1
|
Yuan Z, Yu M, Li D, Zhang H, Li L. Protein expression changes in cornea after collagen crosslinking. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
2
|
Bentz S, Pesch T, Wolfram L, de Vallière C, Leucht K, Fried M, Coy JF, Hausmann M, Rogler G. Lack of transketolase-like (TKTL) 1 aggravates murine experimental colitis. Am J Physiol Gastrointest Liver Physiol 2011; 300:G598-607. [PMID: 21233279 DOI: 10.1152/ajpgi.00323.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transketolase-like (TKTL) 1 indirectly replenishes NADPH preventing damage induced by reactive oxygen species (ROS) formed upon intestinal inflammation. We investigated the function of TKTL1 during murine colitis and ROS detoxification for prevention of tissue damage. Mucosal damage in TKTL1(-/-) and wild-type (WT) mice was assessed by miniendoscopy and histology during dextran sodium sulfate (DSS) colitis. mRNA levels of interferon (IFN)-γ, inducible nitric oxide synthase (iNOS), interleukin (IL)-6, tumor necrosis factor (TNF), transketolase (TKT), and TKTL2 were determined by PCR and/or Western blotting. To assess oxidative and nitrosative stress nitrosylation, carbonylation and antioxidative enzymes catalase (Cat), superoxide dismutase 1 and 2, as well as glutathione (GSH) were determined. Myeloperoxidase (MPO) was determined for assessment of tissue neutrophils. TKTL1 knockout or DSS treatment did not influence TKT and TKTL2 mRNA or protein expression. Mucosal damage was significantly increased in TKTL1(-/-) mice indicated by miniendoscopy as well as a significantly shorter colon and more severe histological scores compared with WT mice during DSS colitis. This was associated with higher mRNA levels of IFN-γ, iNOS, IL-6, and TNF. In addition, iNOS protein expression was significantly enhanced in TKTL1(-/-) mice as well as MPO activity. Protein modification by nitric oxide (nitrotyrosine) was induced in TKTL1(-/-) mice. However, introduction of carbonyl groups by ROS was not induced in these mice. The expression of SOD1, SOD2, Cat, as well as GSH content was not significantly changed in TKTL1(-/-) mice. We conclude that induced colitis in TKTL1(-/-) mice was more severe compared with WT. This indicates a role of TKTL1 during mucosal repair and restoration.
Collapse
Affiliation(s)
- Susanne Bentz
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Xu KP, Li Y, Ljubimov AV, Yu FSX. High glucose suppresses epidermal growth factor receptor/phosphatidylinositol 3-kinase/Akt signaling pathway and attenuates corneal epithelial wound healing. Diabetes 2009; 58:1077-85. [PMID: 19188434 PMCID: PMC2671049 DOI: 10.2337/db08-0997] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 01/20/2009] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Patients with diabetes are at an increased risk for developing corneal complications and delayed wound healing. This study investigated the effects of high glucose on epidermal growth factor receptor (EGFR) signaling and on epithelial wound healing in the cornea. RESEARCH DESIGN AND METHODS Effects of high glucose on wound healing and on EGFR signaling were investigated in cultured porcine corneas, human corneal epithelial cells, and human corneas using Western blotting and immunofluorescence. Effects of high glucose on reactive oxygen species (ROS) and glutathione levels and on EGFR pathways were assessed in porcine and primary human corneal epithelial cells, respectively. The effects of EGFR ligands and antioxidants on high glucose-delayed epithelial wound healing were assessed in cultured porcine corneas. RESULTS High glucose impaired ex vivo epithelial wound healing and disturbed cell responses and EGFR signaling to wounding. High glucose suppressed Akt phosphorylation in an ROS-sensitive manner and decreased intracellular glutathione in cultured porcine corneas. Exposure to high glucose for 24 h resulted in an increase in ROS-positive cells in primary human corneal epithelial cells. Whereas heparin-binding EGF-like growth factor and antioxidant N-acetylcysteine had beneficial effects on epithelial wound closure, their combination significantly accelerated high glucose-delayed wound healing to a level similar to that seen in control subjects. Finally, Akt signaling pathway was perturbed in the epithelia of human diabetic corneas, but not in the corneas of nondiabetic, age-matched donors. CONCLUSIONS High glucose, likely through ROS, impairs the EGFR-phosphatidylinositol 3-kinase/Akt pathway, resulting in delayed corneal epithelial wound healing. Antioxidants in combination with EGFR ligands may be promising potential therapeutics for diabetic keratopathy.
Collapse
Affiliation(s)
- Ke-Ping Xu
- Kresge Eye Institute, Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Yanfeng Li
- Kresge Eye Institute, Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Alexander V. Ljubimov
- Ophthalmology Research Laboratories, Cedars-Sinai Medical Center, Los Angeles, California
| | - Fu-Shin X. Yu
- Kresge Eye Institute, Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
4
|
The role of corneal crystallins in the cellular defense mechanisms against oxidative stress. Semin Cell Dev Biol 2007; 19:100-12. [PMID: 18077195 DOI: 10.1016/j.semcdb.2007.10.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 10/04/2007] [Indexed: 11/19/2022]
Abstract
The refracton hypothesis describes the lens and cornea together as a functional unit that provides the proper ocular transparent and refractive properties for the basis of normal vision. Similarities between the lens and corneal crystallins also suggest that both elements of the refracton may also contribute to the antioxidant defenses of the entire eye. The cornea is the primary physical barrier against environmental assault to the eye and functions as a dominant filter of UV radiation. It is routinely exposed to reactive oxygen species (ROS)-generating UV light and molecular O(2) making it a target vulnerable to UV-induced damage. The cornea is equipped with several defensive mechanisms to counteract the deleterious effects of UV-induced oxidative damage. These comprise both non-enzymatic elements that include proteins and low molecular weight compounds (ferritin, glutathione, NAD(P)H, ascorbate and alpha-tocopherol) as well as various enzymes (catalase, glucose-6-phosphate dehydrogenase, glutathione peroxidase, glutathione reductase, and superoxide dismutase). Several proteins accumulate in the cornea at unusually high concentrations and have been classified as corneal crystallins based on the analogy of these proteins with the abundant taxon-specific lens crystallins. In addition to performing a structural role related to ocular transparency, corneal crystallins may also contribute to the corneal antioxidant systems through a variety of mechanisms including the direct scavenging of free radicals, the production of NAD(P)H, the metabolism and/or detoxification of toxic compounds (i.e. reactive aldehydes), and the direct absorption of UV radiation. In this review, we extend the discussion of the antioxidant defenses of the cornea to include these highly expressed corneal crystallins and address their specific capacities to minimize oxidative damage.
Collapse
|
5
|
Schlötzer-Schrehardt U, Kruse FE. Identification and characterization of limbal stem cells. Exp Eye Res 2005; 81:247-64. [PMID: 16051216 DOI: 10.1016/j.exer.2005.02.016] [Citation(s) in RCA: 328] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 02/25/2005] [Indexed: 12/15/2022]
Abstract
The maintenance of a healthy corneal epithelium under both normal and wound healing conditions is achieved by a population of stem cells (SC) located in the basal epithelium at the corneoscleral limbus. In the light of the development of strategies for reconstruction of the ocular surface in patients with limbal stem cell deficiency, a major challenge in corneal SC biology remains the ability to identify stem cells in situ and in vitro. Until recently, the identification of limbal stem cells mainly has been based on general properties of stem cells, e.g. lack of differentiation, prolonged label-retaining, indefinite capacity of proliferation exemplified by the clonogenic assay as well as their special role in corneal wound healing. During the last years, a number of molecular markers for the limbal SC compartment has been proposed, however, their role in distinguishing limbal SC from their early progeny is still under debate. Data reported from the literature combined with our own recent observations suggest, that the basal epithelial cells of the human limbus contain ABCG2, K19, vimentin, KGF-R, metallothionein, and integrin alpha9, but do not stain for K3/K12, Cx43, involucrin, P-cadherin, integrins alpha2, alpha6, and beta4, and nestin, when compared to the basal cells of the corneal epithelium. A relatively higher expression level in basal limbal cells was observed for p63, alpha-enolase, K5/14, and HGF-R, whereas there were no significant differences in staining intensity for beta-catenin, integrins alphav, beta1, beta2, and beta5, CD71, EGF-R, TGF-beta-RI, TGF-beta-RII, and TrkA between limbal and corneal basal epithelial cells. Therefore, a combination of differentiation-associated markers (e.g. K3/K12, Cx43, or involucrin) and putative SC-associated markers (e.g. ABCG2, K19, vimentin, or integrin alpha9) may provide a suitable tool for identification of human limbal SC. While most putative SC markers label the majority of limbal basal cells and, therefore, may not distinguish SC from progenitor cells, only ABCG2 was strictly confined to small clusters of basal cells in the limbal epithelium. At present, ABCG2 therefore appears to be the most useful cell surface marker for the identification and isolation of corneal epithelial SC. Moreover, the characteristics of the specific microenvironment of corneal SC, as provided by growth factor activity and basement membrane heterogeneity in the limbal area, could serve as additional tools for their selective enrichment and in vitro expansion for the purpose of ocular surface reconstruction.
Collapse
|
6
|
Davis J, Duncan MK, Robison WG, Piatigorsky J. Requirement for Pax6 in corneal morphogenesis: a role in adhesion. J Cell Sci 2003; 116:2157-67. [PMID: 12692153 DOI: 10.1242/jcs.00441] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Pax6 transcription factor functions early during embryogenesis to control key steps in brain, pancreas, olfactory and ocular system development. A requirement for Pax6 in proper formation of lens, iris and retina is well documented. By examining the corneas of heterozygous Small eye (SEY) mice, this report shows that Pax6 is also necessary for normal corneal morphogenesis. In particular, the epithelial component of the postnatal and adult SEY (+/-) cornea is thinner owing to a reduction in the number of cell layers, despite a tenfold increase in the proliferative index and no change in TUNEL labeling. Ultrastructural views revealed large gaps between corneal epithelial cells and a change in the appearance of desmosomes, suggesting that adhesion abnormalities contribute to the corneal phenotype of SEY (+/-) mice. Western blot analysis and immunofluorescence showed equivalent amounts and normal localization of E-cadherin in SEY (+/-) corneas, and the actin cytoskeleton appeared normal as judged by phalloidin staining. By contrast, the levels of desmoglein, beta-catenin and gamma-catenin were reduced in the SEY (+/-) cornea. In addition, the amount of keratin-12 mRNA and protein, the major intermediate filament, was reduced in SEY (+/-) corneal epithelium as shown by in situ hybridization and immunohistochemistry. Finally, the SEY (+/-) corneal epithelium adheres less well than wild-type when challenged with gentle rubbing using a microsponge. In conclusion, our results indicate that cellular adhesion is compromised in the SEY (+/-) corneal epithelium and suggests a role for Pax6 in the proper generation and maintenance of the adult cornea.
Collapse
Affiliation(s)
- Janine Davis
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-2730, USA
| | | | | | | |
Collapse
|
7
|
Xu ZP, Wawrousek EF, Piatigorsky J. Transketolase haploinsufficiency reduces adipose tissue and female fertility in mice. Mol Cell Biol 2002; 22:6142-7. [PMID: 12167708 PMCID: PMC134013 DOI: 10.1128/mcb.22.17.6142-6147.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2002] [Accepted: 06/03/2002] [Indexed: 11/20/2022] Open
Abstract
Transketolase (TKT) is a ubiquitous enzyme used in multiple metabolic pathways. We show here by gene targeting that TKT-null mouse embryos are not viable and that disruption of one TKT allele can cause growth retardation ( approximately 35%) and preferential reduction of adipose tissue ( approximately 77%). Other TKT(+/-) tissues had moderate ( approximately 33%; liver, gonads) or relatively little ( approximately 7 to 18%; eye, kidney, heart, brain) reductions in mass. These mice expressed a normal level of growth hormone and reduced leptin levels. No phenotype was observed in the TKT(+/-) cornea, where TKT is especially abundant in wild-type mice. The small female TKT(+/-) mice mated infrequently and had few progeny (with a male/female ratio of 1.4:1) when pregnant. Thus, TKT in normal mice appears to be carefully balanced at a threshold level for well-being. Our data suggest that TKT deficiency may have clinical significance in humans and raise the possibility that obesity may be treated by partial inhibition of TKT in adipose tissue.
Collapse
Affiliation(s)
- Zheng-Ping Xu
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2730, USA
| | | | | |
Collapse
|
8
|
Ueki T, Uyama T, Yamamoto K, Kanamori K, Michibata H. Exclusive expression of transketolase in the vanadocytes of the vanadium-rich ascidian, Ascidia sydneiensis samea. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1494:83-90. [PMID: 11072071 DOI: 10.1016/s0167-4781(00)00222-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ascidians, especially those belonging to the Ascidiidae, are known to accumulate extremely high levels of vanadium in vanadocytes, one type of blood (coelomic) cell. Vanadium, which exists in the +5 oxidation state in seawater, is accumulated in the vanadocytes and reduced to the +3 oxidation state. We have been trying to characterize all of the polypeptides specific to vanadocytes and to specify the proteins that participate in the accumulation and reduction of vanadium. To date, we have localized three enzymes in vanadocytes: 6-phosphogluconate dehydrogenase (6-PGDH: EC 1.1.1.44), glucose-6-phosphate dehydrogenase (G6PDH: EC 1.1.1.49), and glycogen phosphorylase (GP: EC 2.4.1.1), all of which are involved in the pentose phosphate pathway. In the current study, we cloned a cDNA for transketolase, an essential and rate-limiting enzyme in the non-oxidative part of the pentose phosphate pathway, from vanadocytes. The cDNA encoded a protein of 624 amino acids, which showed 61.8% identity to the human adult-type transketolase gene product. By immunocytochemistry and immunoblot analyses, the transketolase was revealed to be a protein that was expressed only in vanadocytes and not in any of the more than ten other types of blood cell. This finding, taken together with the localized expression of the other three enzymes, strongly supports the hypothesis that the pentose phosphate pathway functions exclusively in vanadocytes.
Collapse
Affiliation(s)
- T Ueki
- Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Japan.
| | | | | | | | | |
Collapse
|
9
|
Sax CM, Kays WT, Salamon C, Chervenak MM, Xu YS, Piatigorsky J. Transketolase gene expression in the cornea is influenced by environmental factors and developmentally controlled events. Cornea 2000; 19:833-41. [PMID: 11095059 DOI: 10.1097/00003226-200011000-00014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Transketolase (TKT) has been proposed to be a corneal crystallin, and its gene and protein are abundantly expressed in the corneal epithelium of several mammals. A marked up-regulation of TKT gene expression coincides with the time of eyelid opening in the mouse. Here, we examined whether exposure to incident light contributes to the up-regulation of TKT gene expression during cornea maturation. METHODS Mice were raised in either standard light/dark cycling conditions or total darkness. In some cases, subcutaneous injections of epidermal growth factor (EGF) were given beginning on the day of birth to induce early eyelid opening. RNA was prepared from the corneas of mothers and pups and subjected to Northern blot analyses. In addition, the relative levels of TKT mRNA and/or enzyme activity were examined in the corneas of human, bovine, rat, chicken, and zebrafish. RESULTS TKT mRNA levels were 2.1-fold higher in the corneas of 25-day-old mouse pups ( 12 days after eyelid opening) that had been born and raised in light/dark conditions compared to pups born and raised in total darkness. By contrast, the level of TKT mRNA in the mature corneas of adult mice maintained in the dark for 2-8 weeks did not vary greatly from those of mice maintained in light/dark conditions. Interestingly, TKT mRNA levels in the corneas of dark-raised mice, although reduced, did exhibit the increase characteristically observed before and after eyelid opening. In addition, TKT mRNA levels were elevated fivefold in the corneas of 28-day-old mice raised in darkness and injected with EGF compared to uninjected mice also deprived of light. The EGF-injected mice opened their eyes 3 days early, and their corneal epithelium did not grossly differ from that of control mice. TKT mRNA and/or enzyme activity was found to be much higher in the corneas than in other tissues of humans, bovines, and rats but was extremely low in the corneas of chicken and zebrafish. CONCLUSION Our studies suggest that both exposure to incident light and events surrounding the process of eyelid opening play a role in the up-regulation of TKT gene expression observed during corneal maturation in mice. Light appears to play a less important role in the mature cornea in maintaining high levels of TKT gene expression. The low levels of TKT in the cornea of chicken and zebrafish support the notion that TKT acts as a taxon-specific enzyme-crystallin in mammals. The involvement of environmental signals for this putative, mammalian cornea crystallin contrasts with the purely developmental signals involved in the up-regulation of the crystallin genes of the lens.
Collapse
Affiliation(s)
- C M Sax
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, 20892-2730, USA
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
It is established that the diverse, multifunctional crystallins are responsible for the optical properties of the cellular, transparent lens of the complex eyes of vertebrates and invertebrates. Lens crystallins often differ among species and may be enzymes or stress proteins. I present here the idea that abundant water-soluble enzymes and other proteins may also be used for cellular transparency in the epithelial cells and, possibly, stromal keratocytes of the cornea. Aldehyde dehydrogenases and transketolase are among the putative "corneal crystallins" in mammals, and gelsolin may be a corneal crystallin in the zebrafish. In invertebrates, the glutathione S-transferase-related S-crystallins of the lens appear to be used also as corneal crystallins in the squid, and an aldehyde dehydrogenase-related protein is the crystallin in the lens and, possibly, cornea of the scallop. The use of abundant, taxon-specific water-soluble proteins as crystallins for cellular transparency in the cornea would provide a new conceptual link between this tissue and the lens.
Collapse
Affiliation(s)
- J Piatigorsky
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2730, USA.
| |
Collapse
|
11
|
Wolosin JM, Xiong X, Schütte M, Stegman Z, Tieng A. Stem cells and differentiation stages in the limbo-corneal epithelium. Prog Retin Eye Res 2000; 19:223-55. [PMID: 10674709 DOI: 10.1016/s1350-9462(99)00005-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- J M Wolosin
- Department of Ophthalmology, Mount Sinai School of Medicine of New York University, New York 10029, USA.
| | | | | | | | | |
Collapse
|
12
|
Frederikse PH, Farnsworth P, Zigler JS. Thiamine deficiency in vivo produces fiber cell degeneration in mouse lenses. Biochem Biophys Res Commun 1999; 258:703-7. [PMID: 10329449 DOI: 10.1006/bbrc.1999.0560] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thiamine (Vitamin B1) is a co-factor for enzymes key in bridging aerobic and anaerobic metabolism. One such enzyme, transketolase, catalyzes two of three reactions for entry into the pentose-phosphate pathway, a major source of chemical reducing power. Thus, thiamine deprivation (TD) is considered a classic model of systemic oxidative stress and is linked with degenerative diseases. TD in mice and rats produces neurodegeneration with Alzheimer's disease characteristics. Age-related disease of the lens, commonly cataract, is also linked with thiamine and oxidative stress. To test the effects of TD on mice, we used a previously defined protocol involving a thiamine free diet and a thiamine antagonist. After 12 days, lens fiber cell degeneration was observed primarily along the lens posterior beneath the intact capsule. These regions exhibited a localized increased expression of Alzheimer precursor protein, Abeta peptides, and presenilin 1. These data indicate that TD in mice produces fiber cell degeneration and suggest common mechanisms for TD-induced lens fiber and neuronal cell degeneration.
Collapse
Affiliation(s)
- P H Frederikse
- Laboratory of Mechanisms of Ocular Disease, National Eye Institute, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
13
|
Jester JV, Moller-Pedersen T, Huang J, Sax CM, Kays WT, Cavangh HD, Petroll WM, Piatigorsky J. The cellular basis of corneal transparency: evidence for ‘corneal crystallins’. J Cell Sci 1999; 112 ( Pt 5):613-22. [PMID: 9973596 DOI: 10.1242/jcs.112.5.613] [Citation(s) in RCA: 293] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vivo corneal light scattering measurements using a novel confocal microscope demonstrated greatly increased backscatter from corneal stromal fibrocytes (keratocytes) in opaque compared to transparent corneal tissue in both humans and rabbits. Additionally, two water-soluble proteins, transketolase (TKT) and aldehyde dehydrogenase class 1 (ALDH1), isolated from rabbit keratocytes showed unexpectedly abundant expression (approximately 30% of the soluble protein) in transparent corneas and markedly reduced levels in opaque scleral fibroblasts or keratocytes from hazy, freeze injured regions of the cornea. Together these data suggest that the relatively high expressions of TKT and ALDH1 contribute to corneal transparency in the rabbit at the cellular level, reminiscent of enzyme-crystallins in the lens. We also note that ALDH1 accumulates in the rabbit corneal epithelial cells, rather than ALDH3 as seen in other mammals, consistent with the taxon-specificity observed among lens enzyme-crystallins. Our results suggest that corneal cells, like lens cells, may preferentially express water-soluble proteins, often enzymes, for controlling their optical properties.
Collapse
Affiliation(s)
- J V Jester
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Schenk G, Duggleby RG, Nixon PF. Properties and functions of the thiamin diphosphate dependent enzyme transketolase. Int J Biochem Cell Biol 1998; 30:1297-318. [PMID: 9924800 DOI: 10.1016/s1357-2725(98)00095-8] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This review highlights recent research on the properties and functions of the enzyme transketolase, which requires thiamin diphosphate and a divalent metal ion for its activity. The transketolase-catalysed reaction is part of the pentose phosphate pathway, where transketolase appears to control the non-oxidative branch of this pathway, although the overall flux of labelled substrates remains controversial. Yeast transketolase is one of several thiamin diphosphate dependent enzymes whose three-dimensional structures have been determined. Together with mutational analysis these structural data have led to detailed understanding of thiamin diphosphate catalysed reactions. In the homodimer transketolase the two catalytic sites, where dihydroxyethyl groups are transferred from ketose donors to aldose acceptors, are formed at the interface between the two subunits, where the thiazole and pyrimidine rings of thiamin diphosphate are bound. Transketolase is ubiquitous and more than 30 full-length sequences are known. The encoded protein sequences contain two motifs of high homology; one common to all thiamin diphosphate-dependent enzymes and the other a unique transketolase motif. All characterised transketolases have similar kinetic and physical properties, but the mammalian enzymes are more selective in substrate utilisation than the nonmammalian representatives. Since products of the transketolase-catalysed reaction serve as precursors for a number of synthetic compounds this enzyme has been exploited for industrial applications. Putative mutant forms of transketolase, once believed to predispose to disease, have not stood up to scrutiny. However, a modification of transketolase is a marker for Alzheimer's disease, and transketolase activity in erythrocytes is a measure of thiamin nutrition. The cornea contains a particularly high transketolase concentration, consistent with the proposal that pentose phosphate pathway activity has a role in the removal of light-generated radicals.
Collapse
Affiliation(s)
- G Schenk
- Department of Biochemistry, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
15
|
Abstract
The abundant water-soluble proteins, called crystallins, of the transparent, refractive eye lens have been recruited from metabolic enzymes and stress-protective proteins by a process called "gene sharing." Many crystallins are also present at lower concentration in nonocular tissues where they have nonrefractive roles. The complex expression pattern of the mouse alpha B-crystallin/small heat shock protein gene is developmentally controlled at the transcriptional level by a combinatorial use of shared and lens-specific regulatory elements. A number of crystallin genes, including that for alpha B-crystallin, are activated by Pax-6, a conserved transcription factor for eye evolution. Aldehyde dehydrogenase class 3 and transketolase are metabolic enzymes comprising extremely high proportions of the water-soluble proteins of the cornea and may have structural as well as enzymatic roles, reminiscent of lens enzyme-crystallins. Inductive processes appear to be important for the corneal-preferred expression of these enzymes. The use of the same protein for entirely different functions by a gene-sharing mechanism may be a general strategy based on evolutionary tinkering at the level of gene regulation.
Collapse
Affiliation(s)
- J Piatigorsky
- Laboratory of Molecular and Development Biology, National Eye Intitute, National Institutes of Health, Bethesda, Maryland 20892-2730, USA.
| |
Collapse
|
16
|
Salamon C, Chervenak M, Piatigorsky J, Sax CM. The mouse transketolase (TKT) gene: cloning, characterization, and functional promoter analysis. Genomics 1998; 48:209-20. [PMID: 9521875 DOI: 10.1006/geno.1997.5187] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transketolase (TKT) gene is expressed 30-50 times more highly in the mature mouse cornea than in other tissues. Here, we have cloned and characterized the 30- to 40-kb single-copy mouse TKT gene. Sequence analysis supports the suggestion that present-day TKT and TKT-like genes arose from the duplication of a single common ancestral gene. A 6-bp polymorphism is present between different mouse strains in the noncoding region of exon 2. 5' RACE and primer extension analyses indicated that two regions separated by 630 bp are used as transcription initiation sites; both mRNAs appear to use a common initiator ATG codon. The minor distal transcription initiation site, preceded by a TATA sequence, is utilized in liver and is followed by an untranslated exon (exon 1). The major proximal transcription initiation site lies within intron 1, is used in cornea and liver, lacks a TATA sequence, is GC rich, and initiates at multiple sites within a 10-bp span, resembling the promoters of other housekeeping genes. In transfected cornea and lens cell lines, the -49/+90 fragment fused to the CAT gene acted as a minimal promoter, with higher activity noted for the -510/+91 fragment. TKT mRNA levels increased sixfold in the mouse cornea in vivo within 1-2 days of eye opening and were elevated in a lens cell line exposed to H2O2 or the glutathione-specific oxidizing agent diamide and in whole newborn mouse eyes incubated in the presence of light, consistent with multiple consensus stress-inducible control sequences in the TKT promoter regions. Taken together, these observations suggest that oxidative stress may play a role in the regulation of this gene in the cornea.
Collapse
Affiliation(s)
- C Salamon
- Laboratory of Molecular and Developmental Biology, National Eye Institute, Bethesda, Maryland 20892-2730, USA
| | | | | | | |
Collapse
|