Laura Del Puerto-Nevado
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | | | - Sonia Solanes-Casado
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Nieves Gonzalez
- Renal, Vascular and Diabetes Research Laboratory, Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Marta Ricote
- Renal, Vascular and Diabetes Research Laboratory, Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Marta Corton
- Genetics Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Isabel Prieto
- Radiation Oncology, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Sebastian Mas
- Renal, Vascular and Diabetes Research Laboratory, Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Ana Belen Sanz
- Nephrology and Hypertension Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Oscar Aguilera
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Carmen Gomez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Carmen Ayuso
- Genetics Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Alberto Ortiz
- Nephrology and Hypertension Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Federico Rojo
- Pathology Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Jesus Egido
- Renal, Vascular and Diabetes Research Laboratory, Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Jesus Garcia-Foncillas
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Pablo Minguez
- Genetics Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Gloria Alvarez-Llamas
- Immunology Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain.,REDINREN, Madrid, Spain
| | | |
Collapse
|
50
|
Jiang F, Shan H, Pan C, Zhou Z, Cui K, Chen Y, Zhong H, Lin Z, Wang N, Yan L, Yu X. ATP6V1H facilitates osteogenic differentiation in MC3T3-E1 cells via Akt/GSK3β signaling pathway. Organogenesis 2019; 15:43-54. [PMID: 31272281 DOI: 10.1080/15476278.2019.1633869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) accounts for approximately 90% of all diabetic patients, and osteoporosis is one of the complications during T2DM process. ATP6V1H (V-type proton ATPase subunit H) displays crucial roles in inhibiting bone loss, but its role in osteogenic differentiation remains unknown. Therefore in this study, we aimed to explore the biological role of ATP6V1H in osteogenic differentiation. OM (osteogenic medium) and HG (high glucose and free fatty acids) were used to induce the MC3T3-E1 cells into osteogenic differentiation in a T2DM simulating environment. CCK8 assay was used to detect cell viability. Alizarin Red staining was used to detect the influence of ATP6V1H on osteogenic differentiation. ATP6V1H expression increased in OM-MC3T3-E1 cells, while decreased in OM+HG-MC3T3-E1 cells. ATP6V1H promoted osteogenic differentiation of OM+HG-MC3T3-E1 cells. Overexpression of ATP6V1H inhibited Akt/GSK3β signaling pathway, while knockdown of ATP6V1H promoted Akt/GSK3β signaling pathway. ATP6V1H overexpression promoted osteogenic differentiation of OM+HG-MC3T3-E1 cells. The role of ATP6V1H in osteogenic differentiation in a T2DM simulating environment involved in Akt/GSK3β signaling pathway. These data demonstrated that ATP6V1H could serve as a potential target for osteogenic differentiation in a T2DM simulating environment.
Collapse
Affiliation(s)
- Fusong Jiang
- a Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes , Shanghai , China
| | - Haojie Shan
- b Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Chenhao Pan
- b Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Zubin Zhou
- b Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Keze Cui
- c Department of Orthopaedic Surgery, Haikou Orthopedics and Diabetes Hospital of Shanghai Sixth People's Hospital , Haikou , China
| | - Yuanliang Chen
- c Department of Orthopaedic Surgery, Haikou Orthopedics and Diabetes Hospital of Shanghai Sixth People's Hospital , Haikou , China
| | - Haibo Zhong
- c Department of Orthopaedic Surgery, Haikou Orthopedics and Diabetes Hospital of Shanghai Sixth People's Hospital , Haikou , China
| | - Zhibin Lin
- c Department of Orthopaedic Surgery, Haikou Orthopedics and Diabetes Hospital of Shanghai Sixth People's Hospital , Haikou , China
| | - Nan Wang
- d Department of Emergency, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Liang Yan
- e Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Xiaowei Yu
- b Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| |
Collapse
|