1
|
Gao J, Liu Y, Si C, Guo R, Hou S, Liu X, Long H, Liu D, Xu D, Zhang ZR, Liu C, Shan B, Turck CW, He K, Zhang Y. Aspirin inhibits proteasomal degradation and promotes α-synuclein aggregate clearance through K63 ubiquitination. Nat Commun 2025; 16:1438. [PMID: 39920137 PMCID: PMC11806099 DOI: 10.1038/s41467-025-56737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/28/2025] [Indexed: 02/09/2025] Open
Abstract
Aspirin is a potent lysine acetylation inducer, but its impact on lysine ubiquitination and ubiquitination-directed protein degradation is unclear. Herein, we develop the reversed-pulsed-SILAC strategy to systematically profile protein degradome in response to aspirin. By integrating degradome, acetylome, and ubiquitinome analyses, we show that aspirin impairs proteasome activity to inhibit proteasomal degradation, rather than directly suppressing lysine ubiquitination. Interestingly, aspirin increases lysosomal degradation-implicated K63-linked ubiquitination. Accordingly, using the major pathological protein of Parkinson's disease (PD), α-synuclein (α-syn), as an example of protein aggregates, we find that aspirin is able to reduce α-syn in cultured cells, neurons, and PD model mice with rescued locomotor ability. We further reveal that the α-syn aggregate clearance induced by aspirin is K63-ubiquitination dependent in both cells and PD mice. These findings suggest two complementary mechanisms by which aspirin regulates the degradation of soluble and insoluble proteins, providing insights into its diverse pharmacological effects that can aid in future drug development efforts.
Collapse
Affiliation(s)
- Jing Gao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., Shanghai, China
| | - Yang Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenfang Si
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., Shanghai, China
| | - Rui Guo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., Shanghai, China
| | - Shouqiao Hou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., Shanghai, China
| | - Xiaosong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., Shanghai, China
| | - Houfang Long
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., Shanghai, China
| | - Di Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., Shanghai, China
| | - Zai-Rong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., Shanghai, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., Shanghai, China
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., Shanghai, China
| | - Christoph W Turck
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Max Planck Institute of Psychiatry, Proteomics and Biomarkers, Munich, Germany
| | - Kaiwen He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., Shanghai, China.
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd., Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, 100 Haike Rd., Shanghai, China.
| |
Collapse
|
2
|
Singh KS, Krishna S, Gupta A, Singh LR. Effect of osmolytes and posttranslational modifications on modulating the chaperone function of α-crystallin. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 211:89-111. [PMID: 39947755 DOI: 10.1016/bs.pmbts.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Proteins are responsible for a vast majority of various cellular effector processes. α-crystallin is one of the most important proteins in the lens of the eye, which acts as a molecular chaperone that keeps the lens transparent and refractive. α-crystallin is categorized as an intrinsically disordered protein (IDP), devoid of a stable three-dimensional structure, in contrast to conventional globular proteins. Because of its structural flexibility, it can stop denatured proteins from aggregating and building up within the lens over time. α-crystallin's dynamic quaternary structure, which allows it to exist in a variety of oligomeric forms, from dimers to massive assemblies, improves its chaperone function and flexibility. Its intrinsically disordered nature enables it to interact with a variety of client proteins due to its large non-polar and polar residue content and lack of a hydrophobic core. Furthermore, under physiological stress, osmolytes like sorbitol, TMAO, and urea are essential in regulating the stability and function of α-crystallin. Post-translational modifications (PTMs) such as glycation, in which reducing sugars combine with amino groups on the protein to generate advanced glycation end-products, impair α-crystallin's ability to function. These AGEs can cross-link α-crystallin molecules to prevent protein aggregation, changing their structure and decreasing their chaperone action. Because of their raised blood glucose levels, diabetics have an increased chance of developing cataracts as a result of this process. Comprehending how glycation and other PTMs affect α-crystallin is crucial for formulating treatment plans to maintain lens transparency and fight cataracts linked to aging and metabolic disorders.
Collapse
Affiliation(s)
| | - Snigdha Krishna
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Akshita Gupta
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.
| | | |
Collapse
|
3
|
Liebner T, Kilic S, Walter J, Aibara H, Narita T, Choudhary C. Acetylation of histones and non-histone proteins is not a mere consequence of ongoing transcription. Nat Commun 2024; 15:4962. [PMID: 38862536 PMCID: PMC11166988 DOI: 10.1038/s41467-024-49370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
In all eukaryotes, acetylation of histone lysine residues correlates with transcription activation. Whether histone acetylation is a cause or consequence of transcription is debated. One model suggests that transcription promotes the recruitment and/or activation of acetyltransferases, and histone acetylation occurs as a consequence of ongoing transcription. However, the extent to which transcription shapes the global protein acetylation landscapes is not known. Here, we show that global protein acetylation remains virtually unaltered after acute transcription inhibition. Transcription inhibition ablates the co-transcriptionally occurring ubiquitylation of H2BK120 but does not reduce histone acetylation. The combined inhibition of transcription and CBP/p300 further demonstrates that acetyltransferases remain active and continue to acetylate histones independently of transcription. Together, these results show that histone acetylation is not a mere consequence of transcription; acetyltransferase recruitment and activation are uncoupled from the act of transcription, and histone and non-histone protein acetylation are sustained in the absence of ongoing transcription.
Collapse
Affiliation(s)
- Tim Liebner
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Sinan Kilic
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Jonas Walter
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Hitoshi Aibara
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Takeo Narita
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
4
|
Xie L, Li C, Wang C, Wu Z, Wang C, Chen C, Chen X, Zhou D, Zhou Q, Lu P, Ding C, Liu C, Lin J, Zhang X, Yu X, Yu W. Aspirin-Mediated Acetylation of SIRT1 Maintains Intestinal Immune Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306378. [PMID: 38482749 PMCID: PMC11109641 DOI: 10.1002/advs.202306378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/07/2024] [Indexed: 05/23/2024]
Abstract
Aspirin, also named acetylsalicylate, can directly acetylate the side-chain of lysine in protein, which leads to the possibility of unexplained drug effects. Here, the study used isotopic-labeling aspirin-d3 with mass spectrometry analysis to discover that aspirin directly acetylates 10 HDACs proteins, including SIRT1, the most studied NAD+-dependent deacetylase. SIRT1 is also acetylated by aspirin in vitro. It is also identified that aspirin directly acetylates lysine 408 of SIRT1, which abolishes SIRT1 deacetylation activity by impairing the substrates binding affinity. Interestingly, the lysine 408 of SIRT1 can be acetylated by CBP acetyltransferase in cells without aspirin supplement. Aspirin can inhibit SIRT1 to increase the levels of acetylated p53 and promote p53-dependent apoptosis. Moreover, the knock-in mice of the acetylation-mimic mutant of SIRT1 show the decreased production of pro-inflammatory cytokines and maintain intestinal immune homeostasis. The study indicates the importance of the acetylated internal functional site of SIRT1 in maintaining intestinal immune homeostasis.
Collapse
Affiliation(s)
- Liangguo Xie
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Chaoqun Li
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Chao Wang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Zhen Wu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Changchun Wang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Chunyu Chen
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Xiaojian Chen
- Department of Colorectal and Anal SurgeryXinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Dejian Zhou
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Qiang Zhou
- Department of Research Center for Molecular Recognition and SynthesisDepartment of ChemistryFudan UniversityShanghaiChina
| | - Ping Lu
- Department of Research Center for Molecular Recognition and SynthesisDepartment of ChemistryFudan UniversityShanghaiChina
| | - Chen Ding
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Chen‐Ying Liu
- Department of Colorectal and Anal SurgeryXinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jinzhong Lin
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Xumin Zhang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Xiaofei Yu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Wei Yu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
5
|
Savukaitytė A, Bartnykaitė A, Bekampytė J, Ugenskienė R, Juozaitytė E. DDIT4 Downregulation by siRNA Approach Increases the Activity of Proteins Regulating Fatty Acid Metabolism upon Aspirin Treatment in Human Breast Cancer Cells. Curr Issues Mol Biol 2023; 45:4665-4674. [PMID: 37367045 DOI: 10.3390/cimb45060296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Repositioning of aspirin for a more effective breast cancer (BC) treatment requires identification of predictive biomarkers. However, the molecular mechanism underlying the anticancer activity of aspirin remains fully undefined. Cancer cells enhance de novo fatty acid (FA) synthesis and FA oxidation to maintain a malignant phenotype, and the mechanistic target of rapamycin (mTORC1) is required for lipogenesis. We, therefore, aimed to test if the expression of mTORC1 suppressor DNA damage-inducible transcript (DDIT4) affects the activity of main enzymes in FA metabolism after aspirin treatment. MCF-7 and MDA-MB-468 human BC cell lines were transfected with siRNA to downregulate DDIT4. The expression of carnitine palmitoyltransferase 1 A (CPT1A) and serine 79-phosphorylated acetyl-CoA carboxylase 1 (ACC1) were analyzed by Western Blotting. Aspirin enhanced ACC1 phosphorylation by two-fold in MCF-7 cells and had no effect in MDA-MB-468 cells. Aspirin did not change the expression of CPT1A in either cell line. We have recently reported DDIT4 itself to be upregulated by aspirin. DDIT4 knockdown resulted in 1.5-fold decreased ACC1 phosphorylation (dephosphorylation activates the enzyme), 2-fold increased CPT1A expression in MCF-7 cells, and 2.8-fold reduced phosphorylation of ACC1 following aspirin exposure in MDA-MB-468 cells. Thus, DDIT4 downregulation raised the activity of main lipid metabolism enzymes upon aspirin exposure which is an undesired effect as FA synthesis and oxidation are linked to malignant phenotype. This finding may be clinically relevant as DDIT4 expression has been shown to vary in breast tumors. Our findings justify further, more extensive investigation of the role of DDIT4 in aspirin's effect on fatty acid metabolism in BC cells.
Collapse
Affiliation(s)
- Aistė Savukaitytė
- Oncology Research Laboratory, Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Agnė Bartnykaitė
- Oncology Research Laboratory, Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Justina Bekampytė
- Oncology Research Laboratory, Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Rasa Ugenskienė
- Oncology Research Laboratory, Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Elona Juozaitytė
- Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
6
|
Menter DG, Bresalier RS. An Aspirin a Day: New Pharmacological Developments and Cancer Chemoprevention. Annu Rev Pharmacol Toxicol 2023; 63:165-186. [PMID: 36202092 DOI: 10.1146/annurev-pharmtox-052020-023107] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemoprevention refers to the use of natural or synthetic agents to reverse, suppress, or prevent the progression or recurrence of cancer. A large body of preclinical and clinical data suggest the ability of aspirin to prevent precursor lesions and cancers, but much of the clinical data are inferential and based on descriptive epidemiology, case control, and cohort studies or studies designed to answer other questions (e.g., cardiovascular mortality). Multiple pharmacological, clinical, and epidemiologic studies suggest that aspirin can prevent certain cancers but may also cause other effects depending on the tissue or disease and organ site in question. The best-known biological targets of aspirin are cyclooxygenases, which drive a wide variety of functions, including hemostasis, inflammation, and immune modulation. Newly recognized molecular and cellular interactions suggest additional modifiable functional targets, and the existence of consensus molecular cancer subtypes suggests that aspirin may have differential effects based on tumor heterogeneity. This review focuses on new pharmacological developments and innovations in biopharmacology that clarify the potential role of aspirin in cancer chemoprevention.
Collapse
Affiliation(s)
- David G Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert S Bresalier
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA;
| |
Collapse
|
7
|
Wu M, Zhang J, Xiong Y, Zhao Y, Zheng M, Huang X, Huang F, Wu X, Li X, Fan W, Hu L, Zeng Y, Cheng X, Yue J, Du J, Chen N, Wei W, Yao Q, Lu X, Huang C, Deng J, Chang Z, Liu H, Zhao TC, Chinn YE. Promotion of Lung Cancer Metastasis by SIRT2-Mediated Extracellular Protein Deacetylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205462. [PMID: 36453571 PMCID: PMC9875677 DOI: 10.1002/advs.202205462] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Acetylation of extracellular proteins has been observed in many independent studies where particular attention has been given to the dynamic change of the microenvironmental protein post-translational modifications. While extracellular proteins can be acetylated within the cells prior to their micro-environmental distribution, their deacetylation in a tumor microenvironment remains elusive. Here it is described that multiple acetyl-vWA domain-carrying proteins including integrin β3 (ITGB3) and collagen 6A (COL6A) are deacetylated by Sirtuin family member SIRT2 in extracellular space. SIRT2 is secreted by macrophages following toll-like receptor (TLR) family member TLR4 or TLR2 activation. TLR-activated SIRT2 undergoes autophagosome translocation. TNF receptor associated factor 6 (TRAF6)-mediated autophagy flux in response to TLR2/4 activation can then pump SIRT2 into the microenvironment to function as extracellular SIRT2 (eSIRT2). In the extracellular space, eSIRT2 deacetylates ITGB3 on aK416 involved in cell attachment and migration, leading to a promotion of cancer cell metastasis. In lung cancer patients, significantly increased serum eSIRT2 level correlates with dramatically decreased ITGB3-K416 acetylation in cancer cells. Thus, the extracellular space is a subcellular organelle-like arena where eSIRT2 promotes cancer cell metastasis via catalyzing extracellular protein deacetylation.
Collapse
|
8
|
Guo J, Ma Z, Deng C, Ding J, Chang Y. A comprehensive dynamic immune acetylproteomics profiling induced by Puccinia polysora in maize. BMC PLANT BIOLOGY 2022; 22:610. [PMID: 36564751 PMCID: PMC9789614 DOI: 10.1186/s12870-022-03964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Lysine-ε-acetylation (Kac) is a reversible post-translational modification that plays important roles during plant-pathogen interactions. Some pathogens can deliver secreted effectors encoding acetyltransferases or deacetylases into host cell to directly modify acetylation of host proteins. However, the function of these acetylated host proteins in plant-pathogen defense remains to be determined. Employing high-resolution tandem mass spectrometry, we analyzed protein abundance and lysine acetylation changes in maize infected with Puccinia polysora (P. polysora) at 0 h, 12 h, 24 h, 48 h and 72 h. A total of 7412 Kac sites from 4697 proteins were identified, and 1732 Kac sites from 1006 proteins were quantified. Analyzed the features of lysine acetylation, we found that Kac is ubiquitous in cellular compartments and preferentially targets lysine residues in the -F/W/Y-X-X-K (ac)-N/S/T/P/Y/G- motif of the protein, this Kac motif contained proteins enriched in basic metabolism and defense-associated pathways during fungal infection. Further analysis of acetylproteomics data indicated that maize regulates cellular processes in response to P. polysora infection by altering Kac levels of histones and non-histones. In addition, acetylation of pathogen defense-related proteins presented converse patterns in signaling transduction, defense response, cell wall fortification, ROS scavenging, redox reaction and proteostasis. Our results provide informative resources for studying protein acetylation in plant-pathogen interactions, not only greatly extending the understanding on the roles of acetylation in vivo, but also providing a comprehensive dynamic pattern of Kac modifications in the process of plant immune response.
Collapse
Affiliation(s)
- Jianfei Guo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Zhigang Ma
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Shenzhen Research Institute of Henan university, Shenzhen, 518000, China
| | - Ce Deng
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
- The State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junqiang Ding
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
- The State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Yuxiao Chang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
9
|
Li Y, He X, Lu X, Gong Z, Li Q, Zhang L, Yang R, Wu C, Huang J, Ding J, He Y, Liu W, Chen C, Cao B, Zhou D, Shi Y, Chen J, Wang C, Zhang S, Zhang J, Ye J, You H. METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions. Nat Commun 2022; 13:6350. [PMID: 36289222 PMCID: PMC9605963 DOI: 10.1038/s41467-022-34209-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/14/2022] [Indexed: 12/25/2022] Open
Abstract
The methyltransferase like 3 (METTL3) has been generally recognized as a nuclear protein bearing oncogenic properties. We find predominantly cytoplasmic METTL3 expression inversely correlates with node metastasis in human cancers. It remains unclear if nuclear METTL3 is functionally distinct from cytosolic METTL3 in driving tumorigenesis and, if any, how tumor cells sense oncogenic insults to coordinate METTL3 functions within these intracellular compartments. Here, we report an acetylation-dependent regulation of METTL3 localization that impacts on metastatic dissemination. We identify an IL-6-dependent positive feedback axis to facilitate nuclear METTL3 functions, eliciting breast cancer metastasis. IL-6, whose mRNA transcript is subjected to METTL3-mediated m6A modification, promotes METTL3 deacetylation and nuclear translocation, thereby inducing global m6A abundance. This deacetylation-mediated nuclear shift of METTL3 can be counterbalanced by SIRT1 inhibition, a process that is further enforced by aspirin treatment, leading to ablated lung metastasis via impaired m6A methylation. Intriguingly, acetylation-mimetic METTL3 mutant reconstitution results in enhanced translation and compromised metastatic potential. Our study identifies an acetylation-dependent regulatory mechanism determining the subcellular localization of METTL3, which may provide mechanistic clues for developing therapeutic strategies to combat breast cancer metastasis.
Collapse
Affiliation(s)
- Yuanpei Li
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Xiaoniu He
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Xiao Lu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Zhicheng Gong
- grid.459328.10000 0004 1758 9149Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 214062 Wuxi, China
| | - Qing Li
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Lei Zhang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Ronghui Yang
- grid.24696.3f0000 0004 0369 153XDepartment of Biochemistry and Molecular Biology, Capital Medical University, 100069 Beijing, China
| | - Chengyi Wu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Jialiang Huang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Jiancheng Ding
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102 Xiamen, China
| | - Yaohui He
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102 Xiamen, China
| | - Wen Liu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102 Xiamen, China
| | - Ceshi Chen
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223 Kunming, China
| | - Bin Cao
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, 361102 Xiamen, China
| | - Dawang Zhou
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Yufeng Shi
- grid.24516.340000000123704535Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, 200092 Shanghai, China
| | - Juxiang Chen
- grid.73113.370000 0004 0369 1660Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, 200433 Shanghai, China
| | - Chuangui Wang
- grid.412509.b0000 0004 1808 3414The Biomedical Translational Research Institute, School of Life Sciences, Shandong University of Technology, 255049 Zibo, China
| | - Shengping Zhang
- grid.16821.3c0000 0004 0368 8293Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620 Shanghai, China
| | - Jian Zhang
- grid.233520.50000 0004 1761 4404The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi’an, China
| | - Jing Ye
- grid.233520.50000 0004 1761 4404Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, 710032 Xi’an, China
| | - Han You
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| |
Collapse
|
10
|
Emerging role of the cGAS-STING signaling pathway in autoimmune diseases: Biologic function, mechanisms and clinical prospection. Autoimmun Rev 2022; 21:103155. [PMID: 35902046 DOI: 10.1016/j.autrev.2022.103155] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/21/2022] [Indexed: 12/15/2022]
Abstract
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway, as vital component of innate immune system, acts a vital role in distinguishing invasive pathogens and cytosolic DNA. Cytosolic DNA sensor cGAS first binds to cytosolic DNA and catalyze synthesis of cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), which is known as the secondmessenger. Next, cGAMP activates the adaptor protein STING, triggering a molecular chain reaction to stimulate cytokines including interferons (IFNs). Recently, many researches have revealed that the regulatory role of cGAS-STING signaling pathway in autoimmune diseases (AIDs) such as Rheumatoid arthritis (RA), Aicardi Goutières syndrome (AGS) and systemic lupus erythematosus (SLE). Moreover, accumulated evidence showed inhibition of the cGAS-STING signaling pathway can remarkably suppress joint swelling and inflammatory cell infiltration in RA mice. Therefore, in this review, we describe the molecular properties, biologic function and mechanisms of the cGAS-STING signaling pathway in AIDs. In addition, potential clinical applications especially selective small molecule inhibitors targeting the cGAS-STING signaling pathway are also discussed.
Collapse
|
11
|
Ghosh A, Pawar AB, Chirmade T, Jathar SM, Bhambure R, Sengupta D, Giri AP, Kulkarni MJ. Investigation of the Captopril-Insulin Interaction by Mass Spectrometry and Computational Approaches Reveals that Captopril Induces Structural Changes in Insulin. ACS OMEGA 2022; 7:23115-23126. [PMID: 35847342 PMCID: PMC9280767 DOI: 10.1021/acsomega.2c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Post-translational modifications remarkably regulate proteins' biological function. Small molecules such as reactive thiols, metabolites, and drugs may covalently modify the proteins and cause structural changes. This study reports the covalent modification and noncovalent interaction of insulin and captopril, an FDA-approved antihypertensive drug, through mass spectrometric and computation-based approaches. Mass spectrometric analysis shows that captopril modifies intact insulin, reduces it into its "A" and "B" chains, and covalently modifies them by forming adducts. Since captopril has a reactive thiol group, it might reduce the insulin dimer or modify it by reacting with cysteine residues. This was proven with dithiothreitol treatment, which reduced the abundance of captopril adducts of insulin A and B chains and intact Insulin. Liquid chromatography tandem mass spectrometric analysis identified the modification of a total of four cysteine residues, two in each of the A and B chains of insulin. These modifications were identified to be Cys6 and Cys7 of the A chain and Cys7 and Cys19 of the B chain. Mass spectrometric analysis indicated that captopril may simultaneously modify the cysteine residues of intact insulin or its subunits A and B chains. Biophysical studies involving light scattering and thioflavin T assay suggested that the binding of captopril to the protein leads to the formation of aggregates. Docking and molecular dynamics studies provided insights into the noncovalent interactions and associated structural changes in insulin. This work is a maiden attempt to understand the detailed molecular interactions between captopril and insulin. These findings suggest that further investigations are required to understand the long-term effect of drugs like captopril.
Collapse
Affiliation(s)
- Amrita Ghosh
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aiswarya B. Pawar
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Tejas Chirmade
- Chemical
Engineering and Process Development, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Swaraj M. Jathar
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rahul Bhambure
- Chemical
Engineering and Process Development, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Durba Sengupta
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashok P. Giri
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahesh J. Kulkarni
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Macrophage migration inhibitory factor (MIF) acetylation protects neurons from ischemic injury. Cell Death Dis 2022; 13:466. [PMID: 35585040 PMCID: PMC9117661 DOI: 10.1038/s41419-022-04918-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022]
Abstract
Ischemia-induced neuronal death leads to serious lifelong neurological deficits in ischemic stroke patients. Histone deacetylase 6 (HDAC6) is a promising target for neuroprotection in many neurological disorders, including ischemic stroke. However, the mechanism by which HDAC6 inhibition protects neurons after ischemic stroke remains unclear. Here, we discovered that genetic ablation or pharmacological inhibition of HDAC6 reduced brain injury after ischemic stroke by increasing macrophage migration inhibitory factor (MIF) acetylation. Mass spectrum analysis and biochemical results revealed that HDAC6 inhibitor or aspirin treatment promoted MIF acetylation on the K78 residue. MIF K78 acetylation suppressed the interaction between MIF and AIF, which impaired MIF translocation to the nucleus in ischemic cortical neurons. Moreover, neuronal DNA fragmentation and neuronal death were impaired in the cortex after ischemia in MIF K78Q mutant mice. Our results indicate that the neuroprotective effect of HDAC6 inhibition and aspirin treatment results from MIF K78 acetylation; thus, MIF K78 acetylation may be a therapeutic target for ischemic stroke and other neurological diseases.
Collapse
|
13
|
Rosa A, Butt E, Hopper CP, Loroch S, Bender M, Schulze H, Sickmann A, Vorlova S, Seizer P, Heinzmann D, Zernecke A. Cyclophilin A Is Not Acetylated at Lysine-82 and Lysine-125 in Resting and Stimulated Platelets. Int J Mol Sci 2022; 23:ijms23031469. [PMID: 35163387 PMCID: PMC8836233 DOI: 10.3390/ijms23031469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
Cyclophilin A (CyPA) is widely expressed by all prokaryotic and eukaryotic cells. Upon activation, CyPA can be released into the extracellular space to engage in a variety of functions, such as interaction with the CD147 receptor, that contribute to the pathogenesis of cardiovascular diseases. CyPA was recently found to undergo acetylation at K82 and K125, two lysine residues conserved in most species, and these modifications are required for secretion of CyPA in response to cell activation in vascular smooth muscle cells. Herein we addressed whether acetylation at these sites is also required for the release of CyPA from platelets based on the potential for local delivery of CyPA that may exacerbate cardiovascular disease events. Western blot analyses confirmed the presence of CyPA in human and mouse platelets. Thrombin stimulation resulted in CyPA release from platelets; however, no acetylation was observed-neither in cell lysates nor in supernatants of both untreated and activated platelets, nor after immunoprecipitation of CyPA from platelets. Shotgun proteomics detected two CyPA peptide precursors in the recombinant protein, acetylated at K28, but again, no acetylation was found in CyPA derived from resting or stimulated platelets. Our findings suggest that acetylation of CyPA is not a major protein modification in platelets and that CyPA acetylation is not required for its secretion from platelets.
Collapse
Affiliation(s)
- Annabelle Rosa
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany; (A.R.); (E.B.); (C.P.H.); (M.B.); (H.S.); (S.V.)
| | - Elke Butt
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany; (A.R.); (E.B.); (C.P.H.); (M.B.); (H.S.); (S.V.)
| | - Christopher P. Hopper
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany; (A.R.); (E.B.); (C.P.H.); (M.B.); (H.S.); (S.V.)
| | - Stefan Loroch
- Leibniz-Institut für Analytische Wissenschaften (ISAS), 44139 Dortmund, Germany; (S.L.); (A.S.)
| | - Markus Bender
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany; (A.R.); (E.B.); (C.P.H.); (M.B.); (H.S.); (S.V.)
| | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany; (A.R.); (E.B.); (C.P.H.); (M.B.); (H.S.); (S.V.)
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften (ISAS), 44139 Dortmund, Germany; (S.L.); (A.S.)
- Medizinisches Proteom-Center, Ruhr-University Bochum, 44801 Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Sandra Vorlova
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany; (A.R.); (E.B.); (C.P.H.); (M.B.); (H.S.); (S.V.)
| | | | - David Heinzmann
- Department of Cardiology and Angiology, University of Tübingen, 72076 Tübingen, Germany;
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany; (A.R.); (E.B.); (C.P.H.); (M.B.); (H.S.); (S.V.)
- Correspondence: ; Tel.: +49-(0)-931-201-48331
| |
Collapse
|
14
|
Guo J, Chai X, Mei Y, Du J, Du H, Shi H, Zhu JK, Zhang H. Acetylproteomics analyses reveal critical features of lysine-ε-acetylation in Arabidopsis and a role of 14-3-3 protein acetylation in alkaline response. STRESS BIOLOGY 2022; 2:1. [PMID: 37676343 PMCID: PMC10442023 DOI: 10.1007/s44154-021-00024-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/07/2021] [Indexed: 09/08/2023]
Abstract
Lysine-ε-acetylation (Kac) is a post-translational modification (PTM) that is critical for metabolic regulation and cell signaling in mammals. However, its prevalence and importance in plants remain to be determined. Employing high-resolution tandem mass spectrometry, we analyzed protein lysine acetylation in five representative Arabidopsis organs with 2 ~ 3 biological replicates per organ. A total of 2887 Kac proteins and 5929 Kac sites were identified. This comprehensive catalog allows us to analyze proteome-wide features of lysine acetylation. We found that Kac proteins tend to be more uniformly expressed in different organs, and the acetylation status exhibits little correlation with the gene expression level, indicating that acetylation is unlikely caused by stochastic processes. Kac preferentially targets evolutionarily conserved proteins and lysine residues, but only a small percentage of Kac proteins are orthologous between rat and Arabidopsis. A large portion of Kac proteins overlap with proteins modified by other PTMs including ubiquitination, SUMOylation and phosphorylation. Although acetylation, ubiquitination and SUMOylation all modify lysine residues, our analyses show that they rarely target the same sites. In addition, we found that "reader" proteins for acetylation and phosphorylation, i.e., bromodomain-containing proteins and GRF (General Regulatory Factor)/14-3-3 proteins, are intensively modified by the two PTMs, suggesting that they are main crosstalk nodes between acetylation and phosphorylation signaling. Analyses of GRF6/14-3-3λ reveal that the Kac level of GRF6 is decreased under alkaline stress, suggesting that acetylation represses plant alkaline response. Indeed, K56ac of GRF6 inhibits its binding to and subsequent activation of the plasma membrane H+-ATPase AHA2, leading to hypersensitivity to alkaline stress. These results provide valuable resources for protein acetylation studies in plants and reveal that protein acetylation suppresses phosphorylation output by acetylating GRF/14-3-3 proteins.
Collapse
Affiliation(s)
- Jianfei Guo
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Plant Molecular Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqiang Chai
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Plant Molecular Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yuchao Mei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiamu Du
- Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Haining Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Jian-Kang Zhu
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Plant Molecular Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Heng Zhang
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Plant Molecular Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
15
|
Nounu A, Richmond RC, Stewart ID, Surendran P, Wareham NJ, Butterworth A, Weinstein SJ, Albanes D, Baron JA, Hopper JL, Figueiredo JC, Newcomb PA, Lindor NM, Casey G, Platz EA, Marchand LL, Ulrich CM, Li CI, van Dujinhoven FJB, Gsur A, Campbell PT, Moreno V, Vodicka P, Vodickova L, Amitay E, Alwers E, Chang-Claude J, Sakoda LC, Slattery ML, Schoen RE, Gunter MJ, Castellví-Bel S, Kim HR, Kweon SS, Chan AT, Li L, Zheng W, Bishop DT, Buchanan DD, Giles GG, Gruber SB, Rennert G, Stadler ZK, Harrison TA, Lin Y, Keku TO, Woods MO, Schafmayer C, Van Guelpen B, Gallinger S, Hampel H, Berndt SI, Pharoah PDP, Lindblom A, Wolk A, Wu AH, White E, Peters U, Drew DA, Scherer D, Bermejo JL, Brenner H, Hoffmeister M, Williams AC, Relton CL. Salicylic Acid and Risk of Colorectal Cancer: A Two-Sample Mendelian Randomization Study. Nutrients 2021; 13:4164. [PMID: 34836419 PMCID: PMC8620763 DOI: 10.3390/nu13114164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022] Open
Abstract
Salicylic acid (SA) has observationally been shown to decrease colorectal cancer (CRC) risk. Aspirin (acetylsalicylic acid, that rapidly deacetylates to SA) is an effective primary and secondary chemopreventive agent. Through a Mendelian randomization (MR) approach, we aimed to address whether levels of SA affected CRC risk, stratifying by aspirin use. A two-sample MR analysis was performed using GWAS summary statistics of SA (INTERVAL and EPIC-Norfolk, N = 14,149) and CRC (CCFR, CORECT, GECCO and UK Biobank, 55,168 cases and 65,160 controls). The DACHS study (4410 cases and 3441 controls) was used for replication and stratification of aspirin-use. SNPs proxying SA were selected via three methods: (1) functional SNPs that influence the activity of aspirin-metabolising enzymes; (2) pathway SNPs present in enzymes' coding regions; and (3) genome-wide significant SNPs. We found no association between functional SNPs and SA levels. The pathway and genome-wide SNPs showed no association between SA and CRC risk (OR: 1.03, 95% CI: 0.84-1.27 and OR: 1.08, 95% CI: 0.86-1.34, respectively). Results remained unchanged upon aspirin use stratification. We found little evidence to suggest that an SD increase in genetically predicted SA protects against CRC risk in the general population and upon stratification by aspirin use.
Collapse
Affiliation(s)
- Aayah Nounu
- Integrative Cancer Epidemiology Programme (ICEP), Medical Research Council (MRC) Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK; (R.C.R.); (C.L.R.)
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK;
| | - Rebecca C. Richmond
- Integrative Cancer Epidemiology Programme (ICEP), Medical Research Council (MRC) Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK; (R.C.R.); (C.L.R.)
| | - Isobel D. Stewart
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SL, UK; (I.D.S.); (N.J.W.)
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (P.S.); (A.B.)
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB10 1SA, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK;
| | - Nicholas J. Wareham
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SL, UK; (I.D.S.); (N.J.W.)
| | - Adam Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (P.S.); (A.B.)
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB10 1SA, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB2 1TN, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge University Hospitals, Cambridge CB2 0QQ, UK
| | - Stephanie J. Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (S.J.W.); (D.A.); (S.I.B.)
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (S.J.W.); (D.A.); (S.I.B.)
| | - John A. Baron
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27516, USA;
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3053, Australia; (J.L.H.); (G.G.G.)
- Department of Epidemiology, Institute of Health and Environment, School of Public Health, Seoul National University, Seoul 08826, Korea
| | - Jane C. Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Polly A. Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA; (P.A.N.); (C.I.L.); (L.C.S.)
- School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Noralane M. Lindor
- Department of Health Science Research, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Graham Casey
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA;
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Loïc Le Marchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA;
| | - Cornelia M. Ulrich
- Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA;
| | - Christopher I. Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA; (P.A.N.); (C.I.L.); (L.C.S.)
| | - Fränzel J. B. van Dujinhoven
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6700 HB Wageningen, The Netherlands; (F.J.B.v.D.); (T.A.H.); (Y.L.); (E.W.); (U.P.)
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, 1090 Vienna, Austria;
| | - Peter T. Campbell
- Department of Population Science, American Cancer Society, Atlanta, GA 30303, USA;
| | - Víctor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, 08908 Barcelona, Spain;
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08007 Barcelona, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (P.V.); (L.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Nové Město, 121 08 Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (P.V.); (L.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Nové Město, 121 08 Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Efrat Amitay
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (E.A.); (E.A.)
| | - Elizabeth Alwers
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (E.A.); (E.A.)
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (J.C.-C.); (H.B.); (M.H.)
- Department of Oncology, Haematology and BMT, University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), 20251 Hamburg, Germany
| | - Lori C. Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA; (P.A.N.); (C.I.L.); (L.C.S.)
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Martha L. Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA;
| | - Robert E. Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA;
| | - Marc J. Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, 69372 Lyon, France;
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, 08036 Barcelona, Spain;
| | - Hyeong-Rok Kim
- Department of Surgery, Chonnam National University Hwasun Hospital and Medical School, Hwasun 58128, Korea;
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju 61186, Korea;
- Jeonnam Regional Cancer Center, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea
| | - Andrew T. Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA 22903, USA;
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - D. Timothy Bishop
- Leeds Institute of Cancer and Pathology, School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia;
- Melbourne Medical School, University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
- Genetic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, VIC 3000, Australia
| | - Graham G. Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3053, Australia; (J.L.H.); (G.G.G.)
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - Stephen B. Gruber
- Department of Preventive Medicine & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa 3448516, Israel;
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Clalit National Cancer Control Center, Haifa 3436212, Israel
| | - Zsofia K. Stadler
- Memorial Sloan Kettering Cancer Center, Department of Medicine, New York, NY 10065, USA;
| | - Tabitha A. Harrison
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6700 HB Wageningen, The Netherlands; (F.J.B.v.D.); (T.A.H.); (Y.L.); (E.W.); (U.P.)
| | - Yi Lin
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6700 HB Wageningen, The Netherlands; (F.J.B.v.D.); (T.A.H.); (Y.L.); (E.W.); (U.P.)
| | - Temitope O. Keku
- Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7555, USA;
| | - Michael O. Woods
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada;
| | - Clemens Schafmayer
- Department of General Surgery, University Hospital Rostock, 18057 Rostock, Germany;
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, 901 87 Umeå, Sweden;
- Wallenberg Centre for Molecular Medicine, Department of Biomedical and Clinical Sciences, Umeå University, 901 87 Umeå, Sweden
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X5, Canada;
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (S.J.W.); (D.A.); (S.I.B.)
| | - Paul D. P. Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK;
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, 171 64 Solna, Sweden;
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 64 Solna, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, 171 64 Solna, Sweden;
- Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Anna H. Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA;
| | - Emily White
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6700 HB Wageningen, The Netherlands; (F.J.B.v.D.); (T.A.H.); (Y.L.); (E.W.); (U.P.)
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA 98195, USA
| | - Ulrike Peters
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6700 HB Wageningen, The Netherlands; (F.J.B.v.D.); (T.A.H.); (Y.L.); (E.W.); (U.P.)
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA 98195, USA
| | - David A. Drew
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Dominique Scherer
- Institute of Medical Biometry and Informatics, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany; (D.S.); (J.L.B.)
| | - Justo Lorenzo Bermejo
- Institute of Medical Biometry and Informatics, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany; (D.S.); (J.L.B.)
| | - Hermann Brenner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (J.C.-C.); (H.B.); (M.H.)
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (J.C.-C.); (H.B.); (M.H.)
| | - Ann C. Williams
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK;
| | - Caroline L. Relton
- Integrative Cancer Epidemiology Programme (ICEP), Medical Research Council (MRC) Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK; (R.C.R.); (C.L.R.)
| |
Collapse
|
16
|
Morales-Tarré O, Alonso-Bastida R, Arcos-Encarnación B, Pérez-Martínez L, Encarnación-Guevara S. Protein lysine acetylation and its role in different human pathologies: a proteomic approach. Expert Rev Proteomics 2021; 18:949-975. [PMID: 34791964 DOI: 10.1080/14789450.2021.2007766] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Lysine acetylation is a reversible post-translational modification (PTM) regulated through the action of specific types of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (HDACs), in addition to bromodomains, which are a group of conserved domains which identify acetylated lysine residues, several of the players in the process of protein acetylation, including enzymes and bromodomain-containing proteins, have been related to the progression of several diseases. The combination of high-resolution mass spectrometry-based proteomics, and immunoprecipitation to enrich acetylated peptides has contributed in recent years to expand the knowledge about this PTM described initially in histones and nuclear proteins, and is currently reported in more than 5000 human proteins, that are regulated by this PTM. AREAS COVERED This review presents an overview of the main participant elements, the scenario in the development of protein lysine acetylation, and its role in different human pathologies. EXPERT OPINION Acetylation targets are practically all cellular processes in eukaryotes and prokaryotes organisms. Consequently, this modification has been linked to many pathologies like cancer, viral infection, obesity, diabetes, cardiovascular, and nervous system-associated diseases, to mention a few relevant examples. Accordingly, some intermediate mediators in the acetylation process have been projected as therapeutic targets.
Collapse
Affiliation(s)
- Orlando Morales-Tarré
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ramiro Alonso-Bastida
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Bolivar Arcos-Encarnación
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
17
|
Wright DE, Panaseiko N, O'Donoghue P. Acetylated Thioredoxin Reductase 1 Resists Oxidative Inactivation. Front Chem 2021; 9:747236. [PMID: 34604175 PMCID: PMC8479162 DOI: 10.3389/fchem.2021.747236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
Thioredoxin Reductase 1 (TrxR1) is an enzyme that protects human cells against reactive oxygen species generated during oxidative stress or in response to chemotherapies. Acetylation of TrxR1 is associated with oxidative stress, but the function of TrxR1 acetylation in oxidizing conditions is unknown. Using genetic code expansion, we produced recombinant and site-specifically acetylated variants of TrxR1 that also contain the non-canonical amino acid, selenocysteine, which is essential for TrxR1 activity. We previously showed site-specific acetylation at three different lysine residues increases TrxR1 activity by reducing the levels of linked dimers and low activity TrxR1 tetramers. Here we use enzymological studies to show that acetylated TrxR1 is resistant to both oxidative inactivation and peroxide-induced multimer formation. To compare the effect of programmed acetylation at specific lysine residues to non-specific acetylation, we produced acetylated TrxR1 using aspirin as a model non-enzymatic acetyl donor. Mass spectrometry confirmed aspirin-induced acetylation at multiple lysine residues in TrxR1. In contrast to unmodified TrxR1, the non-specifically acetylated enzyme showed no loss of activity under increasing and strongly oxidating conditions. Our data suggest that both site-specific and general acetylation of TrxR1 regulate the enzyme’s ability to resist oxidative damage.
Collapse
Affiliation(s)
- David E Wright
- Departments of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Nikolaus Panaseiko
- Departments of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Patrick O'Donoghue
- Departments of Biochemistry, The University of Western Ontario, London, ON, Canada.,Departments of Chemistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
18
|
Gaisina IN, Hushpulian DM, Gaisin AM, Kazakov EH, Ammal Kaidery N, Ahuja M, Poloznikov AA, Gazaryan IG, Thatcher GRJ, Thomas B. Identification of a potent Nrf2 displacement activator among aspirin-containing prodrugs. Neurochem Int 2021; 149:105148. [PMID: 34329734 DOI: 10.1016/j.neuint.2021.105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
Aspirin is a desired leaving group in prodrugs aimed at treatment of neurodegeneration and other conditions. A library of aspirin derivatives of various scaffolds potentially activating Nrf2 has been tested in Neh2-luc reporter assay which screens for direct Nrf2 protein stabilizers working via disruption of Nrf2-Keap1 interaction. Most aspirin prodrugs had a pro-alkylating or pro-oxidant motif in the structure and, therefore, were toxic at high concentrations. However, among the active compounds, we identified a molecule resembling a well-known Nrf2 displacement activator, bis-1,4-(4-methoxybenzenesulfonamidyl) naphthalene (NMBSA). The direct comparison of the newly identified compound with NMBSA and its improved analog in the reporter assay showed no quenching with N-acetyl cysteine, thus pointing to Nrf2 stabilization mechanism without cysteine alkylation. The potency of the newly identified compound in the reporter assay was much stronger than NMBSA, despite its inhibitory action in the commercial fluorescence polarization assay was observed only in the millimolar range. Molecular docking predicted that mono-deacetylation of the novel prodrug should generate a potent displacement activator. The time-course of reporter activation with the novel prodrug had a pronounced lag-period pointing to a plausible intracellular transformation leading to an active product. Treatment of the novel prodrug with blood plasma or cell lysate demonstrated stepwise deacetylation as judge by liquid chromatography-mass spectrometry (LC-MS). Hence, the esterase-catalyzed hydrolysis of the prodrug liberates only acetyl groups from aspirin moiety and generates a potent Nrf2 activator. The discovered mechanism of prodrug activation makes the newly identified compound a promising lead for future optimization studies.
Collapse
Affiliation(s)
- Irina N Gaisina
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL, USA.
| | - Dmitry M Hushpulian
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia
| | - Arsen M Gaisin
- Integrated Molecular Structure Education and Research Center, Northwestern University, Evanston, IL, USA
| | | | - Navneet Ammal Kaidery
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA; Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Manuj Ahuja
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA; Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Department of Pharmaceutical Sciences, University of Buffalo, Buffalo, NY, USA
| | - Andrey A Poloznikov
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia
| | - Irina G Gazaryan
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia; Department of Chemical Enzymology, M.V.Lomonosov Moscow State University, Moscow, Russia; Department of Chemistry and Physical Sciences, Pace University, Pleasantville, NY, USA
| | - Gregory R J Thatcher
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Bobby Thomas
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA; Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Department of Drug Discovery, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
19
|
Acetylsalicylic Acid Enhanced Neurotrophic Profile of Epidermal Neural Crest Stem Cells: A Possible Approach for the Combination Therapy. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Sava A, Buron F, Routier S, Panainte A, Bibire N, Constantin SM, Lupașcu FG, Focșa AV, Profire L. Design, Synthesis, In Silico and In Vitro Studies for New Nitric Oxide-Releasing Indomethacin Derivatives with 1,3,4-oxadiazole-2-thiol Scaffold. Int J Mol Sci 2021; 22:7079. [PMID: 34209248 PMCID: PMC8267937 DOI: 10.3390/ijms22137079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Starting from indomethacin (IND), one of the most prescribed non-steroidal anti-inflammatory drugs (NSAIDs), new nitric oxide-releasing indomethacin derivatives with 1,3,4-oxadiazole-2-thiol scaffold (NO-IND-OXDs, 8a-p) have been developed as a safer and more efficient multitarget therapeutic strategy. The successful synthesis of designed compounds (intermediaries and finals) was proved by complete spectroscopic analyses. In order to study the in silico interaction of NO-IND-OXDs with cyclooxygenase isoenzymes, a molecular docking study, using AutoDock 4.2.6 software, was performed. Moreover, their biological characterization, based on in vitro assays, in terms of thermal denaturation of serum proteins, antioxidant effects and the NO releasing capacity, was also performed. Based on docking results, 8k, 8l and 8m proved to be the best interaction for the COX-2 (cyclooxygense-2) target site, with an improved docking score compared with celecoxib. Referring to the thermal denaturation of serum proteins and antioxidant effects, all the tested compounds were more active than IND and aspirin, used as references. In addition, the compounds 8c, 8h, 8i, 8m, 8n and 8o showed increased capacity to release NO, which means they are safer in terms of gastrointestinal side effects.
Collapse
Affiliation(s)
- Alexandru Sava
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (A.S.); (A.P.); (N.B.)
- Institut de Chimie Organique et Analytique ICOA, CNRS UMR 7311, Université d’Orléans, 45067 Orléans, France;
| | - Frederic Buron
- Institut de Chimie Organique et Analytique ICOA, CNRS UMR 7311, Université d’Orléans, 45067 Orléans, France;
| | - Sylvain Routier
- Institut de Chimie Organique et Analytique ICOA, CNRS UMR 7311, Université d’Orléans, 45067 Orléans, France;
| | - Alina Panainte
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (A.S.); (A.P.); (N.B.)
| | - Nela Bibire
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (A.S.); (A.P.); (N.B.)
| | - Sandra Mădălina Constantin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (S.M.C.); (F.G.L.); (A.V.F.)
| | - Florentina Geanina Lupașcu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (S.M.C.); (F.G.L.); (A.V.F.)
| | - Alin Viorel Focșa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (S.M.C.); (F.G.L.); (A.V.F.)
| | - Lenuţa Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iași, 16 University Street, 700115 Iasi, Romania; (S.M.C.); (F.G.L.); (A.V.F.)
| |
Collapse
|
21
|
Xu Q, Liu Q, Chen Z, Yue Y, Liu Y, Zhao Y, Zhou DX. Histone deacetylases control lysine acetylation of ribosomal proteins in rice. Nucleic Acids Res 2021; 49:4613-4628. [PMID: 33836077 PMCID: PMC8096213 DOI: 10.1093/nar/gkab244] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/21/2021] [Accepted: 04/08/2021] [Indexed: 01/04/2023] Open
Abstract
Lysine acetylation (Kac) is well known to occur in histones for chromatin function and epigenetic regulation. In addition to histones, Kac is also detected in a large number of proteins with diverse biological functions. However, Kac function and regulatory mechanism for most proteins are unclear. In this work, we studied mutation effects of rice genes encoding cytoplasm-localized histone deacetylases (HDAC) on protein acetylome and found that the HDAC protein HDA714 was a major deacetylase of the rice non-histone proteins including many ribosomal proteins (r-proteins) and translation factors that were extensively acetylated. HDA714 loss-of-function mutations increased Kac levels but reduced abundance of r-proteins. In vitro and in vivo experiments showed that HDA714 interacted with r-proteins and reduced their Kac. Substitutions of lysine by arginine (depleting Kac) in several r-proteins enhance, while mutations of lysine to glutamine (mimicking Kac) decrease their stability in transient expression system. Ribo-seq analysis revealed that the hda714 mutations resulted in increased ribosome stalling frequency. Collectively, the results uncover Kac as a functional posttranslational modification of r-proteins which is controlled by histone deacetylases, extending the role of Kac in gene expression to protein translational regulation.
Collapse
Affiliation(s)
- Qiutao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qian Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zhengting Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yaping Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yuan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China.,Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
22
|
New nitric oxide-releasing indomethacin derivatives with 1,3-thiazolidine-4-one scaffold: Design, synthesis, in silico and in vitro studies. Biomed Pharmacother 2021; 139:111678. [PMID: 33964802 DOI: 10.1016/j.biopha.2021.111678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
In this study we present design and synthesis of nineteen new nitric oxide-releasing indomethacin derivatives with 1,3-thiazolidine-4-one scaffold (NO-IND-TZDs) (6a-s), as a new safer and efficient multi-targets strategy for inflammatory diseases. The chemical structure of all synthesized derivatives (intermediaries and finals) was proved by NMR and mass spectroscopic analysis. In order to study the selectivity of NO-IND-TZDs for COX isoenzymes (COX-1 and COX-2) a molecular docking study was performed using AutoDock 4.2.6 software. Based on docking results, COX-2 inhibitors were designed and 6o appears as the most selective derivative which showed an improved selective index compared with indomethacin (IND) and diclofenac (DCF), used as reference drugs. The biological evaluation of 6a-s, using in vitro assays has included the anti-inflammatory and antioxidant effects as well as the nitric oxide (NO) release. Referring to the anti-inflammatory effects, the most active compound was 6i, which was more active than IND and aspirin (ASP) in term of denaturation effect, on bovine serum albumin (BSA), as indirect assay to predict the anti-inflammatory effect. An appreciable anti-inflammatory effect, in reference with IND and ASP, was also showed by 6k, 6c, 6q, 6o, 6j, 6d. The antioxidant assay revealed the compound 6n as the most active, being 100 times more active than IND. The compound 6n showed also the most increase capacity to release NO, which means is safer in terms of gastro-intestinal side effects. The ADME-Tox study revealed also that the NO-IND-TZDs are generally proper for oral administration, having optimal physico-chemical and ADME properties. We can conclude that the compounds 6i and 6n are promising agents and could be included in further investigations to study in more detail their pharmaco-toxicological profile.
Collapse
|
23
|
Joshi SN, Murphy EA, Olaniyi P, Bryant RJ. The multiple effects of aspirin in prostate cancer patients. Cancer Treat Res Commun 2020; 26:100267. [PMID: 33360326 DOI: 10.1016/j.ctarc.2020.100267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 01/31/2023]
Abstract
Aspirin is a commonly used medication with anti-inflammatory and analgesic properties, and it is widely used to reduce the risk of ischaemic heart disease-related events and/or cerebrovascular accidents. However, there is also evidence from epidemiological and interventional studies to suggest that regular aspirin use can reduce the risk of prostate cancer development and progression, and can reduce the risk of disease recurrence following anti-prostate cancer therapy. Aspirin use in African-American men is associated with a reduced incidence of advanced PCa and reduced disease recurrence, and there is evidence from other studies of an association between regular aspirin use and decreased PCa-related mortality. The cyclooxygenase-2 enzyme inhibited by Aspirin and other NSAIDs, and which catalyses prostaglandin synthesis and mediates inflammation, is overexpressed in prostate cancer, therefore inhibition of cyclooxygenase-2 may have direct, and indirect, therapeutic effects. This review explores the evidence suggesting that aspirin use can modify prostate cancer biology and disease characteristics, and explores the potential mechanisms underpinning the observed associations between aspirin use and modification of prostate cancer risk. It also summarises the potential for adjuvant aspirin use to combine with other therapeutic approaches such as radical surgery and radiotherapy.
Collapse
Affiliation(s)
- S N Joshi
- Medical Sciences Divisional Office, University of Oxford, Level 3, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - E A Murphy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - P Olaniyi
- Department of Urology, Ipswich Hospital, East Suffolk and North Essex NHS Foundation Trust, Heath Road, Ipswich IP4 5PD, United Kingdom
| | - R J Bryant
- Department of Urology, Ipswich Hospital, East Suffolk and North Essex NHS Foundation Trust, Heath Road, Ipswich IP4 5PD, United Kingdom; Department of Urology, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, United Kingdom.
| |
Collapse
|
24
|
Kougnassoukou Tchara PE, Filippakopoulos P, Lambert JP. Emerging tools to investigate bromodomain functions. Methods 2020; 184:40-52. [DOI: 10.1016/j.ymeth.2019.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
|
25
|
Sankaranarayanan R, Kumar DR, Altinoz MA, Bhat GJ. Mechanisms of Colorectal Cancer Prevention by Aspirin-A Literature Review and Perspective on the Role of COX-Dependent and -Independent Pathways. Int J Mol Sci 2020; 21:ijms21239018. [PMID: 33260951 PMCID: PMC7729916 DOI: 10.3390/ijms21239018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Aspirin, synthesized and marketed in 1897 by Bayer, is one of the most widely used drugs in the world. It has a well-recognized role in decreasing inflammation, pain and fever, and in the prevention of thrombotic cardiovascular diseases. Its anti-inflammatory and cardio-protective actions have been well studied and occur through inhibition of cyclooxygenases (COX). Interestingly, a vast amount of epidemiological, preclinical and clinical studies have revealed aspirin as a promising chemopreventive agent, particularly against colorectal cancers (CRC); however, the primary mechanism by which it decreases the occurrences of CRC has still not been established. Numerous mechanisms have been proposed for aspirin’s chemopreventive properties among which the inhibition of COX enzymes has been widely discussed. Despite the wide attention COX-inhibition has received as the most probable mechanism of cancer prevention by aspirin, it is clear that aspirin targets many other proteins and pathways, suggesting that these extra-COX targets may also be equally important in preventing CRC. In this review, we discuss the COX-dependent and -independent pathways described in literature for aspirin’s anti-cancer effects and highlight the strengths and limitations of the proposed mechanisms. Additionally, we emphasize the potential role of the metabolites of aspirin and salicylic acid (generated in the gut through microbial biotransformation) in contributing to aspirin’s chemopreventive actions. We suggest that the preferential chemopreventive effect of aspirin against CRC may be related to direct exposure of aspirin/salicylic acid or its metabolites to the colorectal tissues. Future investigations should shed light on the role of aspirin, its metabolites and the role of the gut microbiota in cancer prevention against CRC.
Collapse
Affiliation(s)
- Ranjini Sankaranarayanan
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA;
| | - D. Ramesh Kumar
- Department of Entomology, University of Kentucky, Lexington, KY 40506, USA;
| | - Meric A. Altinoz
- Department of Biochemistry, Acibadem M.A.A. University, Istanbul, Turkey;
| | - G. Jayarama Bhat
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA;
- Correspondence: ; Tel.: +1-605-688-6894
| |
Collapse
|
26
|
Huseby CJ, Hoffman CN, Cooper GL, Cocuron JC, Alonso AP, Thomas SN, Yang AJ, Kuret J. Quantification of Tau Protein Lysine Methylation in Aging and Alzheimer's Disease. J Alzheimers Dis 2020; 71:979-991. [PMID: 31450505 DOI: 10.3233/jad-190604] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tau is a microtubule-associated protein that normally interacts in monomeric form with the neuronal cytoskeleton. In Alzheimer's disease, however, it aggregates to form the structural component of neurofibrillary lesions. The transformation is controlled in part by age- and disease-associated post-translational modifications. Recently we reported that tau isolated from cognitively normal human brain was methylated on lysine residues, and that high-stoichiometry methylation depressed tau aggregation propensity in vitro. However, whether methylation stoichiometry reached levels needed to influence aggregation propensity in human brain was unknown. Here we address this problem using liquid chromatography-tandem mass spectrometry approaches and human-derived tau samples. Results revealed that lysine methylation was present in soluble tau isolated from cognitively normal elderly cases at multiple sites that only partially overlapped with the distributions reported for cognitively normal middle aged and AD cohorts, and that the quality of methylation shifted from predominantly dimethyl-lysine to monomethyl-lysine with aging and disease. However, bulk mol methylation/mol tau stoichiometries never exceeded 1 mol methyl group/mol tau protein. We conclude that lysine methylation is a physiological post-translational modification of tau protein that changes qualitatively with aging and disease, and that pharmacological elevation of tau methylation may provide a means for protecting against pathological tau aggregation.
Collapse
Affiliation(s)
- Carol J Huseby
- Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, OH, USA
| | - Claire N Hoffman
- Ohio State Biochemistry Program, Ohio State University, Columbus, OH, USA
| | - Grace L Cooper
- Ohio State Biochemistry Program, Ohio State University, Columbus, OH, USA
| | | | - Ana P Alonso
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Stefani N Thomas
- Department of Anatomy and Neurobiology; Molecular & Structural Biology Program, Greenebaum Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Austin J Yang
- Department of Anatomy and Neurobiology; Molecular & Structural Biology Program, Greenebaum Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Jeff Kuret
- Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, OH, USA.,Ohio State Biochemistry Program, Ohio State University, Columbus, OH, USA.,Department of Biological Chemistry & Pharmacology, Ohio State University, Columbus, OH, USA
| |
Collapse
|
27
|
Khan ZA, Park S. An Electrochemical Chip to Monitor In Vitro Glycation of Proteins and Screening of Antiglycation Potential of Drugs. Pharmaceutics 2020; 12:E1011. [PMID: 33113943 PMCID: PMC7690698 DOI: 10.3390/pharmaceutics12111011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
Hyperglycemia and the production of advanced glycation end products (AGEs) are the primary factors for the development of chronic complications in diabetes. The level of protein glycation is proportional to the glucose concentration and represents mean glycemia. In this study, we present an electrochemical chip-based method for in vitro glycation monitoring and the efficacy evaluation of an antiglycation compound. An electrochemical chip consisting of five microchambers and embedded microelectrodes was designed for parallel measurements of capacitance signals from multiple solutions at different concentrations. The feasibility of glycation monitoring was then investigated by measuring the capacitance signal at 0.13 MHz with bovine serum albumin and gelatin samples in the presence of various glucose concentrations over 28 days. A significant change in the capacitance due to protein glycation was observed through measurements conducted within 30 s and 21 days of incubation. Finally, we demonstrated that the chip-based capacitance measurement can be utilized for the selection of an antiglycation compound by supplementing the protein solution and hyperglycemic concentration of glucose with an inhibitory concentration of the standard antiglycation agent aspirin. The lack of a significant change in the capacitance over 28 days proved that aspirin is capable of inhibiting protein glycation. Thus, a strong relationship exists between glycation and capacitance, suggesting the application of an electrochemical chip for evaluating glycation and novel antiglycation agents.
Collapse
Affiliation(s)
| | - Seungkyung Park
- School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chunggnam 31253, Korea;
| |
Collapse
|
28
|
Aspirin inhibits TGFβ2-induced epithelial to mesenchymal transition of lens epithelial cells: selective acetylation of K56 and K122 in histone H3. Biochem J 2020; 477:75-97. [PMID: 31815277 DOI: 10.1042/bcj20190540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022]
Abstract
Posterior capsule opacification (PCO) is a complication after cataract surgery that can disrupt vision. The epithelial to mesenchymal transition (EMT) of lens epithelial cells (LECs) in response to transforming growth factor β2 (TGFβ2) has been considered an obligatory mechanism for PCO. In this study, we tested the efficacy of aspirin in inhibiting the TGFβ2-mediated EMT of human LECs, LECs in human lens capsular bags, and lensectomized mice. In human LECs, the levels of the EMT markers α-smooth muscle actin (α-SMA) and fibronectin were drastically reduced by treatment with 2 mM aspirin. Aspirin also halted the EMT response of TGFβ2 when introduced after EMT initiation. In human capsular bags, treatment with 2 mM aspirin significantly suppressed posterior capsule wrinkling and the expression α-SMA in capsule-adherent LECs. The inhibition of TGFβ2-mediated EMT in human LECs was not dependent on Smad phosphorylation or MAPK and AKT-mediated signaling. We found that aspirin significantly increased the acetylation of K56 and K122 in histone H3 of human LECs. Chromatin immunoprecipitation assays using acetyl-H3K56 or acetyl-H3K122 antibody revealed that aspirin blocked the TGFβ2-induced acetylation of H3K56 and H3K122 at the promoter regions of ACTA2 and COL1A1. After lensectomy in mice, we observed an increase in the proliferation and α-SMA expression of the capsule-adherent LECs, which was ameliorated by aspirin administration through drinking water. Taken together, our results showed that aspirin inhibits TGFβ2-mediated EMT of LECs, possibly from epigenetic down-regulation of EMT-related genes.
Collapse
|
29
|
Guo L, Gao J, Gao Y, Zhu Z, Zhang Y. Aspirin Reshapes Acetylomes in Inflammatory and Cancer Cells via CoA-Dependent and CoA-Independent Pathways. J Proteome Res 2020; 19:962-972. [PMID: 31922419 DOI: 10.1021/acs.jproteome.9b00853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aspirin, or acetylsalicylic acid (ASA), is the most widely used medication to relieve pain, fever, and inflammation. Recent studies have revealed new benefits of aspirin, including reduction of heart attack and stroke, anticancer, and life extension. Despite the profound effects of aspirin, the mechanism of its action remains to be elucidated. Here, we used deuterium-labeled aspirin (D-aspirin) together with mass spectrometry-based acetylomic analysis, termed DAcMS, to investigate the landscape of protein acetylation induced by aspirin. The DAcMS revealed the acetylomes of lipopolysaccharide-induced inflammatory BV2 cells and colon cancer HCT116 cells. The acetylation level was substantially induced upon aspirin treatment in both cell lines. In total, we identified 17,003 acetylation sites on 4623 proteins in BV2 cells and 16,366 acetylated sites corresponding to 4702 acetylated proteins in HCT116 cells. Importantly, functional analyses of these aspirin-induced acetylated proteins suggested that they were highly enriched in many key biological categories, which function importantly in inflammatory response. We further demonstrated that aspirin acetylates proteins through both acetyl-CoA-dependent and acetyl-CoA-independent pathways, and the accessible lysine residues at the protein surface are major acetylation targets of aspirin. Hence, our study provides the comprehensive atlas of aspirin-induced acetylome under disease conditions. This knowledge proffers new insight into the aspirin-directed acetylome and perhaps new drug target sites relevant to human cancer and inflammatory diseases. The MS data of this study have been deposited under the accession number IPX0001923000 at iProX.
Collapse
Affiliation(s)
- Lin Guo
- Interdisciplinary Research Center on Biology and Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 26 Qiuyue Road , Pudong, Shanghai 201210 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jing Gao
- Interdisciplinary Research Center on Biology and Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 26 Qiuyue Road , Pudong, Shanghai 201210 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yang Gao
- Interdisciplinary Research Center on Biology and Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 26 Qiuyue Road , Pudong, Shanghai 201210 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhengjiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 26 Qiuyue Road , Pudong, Shanghai 201210 , China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 26 Qiuyue Road , Pudong, Shanghai 201210 , China
| |
Collapse
|
30
|
Abstract
Nε-lysine acetylation was discovered more than half a century ago as a post-translational modification of histones and has been extensively studied in the context of transcription regulation. In the past decade, proteomic analyses have revealed that non-histone proteins are frequently acetylated and constitute a major portion of the acetylome in mammalian cells. Indeed, non-histone protein acetylation is involved in key cellular processes relevant to physiology and disease, such as gene transcription, DNA damage repair, cell division, signal transduction, protein folding, autophagy and metabolism. Acetylation affects protein functions through diverse mechanisms, including by regulating protein stability, enzymatic activity, subcellular localization and crosstalk with other post-translational modifications and by controlling protein-protein and protein-DNA interactions. In this Review, we discuss recent progress in our understanding of the scope, functional diversity and mechanisms of non-histone protein acetylation.
Collapse
|
31
|
Zhang L, Wang W, Zhang S, Wang Y, Guo W, Liu Y, Wang Y, Zhang Y. Identification of lysine acetylome in cervical cancer by label-free quantitative proteomics. Cancer Cell Int 2020; 20:182. [PMID: 32489318 PMCID: PMC7247262 DOI: 10.1186/s12935-020-01266-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lysine acetylation is a post-translational modification that regulates a diversity of biological processes, including cancer development. METHODS Here, we performed the quantitative acetylproteomic analysis of three primary cervical cancer tissues and corresponding adjacent normal tissues by using the label-free proteomics approach. RESULTS We identified a total of 928 lysine acetylation sites from 1547 proteins, in which 495 lysine acetylation sites corresponding to 296 proteins were quantified. Further, 41 differentially expressed lysine acetylation sites corresponding to 30 proteins were obtained in cervical cancer tissues compared with adjacent normal tissues (Fold change > 2 and P < 0.05), of which 1 was downregulated, 40 were upregulated. Moreover, 75 lysine acetylation sites corresponding to 58 proteins were specifically detected in cancer tissues or normal adjacent tissues. Motif-X analysis showed that kxxxkxxxk, GkL, AxxEk, kLxE, and kkxxxk are the most enriched motifs with over four-fold increases when compared with the background matches. KEGG analysis showed that proteins identified from differently and specifically expressed peptides may influence key pathways, such as Notch signaling pathway, viral carcinogenesis, RNA transport, and Jak-STAT, which play an important role in tumor progression. Furthermore, the acetylated levels of CREBBP and S100A9 in cervical cancer tissues were confirmed by immunoprecipitation (IP) and Western blot analysis. CONCLUSIONS Taken together, our data provide novel insights into the role of protein lysine acetylation in cervical carcinogenesis.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081 Heilongjiang Province China
| | - Wanyue Wang
- School of Basic Medical Sciences, Qiqihar Medical University, Qiqihar, 161006 Heilongjiang China
| | - Shanqiang Zhang
- Medical Research Center, Yue Bei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, 512025 Guangdong China
| | - Yuxin Wang
- Department of Gynecology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081 Heilongjiang Province China
| | - Weikang Guo
- Department of Gynecology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081 Heilongjiang Province China
| | - Yunduo Liu
- Department of Gynecology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081 Heilongjiang Province China
| | - Yaoxian Wang
- Department of Gynecology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081 Heilongjiang Province China
| | - Yunyan Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081 Heilongjiang Province China
| |
Collapse
|
32
|
MacGowan SA, Madeira F, Britto‐Borges T, Warowny M, Drozdetskiy A, Procter JB, Barton GJ. The Dundee Resource for Sequence Analysis and Structure Prediction. Protein Sci 2020; 29:277-297. [PMID: 31710725 PMCID: PMC6933851 DOI: 10.1002/pro.3783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 11/06/2022]
Abstract
The Dundee Resource for Sequence Analysis and Structure Prediction (DRSASP; http://www.compbio.dundee.ac.uk/drsasp.html) is a collection of web services provided by the Barton Group at the University of Dundee. DRSASP's flagship services are the JPred4 webserver for secondary structure and solvent accessibility prediction and the JABAWS 2.2 webserver for multiple sequence alignment, disorder prediction, amino acid conservation calculations, and specificity-determining site prediction. DRSASP resources are available through conventional web interfaces and APIs but are also integrated into the Jalview sequence analysis workbench, which enables the composition of multitool interactive workflows. Other existing Barton Group tools are being brought under the banner of DRSASP, including NoD (Nucleolar localization sequence detector) and 14-3-3-Pred. New resources are being developed that enable the analysis of population genetic data in evolutionary and 3D structural contexts. Existing resources are actively developed to exploit new technologies and maintain parity with evolving web standards. DRSASP provides substantial computational resources for public use, and since 2016 DRSASP services have completed over 1.5 million jobs.
Collapse
Affiliation(s)
- Stuart A. MacGowan
- Division of Computational BiologyCollege of Life Sciences, University of DundeeUK
| | - Fábio Madeira
- Division of Computational BiologyCollege of Life Sciences, University of DundeeUK
| | - Thiago Britto‐Borges
- Division of Computational BiologyCollege of Life Sciences, University of DundeeUK
| | - Mateusz Warowny
- Division of Computational BiologyCollege of Life Sciences, University of DundeeUK
| | - Alexey Drozdetskiy
- Division of Computational BiologyCollege of Life Sciences, University of DundeeUK
| | - James B. Procter
- Division of Computational BiologyCollege of Life Sciences, University of DundeeUK
| | - Geoffrey J. Barton
- Division of Computational BiologyCollege of Life Sciences, University of DundeeUK
| |
Collapse
|
33
|
Di Minno A, Porro B, Turnu L, Manega CM, Eligini S, Barbieri S, Chiesa M, Poggio P, Squellerio I, Anesi A, Fiorelli S, Caruso D, Veglia F, Cavalca V, Tremoli E. Untargeted Metabolomics to Go beyond the Canonical Effect of Acetylsalicylic Acid. J Clin Med 2019; 9:jcm9010051. [PMID: 31878351 PMCID: PMC7020007 DOI: 10.3390/jcm9010051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 02/07/2023] Open
Abstract
Given to its ability to irreversibly acetylate the platelet cyclooxygenase-1 enzyme, acetylsalicylic acid (ASA) is successfully employed for the prevention of cardiovascular disease. Recently, an antitumoral effect of ASA in colorectal cancer has been increasingly documented. However, the molecular and metabolic mechanisms by which ASA exerts such effect is largely unknown. Using a new, untargeted liquid chromatography–mass spectrometry approach, we have analyzed urine samples from seven healthy participants that each ingested 100 mg of ASA once daily for 1 week. Of the 2007 features detected, 25 metabolites differing after ASA ingestion (nominal p < 0.05 and variable importance in projection (VIP) score > 1) were identified, and pathway analysis revealed low levels of glutamine and of metabolites involved in histidine and purine metabolisms. Likewise, consistent with an altered fatty acid β-oxidation process, a decrease in several short- and medium-chain acyl-carnitines was observed. An abnormal β-oxidation and a lower than normal glutamine availability suggests reduced synthesis of acetyl-Co-A, as they are events linked to one another and experimentally related to ASA antiproliferative effects. While giving an example of how untargeted metabolomics allows us to explore new clinical applications of drugs, the present data provide a direction to be pursued to test the therapeutic effects of ASA—e.g., the antitumoral effect—beyond cardiovascular protection.
Collapse
Affiliation(s)
- Alessandro Di Minno
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, 80131 Naples, Italy;
| | - Benedetta Porro
- Centro Cardiologico Monzino IRCCS, Unit of Metabolomics and Cellular Biochemistry of Atherothrombosis, 20138 Milan, Italy; (B.P.); (L.T.); (C.M.M.); (S.E.); (I.S.); (S.F.)
| | - Linda Turnu
- Centro Cardiologico Monzino IRCCS, Unit of Metabolomics and Cellular Biochemistry of Atherothrombosis, 20138 Milan, Italy; (B.P.); (L.T.); (C.M.M.); (S.E.); (I.S.); (S.F.)
| | - Chiara Maria Manega
- Centro Cardiologico Monzino IRCCS, Unit of Metabolomics and Cellular Biochemistry of Atherothrombosis, 20138 Milan, Italy; (B.P.); (L.T.); (C.M.M.); (S.E.); (I.S.); (S.F.)
| | - Sonia Eligini
- Centro Cardiologico Monzino IRCCS, Unit of Metabolomics and Cellular Biochemistry of Atherothrombosis, 20138 Milan, Italy; (B.P.); (L.T.); (C.M.M.); (S.E.); (I.S.); (S.F.)
| | - Simone Barbieri
- Centro Cardiologico Monzino IRCCS, Unit of Biostatistics, 20138 Milan, Italy; (S.B.); (F.V.)
| | - Mattia Chiesa
- Centro Cardiologico Monzino IRCCS, Unit of Immunology and Functional Genomics, 20138 Milan, Italy;
| | - Paolo Poggio
- Centro Cardiologico Monzino IRCCS, Unit for the Study of Aortic, Valvular and Coronary Pathologies, 20138 Milan, Italy;
| | - Isabella Squellerio
- Centro Cardiologico Monzino IRCCS, Unit of Metabolomics and Cellular Biochemistry of Atherothrombosis, 20138 Milan, Italy; (B.P.); (L.T.); (C.M.M.); (S.E.); (I.S.); (S.F.)
| | - Andrea Anesi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy;
| | - Susanna Fiorelli
- Centro Cardiologico Monzino IRCCS, Unit of Metabolomics and Cellular Biochemistry of Atherothrombosis, 20138 Milan, Italy; (B.P.); (L.T.); (C.M.M.); (S.E.); (I.S.); (S.F.)
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20122 Milan, Italy;
| | - Fabrizio Veglia
- Centro Cardiologico Monzino IRCCS, Unit of Biostatistics, 20138 Milan, Italy; (S.B.); (F.V.)
| | - Viviana Cavalca
- Centro Cardiologico Monzino IRCCS, Unit of Metabolomics and Cellular Biochemistry of Atherothrombosis, 20138 Milan, Italy; (B.P.); (L.T.); (C.M.M.); (S.E.); (I.S.); (S.F.)
- Correspondence: ; Tel.: +39-02-58002345
| | - Elena Tremoli
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy;
| |
Collapse
|
34
|
Analysis and Interpretation of Protein Post-Translational Modification Site Stoichiometry. Trends Biochem Sci 2019; 44:943-960. [DOI: 10.1016/j.tibs.2019.06.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022]
|
35
|
Causes and Consequences of A Glutamine Induced Normoxic HIF1 Activity for the Tumor Metabolism. Int J Mol Sci 2019; 20:ijms20194742. [PMID: 31554283 PMCID: PMC6802203 DOI: 10.3390/ijms20194742] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/01/2019] [Accepted: 09/15/2019] [Indexed: 12/14/2022] Open
Abstract
The transcription factor hypoxia-inducible factor 1 (HIF1) is the crucial regulator of genes that are involved in metabolism under hypoxic conditions, but information regarding the transcriptional activity of HIF1 in normoxic metabolism is limited. Different tumor cells were treated under normoxic and hypoxic conditions with various drugs that affect cellular metabolism. HIF1α was silenced by siRNA in normoxic/hypoxic tumor cells, before RNA sequencing and bioinformatics analyses were performed while using the breast cancer cell line MDA-MB-231 as a model. Differentially expressed genes were further analyzed and validated by qPCR, while the activity of the metabolites was determined by enzyme assays. Under normoxic conditions, HIF1 activity was significantly increased by (i) glutamine metabolism, which was associated with the release of ammonium, and it was decreased by (ii) acetylation via acetyl CoA synthetase (ACSS2) or ATP citrate lyase (ACLY), respectively, and (iii) the presence of L-ascorbic acid, citrate, or acetyl-CoA. Interestingly, acetylsalicylic acid, ibuprofen, L-ascorbic acid, and citrate each significantly destabilized HIF1α only under normoxia. The results from the deep sequence analyses indicated that, in HIF1-siRNA silenced MDA-MB-231 cells, 231 genes under normoxia and 1384 genes under hypoxia were transcriptionally significant deregulated in a HIF1-dependent manner. Focusing on glycolysis genes, it was confirmed that HIF1 significantly regulated six normoxic and 16 hypoxic glycolysis-associated gene transcripts. However, the results from the targeted metabolome analyses revealed that HIF1 activity affected neither the consumption of glucose nor the release of ammonium or lactate; however, it significantly inhibited the release of the amino acid alanine. This study comprehensively investigated, for the first time, how normoxic HIF1 is stabilized, and it analyzed the possible function of normoxic HIF1 in the transcriptome and metabolic processes of tumor cells in a breast cancer cell model. Furthermore, these data imply that HIF1 compensates for the metabolic outcomes of glutaminolysis and, subsequently, the Warburg effect might be a direct consequence of the altered amino acid metabolism in tumor cells.
Collapse
|
36
|
Singh B, Sarli VN, Kinne HE, Shamsnia A, Lucci A. Evaluation of 6-mercaptopurine in a cell culture model of adaptable triple-negative breast cancer with metastatic potential. Oncotarget 2019; 10:3681-3693. [PMID: 31217902 PMCID: PMC6557209 DOI: 10.18632/oncotarget.26978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Progenitor-like cancer cells that can survive in reversible quiescence when faced with various challenges in the body are often behind disease progression. A lack of glutamine in culture medium, which eliminates >99.9% of proliferating SUM149 triple-negative breast cancer cells, selects such adaptable, pan-resistant cells. Our data support the hypothesis that a lack of glutamine forces the selection of an epigenetic state that does not require a high level of TET2, thus selecting an “undifferentiated” therapy-resistant phenotype as seen in TET2-mutant cancers. Our data suggesting that highly adaptable cells are generated through reprograming of the epigenome and transcriptome led us to evaluate low-dose 6-mercaptopurine as a potential therapy in our model. We found that a long treatment with low-dose 6-mercaptopurine inhibited the proliferation of these adaptable cells to a greater extent than it inhibited parental cells. Importantly, a small percentage of adaptable cells survived a low-dose 6-mercaptopurine treatment in a reversible quiescence, analogous to the persistence of abnormal progenitor-like cells in inflammatory bowel disease, which stays in a durable remission with a 6-mercaptopurine treatment. Based on a biomarkers analysis, a long treatment with 6-mercaptopurine or aspirin partially reversed epithelial to mesenchymal transition in adaptable cancer cells. A cell culture model of adaptable cancer cells that persist in the body will help in discovering superior therapies that can be offered before the disease advances to metastasis.
Collapse
Affiliation(s)
- Balraj Singh
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vanessa N Sarli
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hannah E Kinne
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Shamsnia
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anthony Lucci
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
37
|
Zhang X, Feng Y, Liu X, Ma J, Li Y, Wang T, Li X. Beyond a chemopreventive reagent, aspirin is a master regulator of the hallmarks of cancer. J Cancer Res Clin Oncol 2019; 145:1387-1403. [PMID: 31037399 DOI: 10.1007/s00432-019-02902-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Aspirin, one of the most commonly used nonsteroidal anti-inflammatory drugs (NAIDS), not only shows cancer chemoprevention effects but also improves cancer therapeutic effects when combined with other therapies. Studies that focus on aspirin regulation of the hallmarks of cancer and the associated molecular mechanisms facilitate a more thorough understanding of aspirin in mediating chemoprevention and may supply additional information for the development of novel cancer therapeutic agents. METHODS The relevant literatures from PubMed have been reviewed in this article. RESULTS Current studies have revealed that aspirin regulates almost all the hallmarks of cancer. Within tumor tissue, aspirin suppresses the bioactivities of cancer cells themselves and deteriorates the tumor microenvironment that supports cancer progression. In addition to tumor tissues, blocking of platelet activation also contributes to the ability of aspirin to inhibit cancer progression. In terms of the molecular mechanism, aspirin targets oncogenes and cancer-related signaling pathways and activates certain tumor suppressors. CONCLUSION Beyond a chemopreventive agent, aspirin is a master regulator of the hallmarks of cancer.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Pathology, Harbin Medical University, Harbin, 150086, China
| | - Yukuan Feng
- Key Laboratory of Heilongjiang Province for Cancer Prevention and Control, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xi Liu
- Center of Cardiovascular Disease, Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia, China
| | - Jianhui Ma
- Department of Pathology, Harbin Medical University, Harbin, 150086, China
| | - Yafei Li
- Department of Pathology, Harbin Medical University, Harbin, 150086, China
| | - Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, 150086, China.
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
38
|
Hansen BK, Gupta R, Baldus L, Lyon D, Narita T, Lammers M, Choudhary C, Weinert BT. Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation. Nat Commun 2019; 10:1055. [PMID: 30837475 PMCID: PMC6401094 DOI: 10.1038/s41467-019-09024-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
Lysine acetylation is a reversible posttranslational modification that occurs at thousands of sites on human proteins. However, the stoichiometry of acetylation remains poorly characterized, and is important for understanding acetylation-dependent mechanisms of protein regulation. Here we provide accurate, validated measurements of acetylation stoichiometry at 6829 sites on 2535 proteins in human cervical cancer (HeLa) cells. Most acetylation occurs at very low stoichiometry (median 0.02%), whereas high stoichiometry acetylation (>1%) occurs on nuclear proteins involved in gene transcription and on acetyltransferases. Analysis of acetylation copy numbers show that histones harbor the majority of acetylated lysine residues in human cells. Class I deacetylases target a greater proportion of high stoichiometry acetylation compared to SIRT1 and HDAC6. The acetyltransferases CBP and p300 catalyze a majority (65%) of high stoichiometry acetylation. This resource dataset provides valuable information for evaluating the impact of individual acetylation sites on protein function and for building accurate mechanistic models. Many human proteins are regulated by lysine acetylation, but the degree of acetylation at individual sites is poorly characterized. Here, the authors measure acetylation stoichiometry in the HeLa cell proteome, providing a resource to assess mechanistic constraints on acetylation-mediated protein regulation.
Collapse
Affiliation(s)
- Bogi Karbech Hansen
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Rajat Gupta
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Linda Baldus
- Institute of Biochemistry, Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, Greifswald, 17487, Germany.,Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, CECAD, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - David Lyon
- Disease Systems Biology Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Takeo Narita
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Michael Lammers
- Institute of Biochemistry, Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, Greifswald, 17487, Germany.,Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, CECAD, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
| | - Brian T Weinert
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
39
|
Dai J, Huang YJ, He X, Zhao M, Wang X, Liu ZS, Xue W, Cai H, Zhan XY, Huang SY, He K, Wang H, Wang N, Sang Z, Li T, Han QY, Mao J, Diao X, Song N, Chen Y, Li WH, Man JH, Li AL, Zhou T, Liu ZG, Zhang XM, Li T. Acetylation Blocks cGAS Activity and Inhibits Self-DNA-Induced Autoimmunity. Cell 2019; 176:1447-1460.e14. [PMID: 30799039 DOI: 10.1016/j.cell.2019.01.016] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/27/2018] [Accepted: 01/04/2019] [Indexed: 12/30/2022]
Abstract
The presence of DNA in the cytoplasm is normally a sign of microbial infections and is quickly detected by cyclic GMP-AMP synthase (cGAS) to elicit anti-infection immune responses. However, chronic activation of cGAS by self-DNA leads to severe autoimmune diseases for which no effective treatment is available yet. Here we report that acetylation inhibits cGAS activation and that the enforced acetylation of cGAS by aspirin robustly suppresses self-DNA-induced autoimmunity. We find that cGAS acetylation on either Lys384, Lys394, or Lys414 contributes to keeping cGAS inactive. cGAS is deacetylated in response to DNA challenges. Importantly, we show that aspirin can directly acetylate cGAS and efficiently inhibit cGAS-mediated immune responses. Finally, we demonstrate that aspirin can effectively suppress self-DNA-induced autoimmunity in Aicardi-Goutières syndrome (AGS) patient cells and in an AGS mouse model. Thus, our study reveals that acetylation contributes to cGAS activity regulation and provides a potential therapy for treating DNA-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Jiang Dai
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China; State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China
| | - Yi-Jiao Huang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China
| | - Xinhua He
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China
| | - Ming Zhao
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China
| | - Xinzheng Wang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China
| | - Zhao-Shan Liu
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China
| | - Wen Xue
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China
| | - Hong Cai
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China
| | - Xiao-Yan Zhan
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China
| | - Shao-Yi Huang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China; State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China
| | - Kun He
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China
| | - Hongxia Wang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China
| | - Na Wang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China
| | - Zhihong Sang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China
| | - Tingting Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China
| | - Qiu-Ying Han
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China
| | - Jie Mao
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China
| | - Xinwei Diao
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China; Department of Pathology, Xinqiao Hospital, 3(rd) Military Medical University, Chongqing 400037, China
| | - Nan Song
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China
| | - Yuan Chen
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China
| | - Wei-Hua Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China
| | - Jiang-Hong Man
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China
| | - Ai-Ling Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China
| | - Tao Zhou
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China
| | - Zheng-Gang Liu
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Xue-Min Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China; State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China; Cancer Research Institute of Jilin University, the First Hospital of Jilin University, Changchun, Jilin Province 130021, China.
| | - Tao Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China; State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Road, Beijing 100850, China.
| |
Collapse
|
40
|
Fedotcheva NI, Kondrashova MN, Litvinova EG, Zakharchenko MV, Khunderyakova NV, Beloborodova NV. Modulation of the Activity of Succinate Dehydrogenase by Acetylation with Chemicals, Drugs, and Microbial Metabolites. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350918050081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
41
|
Zhan Y, He Z, Liu X, Miao N, Lin F, Xu W, Mu S, Mu H, Yuan M, Cao X, Jin H, Liu Z, Li Y, Zhang B. Aspirin-induced attenuation of adipogenic differentiation of bone marrow mesenchymal stem cells is accompanied by the disturbed epigenetic modification. Int J Biochem Cell Biol 2018; 98:29-42. [DOI: 10.1016/j.biocel.2018.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
|
42
|
Ornelas A, Zacharias-Millward N, Menter DG, Davis JS, Lichtenberger L, Hawke D, Hawk E, Vilar E, Bhattacharya P, Millward S. Beyond COX-1: the effects of aspirin on platelet biology and potential mechanisms of chemoprevention. Cancer Metastasis Rev 2018; 36:289-303. [PMID: 28762014 PMCID: PMC5557878 DOI: 10.1007/s10555-017-9675-z] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
After more than a century, aspirin remains one of the most commonly used drugs in western medicine. Although mainly used for its anti-thrombotic, anti-pyretic, and analgesic properties, a multitude of clinical studies have provided convincing evidence that regular, low-dose aspirin use dramatically lowers the risk of cancer. These observations coincide with recent studies showing a functional relationship between platelets and tumors, suggesting that aspirin's chemopreventive properties may result, in part, from direct modulation of platelet biology and biochemistry. Here, we present a review of the biochemistry and pharmacology of aspirin with particular emphasis on its cyclooxygenase-dependent and cyclooxygenase-independent effects in platelets. We also correlate the results of proteomic-based studies of aspirin acetylation in eukaryotic cells with recent developments in platelet proteomics to identify non-cyclooxygenase targets of aspirin-mediated acetylation in platelets that may play a role in its chemopreventive mechanism.
Collapse
Affiliation(s)
- Argentina Ornelas
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Niki Zacharias-Millward
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David G Menter
- Department of Gastrointestinal (GI) Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer S Davis
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lenard Lichtenberger
- McGovern Medical School, Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David Hawke
- Department of Systems Biology, Proteomics and Metabolomics Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ernest Hawk
- Department of Clinical Cancer Prevention, Division of OVP, Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, Division of OVP, Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven Millward
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
43
|
Ali I, Conrad RJ, Verdin E, Ott M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem Rev 2018; 118:1216-1252. [PMID: 29405707 PMCID: PMC6609103 DOI: 10.1021/acs.chemrev.7b00181] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational acetylation of lysine residues has emerged as a key regulatory mechanism in all eukaryotic organisms. Originally discovered in 1963 as a unique modification of histones, acetylation marks are now found on thousands of nonhistone proteins located in virtually every cellular compartment. Here we summarize key findings in the field of protein acetylation over the past 20 years with a focus on recent discoveries in nuclear, cytoplasmic, and mitochondrial compartments. Collectively, these findings have elevated protein acetylation as a major post-translational modification, underscoring its physiological relevance in gene regulation, cell signaling, metabolism, and disease.
Collapse
Affiliation(s)
- Ibraheem Ali
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Ryan J. Conrad
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| |
Collapse
|
44
|
Synthesis and spectroscopic/DFT structural characterization of coordination compounds of Nb(V) and Ti(IV) with bioactive carboxylic acids. Polyhedron 2018. [DOI: 10.1016/j.poly.2017.11.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Rasouli S, Abdolvahabi A, Croom CM, Plewman DL, Shi Y, Ayers JI, Shaw BF. Lysine acylation in superoxide dismutase-1 electrostatically inhibits formation of fibrils with prion-like seeding. J Biol Chem 2017; 292:19366-19380. [PMID: 28974578 DOI: 10.1074/jbc.m117.805283] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/28/2017] [Indexed: 11/06/2022] Open
Abstract
The acylation of lysine residues in superoxide dismutase-1 (SOD1) has been previously shown to decrease its rate of nucleation and elongation into amyloid-like fibrils linked to amyotrophic lateral sclerosis. The chemical mechanism underlying this effect is unclear, i.e. hydrophobic/steric effects versus electrostatic effects. Moreover, the degree to which the acylation might alter the prion-like seeding of SOD1 in vivo has not been addressed. Here, we acylated a fraction of lysine residues in SOD1 with groups of variable hydrophobicity, charge, and conformational entropy. The effect of each acyl group on the rate of SOD1 fibril nucleation and elongation were quantified in vitro with thioflavin-T (ThT) fluorescence, and we performed 594 iterate aggregation assays to obtain statistically significant rates. The effect of the lysine acylation on the prion-like seeding of SOD1 was assayed in spinal cord extracts of transgenic mice expressing a G85R SOD1-yellow fluorescent protein construct. Acyl groups with >2 carboxylic acids diminished self-assembly into ThT-positive fibrils and instead promoted the self-assembly of ThT-negative fibrils and amorphous complexes. The addition of ThT-negative, acylated SOD1 fibrils to organotypic spinal cord failed to produce the SOD1 inclusion pathology that typically results from the addition of ThT-positive SOD1 fibrils. These results suggest that chemically increasing the net negative surface charge of SOD1 via acylation can block the prion-like propagation of oligomeric SOD1 in spinal cord.
Collapse
Affiliation(s)
- Sanaz Rasouli
- From the Department of Chemistry and Biochemistry and.,the Institute of Biomedical Studies, Baylor University, Waco, Texas 76706 and
| | | | | | | | - Yunhua Shi
- From the Department of Chemistry and Biochemistry and
| | - Jacob I Ayers
- the Department of Neuroscience, University of Florida, Gainesville, Florida 32611
| | - Bryan F Shaw
- From the Department of Chemistry and Biochemistry and
| |
Collapse
|
46
|
Chen J, Stark LA. Aspirin Prevention of Colorectal Cancer: Focus on NF-κB Signalling and the Nucleolus. Biomedicines 2017; 5:biomedicines5030043. [PMID: 28718829 PMCID: PMC5618301 DOI: 10.3390/biomedicines5030043] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023] Open
Abstract
Overwhelming evidence indicates that aspirin and related non-steroidal anti-inflammatory drugs (NSAIDs) have anti-tumour activity and the potential to prevent cancer, particularly colorectal cancer. However, the mechanisms underlying this effect remain hypothetical. Dysregulation of the nuclear factor-kappaB (NF-κB) transcription factor is a common event in many cancer types which contributes to tumour initiation and progression by driving expression of pro-proliferative/anti-apoptotic genes. In this review, we will focus on the current knowledge regarding NSAID effects on the NF-κB signalling pathway in pre-cancerous and cancerous lesions, and the evidence that these effects contribute to the anti-tumour activity of the agents. The nuclear organelle, the nucleolus, is emerging as a central regulator of transcription factor activity and cell growth and death. Nucleolar function is dysregulated in the majority of cancers which promotes cancer growth through direct and indirect mechanisms. Hence, this organelle is emerging as a promising target for novel therapeutic agents. Here, we will also discuss evidence for crosstalk between the NF-κB pathway and nucleoli, the role that this cross-talk has in the anti-tumour effects of NSAIDs and ways forward to exploit this crosstalk for therapeutic purpose.
Collapse
Affiliation(s)
- Jingyu Chen
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Rd., Edinburgh, Scotland EH4 2XU, UK.
| | - Lesley A Stark
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Rd., Edinburgh, Scotland EH4 2XU, UK.
| |
Collapse
|