1
|
Mielcarska S, Kot A, Kula A, Dawidowicz M, Sobków P, Kłaczka D, Waniczek D, Świętochowska E. B7H3 in Gastrointestinal Tumors: Role in Immune Modulation and Cancer Progression: A Review of the Literature. Cells 2025; 14:530. [PMID: 40214484 PMCID: PMC11988818 DOI: 10.3390/cells14070530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
B7-H3 (CD276), a member of the B7 immune checkpoint family, plays a critical role in modulating immune responses and has emerged as a promising target in cancer therapy. It is highly expressed in various malignancies, where it promotes tumor evasion from T cell surveillance and contributes to cancer progression, metastasis, and therapeutic resistance, showing a correlation with the poor prognosis of patients. Although its receptors were not fully identified, B7-H3 signaling involves key intracellular pathways, including JAK/STAT, NF-κB, PI3K/Akt, and MAPK, driving processes crucial for supporting tumor growth such as cell proliferation, invasion, and apoptosis inhibition. Beyond immune modulation, B7-H3 influences cancer cell metabolism, angiogenesis, and epithelial-to-mesenchymal transition, further exacerbating tumor aggressiveness. The development of B7-H3-targeting therapies, including monoclonal antibodies, antibody-drug conjugates, and CAR-T cells, offers promising avenues for treatment. This review provides an up-to-date summary of the B7H3 mechanisms of action, putative receptors, and ongoing clinical trials evaluating therapies targeting B7H3, focusing on the molecule's role in gastrointestinal tumors.
Collapse
Affiliation(s)
- Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.K.); (P.S.); (D.K.)
| | - Anna Kot
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.K.); (P.S.); (D.K.)
| | - Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-514 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-514 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Piotr Sobków
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.K.); (P.S.); (D.K.)
| | - Daria Kłaczka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.K.); (P.S.); (D.K.)
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-514 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.K.); (P.S.); (D.K.)
| |
Collapse
|
2
|
Tamura Y, Ohki S, Nagai H, Yoshizato R, Nishi S, Jin Y, Kitajima Y, Guo Y, Ichinohe T, Okada S, Kawano Y, Yasuda T. Co-expression of B7-H3 and LAG3 represents cytotoxicity of CD4 + T cells in humans. Front Immunol 2025; 16:1560383. [PMID: 40070836 PMCID: PMC11893609 DOI: 10.3389/fimmu.2025.1560383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Recent studies have highlighted the potential contribution of CD4+ T cells with cytotoxic activity (CD4 CTLs) to anti-tumor immunity. However, their precise roles remain elusive, partly due to the absence of specific markers defining CD4 CTLs with target-killing potential in humans. We previously demonstrated that Epstein-Barr virus (EBV)-driven immortalized B cell lines efficiently induce human CD4 CTLs with cytotoxic functions comparable to cytotoxic CD8+ T cells (CD8 CTLs). Here we show that EBV-driven CD4 CTLs exhibit prolonged proliferation and sustained cytotoxicity compared with CD8 CTLs, although their cytotoxic function markedly decreased during long-term culture. Comparative transcriptomic analysis of CD4 CTLs with varying cytotoxic activities identified B7-H3 and LAG3 as surface molecules associated with highly cytotoxic CD4 CTLs. Co-expression of B7-H3 and LAG3 correlated with CD107a expression and was observed on CD4+ T cells with enhanced cytotoxic potential in a target-dependent manner but not on CD8 CTLs. Furthermore, B7-H3+LAG3+ CD4+ T cells were induced during co-culture with bone marrow cells from pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL). These findings suggest that B7-H3 and LAG3 co-expression represents a characteristic feature of functional CD4 CTLs in humans, providing valuable insights into the role of CD4 CTLs in tumor immunity.
Collapse
Affiliation(s)
- Yumi Tamura
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shun Ohki
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Haruna Nagai
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Rin Yoshizato
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shizuki Nishi
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuqi Jin
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasuo Kitajima
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yun Guo
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Kawano
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoharu Yasuda
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
3
|
Liao S, Huang J, Lupala CS, Li X, Li X, Li N. Identification of the B7-H3 Interaction Partners Using a Proximity Labeling Strategy. Int J Mol Sci 2025; 26:1731. [PMID: 40004194 PMCID: PMC11855656 DOI: 10.3390/ijms26041731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
B7 homolog 3 (B7-H3) has emerged as a promising target for cancer therapy due to its high expression in various types of cancer cells. It not only regulates the activity of immune cells but also modulates the signal transduction and metabolism of cancer cells. However, the specific interaction partners of B7-H3 still remain unclear, limiting a comprehensive understanding of the precise role of B7-H3 in cancer progression. In this study, we report that B7-H3 can bind to resting Raji cells, stimulated THP-1 cells, and even PC3 prostate cancer cells through its IgV domain alone. Furthermore, to identify the potential interaction partners of B7-H3 on these cells, we adopted an ascorbate peroxidase 2 (APEX2)-based proximity labeling strategy, which revealed about 10 key potential interaction partners. Interestingly, our results suggest that CD45 could be a putative receptor for B7-H3 on Raji cells, while the epidermal growth factor receptor (EGFR) could closely interact with B7-H3 on PC3 cells. Based on further computational structure modeling studies, we show that B7-H3 can bind to the epidermal growth factor (EGF) binding pocket of EGFR-surprisingly, with a stronger affinity than EGF itself. Overall, our study provides an effective approach to identifying B7-H3 interaction partners in both immune and cancer cell lines.
Collapse
Affiliation(s)
- Shujie Liao
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.L.); (J.H.); (C.S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiamin Huang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.L.); (J.H.); (C.S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cecylia S. Lupala
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.L.); (J.H.); (C.S.L.)
| | - Xiangcheng Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China;
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Xuefei Li
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.L.); (J.H.); (C.S.L.)
| | - Nan Li
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (S.L.); (J.H.); (C.S.L.)
| |
Collapse
|
4
|
Hoffmann S, Berger BT, Lucas LR, Schiele F, Park JE. Discovery of Carbonic Anhydrase 9 as a Novel CLEC2 Ligand in a Cellular Interactome Screen. Cells 2024; 13:2083. [PMID: 39768175 PMCID: PMC11674933 DOI: 10.3390/cells13242083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/30/2025] Open
Abstract
Membrane proteins, especially extracellular domains, are key therapeutic targets due to their role in cell communication and associations. Yet, their functions and interactions often remain unclear. This study presents a general method to discover interactions of membrane proteins with immune cells and subsequently to deorphanize their respective receptors. We developed a comprehensive recombinant protein library of extracellular domains of human transmembrane proteins and proteins found in the ER-Golgi-lysosomal systems. Using this library, we conducted a flow-cytometric screen that identified several cell surface binding events, including an interaction between carbonic anhydrase 9 (CAH9/CA9/CAIX) and CD14high cells. Further analysis revealed this interaction was indirect and mediated via platelets bound to the monocytes. CA9, best known for its diverse roles in cancer, is a promising therapeutic target. We utilized our library to develop an AlphaLISA high-throughput screening assay, identifying CLEC2 as one robust CA9 binding partner. A five-amino-acid sequence (EDLPT) in CA9, identical to a CLEC2 binding domain in Podoplanin (PDPN), was found to be essential for this interaction. Like PDPN, CA9-induced CLEC2 signaling is mediated via Syk. A Hodgkin's lymphoma cell line (HDLM-2) endogenously expressing CA9 can activate Syk-dependent CLEC2 signaling, providing enticing evidence for a novel function of CA9 in hematological cancers. In conclusion, we identified numerous interactions with monocytes and platelets and validated one, CA9, as an endogenous CLEC2 ligand. We provide a new list of other putative CA9 interaction partners and uncovered CA9-induced CLEC2 activation, providing new insights for CA9-based therapeutic strategies.
Collapse
Affiliation(s)
- Sebastian Hoffmann
- Division of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany (L.R.L.)
| | - Benedict-Tilman Berger
- Division of High-Throughput Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (B.-T.B.); (F.S.)
| | - Liane Rosalie Lucas
- Division of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany (L.R.L.)
| | - Felix Schiele
- Division of High-Throughput Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (B.-T.B.); (F.S.)
- Division of Biotherapeutics Discovery, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - John Edward Park
- Division of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany (L.R.L.)
| |
Collapse
|
5
|
Gayen S, Mukherjee S, Dasgupta S, Roy S. Emerging druggable targets for immune checkpoint modulation in cancer immunotherapy: the iceberg lies beneath the surface. Apoptosis 2024; 29:1879-1913. [PMID: 39354213 DOI: 10.1007/s10495-024-02022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
The immune system serves as a fundamental defender against the initiation and progression of cancer. Failure of the immune system augments immunosuppressive action that leading to cancer manifestation. This immunosuppressive effect causes from significant alterations in immune checkpoint expression associated with tumoral progression. The tumor microenvironment promotes immune escape mechanisms that further amplifying immunosuppressive actions. Notably, substantial targeting of immune checkpoints has been pragmatic in the advancement of cancer research. This study highlights a comprehensive review of emerging druggable targets aimed at modulating immune checkpoint co-inhibitory as well as co-stimulatory molecules in response to immune system activation. This modulation has prompted to the development of newer therapeutic insights, eventually inducing immunogenic cell death through immunomodulatory actions. The study emphasizes the role of immune checkpoints in immunogenic regulation of cancer pathogenesis and explores potential therapeutic avenues in cancer immunotherapy.Modulation of Immunosuppressive and Immunostimulatory pathways of immune checkpoints in cancer immunotherapy.
Collapse
Affiliation(s)
- Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Sandipan Dasgupta
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, 741249, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
6
|
Liu L, Yao Z, Liu Y, Li Y, Ding Y, Hu J, Liu Z, Shi P, Chen K, Liu Z, Zhang W, Hou Y. A Pan-Cancer Analysis of the Oncogenic Role of CD276 in Human Tumors. Genes (Basel) 2024; 15:1527. [PMID: 39766794 PMCID: PMC11675885 DOI: 10.3390/genes15121527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Objectives: B7 homolog 3 protein (B7-H3, also known as CD276) is a member of the B7 family that has been found to be associated with the growth and progression of a variety of tumors, but no pan-cancer evaluations of CD276 have been performed so far. In this study, we aimed to perform a pan-cancer analysis of the oncogenic role of CD276 in human tumors; Methods: We used a series of databases to perform a pan-cancer analysis of CD276, including the expression level of CD276 in pan-cancer and its relationship to tumor progression, patient survival duration, the immune cell infiltration within the tumor, and the potential signaling pathways and molecular mechanisms associated with CD276; Results: We found that CD276 was a potential biomarker for the prognosis of most cancers. The high expression of CD276 was associated with tumor progression, leading to poor survival. Notably, the up-regulation of CD276 expression in tumors increased the tumor infiltration of cancer-associated fibroblasts (CAFs) and myeloid-derived suppressor cells (MDSCs) and decreased the CD8+ T cells; Conclusions: Our study demonstrates that CD276 might promote tumor progression via the promotion of an immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Lilong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhipeng Yao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiting Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuhong Ding
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Junyi Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhenghao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengjie Shi
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenhao Zhang
- Rehabilitation Medicine Center, The Affiliated Hospital of Hubei Provincial Government, Wuhan 430071, China;
| | - Yaxin Hou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
7
|
Babič D, Jovčevska I, Zottel A. B7-H3 in glioblastoma and beyond: significance and therapeutic strategies. Front Immunol 2024; 15:1495283. [PMID: 39664380 PMCID: PMC11632391 DOI: 10.3389/fimmu.2024.1495283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024] Open
Abstract
Cancer has emerged as the second most prevalent disease and the leading cause of death, claiming the lives of 10 million individuals each year. The predominant varieties of cancer encompass breast, lung, colon, rectal, and prostate cancers. Among the more aggressive malignancies is glioblastoma, categorized as WHO stage 4 brain cancer. Following diagnosis, the typical life expectancy ranges from 12 to 15 months, as current established treatments like surgical intervention, radiotherapy, and chemotherapy using temozolomide exhibit limited effectiveness. Beyond conventional approaches, the exploration of immunotherapy for glioblastoma treatment is underway. A methodology involves CAR-T cells, monoclonal antibodies, ADCC and nanobodies sourced from camelids. Immunotherapy's recent focal point is the cellular ligand B7-H3, notably abundant in tumor cells while either scarce or absent in normal ones. Its expression elevates with cancer progression and serves as a promising prognostic marker. In this article, we delve into the essence of B7-H3, elucidating its function and involvement in signaling pathways. We delineate the receptors it binds to and its significance in glioblastoma and other cancer types. Lastly, we examine its role in immunotherapy and the utilization of nanobodies in this domain.
Collapse
|
8
|
Ruiz-Lorente I, Gimeno L, López-Abad A, López Cubillana P, Fernández Aparicio T, Asensio Egea LJ, Moreno Avilés J, Doñate Iñiguez G, Guzmán Martínez-Valls PL, Server G, Escudero-Bregante JF, Ferri B, Campillo JA, Pons-Fuster E, Martínez Hernández MD, Martínez-Sánchez MV, Ceballos D, Minguela A. Exploring the Immunoresponse in Bladder Cancer Immunotherapy. Cells 2024; 13:1937. [PMID: 39682686 PMCID: PMC11640729 DOI: 10.3390/cells13231937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Bladder cancer (BC) represents a wide spectrum of diseases, ranging from recurrent non-invasive tumors to advanced stages that require intensive treatments. BC accounts for an estimated 500,000 new cases and 200,000 deaths worldwide every year. Understanding the biology of BC has changed how this disease is diagnosed and treated. Bladder cancer is highly immunogenic, involving innate and adaptive components of the immune system. Although little is still known of how immune cells respond to BC, immunotherapy with bacillus Calmette-Guérin (BCG) remains the gold standard in high-risk non-muscle invasive BC. For muscle-invasive BC and metastatic stages, immune checkpoint inhibitors targeting CTLA-4, PD-1, and PD-L1 have emerged as potent therapies, enhancing immune surveillance and tumor cell elimination. This review aims to unravel the immune responses involving innate and adaptive immune cells in BC that will contribute to establishing new and promising therapeutic options, while reviewing the immunotherapies currently in use in bladder cancer.
Collapse
Affiliation(s)
- Inmaculada Ruiz-Lorente
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
| | - Lourdes Gimeno
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
- Human Anatomy Department, Universidad de Murcia and Campus Mare Nostrum, 30071 Murcia, Spain;
| | - Alicia López-Abad
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.); (J.F.E.-B.)
| | - Pedro López Cubillana
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.); (J.F.E.-B.)
| | | | | | | | | | | | - Gerardo Server
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.); (J.F.E.-B.)
| | - José Félix Escudero-Bregante
- Urology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (A.L.-A.); (P.L.C.); (G.S.); (J.F.E.-B.)
| | - Belén Ferri
- Pathology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain;
| | - José Antonio Campillo
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
| | - Eduardo Pons-Fuster
- Human Anatomy Department, Universidad de Murcia and Campus Mare Nostrum, 30071 Murcia, Spain;
| | - María Dolores Martínez Hernández
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
| | - María Victoria Martínez-Sánchez
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
| | - Diana Ceballos
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
| | - Alfredo Minguela
- Immunology Service, Virgen de la Arrixaca University Clinical Hospital (HCUVA), Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (I.R.-L.); (L.G.); (J.A.C.); (M.D.M.H.); (M.V.M.-S.); (D.C.)
| |
Collapse
|
9
|
Tan X, Zhao X. B7-H3 in acute myeloid leukemia: From prognostic biomarker to immunotherapeutic target. Chin Med J (Engl) 2024; 137:2540-2551. [PMID: 38595093 PMCID: PMC11556994 DOI: 10.1097/cm9.0000000000003099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Indexed: 04/11/2024] Open
Abstract
ABSTRACT B7-H3 (CD276), an immune checkpoint protein of the B7 family, exhibits significant upregulation in solid tumors and hematologic malignancies, exerting a crucial role in their pathophysiology. The distinct differential expression of B7-H3 between tumors and normal tissues and its multifaceted involvement in tumor pathogenesis position it as a promising therapeutic target for tumors. In the context of acute myeloid leukemia (AML), B7-H3 is prominently overexpressed and closely associated with unfavorable prognoses, yet it has remained understudied. Despite various ongoing clinical trials demonstrating the potential efficacy of immunotherapies targeting B7-H3, the precise underlying mechanisms responsible for B7-H3-mediated proliferation and immune evasion in AML remain enigmatic. In view of this, we comprehensively outline the current research progress concerning B7-H3 in AML, encompassing in-depth discussions on its structural attributes, receptor interactions, expression profiles, and biological significance in normal tissues and AML. Moreover, we delve into the protumor effects of B7-H3 in AML, examine the intricate mechanisms that underlie its function, and discuss the emerging application of B7-H3-targeted therapy in AML treatment. By juxtaposing B7-H3 with other molecules within the B7 family, this review emphasizes the distinctive advantages of B7-H3, not only as a valuable prognostic biomarker but also as a highly promising immunotherapeutic target in AML.
Collapse
Affiliation(s)
- Xiao Tan
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Xiangyu Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
10
|
Perovic D, Dusanovic Pjevic M, Perovic V, Grk M, Rasic M, Milickovic M, Mijovic T, Rasic P. B7 homolog 3 in pancreatic cancer. World J Gastroenterol 2024; 30:3654-3667. [PMID: 39193002 PMCID: PMC11346158 DOI: 10.3748/wjg.v30.i31.3654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
Despite advances in cancer treatment, pancreatic cancer (PC) remains a disease with high mortality rates and poor survival outcomes. The B7 homolog 3 (B7-H3) checkpoint molecule is overexpressed among many malignant tumors, including PC, with low or absent expression in healthy tissues. By modulating various immunological and nonimmunological molecular mechanisms, B7-H3 may influence the progression of PC. However, the impact of B7-H3 on the survival of patients with PC remains a subject of debate. Still, most available scientific data recognize this molecule as a suppressive factor to antitumor immunity in PC. Furthermore, it has been demonstrated that B7-H3 stimulates the migration, invasion, and metastasis of PC cells, and enhances resistance to chemotherapy. In preclinical models of PC, B7-H3-targeting monoclonal antibodies have exerted profound antitumor effects by increasing natural killer cell-mediated antibody-dependent cellular cytotoxicity and delivering radioisotopes and cytotoxic drugs to the tumor site. Finally, PC treatment with B7-H3-targeting antibody-drug conjugates and chimeric antigen receptor T cells is being tested in clinical studies. This review provides a comprehensive analysis of all PC-related studies in the context of B7-H3 and points to deficiencies in the current data that should be overcome by future research.
Collapse
Affiliation(s)
- Dijana Perovic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Marija Dusanovic Pjevic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Vladimir Perovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Milka Grk
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Milica Rasic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Maja Milickovic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia “Dr. Vukan Cupic”, Belgrade 11000, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Tanja Mijovic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia “Dr. Vukan Cupic”, Belgrade 11000, Serbia
| | - Petar Rasic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia “Dr. Vukan Cupic”, Belgrade 11000, Serbia
| |
Collapse
|
11
|
Chen J, Fang M, Li Y, Ding H, Zhang X, Jiang X, Zhang J, Zhang C, Lu Z, Luo M. Cell surface protein-protein interaction profiling for biological network analysis and novel target discovery. LIFE MEDICINE 2024; 3:lnae031. [PMID: 39872863 PMCID: PMC11749001 DOI: 10.1093/lifemedi/lnae031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/28/2024] [Indexed: 01/30/2025]
Abstract
The secretome is composed of cell surface membrane proteins and extracellular secreted proteins that are synthesized via secretory machinery, accounting for approximately one-third of human protein-encoding genes and playing central roles in cellular communication with the external environment. Secretome protein-protein interactions (SPPIs) mediate cell proliferation, apoptosis, and differentiation, as well as stimulus- or cell-specific responses that regulate a diverse range of biological processes. Aberrant SPPIs are associated with diseases including cancer, immune disorders, and illness caused by infectious pathogens. Identifying the receptor/ligand for a secretome protein or pathogen can be a challenging task, and many SPPIs remain obscure, with a large number of orphan receptors and ligands, as well as viruses with unknown host receptors, populating the SPPI network. In addition, proteins with known receptors/ligands may also interact with alternative uncharacterized partners and exert context-dependent effects. In the past few decades, multiple varied approaches have been developed to identify SPPIs, and these methods have broad applications in both basic and translational research. Here, we review and discuss the technologies for SPPI profiling and the application of these technologies in identifying novel targets for immunotherapy and anti-infectious agents.
Collapse
Affiliation(s)
- Jiaojiao Chen
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Maoxin Fang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuwei Li
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Haodong Ding
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xinyu Zhang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoyi Jiang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jinlan Zhang
- The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Chengcheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhigang Lu
- The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
- Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Min Luo
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Peris Sempere V, Luo G, Muñiz-Castrillo S, Pinto AL, Picard G, Rogemond V, Titulaer MJ, Finke C, Leypoldt F, Kuhlenbäumer G, Jones HF, Dale RC, Binks S, Irani SR, Bastiaansen AE, de Vries JM, de Bruijn MAAM, Roelen DL, Kim TJ, Chu K, Lee ST, Kanbayashi T, Pollock NR, Kichula KM, Mumme-Monheit A, Honnorat J, Norman PJ, Mignot E. HLA and KIR genetic association and NK cells in anti-NMDAR encephalitis. Front Immunol 2024; 15:1423149. [PMID: 39050850 PMCID: PMC11266021 DOI: 10.3389/fimmu.2024.1423149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Genetic predisposition to autoimmune encephalitis with antibodies against N-methyl-D-aspartate receptor (NMDAR) is poorly understood. Given the diversity of associated environmental factors (tumors, infections), we hypothesized that human leukocyte antigen (HLA) and killer-cell immunoglobulin-like receptors (KIR), two extremely polymorphic gene complexes key to the immune system, might be relevant for the genetic predisposition to anti-NMDAR encephalitis. Notably, KIR are chiefly expressed by Natural Killer (NK) cells, recognize distinct HLA class I allotypes and play a major role in anti-tumor and anti-infection responses. Methods We conducted a Genome Wide Association Study (GWAS) with subsequent control-matching using Principal Component Analysis (PCA) and HLA imputation, in a multi-ethnic cohort of anti-NMDAR encephalitis (n=479); KIR and HLA were further sequenced in a large subsample (n=323). PCA-controlled logistic regression was then conducted for carrier frequencies (HLA and KIR) and copy number variation (KIR). HLA-KIR interaction associations were also modeled. Additionally, single cell sequencing was conducted in peripheral blood mononuclear cells from 16 cases and 16 controls, NK cells were sorted and phenotyped. Results Anti-NMDAR encephalitis showed a weak HLA association with DRB1*01:01~DQA1*01:01~DQB1*05:01 (OR=1.57, 1.51, 1.45; respectively), and DRB1*11:01 (OR=1.60); these effects were stronger in European descendants and in patients without an underlying ovarian teratoma. More interestingly, we found increased copy number variation of KIR2DL5B (OR=1.72), principally due to an overrepresentation of KIR2DL5B*00201. Further, we identified two allele associations in framework genes, KIR2DL4*00103 (25.4% vs. 12.5% in controls, OR=1.98) and KIR3DL3*00302 (5.3% vs. 1.3%, OR=4.44). Notably, the ligands of these KIR2DL4 and KIR3DL3, respectively, HLA-G and HHLA2, are known to act as immune checkpoint with immunosuppressive functions. However, we did not find differences in specific KIR-HLA ligand interactions or HLA-G polymorphisms between cases and controls. Similarly, gene expression of CD56dim or CD56bright NK cells did not differ between cases and controls. Discussion Our observations for the first time suggest that the HLA-KIR axis might be involved in anti-NMDAR encephalitis. While the genetic risk conferred by the identified polymorphisms appears small, a role of this axis in the pathophysiology of this disease appears highly plausible and should be analyzed in future studies.
Collapse
Affiliation(s)
- Vicente Peris Sempere
- Stanford Center for Sleep Science and Medicine, Stanford University, Palo Alto, CA, United States
| | - Guo Luo
- Stanford Center for Sleep Science and Medicine, Stanford University, Palo Alto, CA, United States
| | - Sergio Muñiz-Castrillo
- Stanford Center for Sleep Science and Medicine, Stanford University, Palo Alto, CA, United States
| | - Anne-Laurie Pinto
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | - Géraldine Picard
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | - Véronique Rogemond
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Carsten Finke
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frank Leypoldt
- Department of Neurology, Christian-Albrechts-University/University Hospital Schleswig-Holstein, Kiel, Germany
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein Kiel/Lübeck, Kiel, Germany
| | - Gregor Kuhlenbäumer
- Department of Neurology, Christian-Albrechts-University/University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Hannah F. Jones
- Starship Hospital, Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Russell C. Dale
- Kids Neuroscience Centre, Children’s Hospital at Westmead clinical school, University of Sydney, Sydney, NSW, Australia
| | - Sophie Binks
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Department of Neurology, John Radcliffe Hospital, Oxford, United Kingdom
| | - Sarosh R. Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Departments of Neurology and Neurosciences, Mayo Clinic, Jacksonville, FL, United States
| | | | - Juna M. de Vries
- Department of Neurology, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Dave L. Roelen
- Department of Immunogenetics and Transplantation Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Tae-Joon Kim
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | - Nicholas R. Pollock
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Katherine M. Kichula
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Abigail Mumme-Monheit
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jérôme Honnorat
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Emmanuel Mignot
- Stanford Center for Sleep Science and Medicine, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
13
|
Epperly R, Gottschalk S, DeRenzo C. CAR T cells redirected to B7-H3 for pediatric solid tumors: Current status and future perspectives. EJC PAEDIATRIC ONCOLOGY 2024; 3:100160. [PMID: 38957786 PMCID: PMC11218663 DOI: 10.1016/j.ejcped.2024.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Despite intensive therapies, pediatric patients with relapsed or refractory solid tumors have poor outcomes and need novel treatments. Immune therapies offer an alternative to conventional treatment options but require the identification of differentially expressed antigens to direct antitumor activity to sites of disease. B7-H3 (CD276) is an immune regulatory protein that is expressed in a range of malignancies and has limited expression in normal tissues. B7-H3 is highly expressed in pediatric solid tumors including osteosarcoma, rhabdomyosarcoma, Ewing sarcoma, Wilms tumor, neuroblastoma, and many rare tumors. In this article we review B7-H3-targeted chimeric antigen receptor (B7-H3-CAR) T cell therapies for pediatric solid tumors, reporting preclinical development strategies and outlining the landscape of active pediatric clinical trials. We identify challenges to the success of CAR T cell therapy for solid tumors including localizing to and penetrating solid tumor sites, evading the hostile tumor microenvironment, supporting T cell expansion and persistence, and avoiding intrinsic tumor resistance. We highlight strategies to overcome these challenges and enhance the effect of B7-H3-CAR T cells, including advanced CAR T cell design and incorporation of combination therapies.
Collapse
Affiliation(s)
- Rebecca Epperly
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
14
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
15
|
Quiniou SMA, Bengtén E, Boudinot P. Costimulatory receptors in the channel catfish: CD28 family members and their ligands. Immunogenetics 2024; 76:51-67. [PMID: 38197898 DOI: 10.1007/s00251-023-01327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/10/2023] [Indexed: 01/11/2024]
Abstract
The CD28-B7 interaction is required to deliver a second signal necessary for T-cell activation. Additional membrane receptors of the CD28 and B7 families are also involved in immune checkpoints that positively or negatively regulate leukocyte activation, in particular T lymphocytes. BTLA is an inhibitory receptor that belongs to a third receptor family. Fish orthologs exist only for some of these genes, and the potential interactions between the corresponding ligands remain mostly unclear. In this work, we focused on the channel catfish (Ictalurus punctatus), a long-standing model for fish immunology, to analyze these co-stimulatory and co-inhibitory receptors. We identified one copy of cd28, ctla4, cd80/86, b7h1/dc, b7h3, b7h4, b7h5, two btla, and four b7h7 genes. Catfish CD28 contains the highly conserved mammalian cytoplasmic motif for PI3K and GRB2 recruitment, however this motif is absent in cyprinids. Fish CTLA4 share a C-terminal putative GRB2-binding site but lacks the mammalian PI3K/GRB2-binding motif. While critical V-domain residues for human CD80 or CD86 binding to CD28/CTLA4 show low conservation in fish CD80/86, C-domain residues are highly conserved, underscoring their significance. Catfish B7H1/DC had a long intracytoplasmic domain with a P-loop-NTPase domain that is absent in mammalian sequences, while the lack of NLS motif in fish B7H4 suggests this protein may not regulate cell growth when expressed intracellularly. Finally, there is a notable expansion of fish B7H7s, which likely play diverse roles in leukocyte regulation. Overall, our work contributes to a better understanding of fish leukocyte co-stimulatory and co-inhibitory receptors.
Collapse
Affiliation(s)
| | - Eva Bengtén
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, 39216, Jackson, MS, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 39216, Jackson, MS, USA
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, 78350, France.
| |
Collapse
|
16
|
Koumprentziotis IA, Theocharopoulos C, Foteinou D, Angeli E, Anastasopoulou A, Gogas H, Ziogas DC. New Emerging Targets in Cancer Immunotherapy: The Role of B7-H3. Vaccines (Basel) 2024; 12:54. [PMID: 38250867 PMCID: PMC10820813 DOI: 10.3390/vaccines12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Immune checkpoints (ICs) are molecules implicated in the fine-tuning of immune response via co-inhibitory or co-stimulatory signals, and serve to secure minimized host damage. Targeting ICs with various therapeutic modalities, including checkpoint inhibitors/monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), and CAR-T cells has produced remarkable results, especially in immunogenic tumors, setting a paradigm shift in cancer therapeutics through the incorporation of these IC-targeted treatments. However, the large proportion of subjects who experience primary or secondary resistance to available IC-targeted options necessitates further advancements that render immunotherapy beneficial for a larger patient pool with longer duration of response. B7-H3 (B7 Homolog 3 Protein, CD276) is a member of the B7 family of IC proteins that exerts pleiotropic immunomodulatory effects both in physiologic and pathologic contexts. Mounting evidence has demonstrated an aberrant expression of B7-H3 in various solid malignancies, including tumors less sensitive to current immunotherapeutic options, and has associated its expression with advanced disease, worse patient survival and impaired response to IC-based regimens. Anti-B7-H3 agents, including novel mAbs, bispecific antibodies, ADCs, CAR-T cells, and radioimmunotherapy agents, have exhibited encouraging antitumor activity in preclinical models and have recently entered clinical testing for several cancer types. In the present review, we concisely present the functional implications of B7-H3 and discuss the latest evidence regarding its prognostic significance and therapeutic potential in solid malignancies, with emphasis on anti-B7-H3 modalities that are currently evaluated in clinical trial settings. Better understanding of B7-H3 intricate interactions in the tumor microenvironment will expand the oncological utility of anti-B7-H3 agents and further shape their role in cancer therapeutics.
Collapse
|
17
|
Zhang H, Zhu M, Zhao A, Shi T, Xi Q. B7-H3 regulates anti-tumor immunity and promotes tumor development in colorectal cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189031. [PMID: 38036107 DOI: 10.1016/j.bbcan.2023.189031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract and one of the most common causes of cancer-related deaths worldwide. Immune checkpoint inhibitors have become a milestone in many cancer treatments with significant curative effects. However, its therapeutic effect on colorectal cancer is still limited. B7-H3 is a novel immune checkpoint molecule of the B7/CD28 family and is overexpressed in a variety of solid tumors including colorectal cancer. B7-H3 was considered as a costimulatory molecule that promotes anti-tumor immunity. However, more and more studies support that B7-H3 is a co-inhibitory molecule and plays an important immunosuppressive role in colorectal cancer. Meanwhile, B7-H3 promoted metabolic reprogramming, invasion and metastasis, and chemoresistance in colorectal cancer. Therapies targeting B7-H3, including monoclonal antibodies, antibody drug conjugations, and chimeric antigen receptor T cells, have great potential to improve the prognosis of colorectal cancer patients.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mengxin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Anjing Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qinhua Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
18
|
de Groot NG, Heijmans CM, van der Wiel MK, Bruijnesteijn J, Bontrop RE. The KIR repertoire of a West African chimpanzee population is characterized by limited gene, allele, and haplotype variation. Front Immunol 2023; 14:1308316. [PMID: 38149259 PMCID: PMC10750417 DOI: 10.3389/fimmu.2023.1308316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction The killer cell immunoglobulin-like receptors (KIR) play a pivotal role in modulating the NK cell responses, for instance, through interaction with major histocompatibility complex (MHC) class I molecules. Both gene systems map to different chromosomes but co-evolved during evolution. The human KIR gene family is characterized by abundant allelic polymorphism and copy number variation. In contrast, our knowledge of the KIR repertoire in chimpanzees is limited to 39 reported alleles, with no available population data. Only three genomic KIR region configurations have been mapped, and seventeen additional ones were deduced by genotyping. Methods Previously, we documented that the chimpanzee MHC class I repertoire has been skewed due to an ancient selective sweep. To understand the depth of the sweep, we set out to determine the full-length KIR transcriptome - in our MHC characterized pedigreed West African chimpanzee cohort - using SMRT sequencing (PacBio). In addition, the genomic organization of 14 KIR haplotypes was characterized by applying a Cas9-mediated enrichment approach in concert with long-read sequencing by Oxford Nanopore Technologies. Results In the cohort, we discovered 35 undescribed and 15 already recorded Patr-KIR alleles, and a novel hybrid KIR gene. Some KIR transcripts are subject to evolutionary conserved alternative splicing events. A detailed insight on the KIR region dynamics (location and order of genes) was obtained, however, only five new KIR region configurations were detected. The population data allowed to investigate the distribution of the MHC-C1 and C2-epitope specificity of the inhibitory lineage III KIR repertoire, and appears to be skewed towards C2. Discussion Although the KIR region is known to evolve fast, as observed in other primate species, our overall conclusion is that the genomic architecture and repertoire in West African chimpanzees exhibit only limited to moderate levels of variation. Hence, the ancient selective sweep that affected the chimpanzee MHC class I region may also have impacted the KIR system.
Collapse
Affiliation(s)
- Natasja G. de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Corrine M.C. Heijmans
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Marit K.H. van der Wiel
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Jesse Bruijnesteijn
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Ronald E. Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
19
|
Peng R, Deng M. Mapping the protein-protein interactome in the tumor immune microenvironment. Antib Ther 2023; 6:311-321. [PMID: 38098892 PMCID: PMC10720949 DOI: 10.1093/abt/tbad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/01/2023] [Accepted: 11/02/2023] [Indexed: 12/17/2023] Open
Abstract
The cell-to-cell communication primarily occurs through cell-surface and secreted proteins, which form a sophisticated network that coordinates systemic immune function. Uncovering these protein-protein interactions (PPIs) is indispensable for understanding the molecular mechanism and elucidating immune system aberrances under diseases. Traditional biological studies typically focus on a limited number of PPI pairs due to the relative low throughput of commonly used techniques. Encouragingly, classical methods have advanced, and many new systems tailored for large-scale protein-protein screening have been developed and successfully utilized. These high-throughput PPI investigation techniques have already made considerable achievements in mapping the immune cell interactome, enriching PPI databases and analysis tools, and discovering therapeutic targets for cancer and other diseases, which will definitely bring unprecedented insight into this field.
Collapse
Affiliation(s)
- Rui Peng
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, PR China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, PR China
| | - Mi Deng
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, PR China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, PR China
- Peking University Cancer Hospital and Institute, Peking University, Beijing 100142, PR China
| |
Collapse
|
20
|
Wahba A, Wolters R, Foster JH. Neuroblastoma in the Era of Precision Medicine: A Clinical Review. Cancers (Basel) 2023; 15:4722. [PMID: 37835416 PMCID: PMC10571527 DOI: 10.3390/cancers15194722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 09/05/2023] [Indexed: 10/15/2023] Open
Abstract
The latest advances in treatment for patients with neuroblastoma are constantly being incorporated into clinical trials and clinical practice standards, resulting in incremental improvements in the survival of patients over time. Survivors of high-risk neuroblastoma (HRNBL), however, continue to develop treatment-related late effects. Additionally, for the majority of the nearly 50% of patients with HRNBL who experience relapse, no curative therapy currently exists. As technologies in diagnostic and molecular profiling techniques rapidly advance, so does the discovery of potential treatment targets. Here, we discuss the current clinical landscape of therapies for neuroblastoma in the era of precision medicine.
Collapse
Affiliation(s)
| | | | - Jennifer H. Foster
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Cancer Center, Houston, TX 77030, USA; (A.W.); (R.W.)
| |
Collapse
|
21
|
Paolini R, Molfetta R. Dysregulation of DNAM-1-Mediated NK Cell Anti-Cancer Responses in the Tumor Microenvironment. Cancers (Basel) 2023; 15:4616. [PMID: 37760586 PMCID: PMC10527063 DOI: 10.3390/cancers15184616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
NK cells play a pivotal role in anti-cancer immune responses, thanks to the expression of a wide array of inhibitory and activating receptors that regulate their cytotoxicity against transformed cells while preserving healthy cells from lysis. However, NK cells exhibit severe dysfunction in the tumor microenvironment, mainly due to the reduction of activating receptors and the induction or increased expression of inhibitory checkpoint receptors. An activating receptor that plays a central role in tumor recognition is the DNAM-1 receptor. It recognizes PVR and Nectin2 adhesion molecules, which are frequently overexpressed on the surface of cancerous cells. These ligands are also able to trigger inhibitory signals via immune checkpoint receptors that are upregulated in the tumor microenvironment and can counteract DNAM-1 activation. Among them, TIGIT has recently gained significant attention, since its targeting results in improved anti-tumor immune responses. This review aims to summarize how the recognition of PVR and Nectin2 by paired co-stimulatory/inhibitory receptors regulates NK cell-mediated clearance of transformed cells. Therapeutic approaches with the potential to reverse DNAM-1 dysfunction in the tumor microenvironment will be also discussed.
Collapse
Affiliation(s)
| | - Rosa Molfetta
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
22
|
Guo X, Chang M, Wang Y, Xing B, Ma W. B7-H3 in Brain Malignancies: Immunology and Immunotherapy. Int J Biol Sci 2023; 19:3762-3780. [PMID: 37564196 PMCID: PMC10411461 DOI: 10.7150/ijbs.85813] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
The immune checkpoint B7-H3 (CD276), a member of the B7 family with immunoregulatory properties, has been identified recently as a novel target for immunotherapy for refractory blood cancers and solid malignant tumors. While research on B7-H3 in brain malignancies is limited, there is growing interest in exploring its therapeutic potential in this context. B7-H3 plays a crucial role in regulating the functions of immune cells, cancer-associated fibroblasts, and endothelial cells within the tumor microenvironment, contributing to the creation of a pro-tumorigenic milieu. This microenvironment promotes uncontrolled cancer cell proliferation, enhanced metabolism, increased cancer stemness, and resistance to standard treatments. Blocking B7-H3 and terminating its immunosuppressive function is expected to improve anti-tumor immune responses and, in turn, ameliorate the progression of tumors. Results from preclinical or observative studies and early-phase trials targeting B7-H3 have revealed promising anti-tumor efficacy and acceptable toxicity in glioblastoma (GBM), diffuse intrinsic pontine glioma (DIPG), medulloblastoma, neuroblastoma, craniopharyngioma, atypical teratoid/rhabdoid tumor, and brain metastases. Ongoing clinical trials are now investigating the use of CAR-T cell therapy and antibody-drug conjugate therapy, either alone or in combination with standard treatments or other therapeutic approaches, targeting B7-H3 in refractory or recurrent GBMs, DIPGs, neuroblastomas, medulloblastomas, ependymomas, and metastatic brain tumors. These trials hold promise for providing effective treatment options for these challenging intracranial malignancies in both adult and pediatric populations.
Collapse
Affiliation(s)
- Xiaopeng Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Mengqi Chang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Bing Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
23
|
Mielcarska S, Dawidowicz M, Kula A, Kiczmer P, Skiba H, Krygier M, Chrabańska M, Piecuch J, Szrot M, Ochman B, Robotycka J, Strzałkowska B, Czuba Z, Waniczek D, Świętochowska E. B7H3 Role in Reshaping Immunosuppressive Landscape in MSI and MSS Colorectal Cancer Tumours. Cancers (Basel) 2023; 15:3136. [PMID: 37370746 DOI: 10.3390/cancers15123136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The study aimed to assess the expression of B7H3 concerning clinicopathological and histological parameters, including MSI/MSS status, CD-8 cells, tumour-infiltrating lymphocytes (TILs), budding, TNM scale and grading. Moreover, we analyzed the B7H3-related pathways using available online datasets and the immunological context of B7H3 expression, through the 48-cytokine screening panel of cancer tissues homogenates, immunogenic features and immune composition. The study included 158 patients diagnosed with CRC. To assess B7H3 levels, we performed an immunohistochemistry method (IHC) and enzyme-linked immunosorbent assay (ELISA). To elucidate the immune composition of colorectal cancer, we performed the Bio-Plex Pro Human 48-cytokine panel. To study biological characteristics of B7H3, we used online databases. Expression of B7H3 was upregulated in CRC tumour tissues in comparison to adjacent noncancerous margin tissues. The concentrations of B7H3 in tumours were positively associated with T parameter of patients and negatively with tumour-infiltrating lymphocytes score. Additionally, Principal Component Analysis showed that B7H3 expression in tumours correlated positively with cytokines associated with M2-macrophages and protumour growth factors. The expression of B7H3 in tumours was independent of MSI/MSS status. These findings will improve our understanding of B7H3 role in colorectal cancer immunity. Our study suggests that B7-H3 is a promising potential target for cancer therapy. Further studies must clarify the mechanisms of B7H3 overexpression and its therapeutic importance in colorectal cancer.
Collapse
Affiliation(s)
- Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland
| | - Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Paweł Kiczmer
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland
| | - Hanna Skiba
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland
| | - Małgorzata Krygier
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland
| | - Magdalena Chrabańska
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland
| | - Jerzy Piecuch
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 10 Marii Curie-Skłodowskiej, 41-800 Zabrze, Poland
| | - Monika Szrot
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 10 Marii Curie-Skłodowskiej, 41-800 Zabrze, Poland
| | - Błażej Ochman
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland
| | - Julia Robotycka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland
| | - Bogumiła Strzałkowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland
| |
Collapse
|
24
|
Mora-Bitria L, Asquith B. Innate receptors modulating adaptive T cell responses: KIR-HLA interactions and T cell-mediated control of chronic viral infections. Immunogenetics 2023; 75:269-282. [PMID: 36719466 PMCID: PMC9887252 DOI: 10.1007/s00251-023-01293-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023]
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are mainly expressed on natural killer (NK) cells and are key regulators of innate immune responses. NK cells are the first responders in the face of infection and help promote placentation during pregnancy; the importance of KIRs in these NK-mediated processes is well-established. However, mounting evidence suggests that KIRs also have a prominent and long-lasting effect on the adaptive immune system. Here, we review the evidence for the impact of KIRs on T cell responses with a focus on the clinical significance of this interaction.
Collapse
Affiliation(s)
- Laura Mora-Bitria
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Becca Asquith
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
25
|
Getu AA, Tigabu A, Zhou M, Lu J, Fodstad Ø, Tan M. New frontiers in immune checkpoint B7-H3 (CD276) research and drug development. Mol Cancer 2023; 22:43. [PMID: 36859240 PMCID: PMC9979440 DOI: 10.1186/s12943-023-01751-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
B7-H3 (CD276), a member of the B7 family of proteins, is a key player in cancer progression. This immune checkpoint molecule is selectively expressed in both tumor cells and immune cells within the tumor microenvironment. In addition to its immune checkpoint function, B7-H3 has been linked to tumor cell proliferation, metastasis, and therapeutic resistance. Furthermore, its drastic difference in protein expression levels between normal and tumor tissues suggests that targeting B7-H3 with drugs would lead to cancer-specific toxicity, minimizing harm to healthy cells. These properties make B7-H3 a promising target for cancer therapy.Recently, important advances in B7-H3 research and drug development have been reported, and these new findings, including its involvement in cellular metabolic reprograming, cancer stem cell enrichment, senescence and obesity, have expanded our knowledge and understanding of this molecule, which is important in guiding future strategies for targeting B7-H3. In this review, we briefly discuss the biology and function of B7-H3 in cancer development. We emphasize more on the latest findings and their underlying mechanisms to reflect the new advances in B7-H3 research. In addition, we discuss the new improvements of B-H3 inhibitors in cancer drug development.
Collapse
Affiliation(s)
- Ayechew Adera Getu
- Institute of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Abiye Tigabu
- Institute of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, USA
| | - Øystein Fodstad
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Ming Tan
- Institute of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
26
|
Ziegler AE, Fittje P, Müller LM, Ahrenstorf AE, Hagemann K, Hagen SH, Hess LU, Niehrs A, Poch T, Ravichandran G, Löbl SM, Padoan B, Brias S, Hennesen J, Richard M, Richert L, Peine S, Oldhafer KJ, Fischer L, Schramm C, Martrus G, Bunders MJ, Altfeld M, Lunemann S. The co-inhibitory receptor TIGIT regulates NK cell function and is upregulated in human intrahepatic CD56 bright NK cells. Front Immunol 2023; 14:1117320. [PMID: 36845105 PMCID: PMC9948018 DOI: 10.3389/fimmu.2023.1117320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
The crosstalk between NK cells and their surrounding environment is enabled through activating and inhibitory receptors, which tightly control NK cell activity. The co-inhibitory receptor TIGIT decreases NK cell cytotoxicity and is involved in NK cell exhaustion, but has also been associated with liver regeneration, highlighting that the contribution of human intrahepatic CD56bright NK cells in regulating tissue homeostasis remains incompletely understood. A targeted single-cell mRNA analysis revealed distinct transcriptional differences between matched human peripheral blood and intrahepatic CD56bright NK cells. Multiparameter flow cytometry identified a cluster of intrahepatic NK cells with overlapping high expression of CD56, CD69, CXCR6, TIGIT and CD96. Intrahepatic CD56bright NK cells also expressed significantly higher protein surface levels of TIGIT, and significantly lower levels of DNAM-1 compared to matched peripheral blood CD56bright NK cells. TIGIT+ CD56bright NK cells showed diminished degranulation and TNF-α production following stimulation. Co-incubation of peripheral blood CD56bright NK cells with human hepatoma cells or primary human hepatocyte organoids resulted in migration of NK cells into hepatocyte organoids and upregulation of TIGIT and downregulation of DNAM-1 expression, in line with the phenotype of intrahepatic CD56bright NK cells. Intrahepatic CD56bright NK cells represent a transcriptionally, phenotypically, and functionally distinct population of NK cells that expresses higher levels of TIGIT and lower levels of DNAM-1 than matched peripheral blood CD56bright NK cells. Increased expression of inhibitory receptors by NK cells within the liver environment can contribute to tissue homeostasis and reduction of liver inflammation.
Collapse
Affiliation(s)
- Annerose E. Ziegler
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pia Fittje
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Luisa M. Müller
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Annika E. Ahrenstorf
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Kerri Hagemann
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Sven H. Hagen
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Leonard U. Hess
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Annika Niehrs
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Tobias Poch
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gevitha Ravichandran
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian M. Löbl
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Benedetta Padoan
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Sébastien Brias
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana Hennesen
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Myrtille Richard
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale, Bordeaux Population Health Research Center, UMR1219 and Inria, Team Statistics in systems biology and translationnal medicine (SISTM), Bordeaux, France
| | - Laura Richert
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale, Bordeaux Population Health Research Center, UMR1219 and Inria, Team Statistics in systems biology and translationnal medicine (SISTM), Bordeaux, France
| | - Sven Peine
- Institute for Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl J. Oldhafer
- Department of General and Abdominal Surgery, Asklepios Hospital Barmbek, Semmelweis University of Medicine, Hamburg, Germany
| | - Lutz Fischer
- Department of Visceral Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Centre for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Glòria Martrus
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Madeleine J. Bunders
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Altfeld
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Sebastian Lunemann
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| |
Collapse
|
27
|
Ren X, Peng M, Xing P, Wei Y, Galbo PM, Corrigan D, Wang H, Su Y, Dong X, Sun Q, Li Y, Zhang X, Edelmann W, Zheng D, Zang X. Blockade of the immunosuppressive KIR2DL5/PVR pathway elicits potent human NK cell-mediated antitumor immunity. J Clin Invest 2022; 132:e163620. [PMID: 36377656 PMCID: PMC9663162 DOI: 10.1172/jci163620] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/23/2022] [Indexed: 09/29/2023] Open
Abstract
Cancer immunotherapy targeting the TIGIT/PVR pathway is currently facing challenges. KIR2DL5, a member of the human killer cell, immunoglobulin-like receptor (KIR) family, has recently been identified as another binding partner for PVR. The biology and therapeutic potential of the KIR2DL5/PVR pathway are largely unknown. Here we report that KIR2DL5 was predominantly expressed on human NK cells with mature phenotype and cytolytic function and that it bound to PVR without competition with the other 3 known PVR receptors. The interaction between KIR2DL5 on NK cells and PVR on target cells induced inhibitory synapse formation, whereas new monoclonal antibodies blocking the KIR2DL5-PVR interaction robustly augmented the NK cytotoxicity against PVR+ human tumors. Mechanistically, both intracellular ITIM and ITSM of KIR2DL5 underwent tyrosine phosphorylation after engagement, which was essential for KIR2DL5-mediated NK suppression by recruiting SHP-1 and/or SHP-2. Subsequently, ITIM/SHP-1/SHP-2 and ITSM/SHP-1 downregulated the downstream Vav1/ERK1/2/p90RSK/NF-κB signaling. KIR2DL5+ immune cells infiltrated in various types of PVR+ human cancers. Markedly, the KIR2DL5 blockade reduced tumor growth and improved overall survival across multiple NK cell-based humanized tumor models. Thus, our results revealed functional mechanisms of KIR2DL5-mediated NK cell immune evasion, demonstrated blockade of the KIR2DL5/PVR axis as a therapy for human cancers, and provided an underlying mechanism for the clinical failure of anti-TIGIT therapies.
Collapse
Affiliation(s)
- Xiaoxin Ren
- Department of Microbiology and Immunology and
| | - Mou Peng
- Department of Microbiology and Immunology and
| | - Peng Xing
- Department of Microbiology and Immunology and
| | - Yao Wei
- Department of Microbiology and Immunology and
| | - Phillip M. Galbo
- Department of Microbiology and Immunology and
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Hao Wang
- Department of Microbiology and Immunology and
| | - Yingzhen Su
- Department of Microbiology and Immunology and
| | | | - Qizhe Sun
- Department of Microbiology and Immunology and
| | - Yixian Li
- Department of Microbiology and Immunology and
- Division of Pediatric Hematology/Oncology/Transplant and Cellular Therapy, Children’s Hospital at Montefiore, Bronx, New York, USA
| | | | | | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
- Departments of Neurology and Neuroscience
| | - Xingxing Zang
- Department of Microbiology and Immunology and
- Department of Oncology
- Department of Medicine, and
- Department of Urology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
28
|
Zhao B, Li H, Xia Y, Wang Y, Wang Y, Shi Y, Xing H, Qu T, Wang Y, Ma W. Immune checkpoint of B7-H3 in cancer: from immunology to clinical immunotherapy. J Hematol Oncol 2022; 15:153. [PMID: 36284349 PMCID: PMC9597993 DOI: 10.1186/s13045-022-01364-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/30/2022] [Indexed: 11/28/2022] Open
Abstract
Immunotherapy for cancer is a rapidly developing treatment that modifies the immune system and enhances the antitumor immune response. B7-H3 (CD276), a member of the B7 family that plays an immunoregulatory role in the T cell response, has been highlighted as a novel potential target for cancer immunotherapy. B7-H3 has been shown to play an inhibitory role in T cell activation and proliferation, participate in tumor immune evasion and influence both the immune response and tumor behavior through different signaling pathways. B7-H3 expression has been found to be aberrantly upregulated in many different cancer types, and an association between B7-H3 expression and poor prognosis has been established. Immunotherapy targeting B7-H3 through different approaches has been developing rapidly, and many ongoing clinical trials are exploring the safety and efficacy profiles of these therapies in cancer. In this review, we summarize the emerging research on the function and underlying pathways of B7-H3, the expression and roles of B7-H3 in different cancer types, and the advances in B7-H3-targeted therapy. Considering different tumor microenvironment characteristics and results from preclinical models to clinical practice, the research indicates that B7-H3 is a promising target for future immunotherapy, which might eventually contribute to an improvement in cancer immunotherapy that will benefit patients.
Collapse
Affiliation(s)
- Binghao Zhao
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Huanzhang Li
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yu Xia
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yaning Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yuekun Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yixin Shi
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hao Xing
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Tian Qu
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yu Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wenbin Ma
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
29
|
Killer-Cell Immunoglobulin-like Receptor Diversity in an Admixed South American Population. Cells 2022; 11:cells11182776. [PMID: 36139351 PMCID: PMC9496851 DOI: 10.3390/cells11182776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Natural Killer (NK) cells are innate immune cells that mediate antiviral and antitumor responses. NK cell activation and induction of effector functions are tightly regulated by the integration of activating and inhibitory receptors such as killer immunoglobulin-like receptors (KIR). KIR genes are characterized by a high degree of diversity due to presence or absence, gene copy number and allelic polymorphism. The aim of this study was to establish the distribution of KIR genes and genotypes, to infer the most common haplotypes in an admixed Colombian population and to compare these KIR gene frequencies with some Central and South American populations and worldwide. A total of 161 individuals from Medellin, Colombia were included in the study. Genomic DNA was used for KIR and HLA genotyping. We analyzed only KIR gene-content (presence or absence) based on PCR-SSO. The KIR genotype, most common haplotypes and combinations of KIR and HLA ligands frequencies were estimated according to the presence or absence of KIR and HLA genes. Dendrograms, principal component (PC) analysis and Heatmap analysis based on genetic distance were constructed to compare KIR gene frequencies among Central and South American, worldwide and Amerindian populations. The 16 KIR genes analyzed were distributed in 37 different genotypes and the 7 most frequent KIR inferred haplotypes. Importantly, we found three new genotypes not previously reported in any other ethnic group. Our genetic distance, PC and Heatmap analysis revealed marked differences in the distribution of KIR gene frequencies in the Medellin population compared to worldwide populations. These differences occurred mainly in the activating KIR isoforms, which are more frequent in our population, particularly KIR3DS1. Finally, we observed unique structural patterns of genotypes, which evidences the potential diversity and variability of this gene family in our population, and the need for exhaustive genetic studies to expand our understanding of the KIR gene complex in Colombian populations.
Collapse
|
30
|
Birley K, Leboreiro-Babe C, Rota EM, Buschhaus M, Gavriil A, Vitali A, Alonso-Ferrero M, Hopwood L, Parienti L, Ferry G, Flutter B, Himoudi N, Chester K, Anderson J. A novel anti-B7-H3 chimeric antigen receptor from a single-chain antibody library for immunotherapy of solid cancers. Mol Ther Oncolytics 2022; 26:429-443. [PMID: 36159778 PMCID: PMC9467911 DOI: 10.1016/j.omto.2022.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
B7-H3 (CD276) has emerged as a target for cancer immunotherapy by virtue of consistent expression in many malignancies, relative absence from healthy tissues, and an emerging role as a driver of tumor immune inhibition. Recent studies have reported B7-H3 to be a suitable target for chimeric antigen receptor-modified T cell (CAR-T) therapy using CARs constructed from established anti-B7-H3 antibodies converted into single-chain Fv format (scFv). We constructed and screened binders in an scFv library to generate a new anti-B7-H3 CAR-T with favorable properties. This allowed access to numerous specificities ready formatted for CAR evaluation. Selected anti-human B7-H3 scFvs were readily cloned into CAR-T and evaluated for anti-tumor reactivity in cytotoxicity, cytokine, and proliferation assays. Two binders with divergent complementarity determining regions were found to show optimal antigen-specific cytotoxicity and cytokine secretion. One binder in second-generation CD28-CD3ζ CAR format induced sustained in vitro proliferation on repeat antigen challenge. The lead candidate CAR-T also demonstrated in vivo activity in a resistant neuroblastoma model. An empirical approach to B7-H3 CAR-T discovery through screening of novel scFv sequences in CAR-T format has led to the identification of a new construct with sustained proliferative capacity warranting further evaluation.
Collapse
|
31
|
To kill a cancer: Targeting the immune inhibitory checkpoint molecule, B7-H3. Biochim Biophys Acta Rev Cancer 2022; 1877:188783. [PMID: 36028149 DOI: 10.1016/j.bbcan.2022.188783] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/30/2022] [Accepted: 08/19/2022] [Indexed: 12/26/2022]
Abstract
Targeting the anti-tumor immune response via the B7 family of immune-regulatory checkpoint proteins has revolutionized cancer treatment and resulted in punctuated responses in patients. B7-H3 has gained recent attention given its prominent deregulation and immunomodulatory role in a multitude of cancers. Numerous cancer studies have firmly established a strong link between deregulated B7-H3 expression and poorer outcomes. B7-H3 has been shown to augment cancer cell survival, proliferation, metastasis, and drug resistance by inducing an immune evasive phenotype through its effects on tumor-infiltrating immune cells, cancer cells, cancer-associated vasculature, and the stroma. Given the complex interplay between each of these components of the tumor microenvironment, a deeper understanding of B7-H3 signaling properties is inherently crucial to developing efficacious therapies that can target and inhibit these cancer-promoting interactions. This review delves into the various ways B7-H3 acts as an immunomodulator to facilitate immune evasion and promote tumor growth and spread. With post-transcriptional and post-translational modifications giving rise to different active isoforms coupled with recent discoveries of its putative receptors, B7-H3 can perform diverse functions. Here, we first discuss the dual co-stimulatory/co-inhibitory functions of B7-H3 in the context of normal physiology and cancer. We then discuss the crosstalk facilitated by B7-H3 between stromal components and tumor cells that promote tumor growth and metastasis in different populations of tumor cells, associated vasculature, and the stroma. Concurrently, we highlight therapeutic strategies that can exploit these interactions and their associated limitations, concluding with a special focus on the promise of next-gen in silico-based approaches to small molecule inhibitor drug discovery for B7-H3 that may mitigate these limitations.
Collapse
|
32
|
Mantovani S, Varchetta S, Mele D, Maiello R, Donadon M, Soldani C, Franceschini B, Torzilli G, Tartaglia G, Maestri M, Piccolo G, Barabino M, Opocher E, Bernuzzi S, Mondelli MU, Oliviero B. Defective DNAM-1 Dependent Cytotoxicity in Hepatocellular Carcinoma-Infiltrating NK Cells. Cancers (Basel) 2022; 14:4060. [PMID: 36011052 PMCID: PMC9406989 DOI: 10.3390/cancers14164060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Natural killer (NK) cells play a key role in immune surveillance and response to tumors, their function regulated by NK cell receptors and their ligands. The DNAM-1 activating receptor recognizes the CD155 molecule expressed in several tumor cells, such as hepatocellular carcinoma (HCC). This study aims to investigate the role of the DNAM-1/CD155 axis in mediating the NK cell response in patients with HCC. METHODS Soluble CD155 was measured by ELISA. CD155 expression was sought in HCC cells by immunohistochemistry, qPCR, and flow cytometry. DNAM-1 modulation in NK cells was evaluated in transwell experiments and by a siRNA-mediated knockdown. NK cell functions were examined by direct DNAM-1 triggering. RESULTS sCD155 was increased in sera from HCC patients and correlated with the parameters of an advanced disease. The expression of CD155 in HCC showed a positive trend toward better overall survival. DNAM-1 downmodulation was induced by CD155-expressing HCC cells, in agreement with lower DNAM-1 expressions in tumor-infiltrating NK (NK-TIL) cells. DNAM-1-mediated cytotoxicity was defective both in circulating NK cells and in NK-TIL of HCC patients. CONCLUSIONS We provide evidence of alterations in the DNAM-1/CD155 axis in HCC, suggesting a possible mechanism of tumor resistance to innate immune surveillance.
Collapse
Affiliation(s)
- Stefania Mantovani
- Division of Clinical Immunology-Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Stefania Varchetta
- Division of Clinical Immunology-Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Dalila Mele
- Division of Clinical Immunology-Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Roberta Maiello
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Matteo Donadon
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Cristiana Soldani
- Laboratory of Hepatobiliary Immunopathology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Barbara Franceschini
- Laboratory of Hepatobiliary Immunopathology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Guido Torzilli
- Department of Biomedical Science, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Giuseppe Tartaglia
- Division of General Surgery 1, Department of Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Marcello Maestri
- Division of General Surgery 1, Department of Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Gaetano Piccolo
- Unit of HepatoBilioPancreatic and Digestive Surgery, Department of Health Sciences, San Paolo Hospital, University of Milan, 20142 Milan, Italy
| | - Matteo Barabino
- Unit of HepatoBilioPancreatic and Digestive Surgery, Department of Health Sciences, San Paolo Hospital, University of Milan, 20142 Milan, Italy
| | - Enrico Opocher
- Unit of HepatoBilioPancreatic and Digestive Surgery, Department of Health Sciences, San Paolo Hospital, University of Milan, 20142 Milan, Italy
| | - Stefano Bernuzzi
- Immunohematology and Transfusion Service, Department of Diagnostic Medicine, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Mario U. Mondelli
- Division of Clinical Immunology-Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Barbara Oliviero
- Division of Clinical Immunology-Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
33
|
Cell-based receptor discovery identifies host factors specifically targeted by the SARS CoV-2 spike. Commun Biol 2022; 5:788. [PMID: 35931765 PMCID: PMC9355963 DOI: 10.1038/s42003-022-03695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Receptor-ligand interactions on the plasma membrane regulate cellular communication and play a key role in viral infection. Despite representing main targets for drug development, the characterization of these interactions remains challenging in part due to the dearth of optimal technologies. Here, we build a comprehensive library of human proteins engineered for controlled cell surface expression. Coupled to tetramer-based screening for increased binding avidity, we develop a high throughput cell-based platform that enables systematic interrogation of receptor-ligand interactomes. Using this technology, we characterize the cell surface proteins targeted by the receptor binding domain (RBD) of the SARS-CoV spike protein. Host factors that specifically bind to SARS CoV-2 but not SARS CoV RBD are identified, including proteins that are expressed in the nervous system or olfactory epithelium. Remarkably, our results show that Contactin-1, a previously unknown SARS CoV-2 spike-specific receptor that is upregulated in COVID-19 patients, significantly enhances ACE2-dependent pseudotyped virus infection. Starting from a versatile platform to characterize cell surface interactomes, this study uncovers host factors specifically targeted by SARS CoV-2, information that may help design improved therapeutic strategies against COVID-19. A high-throughput cell-based platform is developed for systematic investigation of receptor-ligand interactions and applied to identify cell-surface proteins that bind to SARS CoV-2.
Collapse
|
34
|
Shilts J, Severin Y, Galaway F, Müller-Sienerth N, Chong ZS, Pritchard S, Teichmann S, Vento-Tormo R, Snijder B, Wright GJ. A physical wiring diagram for the human immune system. Nature 2022; 608:397-404. [PMID: 35922511 PMCID: PMC9365698 DOI: 10.1038/s41586-022-05028-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 06/28/2022] [Indexed: 12/14/2022]
Abstract
The human immune system is composed of a distributed network of cells circulating throughout the body, which must dynamically form physical associations and communicate using interactions between their cell-surface proteomes1. Despite their therapeutic potential2, our map of these surface interactions remains incomplete3,4. Here, using a high-throughput surface receptor screening method, we systematically mapped the direct protein interactions across a recombinant library that encompasses most of the surface proteins that are detectable on human leukocytes. We independently validated and determined the biophysical parameters of each novel interaction, resulting in a high-confidence and quantitative view of the receptor wiring that connects human immune cells. By integrating our interactome with expression data, we identified trends in the dynamics of immune interactions and constructed a reductionist mathematical model that predicts cellular connectivity from basic principles. We also developed an interactive multi-tissue single-cell atlas that infers immune interactions throughout the body, revealing potential functional contexts for new interactions and hubs in multicellular networks. Finally, we combined targeted protein stimulation of human leukocytes with multiplex high-content microscopy to link our receptor interactions to functional roles, in terms of both modulating immune responses and maintaining normal patterns of intercellular associations. Together, our work provides a systematic perspective on the intercellular wiring of the human immune system that extends from systems-level principles of immune cell connectivity down to mechanistic characterization of individual receptors, which could offer opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jarrod Shilts
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, UK.
| | - Yannik Severin
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Francis Galaway
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, UK
| | | | - Zheng-Shan Chong
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, UK
| | - Sophie Pritchard
- Cellular Genetics Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Sarah Teichmann
- Cellular Genetics Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Roser Vento-Tormo
- Cellular Genetics Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Berend Snijder
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, UK.
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
35
|
Pollock NR, Harrison GF, Norman PJ. Immunogenomics of Killer Cell Immunoglobulin-Like Receptor (KIR) and HLA Class I: Coevolution and Consequences for Human Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1763-1775. [PMID: 35561968 PMCID: PMC10038757 DOI: 10.1016/j.jaip.2022.04.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Interactions of killer cell immunoglobin-like receptors (KIR) with human leukocyte antigens (HLA) class I regulate effector functions of key cytotoxic cells of innate and adaptive immunity. The extreme diversity of this interaction is genetically determined, having evolved in the ever-changing environment of pathogen exposure. Diversity of KIR and HLA genes is further facilitated by their independent segregation on separate chromosomes. That fetal implantation relies on many of the same types of immune cells as infection control places certain constraints on the evolution of KIR interactions with HLA. Consequently, specific inherited combinations of receptors and ligands may predispose to specific immune-mediated diseases, including autoimmunity. Combinatorial diversity of KIR and HLA class I can also differentiate success rates of immunotherapy directed to these diseases. Progress toward both etiopathology and predicting response to therapy is being achieved through detailed characterization of the extent and consequences of the combinatorial diversity of KIR and HLA. Achieving these goals is more tractable with the development of integrated analyses of molecular evolution, function, and pathology that will establish guidelines for understanding and managing risks. Here, we present what is known about the coevolution of KIR with HLA class I and the impact of their complexity on immune function and homeostasis.
Collapse
Affiliation(s)
- Nicholas R Pollock
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo.
| |
Collapse
|
36
|
Endowing universal CAR T-cell with immune-evasive properties using TALEN-gene editing. Nat Commun 2022; 13:3453. [PMID: 35773273 PMCID: PMC9247096 DOI: 10.1038/s41467-022-30896-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/24/2022] [Indexed: 12/29/2022] Open
Abstract
Universal CAR T-cell therapies are poised to revolutionize cancer treatment and to improve patient outcomes. However, realizing these advantages in an allogeneic setting requires universal CAR T-cells that can kill target tumor cells, avoid depletion by the host immune system, and proliferate without attacking host tissues. Here, we describe the development of a novel immune-evasive universal CAR T-cells scaffold using precise TALEN-mediated gene editing and DNA matrices vectorized by recombinant adeno-associated virus 6. We simultaneously disrupt and repurpose the endogenous TRAC and B2M loci to generate TCRαβ- and HLA-ABC-deficient T-cells expressing the CAR construct and the NK-inhibitor named HLA-E. This highly efficient gene editing process enables the engineered T-cells to evade NK cell and alloresponsive T-cell attacks and extend their persistence and antitumor activity in the presence of cytotoxic levels of NK cell in vivo and in vitro, respectively. This scaffold could enable the broad use of universal CAR T-cells in allogeneic settings and holds great promise for clinical applications.
Collapse
|
37
|
Fittje P, Hœlzemer A, Garcia-Beltran WF, Vollmers S, Niehrs A, Hagemann K, Martrus G, Körner C, Kirchhoff F, Sauter D, Altfeld M. HIV-1 Nef-mediated downregulation of CD155 results in viral restriction by KIR2DL5+ NK cells. PLoS Pathog 2022; 18:e1010572. [PMID: 35749424 PMCID: PMC9231786 DOI: 10.1371/journal.ppat.1010572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/05/2022] [Indexed: 01/02/2023] Open
Abstract
Antiviral NK cell activity is regulated through the interaction of activating and inhibitory NK cell receptors with their ligands on infected cells. HLA class I molecules serve as ligands for most killer cell immunoglobulin-like receptors (KIRs), but no HLA class I ligands for the inhibitory NK cell receptor KIR2DL5 have been identified to date. Using a NK cell receptor/ligand screening approach, we observed no strong binding of KIR2DL5 to HLA class I or class II molecules, but confirmed that KIR2DL5 binds to the poliovirus receptor (PVR, CD155). Functional studies using primary human NK cells revealed a significantly decreased degranulation of KIR2DL5+ NK cells in response to CD155-expressing target cells. We subsequently investigated the role of KIR2DL5/CD155 interactions in HIV-1 infection, and showed that multiple HIV-1 strains significantly decreased CD155 expression levels on HIV-1-infected primary human CD4+ T cells via a Nef-dependent mechanism. Co-culture of NK cells with HIV-1-infected CD4+ T cells revealed enhanced anti-viral activity of KIR2DL5+ NK cells against wild-type versus Nef-deficient viruses, indicating that HIV-1-mediated downregulation of CD155 renders infected cells more susceptible to recognition by KIR2DL5+ NK cells. These data show that CD155 suppresses the antiviral activity of KIR2DL5+ NK cells and is downmodulated by HIV-1 Nef protein as potential trade-off counteracting activating NK cell ligands, demonstrating the ability of NK cells to counteract immune escape mechanisms employed by HIV-1. HIV infection remains a global health emergency that has caused around 36 million deaths. NK cells play an important role in the control of HIV-1 infections, and are able to detect and destroy infected cells using a large array of activating and inhibitory receptors, including KIRs. Here we demonstrate that CD155 serves as a functional interaction partner for the inhibitory NK cell receptor KIR2DL5, and that KIR2DL5+ NK cells are inhibited by CD155-expressing target cells. CD155 surface expression on HIV-1-infected CD4+ T cells was downregulated by the HIV-1 Nef protein, resulting in increased anti-viral activity of KIR2DL5+ NK cells through the loss of inhibitory signals. Taken together, these studies demonstrate functional consequences of the novel interaction between KIR2DL5 and CD155 for the antiviral activity of KIR2DL5+ NK cells during HIV-1 infection.
Collapse
Affiliation(s)
- Pia Fittje
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Angelique Hœlzemer
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- First Department of Internal Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Wilfredo F. Garcia-Beltran
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Annika Niehrs
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | | | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Marcus Altfeld
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- * E-mail:
| |
Collapse
|
38
|
Yamato M, Hasegawa J, Maejima T, Hattori C, Kumagai K, Watanabe A, Nishiya Y, Shibutani T, Aida T, Hayakawa I, Nakada T, Abe Y, Agatsuma T. DS-7300a, a DNA Topoisomerase I Inhibitor, DXd-Based Antibody-Drug Conjugate Targeting B7-H3, Exerts Potent Antitumor Activities in Preclinical Models. Mol Cancer Ther 2022; 21:635-646. [PMID: 35149548 PMCID: PMC9377751 DOI: 10.1158/1535-7163.mct-21-0554] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/12/2021] [Accepted: 02/07/2022] [Indexed: 01/07/2023]
Abstract
B7-H3 is overexpressed in various solid tumors and has been considered as an attractive target for cancer therapy. Here, we report the development of DS-7300a, a novel B7-H3-targeting antibody-drug conjugate with a potent DNA topoisomerase I inhibitor, and its in vitro profile, pharmacokinetic profiles, safety profiles, and in vivo antitumor activities in nonclinical species. The target specificity and species cross-reactivity of DS-7300a were assessed. Its pharmacologic activities were evaluated in several human cancer cell lines in vitro and xenograft mouse models, including patient-derived xenograft (PDX) mouse models in vivo. Pharmacokinetics was investigated in cynomolgus monkeys. Safety profiles in rats and cynomolgus monkeys were also assessed. DS-7300a specifically bound to B7-H3 and inhibited the growth of B7-H3-expressing cancer cells, but not that of B7-H3-negative cancer cells, in vitro. Additionally, treatment with DS-7300a and DXd induced phosphorylated checkpoint kinase 1, a DNA damage marker, and cleaved PARP, an apoptosis marker, in cancer cells. Moreover, DS-7300a demonstrated potent in vivo antitumor activities in high-B7-H3 tumor xenograft models, including various tumor types of high-B7-H3 PDX models. Furthermore, DS-7300a was stable in circulation with acceptable pharmacokinetic profiles in monkeys, and well tolerated in rats and monkeys. DS-7300a exerted potent antitumor activities against B7-H3-expressing tumors in in vitro and in vivo models, including PDX mouse models, and showed acceptable pharmacokinetic and safety profiles in nonclinical species. Therefore, DS-7300a may be effective in treating patients with B7-H3-expressing solid tumors in a clinical setting.
Collapse
Affiliation(s)
- Michiko Yamato
- Daiichi Sankyo Co., Ltd., Tokyo, Japan.,Corresponding Author: Michiko Yamato, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan. Phone: 81-3-3492-3131; E-mail:
| | | | | | | | | | | | | | | | | | | | | | - Yuki Abe
- Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | |
Collapse
|
39
|
Huijbers EJM, Khan KA, Kerbel RS, Griffioen AW. Tumors resurrect an embryonic vascular program to escape immunity. Sci Immunol 2022; 7:eabm6388. [PMID: 35030032 DOI: 10.1126/sciimmunol.abm6388] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Elisabeth J M Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Kabir A Khan
- Biological Sciences Platform, Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
40
|
Ciprut S, Berberich A, Knoll M, Pusch S, Hoffmann D, Furkel J, Ward Gahlawat A, Kahlert-Konzelamnn L, Sahm F, Warnken U, Winter M, Schnölzer M, Pusch S, von Deimling A, Abdollahi A, Wick W, Lemke D. AAMP is a binding partner of costimulatory human B7-H3. Neurooncol Adv 2022; 4:vdac098. [PMID: 35919070 PMCID: PMC9341442 DOI: 10.1093/noajnl/vdac098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Targeted immunotherapies are of growing interest in the treatment of various cancers. B7 homolog 3 protein (B7-H3), a member of the co-stimulatory/-inhibitory B7-family, exerts immunosuppressive and pro-tumorigenic functions in various cancer types and is under evaluation in ongoing clinical trials. Unfortunately, interaction partner(s) remain unknown which restricts the druggability. Methods Aiming to identify potential binding partner(s) of B7-H3, a yeast two-hybrid and a mass spectrometry screen were performed. Potential candidates were evaluated by bimolecular fluorescence complementation (BiFC) assay, co-immunoprecipitation (co-IP), and functionally in a 3H-thymidine proliferation assay of Jurkat cells, a T-cell lineage cell line. Prognostic value of angio-associated migratory cell protein (AAMP) and B7-H3 expression was evaluated in isocitrate dehydrogenase 1 wildtype (IDH1wt) glioblastoma (GBM) patients from The Cancer Genome Atlas (TCGA)-GBM cohort. Results Of the screening candidates, CD164, AAMP, PTPRA, and SLAMF7 could be substantiated via BiFC. AAMP binding could be further confirmed via co-IP and on a functional level. AAMP was ubiquitously expressed in glioma cells, immune cells, and glioma tissue, but did not correlate with glioma grade. Finally, an interaction between AAMP and B7-H3 could be observed on expression level, hinting toward a combined synergistic effect. Conclusions AAMP was identified as a novel interaction partner of B7-H3, opening new possibilities to create a targeted therapy against the pro-tumorigenic costimulatory protein B7-H3.
Collapse
Affiliation(s)
- Sara Ciprut
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Neurology, University of Heidelberg Medical School and National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Anne Berberich
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Neurology, University of Heidelberg Medical School and National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Maximilian Knoll
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center Heidelberg, German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Stefan Pusch
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg , Heidelberg , Germany
| | - Dirk Hoffmann
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Neurology, University of Heidelberg Medical School and National Center for Tumor Diseases (NCT) , Heidelberg , Germany
- Faculty of Biosciences, Heidelberg University , Heidelberg , Germany
| | - Jennifer Furkel
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center Heidelberg, German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Aoife Ward Gahlawat
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center Heidelberg, German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Lena Kahlert-Konzelamnn
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Neurology, University of Heidelberg Medical School and National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Felix Sahm
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg , Heidelberg , Germany
| | - Uwe Warnken
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Neurology, University of Heidelberg Medical School and National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Martin Winter
- Department of Functional Proteome Analysis, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Martina Schnölzer
- Department of Functional Proteome Analysis, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Sonja Pusch
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Neurology, University of Heidelberg Medical School and National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Andreas von Deimling
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg , Heidelberg , Germany
| | - Amir Abdollahi
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center Heidelberg, German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Neurology, University of Heidelberg Medical School and National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Dieter Lemke
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) , Heidelberg , Germany
- Department of Neurology, University of Heidelberg Medical School and National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| |
Collapse
|
41
|
Miyamoto T, Murakami R, Hamanishi J, Tanigaki K, Hosoe Y, Mise N, Takamatsu S, Mise Y, Ukita M, Taki M, Yamanoi K, Horikawa N, Abiko K, Yamaguchi K, Baba T, Matsumura N, Mandai M. B7-H3 Suppresses Antitumor Immunity via the CCL2-CCR2-M2 Macrophage Axis and Contributes to Ovarian Cancer Progression. Cancer Immunol Res 2022; 10:56-69. [PMID: 34799346 PMCID: PMC9414298 DOI: 10.1158/2326-6066.cir-21-0407] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/03/2021] [Accepted: 11/18/2021] [Indexed: 01/07/2023]
Abstract
New approaches beyond PD-1/PD-L1 inhibition are required to target the immunologically diverse tumor microenvironment (TME) in high-grade serous ovarian cancer (HGSOC). In this study, we explored the immunosuppressive effect of B7-H3 (CD276) via the CCL2-CCR2-M2 macrophage axis and its potential as a therapeutic target. Transcriptome analysis revealed that B7-H3 is highly expressed in PD-L1-low, nonimmunoreactive HGSOC tumors, and its expression negatively correlated with an IFNγ signature, which reflects the tumor immune reactivity. In syngeneic mouse models, B7-H3 (Cd276) knockout (KO) in tumor cells, but not in stromal cells, suppressed tumor progression, with a reduced number of M2 macrophages and an increased number of IFNγ+CD8+ T cells. CCL2 expression was downregulated in the B7-H3 KO tumor cell lines. Inhibition of the CCL2-CCR2 axis partly negated the effects of B7-H3 suppression on M2 macrophage migration and differentiation, and tumor progression. In patients with HGSOC, B7-H3 expression positively correlated with CCL2 expression and M2 macrophage abundance, and patients with B7-H3-high tumors had fewer tumoral IFNγ+CD8+ T cells and poorer prognosis than patients with B7-H3-low tumors. Thus, B7-H3 expression in tumor cells contributes to CCL2-CCR2-M2 macrophage axis-mediated immunosuppression and tumor progression. These findings provide new insights into the immunologic TME and could aid the development of new therapeutic approaches against the unfavorable HGSOC phenotype.
Collapse
Affiliation(s)
- Taito Miyamoto
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Gynecology, Shiga General Hospital, Moriyama, Japan.,Corresponding Author: Ryusuke Murakami, Department of Gynecology, Shiga General Hospital, 5-4-30, Moriyama, Moriyama City, Shiga 524-8524, Japan. Phone: 817-7582-5031; Fax: 817-7582-5931; E-mail:
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Yuko Hosoe
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Shiro Takamatsu
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuka Mise
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masayo Ukita
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mana Taki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoki Horikawa
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Obstetrics and Gynecology, Shizuoka General Hospital, Shizuoka, Japan
| | - Kaoru Abiko
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University School of Medicine, Higashiosaka, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
42
|
Astarita JL, Keerthivasan S, Husain B, Şenbabaoğlu Y, Verschueren E, Gierke S, Pham VC, Peterson SM, Chalouni C, Pierce AA, Lill JR, Gonzalez LC, Martinez-Martin N, Turley SJ. The neutrophil protein CD177 is a novel PDPN receptor that regulates human cancer-associated fibroblast physiology. PLoS One 2021; 16:e0260800. [PMID: 34879110 PMCID: PMC8654239 DOI: 10.1371/journal.pone.0260800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
The cancer-associated fibroblast (CAF) marker podoplanin (PDPN) is generally correlated with poor clinical outcomes in cancer patients and thus represents a promising therapeutic target. Despite its biomedical relevance, basic aspects of PDPN biology such as its cellular functions and cell surface ligands remain poorly uncharacterized, thus challenging drug development. Here, we utilize a high throughput platform to elucidate the PDPN cell surface interactome, and uncover the neutrophil protein CD177 as a new binding partner. Quantitative proteomics analysis of the CAF phosphoproteome reveals a role for PDPN in cell signaling, growth and actomyosin contractility, among other processes. Moreover, cellular assays demonstrate that CD177 is a functional antagonist, recapitulating the phenotype observed in PDPN-deficient CAFs. In sum, starting from the unbiased elucidation of the PDPN co-receptome, our work provides insights into PDPN functions and reveals the PDPN/CD177 axis as a possible modulator of fibroblast physiology in the tumor microenvironment.
Collapse
Affiliation(s)
- Jillian L. Astarita
- Department of Cancer Immunology, Genentech, South San Francisco, California, United States of America
| | - Shilpa Keerthivasan
- Department of Cancer Immunology, Genentech, South San Francisco, California, United States of America
| | - Bushra Husain
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, California, United States of America
| | - Yasin Şenbabaoğlu
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, California, United States of America
| | - Erik Verschueren
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, California, United States of America
| | - Sarah Gierke
- Center for Advanced Light Microscopy, Genentech, South San Francisco, California, United States of America
| | - Victoria C. Pham
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, California, United States of America
| | - Sean M. Peterson
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, California, United States of America
| | - Cecile Chalouni
- Center for Advanced Light Microscopy, Genentech, South San Francisco, California, United States of America
| | - Andrew A. Pierce
- Department of Research Pathology, Genentech, South San Francisco, California, United States of America
| | - Jennie R. Lill
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, California, United States of America
| | - Lino C. Gonzalez
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, California, United States of America
| | - Nadia Martinez-Martin
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, California, United States of America
- * E-mail: (SJT); (NMM)
| | - Shannon J. Turley
- Department of Cancer Immunology, Genentech, South San Francisco, California, United States of America
- * E-mail: (SJT); (NMM)
| |
Collapse
|
43
|
Müller M, Gräbnitz F, Barandun N, Shen Y, Wendt F, Steiner SN, Severin Y, Vetterli SU, Mondal M, Prudent JR, Hofmann R, van Oostrum M, Sarott RC, Nesvizhskii AI, Carreira EM, Bode JW, Snijder B, Robinson JA, Loessner MJ, Oxenius A, Wollscheid B. Light-mediated discovery of surfaceome nanoscale organization and intercellular receptor interaction networks. Nat Commun 2021; 12:7036. [PMID: 34857745 PMCID: PMC8639842 DOI: 10.1038/s41467-021-27280-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/09/2021] [Indexed: 12/18/2022] Open
Abstract
The molecular nanoscale organization of the surfaceome is a fundamental regulator of cellular signaling in health and disease. Technologies for mapping the spatial relationships of cell surface receptors and their extracellular signaling synapses would unlock theranostic opportunities to target protein communities and the possibility to engineer extracellular signaling. Here, we develop an optoproteomic technology termed LUX-MS that enables the targeted elucidation of acute protein interactions on and in between living cells using light-controlled singlet oxygen generators (SOG). By using SOG-coupled antibodies, small molecule drugs, biologics and intact viral particles, we demonstrate the ability of LUX-MS to decode ligand receptor interactions across organisms and to discover surfaceome receptor nanoscale organization with direct implications for drug action. Furthermore, by coupling SOG to antigens we achieved light-controlled molecular mapping of intercellular signaling within functional immune synapses between antigen-presenting cells and CD8+ T cells providing insights into T cell activation with spatiotemporal specificity. LUX-MS based decoding of surfaceome signaling architectures thereby provides a molecular framework for the rational development of theranostic strategies. The spatial organization of cell surface receptors is critical for cell signaling and drug action. Here, the authors develop an optoproteomic method for mapping surface protein interactions, revealing cellular responses to antibodies, drugs and viral particles as well as immunosynapse signaling events.
Collapse
Affiliation(s)
- Maik Müller
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Institute of Translational Medicine (ITM), Zurich, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Fabienne Gräbnitz
- Department of Biology, ETH Zurich, Institute of Microbiology, Zurich, Switzerland
| | - Niculò Barandun
- Department of Biology, ETH Zurich, Institute of Microbiology, Zurich, Switzerland
| | - Yang Shen
- Institute of Food Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Fabian Wendt
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Institute of Translational Medicine (ITM), Zurich, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Sebastian N Steiner
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Institute of Translational Medicine (ITM), Zurich, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Yannik Severin
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Milon Mondal
- Chemistry Department, University of Zurich, Zurich, Switzerland
| | | | - Raphael Hofmann
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Marc van Oostrum
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Institute of Translational Medicine (ITM), Zurich, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Roman C Sarott
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Erick M Carreira
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Berend Snijder
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - John A Robinson
- Chemistry Department, University of Zurich, Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Annette Oxenius
- Department of Biology, ETH Zurich, Institute of Microbiology, Zurich, Switzerland
| | - Bernd Wollscheid
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Institute of Translational Medicine (ITM), Zurich, Switzerland. .,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
44
|
Klein K, Hölzemer A, Wang T, Kim TE, Dugan HL, Jost S, Altfeld M, Garcia-Beltran WF. A Genome-Wide CRISPR/Cas9-Based Screen Identifies Heparan Sulfate Proteoglycans as Ligands of Killer-Cell Immunoglobulin-Like Receptors. Front Immunol 2021; 12:798235. [PMID: 34917099 PMCID: PMC8669139 DOI: 10.3389/fimmu.2021.798235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
While human leukocyte antigen (HLA) and HLA-like proteins comprise an overwhelming majority of known ligands for NK-cell receptors, the interactions of NK-cell receptors with non-conventional ligands, particularly carbohydrate antigens, is less well described. We previously found through a bead-based HLA screen that KIR3DS1, a formerly orphan member of the killer-cell immunoglobulin-like receptor (KIR) family, binds to HLA-F. In this study, we assessed the ligand binding profile of KIR3DS1 to cell lines using Fc fusion constructs, and discovered that KIR3DS1-Fc exhibited binding to several human cell lines including ones devoid of HLA. To identify these non-HLA ligands, we developed a magnetic enrichment-based genome-wide CRISPR/Cas9 knock-out screen approach, and identified enzymes involved in the biosynthesis of heparan sulfate as crucial for the binding of KIR3DS1-Fc to K562 cells. This interaction between KIR3DS1 and heparan sulfate was confirmed via surface plasmon resonance, and removal of heparan sulfate proteoglycans from cell surfaces abolished KIR3DS1-Fc binding. Testing of additional KIR-Fc constructs demonstrated that KIR family members containing a D0 domain (KIR3DS1, KIR3DL1, KIR3DL2, KIR2DL4, and KIR2DL5) bound to heparan sulfate, while those without a D0 domain (KIR2DL1, KIR2DL2, KIR2DL3, and KIR2DS4) did not. Overall, this study demonstrates the use of a genome-wide CRISPR/Cas9 knock-out strategy to unbiasedly identify unconventional ligands of NK-cell receptors. Furthermore, we uncover a previously underrecognized binding of various activating and inhibitory KIRs to heparan sulfate proteoglycans that may play a role in NK-cell receptor signaling and target-cell recognition.
Collapse
Affiliation(s)
- Klara Klein
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Angelique Hölzemer
- Leibniz Institute for Experimental Virology, Hamburg, Germany
- First Department of Internal Medicine, Division of Infectious Diseases, University Medical Centre Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Tim Wang
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Tae-Eun Kim
- Ragon Institute of Massachusetts General Hospital (MGH), MIT, and Harvard, Cambridge, MA, United States
| | - Haley L. Dugan
- Ragon Institute of Massachusetts General Hospital (MGH), MIT, and Harvard, Cambridge, MA, United States
- Adimab, LLC, Lebanon, NH, United States
| | - Stephanie Jost
- Ragon Institute of Massachusetts General Hospital (MGH), MIT, and Harvard, Cambridge, MA, United States
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Marcus Altfeld
- Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Wilfredo F. Garcia-Beltran
- Ragon Institute of Massachusetts General Hospital (MGH), MIT, and Harvard, Cambridge, MA, United States
- Department of Pathology, Massachusetts General Hospital (MGH), Boston, MA, United States
- *Correspondence: Wilfredo F. Garcia-Beltran,
| |
Collapse
|
45
|
Holder KA, Burt K, Grant MD. TIGIT blockade enhances NK cell activity against autologous HIV-1-infected CD4 + T cells. Clin Transl Immunology 2021; 10:e1348. [PMID: 34707863 PMCID: PMC8527024 DOI: 10.1002/cti2.1348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
Objectives During chronic human immunodeficiency virus (HIV)‐1 infection, inhibitory molecules upregulated on lymphocytes contribute to effector cell dysfunction and immune exhaustion. People living with HIV (PLWH) are at greater risk for age‐related morbidities, an issue magnified by human cytomegalovirus (CMV) coinfection. As CMV infection modifies natural killer (NK) cell properties and NK cells contribute to protection against HIV‐1 infection, we considered the role of T‐cell immunoreceptor with immunoglobulin and intracellular tyrosine inhibitory motif domains (TIGIT) in NK cell‐based HIV‐1 immunotherapy and elimination strategies. Methods We measured TIGIT expression on immune cell subsets of 95 PLWH and assessed its impact on NK cell function, including elimination of autologous CD4+ T cells infected through reactivation of endogenous HIV‐1. Results TIGIT was expressed on CD4+ T cells, CD8+ T cells and NK cells from PLWH. Although TIGIT levels on T cells correlated with HIV‐1 disease progression, the extent of TIGIT expression on NK cells more closely paralleled adaptation to CMV. TIGIT interacts with its predominant ligand, poliovirus receptor (PVR), to inhibit effector cell functions. Circulating CD4+ T cells from PLWH more frequently expressed PVR than HIV‐seronegative controls, and PVR expression was enriched in CD4+ T cells replicating HIV‐1 ex vivo. Treatment with anti‐TIGIT monoclonal antibodies increased NK cell HIV‐1‐specific antibody‐dependent cytotoxicity in vitro and ex vivo. Conclusion Blocking TIGIT may be an effective strategy to invigorate antibody‐dependent NK cell activity against HIV‐1 activated in cellular reservoirs for cure or treatment strategies.
Collapse
Affiliation(s)
- Kayla A Holder
- Immunology and Infectious Diseases Program Division of BioMedical Sciences Faculty of Medicine Memorial University of Newfoundland St. John's NL Canada
| | | | - Michael D Grant
- Immunology and Infectious Diseases Program Division of BioMedical Sciences Faculty of Medicine Memorial University of Newfoundland St. John's NL Canada
| |
Collapse
|
46
|
Cao S, Peterson SM, Müller S, Reichelt M, McRoberts Amador C, Martinez-Martin N. A membrane protein display platform for receptor interactome discovery. Proc Natl Acad Sci U S A 2021; 118:e2025451118. [PMID: 34531301 PMCID: PMC8488672 DOI: 10.1073/pnas.2025451118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
Cell surface receptors are critical for cell signaling and constitute a quarter of all human genes. Despite their importance and abundance, receptor interaction networks remain understudied because of difficulties associated with maintaining membrane proteins in their native conformation and their typically weak interactions. To overcome these challenges, we developed an extracellular vesicle-based method for membrane protein display that enables purification-free and high-throughput detection of receptor-ligand interactions in membranes. We demonstrate that this platform is broadly applicable to a variety of membrane proteins, enabling enhanced detection of extracellular interactions over a wide range of binding affinities. We were able to recapitulate and expand the interactome for prominent members of the B7 family of immunoregulatory proteins such as PD-L1/CD274 and B7-H3/CD276. Moreover, when applied to the orphan cancer-associated fibroblast protein, LRRC15, we identified a membrane-dependent interaction with the tumor stroma marker TEM1/CD248. Furthermore, this platform enabled profiling of cellular receptors for target-expressing as well as endogenous extracellular vesicles. Overall, this study presents a sensitive and easy to use screening platform that bypasses membrane protein purification and enables characterization of interactomes for any cell surface-expressed target of interest in its native state.
Collapse
Affiliation(s)
- Shengya Cao
- Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080;
| | - Sean M Peterson
- Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080
| | - Sören Müller
- Oncology Bioinformatics, Genentech, South San Francisco, CA 94080
| | - Mike Reichelt
- Pathology Labs, Genentech, South San Francisco, CA 94080
| | | | - Nadia Martinez-Martin
- Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080;
- Biologics, Almirall, 08022 Barcelona, Spain
| |
Collapse
|
47
|
Buckle I, Guillerey C. Inhibitory Receptors and Immune Checkpoints Regulating Natural Killer Cell Responses to Cancer. Cancers (Basel) 2021; 13:cancers13174263. [PMID: 34503073 PMCID: PMC8428224 DOI: 10.3390/cancers13174263] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Recent years marked the discovery and increased understanding of the role immune checkpoints play in immunity against cancer. This has revolutionized cancer treatment, saving the lives of many patients. For numerous years the spotlight of success has been directed towards T cells; however, it is now appreciated that other cells play vital roles in this protection. In this review we focused on cytotoxic lymphocytes Natural Killer (NK) cells, which are known to be well equipped in the fight against cancer. We explored the role of well-described and newly emerging inhibitory receptors, including immune checkpoints in regulating NK cell activity against cancer. The knowledge summarized in this review should guide the development of immunotherapies targeting inhibitory receptors with the aim of restoring NK cell responses in cancer patients. Abstract The discovery of immune checkpoints provided a breakthrough for cancer therapy. Immune checkpoints are inhibitory receptors that are up-regulated on chronically stimulated lymphocytes and have been shown to hinder immune responses to cancer. Monoclonal antibodies against the checkpoint molecules PD-1 and CTLA-4 have shown early clinical success against melanoma and are now approved to treat various cancers. Since then, the list of potential candidates for immune checkpoint blockade has dramatically increased. The current paradigm stipulates that immune checkpoint blockade therapy unleashes pre-existing T cell responses. However, there is accumulating evidence that some of these immune checkpoint molecules are also expressed on Natural Killer (NK) cells. In this review, we summarize our latest knowledge about targetable NK cell inhibitory receptors. We discuss the HLA-binding receptors KIRS and NKG2A, receptors binding to nectin and nectin-like molecules including TIGIT, CD96, and CD112R, and immune checkpoints commonly associated with T cells such as PD-1, TIM-3, and LAG-3. We also discuss newly discovered pathways such as IL-1R8 and often overlooked receptors such as CD161 and Siglecs. We detail how these inhibitory receptors might regulate NK cell responses to cancer, and, where relevant, we discuss their implications for therapeutic intervention.
Collapse
|
48
|
BCL9 regulates CD226 and CD96 checkpoints in CD8 + T cells to improve PD-1 response in cancer. Signal Transduct Target Ther 2021; 6:313. [PMID: 34417435 PMCID: PMC8379253 DOI: 10.1038/s41392-021-00730-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
To date, the overall response rate of PD-1 blockade remains unsatisfactory, partially due to limited understanding of tumor immune microenvironment (TIME). B-cell lymphoma 9 (BCL9), a key transcription co-activator of the Wnt pathway, is highly expressed in cancers. By genetic depletion and pharmacological inhibition of BCL9 in tumors, we found that BCL9 suppression reduced tumor growth, promoted CD8+ T cell tumor infiltration, and enhanced response to anti-PD-1 treatment in mouse colon cancer models. To determine the underlying mechanism of BCL9's role in TIME regulation, single-cell RNA-seq was applied to reveal cellular landscape and transcription differences in the tumor immune microenvironment upon BCL9 inhibition. CD155-CD226 and CD155-CD96 checkpoints play key roles in cancer cell/CD8+ T cell interaction. BCL9 suppression induces phosphorylation of VAV1 in CD8+ T cells and increases GLI1 and PATCH expression to promote CD155 expression in cancer cells. In The Cancer Genome Atlas database analysis, we found that BCL9 expression is positively associated with CD155 and negatively associated with CD226 expression. BCL9 is also linked to adenomatous polyposis coli (APC) mutation involved in patient survival following anti-PD-1 treatment. This study points to cellular diversity within the tumor immune microenvironment affected by BCL9 inhibition and provides new insights into the role of BCL9 in regulating CD226 and CD96 checkpoints.
Collapse
|
49
|
Lill JR, Mathews WR, Rose CM, Schirle M. Proteomics in the pharmaceutical and biotechnology industry: a look to the next decade. Expert Rev Proteomics 2021; 18:503-526. [PMID: 34320887 DOI: 10.1080/14789450.2021.1962300] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Pioneering technologies such as proteomics have helped fuel the biotechnology and pharmaceutical industry with the discovery of novel targets and an intricate understanding of the activity of therapeutics and their various activities in vitro and in vivo. The field of proteomics is undergoing an inflection point, where new sensitive technologies are allowing intricate biological pathways to be better understood, and novel biochemical tools are pivoting us into a new era of chemical proteomics and biomarker discovery. In this review, we describe these areas of innovation, and discuss where the fields are headed in terms of fueling biotechnological and pharmacological research and discuss current gaps in the proteomic technology landscape. AREAS COVERED Single cell sequencing and single molecule sequencing. Chemoproteomics. Biological matrices and clinical samples including biomarkers. Computational tools including instrument control software, data analysis. EXPERT OPINION Proteomics will likely remain a key technology in the coming decade, but will have to evolve with respect to type and granularity of data, cost and throughput of data generation as well as integration with other technologies to fulfill its promise in drug discovery.
Collapse
Affiliation(s)
- Jennie R Lill
- Department of Microchemistry, Lipidomics and Next Generation Sequencing, Genentech Inc. DNA Way, South San Francisco, CA, USA
| | - William R Mathews
- OMNI Department, Genentech Inc. 1 DNA Way, South San Francisco, CA, USA
| | - Christopher M Rose
- Department of Microchemistry, Lipidomics and Next Generation Sequencing, Genentech Inc. DNA Way, South San Francisco, CA, USA
| | - Markus Schirle
- Chemical Biology and Therapeutics Department, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| |
Collapse
|
50
|
Keerthivasan S, Şenbabaoğlu Y, Martinez-Martin N, Husain B, Verschueren E, Wong A, Yang YA, Sun Y, Pham V, Hinkle T, Oei Y, Madireddi S, Corpuz R, Tam L, Carlisle S, Roose-Girma M, Modrusan Z, Ye Z, Koerber JT, Turley SJ. Homeostatic functions of monocytes and interstitial lung macrophages are regulated via collagen domain-binding receptor LAIR1. Immunity 2021; 54:1511-1526.e8. [PMID: 34260887 DOI: 10.1016/j.immuni.2021.06.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 02/21/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022]
Abstract
Myeloid cells encounter stromal cells and their matrix determinants on a continual basis during their residence in any given organ. Here, we examined the impact of the collagen receptor LAIR1 on myeloid cell homeostasis and function. LAIR1 was highly expressed in the myeloid lineage and enriched in non-classical monocytes. Proteomic definition of the LAIR1 interactome identified stromal factor Colec12 as a high-affinity LAIR1 ligand. Proteomic profiling of LAIR1 signaling triggered by Collagen1 and Colec12 highlighted pathways associated with survival, proliferation, and differentiation. Lair1-/- mice had reduced frequencies of Ly6C- monocytes, which were associated with altered proliferation and apoptosis of non-classical monocytes from bone marrow and altered heterogeneity of interstitial macrophages in lung. Myeloid-specific LAIR1 deficiency promoted metastatic growth in a melanoma model and LAIR1 expression associated with improved clinical outcomes in human metastatic melanoma. Thus, monocytes and macrophages rely on LAIR1 sensing of stromal determinants for fitness and function, with relevance in homeostasis and disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Anne Wong
- Genentech Inc., South San Francisco, CA, USA
| | | | | | | | | | - Yoko Oei
- Genentech Inc., South San Francisco, CA, USA
| | | | | | - Lucinda Tam
- Genentech Inc., South San Francisco, CA, USA
| | | | | | | | - Zhengmao Ye
- Genentech Inc., South San Francisco, CA, USA
| | | | | |
Collapse
|