1
|
Leddy O, Cui Y, Ahn R, Stopfer L, Choe E, Kim DH, Roerden M, Spranger S, Bryson BD, White FM. Validation and quantification of peptide antigens presented on MHCs using SureQuant. Nat Protoc 2025; 20:1196-1222. [PMID: 39438697 PMCID: PMC12012165 DOI: 10.1038/s41596-024-01076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Vaccines and immunotherapies that target peptide-major histocompatibility complexes (peptide-MHCs) have the potential to address multiple unmet medical needs in cancer and infectious disease. Designing vaccines and immunotherapies to target peptide-MHCs requires accurate identification of target peptides in infected or cancerous cells or tissue, and may require absolute or relative quantification to identify abundant targets and measure changes in presentation under different treatment conditions. Internal standard parallel reaction monitoring (also known as 'SureQuant') can be used to validate and/or quantify MHC peptides previously identified by using untargeted methods such as data-dependent acquisition. SureQuant MHC has three main use cases: (i) conclusive confirmation of the identities of putative MHC peptides via comparison with an internal synthetic stable isotope labeled (SIL) peptide standard; (ii) accurate relative quantification by using pre-formed heavy isotope-labeled peptide-MHC complexes (hipMHCs) containing SIL peptides as internal controls for technical variation; and (iii) absolute quantification of each target peptide by using different amounts of hipMHCs loaded with synthetic peptides containing one, two or three SIL amino acids to provide an internal standard curve. Absolute quantification can help determine whether the abundance of a peptide-MHC is sufficient for certain therapeutic modalities. SureQuant MHC therefore provides unique advantages for immunologists seeking to confidently validate antigenic targets and understand the dynamics of the MHC repertoire. After synthetic standards are ordered (3-4 weeks), this protocol can be carried out in 3-4 days and is suitable for individuals with mass spectrometry experience who are comfortable with customizing instrument methods.
Collapse
Affiliation(s)
- Owen Leddy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Medicine, Cambridge, MA, USA
| | - Yufei Cui
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Medicine, Cambridge, MA, USA
| | - Ryuhjin Ahn
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Medicine, Cambridge, MA, USA
| | - Lauren Stopfer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Medicine, Cambridge, MA, USA
- Aethon Therapeutics, New York, NY, USA
| | - Elizabeth Choe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Medicine, Cambridge, MA, USA
| | - Do Hun Kim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Medicine, Cambridge, MA, USA
| | - Malte Roerden
- Koch Institute for Integrative Cancer Medicine, Cambridge, MA, USA
| | - Stefani Spranger
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Medicine, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
| | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Medicine, Cambridge, MA, USA.
- Center for Precision Cancer Medicine, Cambridge, MA, USA.
| |
Collapse
|
2
|
Xu Y, Peng XL, East MP, McCabe IC, Stroman GC, Jenner MR, Morrison AB, Herrera G, Chan PS, Shen EC, Joisa CU, Rashid NU, Iuga AC, Gomez SM, Miller-Phillips L, Boeck S, Heinemann V, Haas M, Ormanns S, Johnson GL, Yeh JJ. Tumor-Intrinsic Kinome Landscape of Pancreatic Cancer Reveals New Therapeutic Approaches. Cancer Discov 2025; 15:346-362. [PMID: 39632628 PMCID: PMC11805639 DOI: 10.1158/2159-8290.cd-23-1480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 08/06/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
SIGNIFICANCE We provide a comprehensive tumor-intrinsic kinome landscape that provides a roadmap for the use of kinase inhibitors in PDAC treatment approaches.
Collapse
Affiliation(s)
- Yi Xu
- Department of Pharmacology, University of North Carolina at Chapel Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Xianlu L. Peng
- Department of Pharmacology, University of North Carolina at Chapel Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Michael P. East
- Department of Pharmacology, University of North Carolina at Chapel Hill
| | - Ian C. McCabe
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Grace C. Stroman
- Department of Pharmacology, University of North Carolina at Chapel Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Madison R. Jenner
- Department of Pharmacology, University of North Carolina at Chapel Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Ashley B. Morrison
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Gabriela Herrera
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Priscilla S. Chan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Emily C. Shen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Chinmaya U. Joisa
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University
| | - Naim U. Rashid
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
- Department of Biostatistics, University of North Carolina at Chapel Hill
| | - Alina C. Iuga
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill
| | - Shawn M. Gomez
- Department of Pharmacology, University of North Carolina at Chapel Hill
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University
| | - Lisa Miller-Phillips
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, D-81377, Munich, Germany
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Stefan Boeck
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, D-81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Volker Heinemann
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, D-81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Michael Haas
- Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, D-81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Steffen Ormanns
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Gary L. Johnson
- Department of Pharmacology, University of North Carolina at Chapel Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Jen Jen Yeh
- Department of Pharmacology, University of North Carolina at Chapel Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
- Department of Surgery, University of North Carolina at Chapel Hill
| |
Collapse
|
3
|
Geyer PE, Hornburg D, Pernemalm M, Hauck SM, Palaniappan KK, Albrecht V, Dagley LF, Moritz RL, Yu X, Edfors F, Vandenbrouck Y, Mueller-Reif JB, Sun Z, Brun V, Ahadi S, Omenn GS, Deutsch EW, Schwenk JM. The Circulating Proteome─Technological Developments, Current Challenges, and Future Trends. J Proteome Res 2024; 23:5279-5295. [PMID: 39479990 PMCID: PMC11629384 DOI: 10.1021/acs.jproteome.4c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024]
Abstract
Recent improvements in proteomics technologies have fundamentally altered our capacities to characterize human biology. There is an ever-growing interest in using these novel methods for studying the circulating proteome, as blood offers an accessible window into human health. However, every methodological innovation and analytical progress calls for reassessing our existing approaches and routines to ensure that the new data will add value to the greater biomedical research community and avoid previous errors. As representatives of HUPO's Human Plasma Proteome Project (HPPP), we present our 2024 survey of the current progress in our community, including the latest build of the Human Plasma Proteome PeptideAtlas that now comprises 4608 proteins detected in 113 data sets. We then discuss the updates of established proteomics methods, emerging technologies, and investigations of proteoforms, protein networks, extracellualr vesicles, circulating antibodies and microsamples. Finally, we provide a prospective view of using the current and emerging proteomics tools in studies of circulating proteins.
Collapse
Affiliation(s)
- Philipp E. Geyer
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Daniel Hornburg
- Seer,
Inc., Redwood City, California 94065, United States
- Bruker
Scientific, San Jose, California 95134, United States
| | - Maria Pernemalm
- Department
of Oncology and Pathology/Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Stefanie M. Hauck
- Metabolomics
and Proteomics Core, Helmholtz Zentrum München
GmbH, German Research Center for Environmental Health, 85764 Oberschleissheim,
Munich, Germany
| | | | - Vincent Albrecht
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Laura F. Dagley
- The
Walter and Eliza Hall Institute for Medical Research, Parkville, VIC 3052, Australia
- Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Robert L. Moritz
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Xiaobo Yu
- State
Key Laboratory of Medical Proteomics, Beijing
Proteome Research Center, National Center for Protein Sciences-Beijing
(PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Fredrik Edfors
- Science
for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 17121 Solna, Sweden
| | | | - Johannes B. Mueller-Reif
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Zhi Sun
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Virginie Brun
- Université Grenoble
Alpes, CEA, Leti, Clinatec, Inserm UA13
BGE, CNRS FR2048, Grenoble, France
| | - Sara Ahadi
- Alkahest, Inc., Suite
D San Carlos, California 94070, United States
| | - Gilbert S. Omenn
- Institute
for Systems Biology, Seattle, Washington 98109, United States
- Departments
of Computational Medicine & Bioinformatics, Internal Medicine,
Human Genetics and Environmental Health, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| | - Eric W. Deutsch
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Jochen M. Schwenk
- Science
for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 17121 Solna, Sweden
| |
Collapse
|
4
|
Kalogeropoulos K, Savickas S, Haack AM, Larsen CA, Mikosiński J, Schoof EM, Smola H, Bundgaard L, Auf dem Keller U. High-Throughput and High-Sensitivity Biomarker Monitoring in Body Fluid by Fast LC SureQuant IS-Targeted Quantitation. Mol Cell Proteomics 2024; 23:100868. [PMID: 39442693 PMCID: PMC11609441 DOI: 10.1016/j.mcpro.2024.100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024] Open
Abstract
Targeted proteomics methods have been greatly improved and refined over the last decade and are becoming increasingly the method of choice in protein and peptide quantitative assays. Despite the tremendous progress, targeted proteomics assays still suffer from inadequate sensitivity for lower abundant proteins and throughput, especially in complex biological samples. These attributes are essential for establishing targeted proteomics methods at the forefront of clinical use. Here, we report an assay utilizing the SureQuant internal standard-triggered targeted method on a latest generation mass spectrometer coupled with an EvoSep One liquid chromatography platform, which displays high sensitivity and a high throughput of 100 samples per day. We demonstrate the robustness of this method by quantifying proteins spanning six orders of magnitude in human wound fluid exudates, a biological fluid that exhibits sample complexity and composition similar to plasma. Among the targets quantified were low-abundance proteins such at tumor necrosis factor A and interleukin 1-β, highlighting the value of this method in the quantification of trace amounts of invaluable biomarkers that were until recently hardly accessible by targeted proteomics methods. Taken together, this method extends the toolkit of targeted proteomics assays and will help to drive forward mass spectrometry-based proteomics biomarker quantification.
Collapse
Affiliation(s)
| | - Simonas Savickas
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Aleksander M Haack
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Cathrine A Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Erwin M Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Louise Bundgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
5
|
Rider MH, Vertommen D, Johanns M. How mass spectrometry can be exploited to study AMPK. Essays Biochem 2024; 68:283-294. [PMID: 39056150 DOI: 10.1042/ebc20240009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of metabolism and a recognised target for the treatment of metabolic diseases such as Type 2 diabetes (T2D). Here, we review how mass spectrometry (MS) can be used to study short-term control by AMPK via protein phosphorylation and long-term control due to changes in protein expression. We discuss how MS can quantify AMPK subunit levels in tissues from different species. We propose hydrogen-deuterium exchange (HDX)-MS to investigate molecular mechanisms of AMPK activation and thermoproteomic profiling (TPP) to assess off-target effects of pharmacological AMPK activators/inhibitors. Lastly, because large MS data sets are generated, we consider different approaches that can be used for their interpretation.
Collapse
Affiliation(s)
- Mark H Rider
- Protein Phosphorylation (PHOS) laboratory, Université catholique de Louvain and de Duve Institute, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | - Didier Vertommen
- Protein Phosphorylation (PHOS) laboratory, Université catholique de Louvain and de Duve Institute, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | - Manuel Johanns
- Protein Phosphorylation (PHOS) laboratory, Université catholique de Louvain and de Duve Institute, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| |
Collapse
|
6
|
Antelo-Varela M, Bumann D, Schmidt A. Optimizing SureQuant for Targeted Peptide Quantification: a Technical Comparison with PRM and SWATH-MS Methods. Anal Chem 2024; 96:18061-18069. [PMID: 39466323 PMCID: PMC11561883 DOI: 10.1021/acs.analchem.4c03622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Bacterial infections are a major threat to human health worldwide. A better understanding of the properties and physiology of bacterial pathogens in human tissues is required to develop urgently needed novel control strategies. Mass spectrometry-based proteomics could yield such data, but identifying and quantifying scarce bacterial proteins against a preponderance of human proteins is challenging. Here, we explored the recently introduced SureQuant method for highly sensitive targeted mass spectrometry. Using a major human pathogen, the Gram-positive bacteria Staphylococcus aureus, as an example, we evaluated several parameters, including the number of targets and intensity thresholds, for optimal qualitative and quantitative protein analysis. By comparison, we found that SureQuant achieved the same quantitative performance as standard parallel reaction monitoring while allowing accurate and precise quantification of up to 400 targets. SureQuant also surpassed the sensitivity and quantification capabilities of global data-independent acquisition methods. Finally, to facilitate method development, we provide optimized MS parameters for the sensitive quantification of different peptide panel sizes. This study provides a foundation for the broader application of SureQuant in the analysis of clinical specimens containing trace amounts of bacterial proteins as well as other studies requiring ultrasensitive detection of low-abundant proteins.
Collapse
Affiliation(s)
| | - Dirk Bumann
- Biozentrum, University of
Basel, Spitalstrasse
41, Basel CH-4056, Switzerland
| | - Alexander Schmidt
- Biozentrum, University of
Basel, Spitalstrasse
41, Basel CH-4056, Switzerland
| |
Collapse
|
7
|
Korchak J, Jeffery ED, Bandyopadhyay S, Jordan BT, Lehe MD, Watts EF, Fenix A, Wilhelm M, Sheynkman GM. IS-PRM-Based Peptide Targeting Informed by Long-Read Sequencing for Alternative Proteome Detection. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2614-2630. [PMID: 39012054 PMCID: PMC11544703 DOI: 10.1021/jasms.4c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024]
Abstract
Alternative splicing is a major contributor of transcriptomic complexity, but the extent to which transcript isoforms are translated into stable, functional protein isoforms is unclear. Furthermore, detection of relatively scarce isoform-specific peptides is challenging, with many protein isoforms remaining uncharted due to technical limitations. Recently, a family of advanced targeted MS strategies, termed internal standard parallel reaction monitoring (IS-PRM), have demonstrated multiplexed, sensitive detection of predefined peptides of interest. Such approaches have not yet been used to confirm existence of novel peptides. Here, we present a targeted proteogenomic approach that leverages sample-matched long-read RNA sequencing (lrRNA-seq) data to predict potential protein isoforms with prior transcript evidence. Predicted tryptic isoform-specific peptides, which are specific to individual gene product isoforms, serve as "triggers" and "targets" in the IS-PRM method, Tomahto. Using the model human stem cell line WTC11, LR RNaseq data were generated and used to inform the generation of synthetic standards for 192 isoform-specific peptides (114 isoforms from 55 genes). These synthetic "trigger" peptides were labeled with super heavy tandem mass tags (TMT) and spiked into TMT-labeled WTC11 tryptic digest, predicted to contain corresponding endogenous "target" peptides. Compared to DDA mode, Tomahto increased detectability of isoforms by 3.6-fold, resulting in the identification of five previously unannotated isoforms. Our method detected protein isoform expression for 43 out of 55 genes corresponding to 54 resolved isoforms. This lrRNA-seq-informed Tomahto targeted approach is a new modality for generating protein-level evidence of alternative isoforms─a critical first step in designing functional studies and eventually clinical assays.
Collapse
Affiliation(s)
- Jennifer
A. Korchak
- Department
of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Erin D. Jeffery
- Department
of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Saikat Bandyopadhyay
- Department
of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22903, United States
- Center
for Public Health Genomics, University of
Virginia, Charlottesville, Virginia 22903, United States
| | - Ben T. Jordan
- Cancer
Genomics Research Laboratory, Frederick
National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Micah D. Lehe
- Department
of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Emily F. Watts
- Department
of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Aidan Fenix
- Department
of Laboratory Medicine and Pathology, University
of Washington, Seattle, Washington 98195, United States
| | - Mathias Wilhelm
- Computational
Mass Spectrometry, Technical University
of Munich (TUM), D-85354 Freising, Germany
| | - Gloria M. Sheynkman
- Department
of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22903, United States
- Department
of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22903, United States
- UVA
Comprehensive Cancer Center, University
of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
8
|
East MP, Sprung RW, Okumu DO, Olivares-Quintero JF, Joisa CU, Chen X, Zhang Q, Erdmann-Gilmore P, Mi Y, Sciaky N, Malone JP, Bhatia S, McCabe IC, Xu Y, Sutcliffe MD, Luo J, Spears PA, Perou CM, Earp HS, Carey LA, Yeh JJ, Spector DL, Gomez SM, Spanheimer PM, Townsend RR, Johnson GL. Quantitative proteomic mass spectrometry of protein kinases to determine dynamic heterogeneity of the human kinome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.04.614143. [PMID: 39464086 PMCID: PMC11507871 DOI: 10.1101/2024.10.04.614143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The kinome is a dynamic system of kinases regulating signaling networks in cells and dysfunction of protein kinases contributes to many diseases. Regulation of the protein expression of kinases alters cellular responses to environmental changes and perturbations. We configured a library of 672 proteotypic peptides to quantify >300 kinases in a single LC-MS experiment using ten micrograms protein from human tissues including biopsies. This enables absolute quantitation of kinase protein abundance at attomole-femtomole expression levels, requiring no kinase enrichment and less than ten micrograms of starting protein from flash-frozen and formalin fixed paraffin embedded tissues. Breast cancer biopsies, organoids, and cell lines were analyzed using the SureQuant method, demonstrating the heterogeneity of kinase protein expression across and within breast cancer clinical subtypes. Kinome quantitation was coupled with nanoscale phosphoproteomics, providing a feasible method for novel clinical diagnosis and understanding of patient kinome responses to treatment.
Collapse
|
9
|
Tsantilas KA, Merrihew GE, Robbins JE, Johnson RS, Park J, Plubell DL, Canterbury JD, Huang E, Riffle M, Sharma V, MacLean BX, Eckels J, Wu CC, Bereman MS, Spencer SE, Hoofnagle AN, MacCoss MJ. A Framework for Quality Control in Quantitative Proteomics. J Proteome Res 2024; 23:4392-4408. [PMID: 39248652 PMCID: PMC11973981 DOI: 10.1021/acs.jproteome.4c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
A thorough evaluation of the quality, reproducibility, and variability of bottom-up proteomics data is necessary at every stage of a workflow, from planning to analysis. We share vignettes applying adaptable quality control (QC) measures to assess sample preparation, system function, and quantitative analysis. System suitability samples are repeatedly measured longitudinally with targeted methods, and we share examples where they are used on three instrument platforms to identify severe system failures and track function over months to years. Internal QCs incorporated at the protein and peptide levels allow our team to assess sample preparation issues and to differentiate system failures from sample-specific issues. External QC samples prepared alongside our experimental samples are used to verify the consistency and quantitative potential of our results during batch correction and normalization before assessing biological phenotypes. We combine these controls with rapid analysis (Skyline), longitudinal QC metrics (AutoQC), and server-based data deposition (PanoramaWeb). We propose that this integrated approach to QC is a useful starting point for groups to facilitate rapid quality control assessment to ensure that valuable instrument time is used to collect the best quality data possible. Data are available on Panorama Public and ProteomeXchange under the identifier PXD051318.
Collapse
Affiliation(s)
- Kristine A. Tsantilas
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Julia E. Robbins
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Richard S. Johnson
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Jea Park
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Deanna L. Plubell
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Jesse D. Canterbury
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Eric Huang
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Michael Riffle
- Department of Biochemistry, University of Washington, Washington 98195, United States
| | - Vagisha Sharma
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Brendan X. MacLean
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Josh Eckels
- LabKey, 500 Union St #1000, Seattle, Washington 98101, United States
| | - Christine C. Wu
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Michael S. Bereman
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27607
| | - Sandra E. Spencer
- Canada's Michael Smith Genome Sciences Centre (BC Cancer Research Institute), University of British Columbia, Vancouver, British Columbia V5Z 4S6, Canada
| | - Andrew N. Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, United States
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| |
Collapse
|
10
|
Salek M, Förster JD, Becker JP, Meyer M, Charoentong P, Lyu Y, Lindner K, Lotsch C, Volkmar M, Momburg F, Poschke I, Fröhling S, Schmitz M, Offringa R, Platten M, Jäger D, Zörnig I, Riemer AB. optiPRM: A Targeted Immunopeptidomics LC-MS Workflow With Ultra-High Sensitivity for the Detection of Mutation-Derived Tumor Neoepitopes From Limited Input Material. Mol Cell Proteomics 2024; 23:100825. [PMID: 39111711 PMCID: PMC11405902 DOI: 10.1016/j.mcpro.2024.100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 09/08/2024] Open
Abstract
Personalized cancer immunotherapies such as therapeutic vaccines and adoptive transfer of T cell receptor-transgenic T cells rely on the presentation of tumor-specific peptides by human leukocyte antigen class I molecules to cytotoxic T cells. Such neoepitopes can for example arise from somatic mutations and their identification is crucial for the rational design of new therapeutic interventions. Liquid chromatography mass spectrometry (LC-MS)-based immunopeptidomics is the only method to directly prove actual peptide presentation and we have developed a parameter optimization workflow to tune targeted assays for maximum detection sensitivity on a per peptide basis, termed optiPRM. Optimization of collision energy using optiPRM allows for the improved detection of low abundant peptides that are very hard to detect using standard parameters. Applying this to immunopeptidomics, we detected a neoepitope in a patient-derived xenograft from as little as 2.5 × 106 cells input. Application of the workflow on small patient tumor samples allowed for the detection of five mutation-derived neoepitopes in three patients. One neoepitope was confirmed to be recognized by patient T cells. In conclusion, optiPRM, a targeted MS workflow reaching ultra-high sensitivity by per peptide parameter optimization, makes the identification of actionable neoepitopes possible from sample sizes usually available in the clinic.
Collapse
Affiliation(s)
- Mogjiborahman Salek
- Division of Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany; Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Jonas D Förster
- Division of Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany; Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Jonas P Becker
- Division of Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany; Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Marten Meyer
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany; Department of Medical Oncology, National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Pornpimol Charoentong
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany; Center for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Heidelberg, Germany
| | - Yanhong Lyu
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Katharina Lindner
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; Immune Monitoring Unit, National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership Between DKFZ and University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Catharina Lotsch
- Division of Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany; Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Michael Volkmar
- T Cell Discovery Platform, Helmholtz Institute for Translational Oncology (HI-TRON) Mainz - A Helmholtz Institute of the DKFZ, Mainz, Germany
| | - Frank Momburg
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Isabel Poschke
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership Between DKFZ and University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, Heidelberg, Germany; Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany; Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership Between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT), NCT Dresden, A PARTNership between DKFZ, University Hospital Carl Gustav Carus, Faculty of Medicine Carl Gustav Carus of TU Dresden and Helmholtz Center Dresden-Rossendorf, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, A Partnership Between DKFZ, University Hospital Carl Gustav Carus, Faculty of Medicine Carl Gustav Carus of TU Dresden, Helmholtz Center Dresden-Rossendorf and Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Rienk Offringa
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany; Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Platten
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership Between DKFZ and University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany; Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience (MCTN), Heidelberg University, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany; Helmholtz Institute for Translational Oncology, Mainz (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ, Mainz, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Inka Zörnig
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Angelika B Riemer
- Division of Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany; Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
11
|
Yu C, Shen Q, Holmes AB, Mo T, Tosato A, Soni RK, Corinaldesi C, Koul S, Pasqualucci L, Hussein S, Forouhar F, Dalla-Favera R, Basso K. MEF2B C-terminal mutations enhance transcriptional activity and stability to drive B cell lymphomagenesis. Nat Commun 2024; 15:7195. [PMID: 39179580 PMCID: PMC11343756 DOI: 10.1038/s41467-024-51644-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
The myocyte enhancer factor 2B (MEF2B) transcription factor is frequently mutated in germinal center (GC)-derived B-cell lymphomas. Its ammino (N)-terminal mutations drive lymphomagenesis by escaping interaction with transcriptional repressors, while the function of carboxy (C)-terminal mutations remains to be elucidated. Here, we show that MEF2B C-tail is physiologically phosphorylated at specific residues and phosphorylation at serine (S)324 is impaired by lymphoma-associated mutations. Lack of phosphorylation at S324 enhances the interaction of MEF2B with the SWI/SNF chromatin remodeling complex, leading to higher transcriptional activity. In addition, these mutants show an increased protein stability due to impaired interaction with the CUL3/KLHL12 ubiquitin complex. Mice expressing a phosphorylation-deficient lymphoma-associated MEF2B mutant display GC enlargement and develop GC-derived lymphomas, when crossed with Bcl2 transgenic mice. These results unveil converging mechanisms of action for a diverse spectrum of MEF2B mutations, all leading to its dysregulation and GC B-cell lymphomagenesis.
Collapse
Affiliation(s)
- Chuanjiang Yu
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Qiong Shen
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Antony B Holmes
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Tongwei Mo
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Anna Tosato
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University, New York, NY, USA
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | | | - Sanjay Koul
- Department of Biological Sciences & Geology, Queensborough Community College, City University of New York, Bayside, New York, NY, USA
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Shafinaz Hussein
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Farhad Forouhar
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University, New York, NY, USA
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA.
- Departments of Microbiology & Immunology, Genetics & Development, Columbia University, New York, NY, USA.
| | - Katia Basso
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Tsantilas KA, Merrihew GE, Robbins JE, Johnson RS, Park J, Plubell DL, Canterbury JD, Huang E, Riffle M, Sharma V, MacLean BX, Eckels J, Wu CC, Bereman MS, Spencer SE, Hoofnagle AN, MacCoss MJ. A framework for quality control in quantitative proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589318. [PMID: 38645098 PMCID: PMC11030400 DOI: 10.1101/2024.04.12.589318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
A thorough evaluation of the quality, reproducibility, and variability of bottom-up proteomics data is necessary at every stage of a workflow from planning to analysis. We share vignettes applying adaptable quality control (QC) measures to assess sample preparation, system function, and quantitative analysis. System suitability samples are repeatedly measured longitudinally with targeted methods, and we share examples where they are used on three instrument platforms to identify severe system failures and track function over months to years. Internal QCs incorporated at protein and peptide-level allow our team to assess sample preparation issues and to differentiate system failures from sample-specific issues. External QC samples prepared alongside our experimental samples are used to verify the consistency and quantitative potential of our results during batch correction and normalization before assessing biological phenotypes. We combine these controls with rapid analysis (Skyline), longitudinal QC metrics (AutoQC), and server-based data deposition (PanoramaWeb). We propose that this integrated approach to QC is a useful starting point for groups to facilitate rapid quality control assessment to ensure that valuable instrument time is used to collect the best quality data possible. Data are available on Panorama Public and on ProteomeXchange under the identifier PXD051318.
Collapse
Affiliation(s)
- Kristine A. Tsantilas
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Julia E. Robbins
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Richard S. Johnson
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Jea Park
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Deanna L. Plubell
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Jesse D. Canterbury
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Eric Huang
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Michael Riffle
- Department of Biochemistry, University of Washington, Washington 98195, United States
| | - Vagisha Sharma
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Brendan X. MacLean
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Josh Eckels
- LabKey, 500 Union St #1000, Seattle, Washington 98101, United States
| | - Christine C. Wu
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| | - Michael S. Bereman
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27607
| | - Sandra E. Spencer
- Canada’s Michael Smith Genome Sciences Centre (BC Cancer Research Institute), University of British Columbia, Vancouver, British Columbia V5Z 4S6, Canada
| | - Andrew N. Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, United States
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Washington 98195, United States
| |
Collapse
|
13
|
Koenitzer JR, Gupta DK, Twan WK, Xu H, Hadas N, Hawkins FJ, Beermann ML, Penny GM, Wamsley NT, Berical A, Major MB, Dutcher SK, Brody SL, Horani A. Transcriptional analysis of primary ciliary dyskinesia airway cells reveals a dedicated cilia glutathione pathway. JCI Insight 2024; 9:e180198. [PMID: 39042459 PMCID: PMC11385084 DOI: 10.1172/jci.insight.180198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetic condition that results in dysmotile cilia. The repercussions of cilia dysmotility and gene variants on the multiciliated cell remain poorly understood. We used single-cell RNA-Seq, proteomics, and advanced microscopy to compare primary culture epithelial cells from patients with PCD, their heterozygous mothers, and healthy individuals, and we induced pluripotent stem cells (iPScs) generated from a patient with PCD. Transcriptomic analysis revealed unique signatures in PCD airway cells compared with their mothers' cells and the cells of healthy individuals. Gene expression in heterozygous mothers' cells diverged from both control and PCD cells, marked by increased inflammatory and cellular stress signatures. Primary and iPS-derived PCD multiciliated cells had increased expression of glutathione-S-transferases GSTA2 and GSTA1, as well as NRF2 target genes, accompanied by elevated levels of reactive oxygen species (ROS). Immunogold labeling in human cilia and proteomic analysis of the ciliated organism Chlamydomonas reinhardtii demonstrated that GSTA2 localizes to motile cilia. Loss of human GSTA2 and C. reinhardtii GSTA resulted in slowed cilia motility, pointing to local cilia regulatory roles. Our findings identify cellular responses unique to PCD variants and independent of environmental stress and uncover a dedicated ciliary GSTA2 pathway essential for normal motility that may be a therapeutic target.
Collapse
Affiliation(s)
| | - Deepesh Kumar Gupta
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wang Kyaw Twan
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Huihui Xu
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicholas Hadas
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Finn J Hawkins
- Center for Regenerative Medicine and
- The Pulmonary Center, Department of Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | | | | | - Nathan T Wamsley
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew Berical
- Center for Regenerative Medicine and
- The Pulmonary Center, Department of Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Susan K Dutcher
- Department of Genetics and
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Nam D, Ji M, Kang C, Kim H, Yang H, Bok KH, Bae J, Hong J, Lee SW. Wideband PRM: Highly Accurate and Sensitive Method for High-Throughput Targeted Proteomics. Anal Chem 2024; 96:10219-10227. [PMID: 38864836 DOI: 10.1021/acs.analchem.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Targeted mass spectrometry (MS) approaches, which are powerful methods for uniquely and confidently quantifying a specific panel of proteins in complex biological samples, play a crucial role in validating and clinically translating protein biomarkers discovered through global proteomic profiling. Common targeted MS methods, such as multiple reaction monitoring (MRM) and parallel-reaction monitoring (PRM), employ specific mass spectrometric technologies to quantify protein levels by comparing the transitions of surrogate endogenous (ENDO) peptides with those of stable isotope-labeled (SIL) peptide counterparts. These methods utilizing amino acid analyzed (AAA) SIL peptides warrant sensitive and precise measurements required for targeted MS assays. Compared with MRM, PRM provides higher experimental throughput by simultaneously acquiring all transitions of the target peptides and thereby compensates for different ion suppressions among transitions of a target peptide. However, PRM still suffers different ion suppressions between ENDO and SIL peptides due to spray instability, as the ENDO and SIL peptides were monitored at different liquid chromatography (LC) retention times. Here we introduce a new targeted MS method, termed wideband PRM (WBPRM), that is designed for high-throughput targeted MS analysis. WBPRM employs a wide isolation window for simultaneous fragmentation of both ENDO and SIL peptides along with multiplexed single ion monitoring (SIM) scans for enhanced MS sensitivity of the target peptides. Compared with PRM, WBPRM was demonstrated to provide increased sensitivity, precision, and reproducibility of quantitative measurements of target peptides with increased throughput, allowing more target peptide measurements in a shortened experiment time. WBPRM is a straightforward adaptation to a manufacturer-provided MS method, making it an easily implementable technique, particularly in complex biological samples where the demand for higher precision, sensitivity, and efficiency is paramount.
Collapse
Affiliation(s)
- Dowoon Nam
- Department of Chemistry and Center for ProteoGenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Minyoung Ji
- Department of Chemistry and Center for ProteoGenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Chaewon Kang
- Department of Chemistry and Center for ProteoGenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Hokeun Kim
- Department of Chemistry and Center for ProteoGenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Hyunju Yang
- Department of Chemistry and Center for ProteoGenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Kwon Hee Bok
- Department of Chemistry and Center for ProteoGenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Jingi Bae
- Department of Chemistry and Center for ProteoGenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Jiwon Hong
- Department of Chemistry and Center for ProteoGenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Won Lee
- Department of Chemistry and Center for ProteoGenome Research, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
15
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 PMCID: PMC11996003 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M. Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | | |
Collapse
|
16
|
Goetze S, van Drogen A, Albinus JB, Fort KL, Gandhi T, Robbiani D, Laforte V, Reiter L, Levesque MP, Xuan Y, Wollscheid B. Simultaneous targeted and discovery-driven clinical proteotyping using hybrid-PRM/DIA. Clin Proteomics 2024; 21:26. [PMID: 38565978 PMCID: PMC10988896 DOI: 10.1186/s12014-024-09478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Clinical samples are irreplaceable, and their transformation into searchable and reusable digital biobanks is critical for conducting statistically empowered retrospective and integrative research studies. Currently, mainly data-independent acquisition strategies are employed to digitize clinical sample cohorts comprehensively. However, the sensitivity of DIA is limited, which is why selected marker candidates are often additionally measured targeted by parallel reaction monitoring. METHODS Here, we applied the recently co-developed hybrid-PRM/DIA technology as a new intelligent data acquisition strategy that allows for the comprehensive digitization of rare clinical samples at the proteotype level. Hybrid-PRM/DIA enables enhanced measurement sensitivity for a specific set of analytes of current clinical interest by the intelligent triggering of multiplexed parallel reaction monitoring (MSxPRM) in combination with the discovery-driven digitization of the clinical biospecimen using DIA. Heavy-labeled reference peptides were utilized as triggers for MSxPRM and monitoring of endogenous peptides. RESULTS We first evaluated hybrid-PRM/DIA in a clinical context on a pool of 185 selected proteotypic peptides for tumor-associated antigens derived from 64 annotated human protein groups. We demonstrated improved reproducibility and sensitivity for the detection of endogenous peptides, even at lower concentrations near the detection limit. Up to 179 MSxPRM scans were shown not to affect the overall DIA performance. Next, we applied hybrid-PRM/DIA for the integrated digitization of biobanked melanoma samples using a set of 30 AQUA peptides against 28 biomarker candidates with relevance in molecular tumor board evaluations of melanoma patients. Within the DIA-detected approximately 6500 protein groups, the selected marker candidates such as UFO, CDK4, NF1, and PMEL could be monitored consistently and quantitatively using MSxPRM scans, providing additional confidence for supporting future clinical decision-making. CONCLUSIONS Combining PRM and DIA measurements provides a new strategy for the sensitive and reproducible detection of protein markers from patients currently being discussed in molecular tumor boards in combination with the opportunity to discover new biomarker candidates.
Collapse
Affiliation(s)
- Sandra Goetze
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland.
| | - Audrey van Drogen
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Jonas B Albinus
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Kyle L Fort
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | | | | | | | | | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Yue Xuan
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | - Bernd Wollscheid
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
17
|
Korchak JA, Jeffery ED, Bandyopadhyay S, Jordan BT, Lehe M, Watts EF, Fenix A, Wilhelm M, Sheynkman GM. IS-PRM-based peptide targeting informed by long-read sequencing for alternative proteome detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587549. [PMID: 38617311 PMCID: PMC11014528 DOI: 10.1101/2024.04.01.587549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Alternative splicing is a major contributor of transcriptomic complexity, but the extent to which transcript isoforms are translated into stable, functional protein isoforms is unclear. Furthermore, detection of relatively scarce isoform-specific peptides is challenging, with many protein isoforms remaining uncharted due to technical limitations. Recently, a family of advanced targeted MS strategies, termed internal standard parallel reaction monitoring (IS-PRM), have demonstrated multiplexed, sensitive detection of pre-defined peptides of interest. Such approaches have not yet been used to confirm existence of novel peptides. Here, we present a targeted proteogenomic approach that leverages sample-matched long-read RNA sequencing (LR RNAseq) data to predict potential protein isoforms with prior transcript evidence. Predicted tryptic isoform-specific peptides, which are specific to individual gene product isoforms, serve as "triggers" and "targets" in the IS-PRM method, Tomahto. Using the model human stem cell line WTC11, LR RNAseq data were generated and used to inform the generation of synthetic standards for 192 isoform-specific peptides (114 isoforms from 55 genes). These synthetic "trigger" peptides were labeled with super heavy tandem mass tags (TMT) and spiked into TMT-labeled WTC11 tryptic digest, predicted to contain corresponding endogenous "target" peptides. Compared to DDA mode, Tomahto increased detectability of isoforms by 3.6-fold, resulting in the identification of five previously unannotated isoforms. Our method detected protein isoform expression for 43 out of 55 genes corresponding to 54 resolved isoforms. This LR RNA seq-informed Tomahto targeted approach, called LRP-IS-PRM, is a new modality for generating protein-level evidence of alternative isoforms - a critical first step in designing functional studies and eventually clinical assays.
Collapse
Affiliation(s)
- Jennifer A. Korchak
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Erin D. Jeffery
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Saikat Bandyopadhyay
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Ben T. Jordan
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Micah Lehe
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Emily F. Watts
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Aidan Fenix
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Mathias Wilhelm
- Computational Mass Spectrometry, Technical University of Munich (TUM), D-85354 Freising, Germany
| | - Gloria M. Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
18
|
Joshi SK, Piehowski P, Liu T, Gosline SJC, McDermott JE, Druker BJ, Traer E, Tyner JW, Agarwal A, Tognon CE, Rodland KD. Mass Spectrometry-Based Proteogenomics: New Therapeutic Opportunities for Precision Medicine. Annu Rev Pharmacol Toxicol 2024; 64:455-479. [PMID: 37738504 PMCID: PMC10950354 DOI: 10.1146/annurev-pharmtox-022723-113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Proteogenomics refers to the integration of comprehensive genomic, transcriptomic, and proteomic measurements from the same samples with the goal of fully understanding the regulatory processes converting genotypes to phenotypes, often with an emphasis on gaining a deeper understanding of disease processes. Although specific genetic mutations have long been known to drive the development of multiple cancers, gene mutations alone do not always predict prognosis or response to targeted therapy. The benefit of proteogenomics research is that information obtained from proteins and their corresponding pathways provides insight into therapeutic targets that can complement genomic information by providing an additional dimension regarding the underlying mechanisms and pathophysiology of tumors. This review describes the novel insights into tumor biology and drug resistance derived from proteogenomic analysis while highlighting the clinical potential of proteogenomic observations and advances in technique and analysis tools.
Collapse
Affiliation(s)
- Sunil K Joshi
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Paul Piehowski
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tao Liu
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Sara J C Gosline
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jason E McDermott
- Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Karin D Rodland
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
19
|
LaPak KM, Saeidi S, Bok I, Wamsley NT, Plutzer IB, Bhatt DP, Luo J, Ashrafi G, Major MB. Proximity proteomic analysis of the NRF family reveals the Parkinson's disease protein ZNF746/PARIS as a co-complexed repressor of NRF2. Sci Signal 2023; 16:eadi9018. [PMID: 38085818 PMCID: PMC10760916 DOI: 10.1126/scisignal.adi9018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023]
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor activates cytoprotective and metabolic gene expression in response to various electrophilic stressors. Constitutive NRF2 activity promotes cancer progression, whereas decreased NRF2 function contributes to neurodegenerative diseases. We used proximity proteomic analysis to define protein networks for NRF2 and its family members NRF1, NRF3, and the NRF2 heterodimer MAFG. A functional screen of co-complexed proteins revealed previously uncharacterized regulators of NRF2 transcriptional activity. We found that ZNF746 (also known as PARIS), a zinc finger transcription factor implicated in Parkinson's disease, physically associated with NRF2 and MAFG, resulting in suppression of NRF2-driven transcription. ZNF746 overexpression increased oxidative stress and apoptosis in a neuronal cell model of Parkinson's disease, phenotypes that were reversed by chemical and genetic hyperactivation of NRF2. This study presents a functionally annotated proximity network for NRF2 and suggests a link between ZNF746 overexpression in Parkinson's disease and inhibition of NRF2-driven neuroprotection.
Collapse
Affiliation(s)
- Kyle M. LaPak
- Department of Cell Biology and Physiology, Washington University; St. Louis, MO, 63110, USA
| | - Soma Saeidi
- Department of Cell Biology and Physiology, Washington University; St. Louis, MO, 63110, USA
| | - Ilah Bok
- Department of Cell Biology and Physiology, Washington University; St. Louis, MO, 63110, USA
| | - Nathan T. Wamsley
- Department of Cell Biology and Physiology, Washington University; St. Louis, MO, 63110, USA
| | - Isaac B. Plutzer
- Department of Cell Biology and Physiology, Washington University; St. Louis, MO, 63110, USA
| | - Dhaval P. Bhatt
- Department of Cell Biology and Physiology, Washington University; St. Louis, MO, 63110, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Department of Surgery, WUSM and Siteman Cancer Center Biostatistics and Qualitative Research Shared Resource, Washington University; St. Louis, MO, 63110, USA
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Washington University; St. Louis, MO, 63110, USA
- Department of Genetics, Washington University; St. Louis, MO, 63110, USA
| | - M. Ben Major
- Department of Cell Biology and Physiology, Washington University; St. Louis, MO, 63110, USA
| |
Collapse
|
20
|
Wu W, Xu Y, Zhang F. Comparisons of the protein expressions between high myopia and moderate myopia on the anterior corneal stroma in human. Graefes Arch Clin Exp Ophthalmol 2023; 261:3549-3558. [PMID: 37389637 DOI: 10.1007/s00417-023-06158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/14/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023] Open
Abstract
PURPOSE To investigate the differentially expressed proteins (DEP) between high myopia and moderate myopia on the anterior corneal stroma. METHODS Tandem mass tag (TMT) quantitative proteomics was utilized to reveal proteins. DEPs were screened by the multiple change of more than 1.2 times or less than 0.83 and the P value < 0.05. The DEPs were functional annotated by Gene Ontology (GO) terms. Proteins and protein interaction (PPI) networks were conducted with String online tool. Parallel reaction monitoring (PRM) data processing was used to verify the TMT proteomics results. RESULTS There are 36 DEPs between high myopia and moderate myopia on the anterior corneal stroma, of which 11 proteins are upregulated, 25 proteins are downregulated. The GO analysis demonstrated keratinocyte migration and structural constituent of cytoskeleton that are significantly changed with most of the proteins decreased in high myopic corneas. Keratin 16 (KRT16) and erythrocyte membrane protein band 4.1-like protein 4B are the only two proteins involved in both functions. The PPI analysis showed keratin type II cytoskeletal 6A (KRT6A) and KRT16 that have strong connections. Immunoglobulin lambda variable 8-61(IGLV8-61) and nicotinamide phosphoribosyl transferase (NAMPT) have consistent results with the TMT. CONCLUSIONS The high myopic corneas have 36 DEPs compared to the moderate myopic corneas on the anterior corneal stroma. Keratinocyte migrations and structural constituent of cytoskeleton are weakened in high myopic corneas, which may partly account for the lower corneal biomechanics in high myopic eyes. The lower expressed KRT16 plays important roles in high myopic corneas.
Collapse
Affiliation(s)
- Wenjing Wu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China
| | - Yushan Xu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China
| | - Fengju Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
21
|
Wamsley NT, Wilkerson EM, Guan L, LaPak KM, Schrank TP, Holmes BJ, Sprung RW, Gilmore PE, Gerndt SP, Jackson RS, Paniello RC, Pipkorn P, Puram SV, Rich JT, Townsend RR, Zevallos JP, Zolkind P, Le QT, Goldfarb D, Major MB. Targeted Proteomic Quantitation of NRF2 Signaling and Predictive Biomarkers in HNSCC. Mol Cell Proteomics 2023; 22:100647. [PMID: 37716475 PMCID: PMC10587640 DOI: 10.1016/j.mcpro.2023.100647] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
The NFE2L2 (NRF2) oncogene and transcription factor drives a gene expression program that promotes cancer progression, metabolic reprogramming, immune evasion, and chemoradiation resistance. Patient stratification by NRF2 activity may guide treatment decisions to improve outcome. Here, we developed a mass spectrometry-based targeted proteomics assay based on internal standard-triggered parallel reaction monitoring to quantify 69 NRF2 pathway components and targets, as well as 21 proteins of broad clinical significance in head and neck squamous cell carcinoma (HNSCC). We improved an existing internal standard-triggered parallel reaction monitoring acquisition algorithm, called SureQuant, to increase throughput, sensitivity, and precision. Testing the optimized platform on 27 lung and upper aerodigestive cancer cell models revealed 35 NRF2 responsive proteins. In formalin-fixed paraffin-embedded HNSCCs, NRF2 signaling intensity positively correlated with NRF2-activating mutations and with SOX2 protein expression. Protein markers of T-cell infiltration correlated positively with one another and with human papilloma virus infection status. CDKN2A (p16) protein expression positively correlated with the human papilloma virus oncogenic E7 protein and confirmed the presence of translationally active virus. This work establishes a clinically actionable HNSCC protein biomarker assay capable of quantifying over 600 peptides from frozen or formalin-fixed paraffin-embedded archived tissues in under 90 min.
Collapse
Affiliation(s)
- Nathan T Wamsley
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Emily M Wilkerson
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Li Guan
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Kyle M LaPak
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Travis P Schrank
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brittany J Holmes
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Robert W Sprung
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Petra Erdmann Gilmore
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Sophie P Gerndt
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Ryan S Jackson
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Randal C Paniello
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Patrik Pipkorn
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Sidharth V Puram
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jason T Rich
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Reid R Townsend
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - José P Zevallos
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Paul Zolkind
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA; Institute for Informatics, Washington University in St Louis, St Louis, Missouri, USA.
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA; Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
22
|
Behera RN, Bisht VS, Giri K, Ambatipudi K. Realm of proteomics in breast cancer management and drug repurposing to alleviate intricacies of treatment. Proteomics Clin Appl 2023; 17:e2300016. [PMID: 37259687 DOI: 10.1002/prca.202300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Breast cancer, a multi-networking heterogeneous disease, has emerged as a serious impediment to progress in clinical oncology. Although technological advancements and emerging cancer research studies have mitigated breast cancer lethality, a precision cancer-oriented solution has not been achieved. Thus, this review will persuade the acquiescence of proteomics-based diagnostic and therapeutic options in breast cancer management. Recently, the evidence of breast cancer health surveillance through imaging proteomics, single-cell proteomics, interactomics, and post-translational modification (PTM) tracking, to construct proteome maps and proteotyping for stage-specific and sample-specific cancer subtyping have outperformed conventional ways of dealing with breast cancer by increasing diagnostic efficiency, prognostic value, and predictive response. Additionally, the paradigm shift in applied proteomics for designing a chemotherapy regimen to identify novel drug targets with minor adverse effects has been elaborated. Finally, the potential of proteomics in alleviating the occurrence of chemoresistance and enhancing reprofiled drugs' effectiveness to combat therapeutic obstacles has been discussed. Owing to the enormous potential of proteomics techniques, the clinical recognition of proteomics in breast cancer management can be achievable and therapeutic intricacies can be surmountable.
Collapse
Affiliation(s)
- Rama N Behera
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Vinod S Bisht
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Kuldeep Giri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
23
|
Lei JT, Jaehnig EJ, Smith H, Holt MV, Li X, Anurag M, Ellis MJ, Mills GB, Zhang B, Labrie M. The Breast Cancer Proteome and Precision Oncology. Cold Spring Harb Perspect Med 2023; 13:a041323. [PMID: 37137501 PMCID: PMC10547392 DOI: 10.1101/cshperspect.a041323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The goal of precision oncology is to translate the molecular features of cancer into predictive and prognostic tests that can be used to individualize treatment leading to improved outcomes and decreased toxicity. Success for this strategy in breast cancer is exemplified by efficacy of trastuzumab in tumors overexpressing ERBB2 and endocrine therapy for tumors that are estrogen receptor positive. However, other effective treatments, including chemotherapy, immune checkpoint inhibitors, and CDK4/6 inhibitors are not associated with strong predictive biomarkers. Proteomics promises another tier of information that, when added to genomic and transcriptomic features (proteogenomics), may create new opportunities to improve both treatment precision and therapeutic hypotheses. Here, we review both mass spectrometry-based and antibody-dependent proteomics as complementary approaches. We highlight how these methods have contributed toward a more complete understanding of breast cancer and describe the potential to guide diagnosis and treatment more accurately.
Collapse
Affiliation(s)
- Jonathan T Lei
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Eric J Jaehnig
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hannah Smith
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Matthew V Holt
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xi Li
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Gordon B Mills
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Marilyne Labrie
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| |
Collapse
|
24
|
Kim BJ, Zheng ZY, Lei JT, Holt MV, Chen A, Peng J, Fandino D, Singh P, Kennedy H, Dou Y, Chica-Parrado MDR, Bikorimana E, Ye D, Wang Y, Hanker AB, Mohamed N, Hilsenbeck SG, Lim B, Asirvatham JR, Sreekumar A, Zhang B, Miles G, Anurag M, Ellis MJ, Chang EC. Proteogenomic Approaches for the Identification of NF1/Neurofibromin-depleted Estrogen Receptor-positive Breast Cancers for Targeted Treatment. CANCER RESEARCH COMMUNICATIONS 2023; 3:1366-1377. [PMID: 37501682 PMCID: PMC10370361 DOI: 10.1158/2767-9764.crc-23-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023]
Abstract
NF1 is a key tumor suppressor that represses both RAS and estrogen receptor-α (ER) signaling in breast cancer. Blocking both pathways by fulvestrant (F), a selective ER degrader, together with binimetinib (B), a MEK inhibitor, promotes tumor regression in NF1-depleted ER+ models. We aimed to establish approaches to determine how NF1 protein levels impact B+F treatment response to improve our ability to identify B+F sensitive tumors. We examined a panel of ER+ patient-derived xenograft (PDX) models by DNA and mRNA sequencing and found that more than half of these models carried an NF1 shallow deletion and generally have low mRNA levels. Consistent with RAS and ER activation, RET and MEK levels in NF1-depleted tumors were elevated when profiled by mass spectrometry (MS) after kinase inhibitor bead pulldown. MS showed that NF1 can also directly and selectively bind to palbociclib-conjugated beads, aiding quantification. An IHC assay was also established to measure NF1, but the MS-based approach was more quantitative. Combined IHC and MS analysis defined a threshold of NF1 protein loss in ER+ breast PDX, below which tumors regressed upon treatment with B+F. These results suggest that we now have a MS-verified NF1 IHC assay that can be used for patient selection as a complement to somatic genomic analysis. Significance A major challenge for targeting the consequence of tumor suppressor disruption is the accurate assessment of protein functional inactivation. NF1 can repress both RAS and ER signaling, and a ComboMATCH trial is underway to treat the patients with binimetinib and fulvestrant. Herein we report a MS-verified NF1 IHC assay that can determine a threshold for NF1 loss to predict treatment response. These approaches may be used to identify and expand the eligible patient population.
Collapse
Affiliation(s)
- Beom-Jun Kim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Ze-Yi Zheng
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jonathan T. Lei
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Matthew V. Holt
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Anran Chen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Jianheng Peng
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Health Management Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Diana Fandino
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Purba Singh
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Hilda Kennedy
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Emmanuel Bikorimana
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Dan Ye
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Yunguan Wang
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Ariella B. Hanker
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | | | - Susan G. Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Bora Lim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | | | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - George Miles
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Matthew J. Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Eric C. Chang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
25
|
Arieta CM, Xie YJ, Rothenberg DA, Diao H, Harjanto D, Meda S, Marquart K, Koenitzer B, Sciuto TE, Lobo A, Zuiani A, Krumm SA, Cadima Couto CI, Hein S, Heinen AP, Ziegenhals T, Liu-Lupo Y, Vogel AB, Srouji JR, Fesser S, Thanki K, Walzer K, Addona TA, Türeci Ö, Şahin U, Gaynor RB, Poran A. The T-cell-directed vaccine BNT162b4 encoding conserved non-spike antigens protects animals from severe SARS-CoV-2 infection. Cell 2023; 186:2392-2409.e21. [PMID: 37164012 PMCID: PMC10099181 DOI: 10.1016/j.cell.2023.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/12/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
T cell responses play an important role in protection against beta-coronavirus infections, including SARS-CoV-2, where they associate with decreased COVID-19 disease severity and duration. To enhance T cell immunity across epitopes infrequently altered in SARS-CoV-2 variants, we designed BNT162b4, an mRNA vaccine component that is intended to be combined with BNT162b2, the spike-protein-encoding vaccine. BNT162b4 encodes variant-conserved, immunogenic segments of the SARS-CoV-2 nucleocapsid, membrane, and ORF1ab proteins, targeting diverse HLA alleles. BNT162b4 elicits polyfunctional CD4+ and CD8+ T cell responses to diverse epitopes in animal models, alone or when co-administered with BNT162b2 while preserving spike-specific immunity. Importantly, we demonstrate that BNT162b4 protects hamsters from severe disease and reduces viral titers following challenge with viral variants. These data suggest that a combination of BNT162b2 and BNT162b4 could reduce COVID-19 disease severity and duration caused by circulating or future variants. BNT162b4 is currently being clinically evaluated in combination with the BA.4/BA.5 Omicron-updated bivalent BNT162b2 (NCT05541861).
Collapse
Affiliation(s)
| | - Yushu Joy Xie
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | - Huitian Diao
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | - Dewi Harjanto
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | - Shirisha Meda
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | - Adam Zuiani
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | - John R Srouji
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | - Özlem Türeci
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany; HI-TRON - Helmholtz Institute for Translational Oncology Mainz by DKFZ, Obere Zahlbacherstr. 63, 55131 Mainz, Germany
| | - Uğur Şahin
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany; TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstraße 12, 55131 Mainz, Germany
| | | | - Asaf Poran
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA.
| |
Collapse
|
26
|
Leddy O, White FM, Bryson BD. Immunopeptidomics reveals determinants of Mycobacterium tuberculosis antigen presentation on MHC class I. eLife 2023; 12:e84070. [PMID: 37073954 PMCID: PMC10159623 DOI: 10.7554/elife.84070] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/17/2023] [Indexed: 04/20/2023] Open
Abstract
CD8+ T cell recognition of Mycobacterium tuberculosis (Mtb)-specific peptides presented on major histocompatibility complex class I (MHC-I) contributes to immunity to tuberculosis (TB), but the principles that govern presentation of Mtb antigens on MHC-I are incompletely understood. In this study, mass spectrometry (MS) analysis of the MHC-I repertoire of Mtb-infected primary human macrophages reveals that substrates of Mtb's type VII secretion systems (T7SS) are overrepresented among Mtb-derived peptides presented on MHC-I. Quantitative, targeted MS shows that ESX-1 activity is required for presentation of Mtb peptides derived from both ESX-1 substrates and ESX-5 substrates on MHC-I, consistent with a model in which proteins secreted by multiple T7SSs access a cytosolic antigen processing pathway via ESX-1-mediated phagosome permeabilization. Chemical inhibition of proteasome activity, lysosomal acidification, or cysteine cathepsin activity did not block presentation of Mtb antigens on MHC-I, suggesting involvement of other proteolytic pathways or redundancy among multiple pathways. Our study identifies Mtb antigens presented on MHC-I that could serve as targets for TB vaccines, and reveals how the activity of multiple T7SSs interacts to contribute to presentation of Mtb antigens on MHC-I.
Collapse
Affiliation(s)
- Owen Leddy
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Ragon Institute of Massachusetts General Hospital, Harvard, and MITCambridgeUnited States
- Koch Institute for Integrative Cancer ResearchCambridgeUnited States
| | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Koch Institute for Integrative Cancer ResearchCambridgeUnited States
- Center for Precision Cancer MedicineCambridgeUnited States
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Ragon Institute of Massachusetts General Hospital, Harvard, and MITCambridgeUnited States
| |
Collapse
|
27
|
Arora D, Hackenberg Y, Li J, Winter D. Updates on the study of lysosomal protein dynamics: possibilities for the clinic. Expert Rev Proteomics 2023; 20:47-55. [PMID: 36919490 DOI: 10.1080/14789450.2023.2190515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
INTRODUCTION The lysosome is the main degradative organelle of almost all mammalian cells, fulfilling important functions in macromolecule recycling, metabolism, and signaling. Lysosomal dysfunction is connected to a continuously growing number of pathologic conditions, and lysosomal proteins present potential biomarkers for a variety of diseases. Therefore, there is an increasing interest in their analysis in patient samples. AREAS COVERED We provide an overview of OMICs studies which identified lysosomal proteins as potential biomarkers for pathological conditions, covering proteomics, genomics, and transcriptomics approaches, identified through PubMed searches. With respect to discovery proteomics analyses, mainly lysosomal luminal and associated proteins were detected, while membrane proteins were found less frequently. Comprehensive coverage of the lysosomal proteome was only achieved by ultra-deep-coverage studies, but targeted approaches allowed for the reproducible quantification of lysosomal proteins in diverse sample types. EXPERT OPINION The low abundance of lysosomal proteins complicates their reproducible analysis in patient samples. Whole proteome shotgun analyses fail in many instances to cover the lysosomal proteome, which is due to under-sampling and/or a lack of sensitivity. With the current state of the art, targeted proteomics assays provide the best performance for the characterization of lysosomal proteins in patient samples.
Collapse
Affiliation(s)
- Dhriti Arora
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Yannic Hackenberg
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jiaran Li
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
28
|
Li Y, Zhang Y, Zhou X, Xue X, Wang M, Kang D, Zhou Y, Hu R, Quan S, Xing G, Yang J. Precise diagnosis and typing of early-stage renal immunoglobulin-derived amyloidosis by label-free quantification of parallel reaction monitoring-based targeted proteomics. BMC Nephrol 2023; 24:50. [PMID: 36894904 PMCID: PMC9999574 DOI: 10.1186/s12882-023-03105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Early diagnosis and typing are crucial for improving the prognosis of patients with renal amyloidosis. Currently, Untargeted proteomics based precise diagnosis and typing of amyloid deposits are crucial for guiding patient management. Although untargeted proteomics achieve ultra-high-throughput by selecting the most abundant eluting cationic peptide precursors in series for tandem MS events, it lacks in sensitivity and reproducibility, which may not be suitable for early-stage renal amyloidosis with minor damages. Here, we aimed to develop parallel reaction monitoring (PRM)-based targeted proteomics to achieve high sensitivity and specificity by determining absolute abundances and codetecting all transitions of highly repeatable peptides of preselected amyloid signature and typing proteins in identifying early-stage renal immunoglobulin-derived amyloidosis. METHODS AND RESULTS In 10 discovery cohort cases, Congo red-stained FFPE slices were micro-dissected and analyzed by data-dependent acquisition-based untargeted proteomics for preselection of typing specific proteins and peptides. Further, a list of proteolytic peptides from amyloidogenic proteins and internal standard proteins were quantified by PRM-based targeted proteomics to validate performance for diagnosis and typing in 26 validation cohort cases. The diagnosis and typing effectiveness of PRM-based targeted proteomics in 10 early-stage renal amyloid cases was assessed via a comparison with untargeted proteomics. A peptide panel of amyloid signature proteins, immunoglobulin light chain and heave chain in PRM-based targeted proteomics showed significantly distinguishing ability and amyloid typing performance in patients. The diagnostic algorithm of targeted proteomics with a low amount of amyloid deposits in early-stage renal immunoglobulin-derived amyloidosis showed better performance than untargeted proteomics in amyloidosis typing. CONCLUSIONS This study demonstrates that the utility of these prioritized peptides in PRM-based targeted proteomics ensure high sensitivity and reliability for identifying early-stage renal amyloidosis. Owing to the development and clinical application of this method, rapid acceleration of the early diagnosis, and typing of renal amyloidosis is expected.
Collapse
Affiliation(s)
- Yuan Li
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Ying Zhang
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Xinjin Zhou
- Renal Path Diagnostics at Pathologists BioMedical Laboratories, Lewisville, TX, 75067, USA
| | - Xinli Xue
- Clinical Systems Biology Key Laboratories of Henan, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Muxi Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
| | - Dedong Kang
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 1428555, Japan
| | - Yali Zhou
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Ruimin Hu
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Songxia Quan
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Guolan Xing
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China.
| | - Jinghua Yang
- Clinical Systems Biology Key Laboratories of Henan, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
29
|
Tandem mass tag-based quantitative proteomic profiling identifies candidate serum biomarkers of drug-induced liver injury in humans. Nat Commun 2023; 14:1215. [PMID: 36869085 PMCID: PMC9984368 DOI: 10.1038/s41467-023-36858-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Diagnosis of drug-induced liver injury (DILI) and its distinction from other liver diseases are significant challenges in drug development and clinical practice. Here, we identify, confirm, and replicate the biomarker performance characteristics of candidate proteins in patients with DILI at onset (DO; n = 133) and follow-up (n = 120), acute non-DILI at onset (NDO; n = 63) and follow-up (n = 42), and healthy volunteers (HV; n = 104). Area under the receiver operating characteristic curve (AUC) for cytoplasmic aconitate hydratase, argininosuccinate synthase, carbamoylphosphate synthase, fumarylacetoacetase, fructose-1,6-bisphosphatase 1 (FBP1) across cohorts achieved near complete separation (range: 0.94-0.99) of DO and HV. In addition, we show that FBP1, alone or in combination with glutathione S-transferase A1 and leukocyte cell-derived chemotaxin 2, could potentially assist in clinical diagnosis by distinguishing NDO from DO (AUC range: 0.65-0.78), but further technical and clinical validation of these candidate biomarkers is needed.
Collapse
|
30
|
Ahn R, Cui Y, White FM. Antigen discovery for the development of cancer immunotherapy. Semin Immunol 2023; 66:101733. [PMID: 36841147 DOI: 10.1016/j.smim.2023.101733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Central to successful cancer immunotherapy is effective T cell antitumor immunity. Multiple targeted immunotherapies engineered to invigorate T cell-driven antitumor immunity rely on identifying the repertoire of T cell antigens expressed on the tumor cell surface. Mass spectrometry-based survey of such antigens ("immunopeptidomics") combined with other omics platforms and computational algorithms has been instrumental in identifying and quantifying tumor-derived T cell antigens. In this review, we discuss the types of tumor antigens that have emerged for targeted cancer immunotherapy and the immunopeptidomics methods that are central in MHC peptide identification and quantification. We provide an overview of the strength and limitations of mass spectrometry-driven approaches and how they have been integrated with other technologies to discover targetable T cell antigens for cancer immunotherapy. We highlight some of the emerging cancer immunotherapies that successfully capitalized on immunopeptidomics, their challenges, and mass spectrometry-based strategies that can support their development.
Collapse
Affiliation(s)
- Ryuhjin Ahn
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yufei Cui
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Forest M White
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
31
|
Fu Q, Murray CI, Karpov OA, Van Eyk JE. Automated proteomic sample preparation: The key component for high throughput and quantitative mass spectrometry analysis. MASS SPECTROMETRY REVIEWS 2023; 42:873-886. [PMID: 34786750 PMCID: PMC10339360 DOI: 10.1002/mas.21750] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/11/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Sample preparation for mass spectrometry-based proteomics has many tedious and time-consuming steps that can introduce analytical errors. In particular, the steps around the proteolytic digestion of protein samples are prone to inconsistency. One route for reliable sample processing is the development and optimization of a workflow utilizing an automated liquid handling workstation. Diligent assessment of the sample type, protocol design, reagents, and incubation conditions can significantly improve the speed and consistency of preparation. When combining robust liquid chromatography-mass spectrometry with either discovery or targeted methods, automated sample preparation facilitates increased throughput and reproducible quantitation of biomarker candidates. These improvements in analysis are also essential to process the large patient cohorts necessary to validate a candidate biomarker for potential clinical use. This article reviews the steps in the workflow, optimization strategies, and known applications in clinical, pharmaceutical, and research fields that demonstrate the broad utility for improved automation of sample preparation in the proteomic field.
Collapse
Affiliation(s)
- Qin Fu
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Christopher I Murray
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Oleg A Karpov
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
32
|
Yin H, Zhu J. Methods for quantification of glycopeptides by liquid separation and mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:887-917. [PMID: 35099083 PMCID: PMC9339036 DOI: 10.1002/mas.21771] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/14/2021] [Accepted: 01/13/2022] [Indexed: 05/05/2023]
Abstract
Recent advances in analytical techniques provide the opportunity to quantify even low-abundance glycopeptides derived from complex biological mixtures, allowing for the identification of glycosylation differences between healthy samples and those derived from disease states. Herein, we discuss the sample preparation procedures and the mass spectrometry (MS) strategies that have facilitated glycopeptide quantification, as well as the standards used for glycopeptide quantification. For sample preparation, various glycopeptide enrichment methods are summarized including the columns used for glycopeptide separation in liquid chromatography separation. For MS analysis strategies, MS1 level-based quantification and MS2 level-based quantification are described, either with or without labeling, where we have covered isotope labeling, TMT/iTRAQ labeling, data dependent acquisition, data independent acquisition, multiple reaction monitoring, and parallel reaction monitoring. The strengths and weaknesses of these methods are compared, particularly those associated with the figures of merit that are important for clinical biomarker studies and the pathological and functional studies of glycoproteins in various diseases. Possible future developments for glycopeptide quantification are discussed.
Collapse
Affiliation(s)
- Haidi Yin
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
- Correspondence to: Haidi Yin, Shenzhen Bay Laboratory, A1201, Shenzhen, Guangdong, 518132, China. Phone: 0755-26849276. , Jianhui Zhu, Department of Surgery, University of Michigan, 1150 West Medical Center Drive, Building MSRB1, Rm A500, Ann Arbor, MI 48109-0656, USA. Tel: 734-615-2567. Fax: 734-615-2088.
| | - Jianhui Zhu
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence to: Haidi Yin, Shenzhen Bay Laboratory, A1201, Shenzhen, Guangdong, 518132, China. Phone: 0755-26849276. , Jianhui Zhu, Department of Surgery, University of Michigan, 1150 West Medical Center Drive, Building MSRB1, Rm A500, Ann Arbor, MI 48109-0656, USA. Tel: 734-615-2567. Fax: 734-615-2088.
| |
Collapse
|
33
|
Lin TT, Zhang T, Kitata RB, Liu T, Smith RD, Qian WJ, Shi T. Mass spectrometry-based targeted proteomics for analysis of protein mutations. MASS SPECTROMETRY REVIEWS 2023; 42:796-821. [PMID: 34719806 PMCID: PMC9054944 DOI: 10.1002/mas.21741] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 05/03/2023]
Abstract
Cancers are caused by accumulated DNA mutations. This recognition of the central role of mutations in cancer and recent advances in next-generation sequencing, has initiated the massive screening of clinical samples and the identification of 1000s of cancer-associated gene mutations. However, proteomic analysis of the expressed mutation products lags far behind genomic (transcriptomic) analysis. With comprehensive global proteomics analysis, only a small percentage of single nucleotide variants detected by DNA and RNA sequencing have been observed as single amino acid variants due to current technical limitations. Proteomic analysis of mutations is important with the potential to advance cancer biomarker development and the discovery of new therapeutic targets for more effective disease treatment. Targeted proteomics using selected reaction monitoring (also known as multiple reaction monitoring) and parallel reaction monitoring, has emerged as a powerful tool with significant advantages over global proteomics for analysis of protein mutations in terms of detection sensitivity, quantitation accuracy and overall practicality (e.g., reliable identification and the scale of quantification). Herein we review recent advances in the targeted proteomics technology for enhancing detection sensitivity and multiplexing capability and highlight its broad biomedical applications for analysis of protein mutations in human bodily fluids, tissues, and cell lines. Furthermore, we review recent applications of top-down proteomics for analysis of protein mutations. Unlike the commonly used bottom-up proteomics which requires digestion of proteins into peptides, top-down proteomics directly analyzes intact proteins for more precise characterization of mutation isoforms. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale targeted detection and quantification of important protein mutations are discussed.
Collapse
Affiliation(s)
- Tai-Tu Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Reta B. Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| |
Collapse
|
34
|
Chen Z, Leung TCN, Lui YL, Ngai SM, Chung HY. Combination of untargeted and targeted proteomics for secretome analysis of L-WRN cells. Anal Bioanal Chem 2023; 415:1465-1476. [PMID: 36656349 DOI: 10.1007/s00216-023-04534-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/25/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023]
Abstract
Organoid culture is a promising biomedical technology that requires specialized growth factors. Recently, a recombinant L-WRN cell line has been extensively used to generate conditioned medium (L-CM) for organoid culture. Nevertheless, methods for evaluating the stability of the L-WRN cells have been limited. In this study, a novel proteomics-based approach was developed to analyze the secretome of the cells. Serum-free L-CM was lyophilized, precipitated by trichloroacetic acid, and desalted prior to analysis by liquid chromatography-tandem mass spectrometry. Data-dependent acquisition (DDA) was conducted for the untargeted secretome profiling of the cells, and parallel reaction monitoring (PRM) was applied for the targeted quantification of the Wnt3A, R-spondin3, and noggin proteins (WRNs). This study also compared the performance of two types of PRM methods, namely MS1-independent PRM and MS1-dependent PRM, that can be executed on an Orbitrap instrument. The results showed that the growth of mouse intestinal organoids was closely related to the use of L-CM. The composition of L-CM could be markedly affected by the medium collection scheme. A total of 1725, 2302, and 2681 proteins were identified from the L-CM collected on day 5, day 9, and day 13, respectively. The MS1-independent PRM outperformed the MS1-dependent PRM and effectively quantified the WRNs with high repeatability and specificity. In conclusion, by integrating untargeted and targeted proteomics, this study develops a mass spectrometry-based method for the secretome analysis and quality control of the L-WRN cells. The methodology and findings of the present work will benefit future studies on organoids and secretomes.
Collapse
Affiliation(s)
- Zixing Chen
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Thomas Chun Ning Leung
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ying Lam Lui
- Cell and Molecular Biology Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Sai Ming Ngai
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hau Yin Chung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
35
|
Proteotranscriptomic Discrimination of Tumor and Normal Tissues in Renal Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24054488. [PMID: 36901940 PMCID: PMC10003397 DOI: 10.3390/ijms24054488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Clear cell renal carcinoma is the most frequent type of kidney cancer, with an increasing incidence rate worldwide. In this research, we used a proteotranscriptomic approach to differentiate normal and tumor tissues in clear cell renal cell carcinoma (ccRCC). Using transcriptomic data of patients with malignant and paired normal tissue samples from gene array cohorts, we identified the top genes over-expressed in ccRCC. We collected surgically resected ccRCC specimens to further investigate the transcriptomic results on the proteome level. The differential protein abundance was evaluated using targeted mass spectrometry (MS). We assembled a database of 558 renal tissue samples from NCBI GEO and used these to uncover the top genes with higher expression in ccRCC. For protein level analysis 162 malignant and normal kidney tissue samples were acquired. The most consistently upregulated genes were IGFBP3, PLIN2, PLOD2, PFKP, VEGFA, and CCND1 (p < 10-5 for each gene). Mass spectrometry further validated the differential protein abundance of these genes (IGFBP3, p = 7.53 × 10-18; PLIN2, p = 3.9 × 10-39; PLOD2, p = 6.51 × 10-36; PFKP, p = 1.01 × 10-47; VEGFA, p = 1.40 × 10-22; CCND1, p = 1.04 × 10-24). We also identified those proteins which correlate with overall survival. Finally, a support vector machine-based classification algorithm using the protein-level data was set up. We used transcriptomic and proteomic data to identify a minimal panel of proteins highly specific for clear cell renal carcinoma tissues. The introduced gene panel could be used as a promising tool in the clinical setting.
Collapse
|
36
|
Yu Q, Liu X, Keller MP, Navarrete-Perea J, Zhang T, Fu S, Vaites LP, Shuken SR, Schmid E, Keele GR, Li J, Huttlin EL, Rashan EH, Simcox J, Churchill GA, Schweppe DK, Attie AD, Paulo JA, Gygi SP. Sample multiplexing-based targeted pathway proteomics with real-time analytics reveals the impact of genetic variation on protein expression. Nat Commun 2023; 14:555. [PMID: 36732331 PMCID: PMC9894840 DOI: 10.1038/s41467-023-36269-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Targeted proteomics enables hypothesis-driven research by measuring the cellular expression of protein cohorts related by function, disease, or class after perturbation. Here, we present a pathway-centric approach and an assay builder resource for targeting entire pathways of up to 200 proteins selected from >10,000 expressed proteins to directly measure their abundances, exploiting sample multiplexing to increase throughput by 16-fold. The strategy, termed GoDig, requires only a single-shot LC-MS analysis, ~1 µg combined peptide material, a list of up to 200 proteins, and real-time analytics to trigger simultaneous quantification of up to 16 samples for hundreds of analytes. We apply GoDig to quantify the impact of genetic variation on protein expression in mice fed a high-fat diet. We create several GoDig assays to quantify the expression of multiple protein families (kinases, lipid metabolism- and lipid droplet-associated proteins) across 480 fully-genotyped Diversity Outbred mice, revealing protein quantitative trait loci and establishing potential linkages between specific proteins and lipid homeostasis.
Collapse
Affiliation(s)
- Qing Yu
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Tian Zhang
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Sipei Fu
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Laura P Vaites
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Steven R Shuken
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ernst Schmid
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Jiaming Li
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Edrees H Rashan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, WA, 98105, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
37
|
Dakup PP, Feng S, Shi T, Jacobs JM, Wiley HS, Qian WJ. Targeted Quantification of Protein Phosphorylation and Its Contributions towards Mathematical Modeling of Signaling Pathways. Molecules 2023; 28:1143. [PMID: 36770810 PMCID: PMC9919559 DOI: 10.3390/molecules28031143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Post-translational modifications (PTMs) are key regulatory mechanisms that can control protein function. Of these, phosphorylation is the most common and widely studied. Because of its importance in regulating cell signaling, precise and accurate measurements of protein phosphorylation across wide dynamic ranges are crucial to understanding how signaling pathways function. Although immunological assays are commonly used to detect phosphoproteins, their lack of sensitivity, specificity, and selectivity often make them unreliable for quantitative measurements of complex biological samples. Recent advances in Mass Spectrometry (MS)-based targeted proteomics have made it a more useful approach than immunoassays for studying the dynamics of protein phosphorylation. Selected reaction monitoring (SRM)-also known as multiple reaction monitoring (MRM)-and parallel reaction monitoring (PRM) can quantify relative and absolute abundances of protein phosphorylation in multiplexed fashions targeting specific pathways. In addition, the refinement of these tools by enrichment and fractionation strategies has improved measurement of phosphorylation of low-abundance proteins. The quantitative data generated are particularly useful for building and parameterizing mathematical models of complex phospho-signaling pathways. Potentially, these models can provide a framework for linking analytical measurements of clinical samples to better diagnosis and treatment of disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
38
|
Punetha A, Kotiya D. Advancements in Oncoproteomics Technologies: Treading toward Translation into Clinical Practice. Proteomes 2023; 11:2. [PMID: 36648960 PMCID: PMC9844371 DOI: 10.3390/proteomes11010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Proteomics continues to forge significant strides in the discovery of essential biological processes, uncovering valuable information on the identity, global protein abundance, protein modifications, proteoform levels, and signal transduction pathways. Cancer is a complicated and heterogeneous disease, and the onset and progression involve multiple dysregulated proteoforms and their downstream signaling pathways. These are modulated by various factors such as molecular, genetic, tissue, cellular, ethnic/racial, socioeconomic status, environmental, and demographic differences that vary with time. The knowledge of cancer has improved the treatment and clinical management; however, the survival rates have not increased significantly, and cancer remains a major cause of mortality. Oncoproteomics studies help to develop and validate proteomics technologies for routine application in clinical laboratories for (1) diagnostic and prognostic categorization of cancer, (2) real-time monitoring of treatment, (3) assessing drug efficacy and toxicity, (4) therapeutic modulations based on the changes with prognosis and drug resistance, and (5) personalized medication. Investigation of tumor-specific proteomic profiles in conjunction with healthy controls provides crucial information in mechanistic studies on tumorigenesis, metastasis, and drug resistance. This review provides an overview of proteomics technologies that assist the discovery of novel drug targets, biomarkers for early detection, surveillance, prognosis, drug monitoring, and tailoring therapy to the cancer patient. The information gained from such technologies has drastically improved cancer research. We further provide exemplars from recent oncoproteomics applications in the discovery of biomarkers in various cancers, drug discovery, and clinical treatment. Overall, the future of oncoproteomics holds enormous potential for translating technologies from the bench to the bedside.
Collapse
Affiliation(s)
- Ankita Punetha
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers University, 225 Warren St., Newark, NJ 07103, USA
| | - Deepak Kotiya
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 900 South Limestone St., Lexington, KY 40536, USA
| |
Collapse
|
39
|
Ponce S, Zhang H. Developing quantitative assays for six urinary glycoproteins using parallel reaction monitoring, data-independent acquisition, and TMT-based data-dependent acquisition. Proteomics 2023; 23:e2200072. [PMID: 36592098 DOI: 10.1002/pmic.202200072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023]
Abstract
Quantitative approaches encompassing parallel reaction monitoring (PRM), data-independent acquisition (DIA), and data-dependent acquisition (DDA) are commonly used to investigate protein expression profiles. However, analytical performances of assays developed using PRM, DIA, and Tandem Mass Tag (TMT)-based DDA for quantitative proteomics have yet not been investigated. Here, we developed assays for glycopeptides identified from six glycoproteins, including Leucine-rich alpha-2-glycoprotein (LRG1), Prostaglandin-H2 D-isomerase (PTGDS), Aminopeptidase N (ANPEP), CD63 antigen (CD63), Clusterin (CLU), and Prostatic acid phosphatase (ACPP), using PRM, DDA, and DIA and evaluated the analytical performances of each assay using the different acquisition modes. We also compared assays in each acquisition mode on three different orbitrap instruments: Thermo Fisher Q Exactive, Exploris 480, and Lumos. We found that DIA showed the largest linear range, highest sensitivity, and most reproducibility. We then applied our developed DIA assays to urine samples from non-aggressive (n = 48) and aggressive (n = 35) prostate cancer patients. In conclusion, we developed assays for the six glycoproteins, evaluated the analytical performances of each assay in DIA, PRM, and PRM acquisition modes on three types of mass spectrometry instruments, and chose the DIA assays for the quantitative analysis of urine samples from patients with aggressive and non-aggressive prostate cancer.
Collapse
Affiliation(s)
- Sean Ponce
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hui Zhang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
40
|
BYHW Decoction Improves Cognitive Impairments in Rats with Cerebral Microinfarcts via Activation of the PKA/CREB Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4455654. [PMID: 36620084 PMCID: PMC9822752 DOI: 10.1155/2022/4455654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 01/01/2023]
Abstract
Cerebral microinfarcts (CMIs) are characterized by sporadic obstruction of small vessels leading to neurons death. They are associated with increased risk of cognitive impairments and may have different risk factors compared with macroinfarcts. CMIs have a high incidence and result in heavy social burden; thus, it is essential to provide reasonable treatment in clinical practice. However, there are relatively few researches on the mechanism and treatment of CMIs, and the literature is composed almost exclusively of community-or hospital based on autopsy or imageological studies focusing on elderly patients. The Bu Yang Huan Wu (BYHW) decoction, a traditional Chinese herbal formula, has long been used to treat stroke and stroke-related diseases, including cognitive impairments. We applied microsphere-induced CMI model in rats to investigate the behavioral and molecular consequences of CMIs and to determine how they were ameliorated by BYHW decoction treatment. We then used the Morris water maze, quantitative proteomics, immunohistochemistry, and other molecular assays and found that activation of the PKA/CREB pathway by BYHW decoction treatment may reverse mitochondrial dysfunction, inhibit apoptosis of hippocampal neurons, and ameliorate CMI-induced cognitive impairments in rats. Collectively, these findings confirmed the therapeutic potential of the BYHW decoction in treating cognitive impairments induced by CMIs and demonstrated a viable mechanism for its action.
Collapse
|
41
|
MIKOSIŃSKI J, KALOGEROPOULOS K, BUNDGAARD L, LARSEN CA, SAVICKAS S, HAACK AM, PAŃCZAK K, RYBOŁOWICZ K, GRZELA T, OLSZEWSKI M, CISZEWSKI P, SITEK-ZIÓŁKOWSKA K, TWARDOWSKA-SAUCHA K, KARCZEWSKI M, RABCZENKO D, SEGIET A, BUCZAK-KULA P, SCHOOF EM, EMING SA, SMOLA H, AUF DEM KELLER U. Longitudinal Evaluation of Biomarkers in Wound Fluids from Venous Leg Ulcers and Split-thickness Skin Graft Donor Site Wounds Treated with a Protease-modulating Wound Dressing. Acta Derm Venereol 2022; 102:adv00834. [PMID: 36250733 PMCID: PMC9811302 DOI: 10.2340/actadv.v102.325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Venous leg ulcers represent a clinical challenge and impair the quality of life of patients. This study examines impaired wound healing in venous leg ulcers at the molecular level. Protein expression patterns for biomarkers were analysed in venous leg ulcer wound fluids from 57 patients treated with a protease-modulating polyacrylate wound dressing for 12 weeks, and compared with exudates from 10 acute split-thickness wounds. Wound healing improved in the venous leg ulcer wounds: 61.4% of the 57 patients with venous leg ulcer achieved a relative wound area reduction of ≥ 40%, and 50.9% of the total 57 patients achieved a relative wound area reduction of ≥ 60%. Within the first 14 days, abundances of S100A8, S100A9, neutrophil elastase, matrix metalloproteinase-2, and fibronectin in venous leg ulcer exudates decreased significantly and remained stable, yet higher than in acute wounds. Interleukin-1β, tumour necrosis factor alpha, and matrix metalloproteinase-9 abundance ranges were similar in venous leg ulcers and acute wound fluids. Collagen (I) α1 abundance was higher in venous leg ulcer wound fluids and was not significantly regulated. Overall, significant biomarker changes occurred in the first 14 days before a clinically robust healing response in the venous leg ulcer cohort.
Collapse
Affiliation(s)
- Jacek MIKOSIŃSKI
- “MIKOMED”, Clinic for Peripheral Vascular Diseases, Łódź, Poland
| | - Konstantinos KALOGEROPOULOS
- DTU Bioengineering, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Louise BUNDGAARD
- DTU Bioengineering, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kgs. Lyngby, Denmark,Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Cathrine Agnete LARSEN
- DTU Bioengineering, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Simonas SAVICKAS
- DTU Bioengineering, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Aleksander Moldt HAACK
- DTU Bioengineering, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | - Tomasz GRZELA
- Clinic of Phlebology,Medical University of Warsaw, Warsaw
| | - Michał OLSZEWSKI
- Pratia Ostrołęka Embedded Hospital Clinical Research Site, Ostrołęka
| | - Piotr CISZEWSKI
- WILMED Specialist Medical Clinic Non-public Healthcare Centre, Warszaw
| | | | | | - Marek KARCZEWSKI
- CSOLUMED Medical Centre,Poland Department of General and Transplant Surgery, Poznan University of Medical Sciences, Poznan
| | | | | | | | - Erwin M. SCHOOF
- DTU Bioengineering, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Hans SMOLA
- Department of Dermatology, University of Cologne, Cologne,PAUL HARTMANN AG, Heidenheim, Germany
| | - Ulrich AUF DEM KELLER
- DTU Bioengineering, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
42
|
Cifani P, Kentsis A. Quantitative Cell Proteomic Atlas: Pathway-Scale Targeted Mass Spectrometry for High-Resolution Functional Profiling of Cell Signaling. J Proteome Res 2022; 21:2535-2544. [PMID: 36154077 PMCID: PMC10494574 DOI: 10.1021/acs.jproteome.2c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In spite of extensive studies of cellular signaling, many fundamental processes such as pathway integration, cross-talk, and feedback remain poorly understood. To enable integrated and quantitative measurements of cellular biochemical activities, we have developed the Quantitative Cell Proteomics Atlas (QCPA). QCPA consists of panels of targeted mass spectrometry assays to determine the abundance and stoichiometry of regulatory post-translational modifications of sentinel proteins from most known physiologic and pathogenic signaling pathways in human cells. QCPA currently profiles 1 913 peptides from 469 effectors of cell surface signaling, apoptosis, stress response, gene expression, quiescence, and proliferation. For each protein, QCPA includes triplets of isotopically labeled peptides covering known post-translational regulatory sites to determine their stoichiometries and unmodified protein regions to measure total protein abundance. The QCPA framework incorporates analytes to control for technical variability of sample preparation and mass spectrometric analysis, including TrypQuant, a synthetic substrate for accurate quantification of proteolysis efficiency for proteins containing chemically modified residues. The ability to precisely and accurately quantify most known signaling pathways should enable improved chemoproteomic approaches for the comprehensive analysis of cell signaling and clinical proteomics of diagnostic specimens. QCPA is openly available at https://qcpa.mskcc.org.
Collapse
Affiliation(s)
- Paolo Cifani
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065 USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065 USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, NY, 10065 USA
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University, NY, 10065 USA
| |
Collapse
|
43
|
The addition of FAIMS increases targeted proteomics sensitivity from FFPE tumor biopsies. Sci Rep 2022; 12:13876. [PMID: 35974054 PMCID: PMC9381555 DOI: 10.1038/s41598-022-16358-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022] Open
Abstract
Mass spectrometry-based targeted proteomics allows objective protein quantitation of clinical biomarkers from a single section of formalin-fixed, paraffin-embedded (FFPE) tumor tissue biopsies. We combined high-field asymmetric waveform ion mobility spectrometry (FAIMS) and parallel reaction monitoring (PRM) to increase assay sensitivity. The modular nature of the FAIMS source allowed direct comparison of the performance of FAIMS-PRM to PRM. Limits of quantitation were determined by spiking synthetic peptides into a human spleen matrix. In addition, 20 clinical samples were analyzed using FAIMS-PRM and the quantitation of HER2 was compared with that obtained with the Ventana immunohistochemistry assay. FAIMS-PRM improved the overall signal-to-noise ratio over that from PRM and increased assay sensitivity in FFPE tissue analysis for four (HER2, EGFR, cMET, and KRAS) of five proteins of clinical interest. FAIMS-PRM enabled sensitive quantitation of basal HER2 expression in breast cancer samples classified as HER2 negative by immunohistochemistry. Furthermore, we determined the degree of FAIMS-dependent background reduction and showed that this correlated with an improved lower limit of quantitation with FAIMS. FAIMS-PRM is anticipated to benefit clinical trials in which multiple biomarker questions must be addressed and the availability of tumor biopsy samples is limited.
Collapse
|
44
|
Kennedy J, Whiteaker JR, Ivey RG, Burian A, Chowdhury S, Tsai CF, Liu T, Lin C, Murillo OD, Lundeen RA, Jones LA, Gafken PR, Longton G, Rodland KD, Skates SJ, Landua J, Wang P, Lewis MT, Paulovich AG. Internal Standard Triggered-Parallel Reaction Monitoring Mass Spectrometry Enables Multiplexed Quantification of Candidate Biomarkers in Plasma. Anal Chem 2022; 94:9540-9547. [PMID: 35767427 PMCID: PMC9280723 DOI: 10.1021/acs.analchem.1c04382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite advances in proteomic technologies, clinical translation of plasma biomarkers remains low, partly due to a major bottleneck between the discovery of candidate biomarkers and costly clinical validation studies. Due to a dearth of multiplexable assays, generally only a few candidate biomarkers are tested, and the validation success rate is accordingly low. Previously, mass spectrometry-based approaches have been used to fill this gap but feature poor quantitative performance and were generally limited to hundreds of proteins. Here, we demonstrate the capability of an internal standard triggered-parallel reaction monitoring (IS-PRM) assay to greatly expand the numbers of candidates that can be tested with improved quantitative performance. The assay couples immunodepletion and fractionation with IS-PRM and was developed and implemented in human plasma to quantify 5176 peptides representing 1314 breast cancer biomarker candidates. Characterization of the IS-PRM assay demonstrated the precision (median % CV of 7.7%), linearity (median R2 > 0.999 over 4 orders of magnitude), and sensitivity (median LLOQ < 1 fmol, approximately) to enable rank-ordering of candidate biomarkers for validation studies. Using three plasma pools from breast cancer patients and three control pools, 893 proteins were quantified, of which 162 candidate biomarkers were verified in at least one of the cancer pools and 22 were verified in all three cancer pools. The assay greatly expands capabilities for quantification of large numbers of proteins and is well suited for prioritization of viable candidate biomarkers.
Collapse
Affiliation(s)
- Jacob
J. Kennedy
- Clinical
Research Division, Fred Hutchinson Cancer
Research Center, Seattle, Washington 98109, United States
| | - Jeffrey R. Whiteaker
- Clinical
Research Division, Fred Hutchinson Cancer
Research Center, Seattle, Washington 98109, United States
| | - Richard G. Ivey
- Clinical
Research Division, Fred Hutchinson Cancer
Research Center, Seattle, Washington 98109, United States
| | - Aura Burian
- Clinical
Research Division, Fred Hutchinson Cancer
Research Center, Seattle, Washington 98109, United States
| | - Shrabanti Chowdhury
- Department
of Genetics and Genomic Sciences and Icahn Institute for Data Science
and Genomic Technology, Icahn School of
Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chia-Feng Tsai
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Tao Liu
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - ChenWei Lin
- Clinical
Research Division, Fred Hutchinson Cancer
Research Center, Seattle, Washington 98109, United States
| | - Oscar D. Murillo
- Clinical
Research Division, Fred Hutchinson Cancer
Research Center, Seattle, Washington 98109, United States
| | - Rachel A. Lundeen
- Clinical
Research Division, Fred Hutchinson Cancer
Research Center, Seattle, Washington 98109, United States
| | - Lisa A. Jones
- Proteomics
and Metabolomics Shared Resources, Fred
Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - Philip R. Gafken
- Proteomics
and Metabolomics Shared Resources, Fred
Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - Gary Longton
- Public
Health Sciences Division, Fred Hutchinson
Cancer Research Center, Seattle, Washington 98109, United States
| | - Karin D. Rodland
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Steven J. Skates
- MGH
Biostatistics Center, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - John Landua
- Lester
and Sue Smith Breast Center, Baylor College
of Medicine, Houston, Texas 77030, United States
| | - Pei Wang
- Department
of Genetics and Genomic Sciences, Mount
Sinai Hospital, New York, New York 10065, United States
| | - Michael T. Lewis
- Lester
and Sue Smith Breast Center, Baylor College
of Medicine, Houston, Texas 77030, United States
| | - Amanda G. Paulovich
- Clinical
Research Division, Fred Hutchinson Cancer
Research Center, Seattle, Washington 98109, United States,Phone: 206-667-1912. . Fax: 206-667-2277
| |
Collapse
|
45
|
Kalogeropoulos K, Savickas S, Haack AM, Larsen CA, Mikosiński J, Schoof EM, Smola H, Bundgaard L, Auf dem Keller U. WITHDRAWN: High-throughput and high-sensitivity biomarker monitoring in body fluid by FAIMS-enhanced fast LC SureQuant™ IS targeted quantitation. Mol Cell Proteomics 2022:100251. [PMID: 35644345 DOI: 10.1016/j.mcpro.2022.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022] Open
Affiliation(s)
- Konstantinos Kalogeropoulos
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs. Lyngby, 2800, Denmark
| | - Simonas Savickas
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs. Lyngby, 2800, Denmark
| | - Aleksander M Haack
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs. Lyngby, 2800, Denmark
| | - Cathrine A Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs. Lyngby, 2800, Denmark
| | - Jacek Mikosiński
- Poradnia Chorób Naczyń Obwodowych "MIKOMED", Ul. Pługowa 51/53, 94-238 Łódź, Poland
| | - Erwin M Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs. Lyngby, 2800, Denmark
| | - Hans Smola
- Paul Hartmann AG, Paul-Hartmann-Straße 12, 89522 Heidenheim an der Brenz, Germany
| | - Louise Bundgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs. Lyngby, 2800, Denmark.
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs. Lyngby, 2800, Denmark.
| |
Collapse
|
46
|
Ogata S, Masuda T, Ito S, Ohtsuki S. Targeted proteomics for cancer biomarker verification and validation. Cancer Biomark 2022; 33:427-436. [DOI: 10.3233/cbm-210218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Targeted proteomics is a method that measures the amount of target proteins via liquid chromatography-tandem mass spectrometry and is used to verify and validate the candidate cancer biomarker proteins. Compared with antibody-based quantification methods such as ELISA, targeted proteomics enables rapid method development, simultaneous measurement of multiple proteins, and high-specificity detection of modifications. Moreover, by spiking the internal standard peptide, targeted proteomics detects the absolute amounts of marker proteins, which is essential for determining the cut-off values for diagnosis and thus for multi-institutional validation. With these unique features, targeted proteomics can seamlessly transfer cancer biomarker candidate proteins from the discovery phase to the verification and validation phases, thereby resulting in an accelerated cancer biomarker pipeline. Furthermore, understanding the basic principles, advantages, and disadvantages is necessary to effectively utilize targeted proteomics in cancer biomarker pipelines. This review aimed to introduce the technical principles of targeted proteomics for cancer biomarker verification and validation.
Collapse
Affiliation(s)
- Seiryo Ogata
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
47
|
Fritted tip capillary column with negligible dead volume facilitated ultrasensitive and deep proteomics. Anal Chim Acta 2022; 1201:339615. [DOI: 10.1016/j.aca.2022.339615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 11/24/2022]
|
48
|
Plank MJ. Modern Data Acquisition Approaches in Proteomics Based on Dynamic Instrument Control. J Proteome Res 2022; 21:1209-1217. [PMID: 35362319 DOI: 10.1021/acs.jproteome.2c00096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Traditionally, data acquisition in mass spectrometry-based proteomics is directed by user-defined parameters and relatively simple decision making, such as selection of the highest MS1 peaks for fragmentation. In recent years, access to two-way-communication with instrument codebases has led to a surge in algorithms instructing more complex decision processes on-the-fly. A closer matching between the time windows for monitoring peptides in targeted proteomics and their actual chromatographic elution peaks has been addressed through dynamic retention time scheduling and through triggered acquisition. Strategies based on real-time database searching and spectral matching have, among others, been used to adjust acquisition parameters for selected peptides for improved quantitative accuracy. While initial studies were mainly performed on a proof-of-concept level, dynamic acquisition approaches recently became more broadly available through software and increasing integration into standard instrument control and are likely to transform the field of proteomics in the coming years.
Collapse
Affiliation(s)
- Michael J Plank
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, United States.,Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
49
|
Villalobos Solis MI, Chirania P, Hettich RL. In silico evaluation of a targeted metaproteomics strategy for broad screening of cellulolytic enzyme capacities in anaerobic microbiome bioreactors. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:32. [PMID: 35303956 PMCID: PMC8933973 DOI: 10.1186/s13068-022-02125-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Microbial-driven solubilization of lignocellulosic material is a natural mechanism that is exploited in anaerobic digesters (ADs) to produce biogas and other valuable bioproducts. Glycoside hydrolases (GHs) are the main enzymes that bacterial and archaeal populations use to break down complex polysaccharides in these reactors. Methodologies for rapidly screening the physical presence and types of GHs can provide information about their functional activities as well as the taxonomical diversity within AD systems but are largely unavailable. Targeted proteomic methods could potentially be used to provide snapshots of the GHs expressed by microbial consortia in ADs, giving valuable insights into the functional lignocellulolytic degradation diversity of a community. Such observations would be essential to evaluate the hydrolytic performance of a reactor or potential issues with it. RESULTS As a proof of concept, we performed an in silico selection and evaluation of groups of tryptic peptides from five important GH families derived from a dataset of 1401 metagenome-assembled genomes (MAGs) in anaerobic digesters. Following empirical rules of peptide-based targeted proteomics, we selected groups of shared peptides among proteins within a GH family while at the same time being unique compared to all other background proteins. In particular, we were able to identify a tractable unique set of peptides that were sufficient to monitor the range of GH families. While a few thousand peptides would be needed for comprehensive characterization of the main GH families, we found that at least 50% of the proteins in these families (such as the key families) could be tracked with only 200 peptides. The unique peptides selected for groups of GHs were found to be sufficient for distinguishing enzyme specificity or microbial taxonomy. These in silico results demonstrate the presence of specific unique GH peptides even in a highly diverse and complex microbiome and reveal the potential for development of targeted metaproteomic approaches in ADs or lignocellulolytic microbiomes. Such an approach could be valuable for estimating molecular-level enzymatic capabilities and responses of microbial communities to different substrates or conditions, which is a critical need in either building or utilizing constructed communities or defined cultures for bio-production. CONCLUSIONS This in silico study demonstrates the peptide selection strategy for quantifying relevant groups of GH proteins in a complex anaerobic microbiome and encourages the development of targeted metaproteomic approaches in fermenters. The results revealed that targeted metaproteomics could be a feasible approach for the screening of cellulolytic enzyme capacities for a range of anaerobic microbiome fermenters and thus could assist in bioreactor evaluation and optimization.
Collapse
Affiliation(s)
| | - Payal Chirania
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
50
|
Salek M, Förster JD, Lehmann WD, Riemer AB. Light contamination in stable isotope-labelled internal peptide standards is frequent and a potential source of false discovery and quantitation error in proteomics. Anal Bioanal Chem 2022; 414:2545-2552. [PMID: 35119480 PMCID: PMC8888373 DOI: 10.1007/s00216-022-03931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 11/12/2022]
Abstract
In mass spectrometry-based proteomics, heavy internal standards are used to validate target peptide detections and to calibrate peptide quantitation. Here, we report light contamination present in heavy labelled synthetic peptides of high isotopic enrichment. Application of such peptides as assay-internal standards potentially compromises the detection and quantitation especially of low abundant cellular peptides. Therefore, it is important to adopt guidelines to prevent false-positive identifications of endogenous light peptides as well as errors in their quantitation from biological samples.
Collapse
Affiliation(s)
- Mogjiborahman Salek
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
| | - Jonas D Förster
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Wolf-Dieter Lehmann
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Angelika B Riemer
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|