1
|
Berg S, Amini N, Solberg S, Ødegård RA, Kulseng BE, Fossmark R, Muller S, Dankel SN, Berge RK, Rønne E, Mjønes P, Hansen R. Ex Vivo Demonstration of a Novel Dual-Frequency Ultrasound Method for Quantitative Measurements of Liver Fat Content. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:159-168. [PMID: 39424495 DOI: 10.1016/j.ultrasmedbio.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVE The rise in metabolic dysfunction-associated steatotic liver disease prevalence, closely linked with metabolic syndromes and obesity, demands accurate, cost-effective diagnostic methods for early-stage fat quantification in the liver. Here we demonstrate a novel dual-frequency ultrasound method that enables the quantitative measurement of liver fat fraction ex vivo and its correlation with actual fat content. METHODS A total of 24 Wistar rats were divided into four different groups, where three groups were given a high-fat diet for 2, 4, and 6 wk, and the last group was given a control diet for 6 wk. Livers were imaged with ultrasound ex vivo in a water bath with a dual-frequency ultrasound transducer and experimental imaging protocol implemented on the Verasonics Vantage research ultrasound scanner. Ultrasound data were post-processed to estimate the non-linear bulk elasticity parameter and the liver samples were analyzed with respect to fat fraction and triglycerides. RESULTS Rats given a high-fat diet had increased mean levels of liver fat compared with the control group. More importantly, correlation between the ultrasound-based estimation of the non-linear bulk elasticity parameter and fat fraction and triglycerides on an individual level was found to be strong (R2 = 0.81, p = 5.8 × 10-9 and R2 = 0.72, p = 3.6 × 10-7, respectively). CONCLUSION This study demonstrates the potential of the novel dual-frequency ultrasound method for the quantitative measurement of liver fat fraction in excised rat livers, showing great promise for this method to become clinically relevant in the diagnosis and follow-up of patients with fatty liver disease.
Collapse
Affiliation(s)
- Sigrid Berg
- Department of Health Research, SINTEF Digital, Trondheim, Norway.
| | | | | | - Rønnaug Astri Ødegård
- Regional Center of Obesity Research and Innovation (ObeCe), St Olavs Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bård Eirik Kulseng
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Reidar Fossmark
- Regional Center of Obesity Research and Innovation (ObeCe), St Olavs Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sébastien Muller
- Department of Health Research, SINTEF Digital, Trondheim, Norway
| | | | - Rolf K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Elin Rønne
- Department of Pathology, St. Olavs Hospital, Trondheim, Norway
| | - Patricia Mjønes
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Pathology, St. Olavs Hospital, Trondheim, Norway
| | - Rune Hansen
- Department of Health Research, SINTEF Digital, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
2
|
Karino S, Usuda H, Kanda S, Okamoto T, Niibayashi T, Yano T, Naora K, Wada K. A diet high in glucose and deficient in dietary fibre causes fat accumulation in the liver without weight gain. Biochem Biophys Rep 2024; 40:101848. [PMID: 39498441 PMCID: PMC11532936 DOI: 10.1016/j.bbrep.2024.101848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/02/2024] [Accepted: 10/13/2024] [Indexed: 11/07/2024] Open
Abstract
This study investigated whether a standard calorie diet that is high in glucose and deficient in dietary fibre (described as HGD [high glucose diet]) induces hepatic fat accumulation in mice. We evaluated hepatic steatosis at 7 days and 14 days after the commencement of the HGD. Hepatic triglycerides and areas of oil droplets increased in the HGD group both at day 7 and day 14, whereas weight gain, weight of epididymal fat, and plasma levels of triglycerides were unaffected by HGD consumption. A microarray analysis of the livers revealed that the expression of lipogenesis-related genes was the most affected by HGD consumption. Furthermore, HGD consumption induced the expression of hepatic proteins of fatty acid synthetase, acetyl-CoA carboxylase alpha, and stearoyl-CoA desaturase 1, which are known to be involved in the synthesis of triglyceride. These results indicate that HGD consumption causes fat accumulation in the liver, with an increase in enzymes that are involved in de novo lipogenesis without an accompanying weight or obesity phenotype. Our new findings suggest that HGD consumption could serve as a breeding ground for liver steatosis.
Collapse
Affiliation(s)
- Sonoko Karino
- Department of Pharmacology, Faculty of Medicine, Shimane University, Izumo, Shimane, 693-8501, Japan
- Department of Pharmacy, Shimane University Hospital, Izumo, Shimane, 693-8501, Japan
| | - Haruki Usuda
- Department of Pharmacology, Faculty of Medicine, Shimane University, Izumo, Shimane, 693-8501, Japan
| | - Shoma Kanda
- Department of Pharmacology, Faculty of Medicine, Shimane University, Izumo, Shimane, 693-8501, Japan
- Department of Pharmacy, Shimane University Hospital, Izumo, Shimane, 693-8501, Japan
| | - Takayuki Okamoto
- Department of Pharmacology, Faculty of Medicine, Shimane University, Izumo, Shimane, 693-8501, Japan
| | - Tomomi Niibayashi
- Department of Pharmacology, Faculty of Medicine, Shimane University, Izumo, Shimane, 693-8501, Japan
| | - Takahisa Yano
- Department of Pharmacology, Faculty of Medicine, Shimane University, Izumo, Shimane, 693-8501, Japan
- Department of Pharmacy, Shimane University Hospital, Izumo, Shimane, 693-8501, Japan
| | - Kohji Naora
- Department of Pharmacology, Faculty of Medicine, Shimane University, Izumo, Shimane, 693-8501, Japan
- Department of Pharmacy, Shimane University Hospital, Izumo, Shimane, 693-8501, Japan
| | - Koichiro Wada
- Department of Pharmacology, Faculty of Medicine, Shimane University, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
3
|
Funes AK, Avena V, Boarelli PV, Monclus MA, Zoppino DF, Saez-Lancellotti TE, Fornes MW. Cholesterol dynamics in rabbit liver: High-fat diet, olive oil, and synergistic dietary effects. Biochem Biophys Res Commun 2024; 733:150675. [PMID: 39284268 DOI: 10.1016/j.bbrc.2024.150675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND & AIMS Lipid metabolism disorders contribute to a range of human diseases, including liver-related pathologies. Rabbits, highly sensitive to dietary cholesterol, provide a model for understanding the development of liver disorders. Sterol regulatory element-binding protein isoform 2 (SREBP2) crucially regulates intracellular cholesterol pathways. Extra-virgin olive oil (EVOO) has shown reducing cholesterol levels and restoring liver parameters affected by HFD. The aim was to investigate the molecular impact of an HFD and supplemented with EVOO on rabbit liver cholesterol metabolism. APPROACH & RESULTS Male rabbits were assigned to dietary cohorts, including control, acute/chronic HFD, sequential HFD with EVOO, and EVOO. Parameters such as serum lipid profiles, hepatic enzymes, body weight, and molecular analyses. After 6 months of HFD, plasma and hepatic cholesterol increased with decreased SREBP2 and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) expression. Prolonged HFD increased cholesterol levels, upregulating SREBP2 mRNA and HMGCR protein. Combining this with EVOO lowered cholesterol, increased SREBP2 mRNA, and upregulated low-density lipoprotein receptor (LDLR) expression. HFD-induced metabolic dysfunction-associated fatty liver disease was mitigated by EVOO. In conclusion, the SREBP2 system responds to dietary changes. CONCLUSIONS In rabbits, the SREBP2 system responds to dietary changes. Acute HFD hinders cholesterol synthesis, while prolonged HFD disrupts regulation, causing SREBP2 upregulation. EVOO intake prompts LDLR upregulation, potentially enhancing cholesterol clearance and restoring hepatic alterations.
Collapse
Affiliation(s)
- Abi K Funes
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina; Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina; Laboratorio de Enfermedades Metabólicas (LEM), Universidad Juan Agustín Maza, Mendoza, Argentina
| | - Virginia Avena
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina; Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina; Laboratorio de Enfermedades Metabólicas (LEM), Universidad Juan Agustín Maza, Mendoza, Argentina
| | - Paola V Boarelli
- Laboratorio de Enfermedades Metabólicas (LEM), Universidad Juan Agustín Maza, Mendoza, Argentina
| | - María A Monclus
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina; Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina
| | - Dario Fernández Zoppino
- Laboratorio de Fisiología Celular y Molecular. Facultad de Ciencias de la Salud. Universidad de Burgos, Burgos, Spain
| | - Tania E Saez-Lancellotti
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina; Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina; Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA). Universidad de Málaga, Málaga, Spain.
| | - Miguel W Fornes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| |
Collapse
|
4
|
Manzo R, Gallardo-Becerra L, Díaz de León-Guerrero S, Villaseñor T, Cornejo-Granados F, Salazar-León J, Ochoa-Leyva A, Pedraza-Alva G, Pérez-Martínez L. Environmental Enrichment Prevents Gut Dysbiosis Progression and Enhances Glucose Metabolism in High-Fat Diet-Induced Obese Mice. Int J Mol Sci 2024; 25:6904. [PMID: 39000013 PMCID: PMC11241766 DOI: 10.3390/ijms25136904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024] Open
Abstract
Obesity is a global health concern implicated in numerous chronic degenerative diseases, including type 2 diabetes, dyslipidemia, and neurodegenerative disorders. It is characterized by chronic low-grade inflammation, gut microbiota dysbiosis, insulin resistance, glucose intolerance, and lipid metabolism disturbances. Here, we investigated the therapeutic potential of environmental enrichment (EE) to prevent the progression of gut dysbiosis in mice with high-fat diet (HFD)-induced metabolic syndrome. C57BL/6 male mice with obesity and metabolic syndrome, continuously fed with an HFD, were exposed to EE. We analyzed the gut microbiota of the mice by sequencing the 16s rRNA gene at different intervals, including on day 0 and 12 and 24 weeks after EE exposure. Fasting glucose levels, glucose tolerance, insulin resistance, food intake, weight gain, lipid profile, hepatic steatosis, and inflammatory mediators were evaluated in serum, adipose tissue, and the colon. We demonstrate that EE intervention prevents the progression of HFD-induced dysbiosis, reducing taxa associated with metabolic syndrome (Tepidimicrobium, Acidaminobacteraceae, and Fusibacter) while promoting those linked to healthy physiology (Syntrophococcus sucrumutans, Dehalobacterium, Prevotella, and Butyricimonas). Furthermore, EE enhances intestinal barrier integrity, increases mucin-producing goblet cell population, and upregulates Muc2 expression in the colon. These alterations correlate with reduced systemic lipopolysaccharide levels and attenuated colon inflammation, resulting in normalized glucose metabolism, diminished adipose tissue inflammation, reduced liver steatosis, improved lipid profiles, and a significant reduction in body weight gain despite mice's continued HFD consumption. Our findings highlight EE as a promising anti-inflammatory strategy for managing obesity-related metabolic dysregulation and suggest its potential in developing probiotics targeting EE-modulated microbial taxa.
Collapse
Affiliation(s)
- Rubiceli Manzo
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Luigui Gallardo-Becerra
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Sol Díaz de León-Guerrero
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Tomas Villaseñor
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Fernanda Cornejo-Granados
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Jonathan Salazar-León
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| |
Collapse
|
5
|
Fabunmi OA, Dludla PV, Nkambule BB. High-dose oral contraceptives induce hyperinsulinemia without altering immune activation in diet-induced obesity which persists even following a dietary low-fat diet intervention. J Reprod Immunol 2024; 163:104234. [PMID: 38479054 DOI: 10.1016/j.jri.2024.104234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/24/2024] [Accepted: 03/07/2024] [Indexed: 06/03/2024]
Abstract
Combined oral contraceptives (COCs) are known to cause weight gain and alter metabolic and immunological pathways. However, modifications in arterial or venous thrombotic risk profiles of women of reproductive ages on COC remain unclear. The study aimed at assessing the impact of COC on immune activation in diet-induced obesity. We further established whether the dietary intervention of switching from a high-fat diet (HFD) to a low-fat diet (LFD) attenuates immunological responses. Twenty (n=20) five-week-old female Sprague Dawley rats were randomly divided into two diet groups of HFD (n=15) and LFD (n=5) and were monitored for eight weeks. After eight weeks, animals in the HFD group switched diets to LFD and were randomly assigned to receive high-dose COC (HCOC) or low-dose COC (LCOC) for six weeks. Animals on HFD significantly gained weight and had a higher lee index when compared to the LFD group (p < 0.05). Moreover, the triglyceride-glucose index, insulin, and other metabolic parameters also increased in the HFD group compared to the LFD group (p < 0.001). Consistently, the levels of interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α), were elevated in the HFD group when compared to the LFD group (p < 0.05). Upon switching from a high-fat to a low-fat diet, insulin levels persistently increased in animals receiving HCOC treatment compared to the LFD and HFD/LFD groups (p < 0.05). Thus, in a rat model of HFD-feeding, short-term HCOC treatment induces long-term metabolic dysregulation, which persists despite dietary intervention. However, further studies are recommended to confirm these findings.
Collapse
Affiliation(s)
- Oyesanmi A Fabunmi
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; Health-awareness, Exercise and Cardio-immunologic Research Unit (HECIRU), Department of Physiology, College of Medicine, Ekiti State University, Ado-Ekiti 5363, Nigeria.
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| |
Collapse
|
6
|
Engin A. Nonalcoholic Fatty Liver Disease and Staging of Hepatic Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:539-574. [PMID: 39287864 DOI: 10.1007/978-3-031-63657-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is in parallel with the obesity epidemic, and it is the most common cause of liver diseases. The patients with severe insulin-resistant diabetes having high body mass index (BMI), high-grade adipose tissue insulin resistance, and high hepatocellular triacylglycerols (triglycerides; TAG) content develop hepatic fibrosis within a 5-year follow-up. Insulin resistance with the deficiency of insulin receptor substrate-2 (IRS-2)-associated phosphatidylinositol 3-kinase (PI3K) activity causes an increase in intracellular fatty acid-derived metabolites such as diacylglycerol (DAG), fatty acyl CoA, or ceramides. Lipotoxicity-related mechanism of NAFLD could be explained still best by the "double-hit" hypothesis. Insulin resistance is the major mechanism in the development and progression of NAFLD/nonalcoholic steatohepatitis (NASH). Metabolic oxidative stress, autophagy, and inflammation induce NASH progression. In the "first hit" the hepatic concentrations of diacylglycerol increase with an increase in saturated liver fat content in human NAFLD. Activities of mitochondrial respiratory chain complexes are decreased in the liver tissue of patients with NASH. Hepatocyte lipoapoptosis is a critical feature of NASH. In the "second hit," reduced glutathione levels due to oxidative stress lead to the overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling that induces cell death in the steatotic liver. Accumulation of toxic levels of reactive oxygen species (ROS) is caused at least by two ineffectual cyclical pathways. First is the endoplasmic reticulum (ER) oxidoreductin (Ero1)-protein disulfide isomerase oxidation cycle through the downstream of the inner membrane mitochondrial oxidative metabolism and the second is the Kelch like-ECH-associated protein 1 (Keap1)-nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways. In clinical practice, on ultrasonographic examination, the elevation of transaminases, γ-glutamyltransferase, and the aspartate transaminase to platelet ratio index indicates NAFLD. Fibrosis-4 index, NAFLD fibrosis score, and cytokeratin18 are used for grading steatosis, staging fibrosis, and discriminating the NASH from simple steatosis, respectively. In addition to ultrasonography, "controlled attenuation parameter," "magnetic resonance imaging proton-density fat fraction," "ultrasound-based elastography," "magnetic resonance elastography," "acoustic radiation force impulse elastography imaging," "two-dimensional shear-wave elastography with supersonic imagine," and "vibration-controlled transient elastography" are recommended as combined tests with serum markers in the clinical evaluation of NAFLD. However, to confirm the diagnosis of NAFLD, a liver biopsy is the gold standard. Insulin resistance-associated hyperinsulinemia directly accelerates fibrogenesis during NAFLD development. Although hepatocyte lipoapoptosis is a key driving force of fibrosis progression, hepatic stellate cells and extracellular matrix cells are major fibrogenic effectors. Thereby, these are pharmacological targets of therapies in developing hepatic fibrosis. Nonpharmacological management of NAFLD mainly consists of two alternatives: lifestyle modification and metabolic surgery. Many pharmacological agents that are thought to be effective in the treatment of NAFLD have been tried, but due to lack of ability to attenuate NAFLD, or adverse effects during the phase trials, the vast majority could not be licensed.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
7
|
Gao SS, Shen YL, Chen YW, Wei XZ, Hu JJ, Wang J, Wu WJ. Liver Metabolomics Analysis Revealing Key Metabolites Associated with Different Stages of Nonalcoholic Fatty Liver Disease in Hamsters. Comb Chem High Throughput Screen 2024; 27:1303-1317. [PMID: 37859316 DOI: 10.2174/0113862073238503230924180432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/10/2023] [Accepted: 08/10/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND AND AIM Nonalcoholic fatty liver disease (NAFLD) is not only the top cause of liver diseases but also a hepatic-correlated metabolic syndrome. This study performed untargeted metabolomics analysis of NAFLD hamsters to identify the key metabolites to discriminate different stages of NAFLD. METHODS Hamsters were fed a high-fat diet (HFD) to establish the NAFLD model with different stages (six weeks named as the NAFLD1 group and twelve weeks as the NAFLD2 group, respectively). Those liver samples were analyzed by untargeted metabolomics (UM) analysis to investigate metabolic changes and metabolites to discriminate different stages of NAFLD. RESULTS The significant liver weight gain in NAFLD hamsters was observed, accompanied by significantly increased levels of serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Moreover, the levels of TG, LDL-C, ALT, and AST were significantly higher in the NAFLD2 group than in the NAFLD1 group. The UM analysis also revealed the metabolic changes; 27 differently expressed metabolites were detected between the NAFLD2 and NAFLD1 groups. More importantly, the levels of N-methylalanine, allantoin, glucose, and glutamylvaline were found to be significantly different between any two groups (control, NAFLD2 and NAFLD1). Receiver operating characteristic curve (ROC) curve results also showed that these four metabolites are able to distinguish control, NAFLD1 and NAFLD2 groups. CONCLUSION This study indicated that the process of NAFLD in hamsters is accompanied by different metabolite changes, and these key differently expressed metabolites may be valuable diagnostic biomarkers and responses to therapeutic interventions.
Collapse
Affiliation(s)
- Shan-Shan Gao
- Department of Ultrasound, Ningbo No. 2 Hospital, University of Chinese Academy of Sciences, Ningbo Zhejiang, 315000, China
| | - Yue-Liang Shen
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou Zhejiang, 310011, China
| | - Yun-Wen Chen
- Department of Ultrasound, Ningbo No. 2 Hospital, University of Chinese Academy of Sciences, Ningbo Zhejiang, 315000, China
| | - Xiu-Zhi Wei
- Department of Ultrasound, Ningbo No. 2 Hospital, University of Chinese Academy of Sciences, Ningbo Zhejiang, 315000, China
| | - Jing-Jing Hu
- Department of Ultrasound, Ningbo No. 2 Hospital, University of Chinese Academy of Sciences, Ningbo Zhejiang, 315000, China
| | - Jue Wang
- Department of Ultrasound, Ningbo No. 2 Hospital, University of Chinese Academy of Sciences, Ningbo Zhejiang, 315000, China
| | - Wen-Jing Wu
- Department of Ultrasound, Ningbo No. 2 Hospital, University of Chinese Academy of Sciences, Ningbo Zhejiang, 315000, China
| |
Collapse
|
8
|
Paul A, Chanclón B, Brännmark C, Wittung-Stafshede P, Olofsson CS, Asterholm IW, Parekh SH. Comparing lipid remodeling of brown adipose tissue, white adipose tissue, and liver after one-week high fat diet intervention with quantitative Raman microscopy. J Cell Biochem 2023; 124:382-395. [PMID: 36715685 DOI: 10.1002/jcb.30372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023]
Abstract
Brown adipose tissue (BAT) consists of highly metabolically active adipocytes that catabolize nutrients to produce heat. Playing an active role in triacylglycerol (TAG) clearance, research has shown that dietary fatty acids can modulate the TAG chemistry deposition in BAT after weeks-long dietary intervention, similar to what has been shown in white adipose tissue (WAT). Our objective was to compare the influence of sustained, nonchronic dietary intervention (a 1-week interval) on WAT and interscapular BAT lipid metabolism and deposition in situ. We use quantitative, label-free chemical microscopy to show that 1 week of high fat diet (HFD) intervention results in dramatically larger lipid droplet (LD) growth in BAT (and liver) compared to LD growth in inguinal WAT (IWAT). Moreover, BAT showed lipid remodeling as increased unsaturated TAGs in LDs, resembling the dietary lipid composition, while WAT (and liver) did not show lipid remodeling on this time scale. Concurrently, expression of genes involved in lipid metabolism, particularly desaturases, was reduced in BAT and liver from HFD-fed mice after 1 week. Our data show that BAT lipid chemistry remodels exceptionally fast to dietary lipid intervention compared WAT, which further points towards a role in TAG clearance.
Collapse
Affiliation(s)
- Alexandra Paul
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Belén Chanclón
- Department of Physiology (Metabolic Physiology), Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Brännmark
- Department of Physiology (Metabolic Physiology), Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Wittung-Stafshede
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Charlotta S Olofsson
- Department of Physiology (Metabolic Physiology), Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ingrid Wernstedt Asterholm
- Department of Physiology (Metabolic Physiology), Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Sapun H Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz, Germany
| |
Collapse
|
9
|
(Pro)Renin Receptor Antagonism Attenuates High-Fat-Diet-Induced Hepatic Steatosis. Biomolecules 2023; 13:biom13010142. [PMID: 36671527 PMCID: PMC9855393 DOI: 10.3390/biom13010142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of liver damage directly related to diabetes, obesity, and metabolic syndrome. The (pro)renin receptor (PRR) has recently been demonstrated to play a role in glucose and lipid metabolism. Here, we test the hypothesis that the PRR regulates the development of diet-induced hepatic steatosis and fibrosis. C57Bl/6J mice were fed a high-fat diet (HFD) or normal-fat diet (NFD) with matching calories for 6 weeks. An 8-week methionine choline-deficient (MCD) diet was used to induce fibrosis. Two weeks following diet treatment, mice were implanted with a subcutaneous osmotic pump delivering either the peptide PRR antagonist, PRO20, or scrambled peptide for 4 or 6 weeks. Mice fed a 6-week HFD exhibited increased liver lipid accumulation and liver triglyceride content compared with NFD-fed mice. Importantly, PRO20 treatment reduced hepatic lipid accumulation in HFD-fed mice without affecting body weight or blood glucose. Furthermore, PRR antagonism attenuated HFD-induced steatosis, particularly microvesicular steatosis. In the MCD diet model, the percentage of collagen area was reduced in PRO20-treated compared with control mice. PRO20 treatment also significantly decreased levels of liver alanine aminotransferase, an indicator of liver damage, in MCD-fed mice compared with controls. Mechanistically, we found that PRR antagonism prevented HFD-induced increases in PPARγ and glycerol-3-phosphate acyltransferase 3 expression in the liver. Taken together, our findings establish the involvement of the PRR in liver triglyceride synthesis and suggest the therapeutic potential of PRR antagonism for the treatment of liver steatosis and fibrosis in NAFLD.
Collapse
|
10
|
Shi L, Zou M, Zhou X, Wang S, Meng W, Lan Z. Comparison of protective effects of hesperetin and pectolinarigenin on high-fat diet-induced hyperlipidemia and hepatic steatosis in Golden Syrian hamsters. Exp Anim 2023; 72:123-131. [PMID: 36310057 PMCID: PMC9978126 DOI: 10.1538/expanim.22-0115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A comparative study was conducted to determine whether hesperetin and pectolinarigenin could lower total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL), and high-density lipoprotein cholesterol (HDL) in a high-fat diet (HFD)-induced high lipid model in Golden Syrian hamsters. 48 Golden Syrian hamsters (8 weeks old) were fed with a HFD for 15 days. HFD induced significant increases in plasma TC, TG, LDL, and HDL. Then, these high lipid hamsters were divided into four groups and were administered with 0.5% sodium carboxymethyl cellulose (CMC-Na), hesperetin (100 mg/kg/day), pectolinarigenin (100 mg/kg/day) or atorvastatin (1.0 mg/kg/day), for 7 weeks. It was found that pectolinarigenin treatment resulted in significant reductions in body weight, adiposity index, serum levels of TC, TG and hepatic TC, TG and free fatty acid compared to those in control hamsters with hyperlipidemia (P<0.05). However, hesperetin treatment only caused reductions in plasma TC and hepatic TG levels. Besides, the hamsters treated with pectolinarigenin showed a relatively normal hepatic architecture compared to the hepatic steatosis shown in the control group. Moreover, the expressions of fatty-acid synthase (Fasn) and solute carrier family 27 member 1 (Slc27a1) involved in lipid biosynthesis, were suppressed in the pectolinarigenin-treated groups, and the expression of carnitine palmitoyltransferase 1A (Cpt1a) involved in fatty acid oxidation was increased in the pectolinarigenin-treated group. Taken together, these results suggest pectolinarigenin exerts stronger protective effects against hyperlipidemia and hepatic steatosis than hesperetin, which may involve the inhibition of lipid uptake and biosynthesis.
Collapse
Affiliation(s)
- Lulu Shi
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, No. 605, Fenglin
Road, Jingkai District, Nanchang 330013, P.R. China
| | - Mingzhe Zou
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, No. 605, Fenglin
Road, Jingkai District, Nanchang 330013, P.R. China
| | - Xingxing Zhou
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, No. 605, Fenglin
Road, Jingkai District, Nanchang 330013, P.R. China
| | - Songhua Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, No. 605, Fenglin
Road, Jingkai District, Nanchang 330013, P.R. China
| | - Wei Meng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, No. 605, Fenglin
Road, Jingkai District, Nanchang 330013, P.R. China
| | - Zhou Lan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, No. 605, Fenglin
Road, Jingkai District, Nanchang 330013, P.R. China
| |
Collapse
|
11
|
Liver-Derived Exosomes Induce Inflammation and Lipogenesis in Mice Fed High-Energy Diets. Nutrients 2022; 14:nu14235124. [PMID: 36501154 PMCID: PMC9739891 DOI: 10.3390/nu14235124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
The liver is an endocrine organ and is the first organ exposed to nutrients when they are absorbed into the body before being metabolized by the distal organs. Although the liver plays an essential role in the interactions between the metabolic organs, their regulatory mechanisms have not been elucidated. Exosomes mediate communication between cells and primarily enable the transport of lipids, mRNAs, miRNAs, and proteins between cells. In this study, we investigated the effects of lipid metabolism on the liver and adipose tissue between mice fed high-fat (HF) and high-fat/sucrose (HFS) diets and determined the effects of liver tissue-derived exosomes on adipocytes to understand the underlying mechanisms associated with obesity-related metabolic diseases. Normal, HF, and HFS diets were fed to the mice for 12 weeks to compare differences based on dietary patterns. We showed different lipid metabolism effects on the liver and adipose tissue between HF- and HFS-fed mice. In the liver, fibrosis, inflammation, and lipogenesis were activated at higher levels in the HFS than in the HF group, and lipolysis was activated at higher levels in the HF than in the HFS group. In adipose tissue, adipogenesis, fatty acid transport, and lipolysis were activated at higher levels in the HF than in the HFS group, and inflammation and lipogenesis were activated at higher levels in the HFS than in the HF group. This result followed a similar trend reported in 3T3-L1 cells treated with liver-derived exosomes. In addition, the TG content of the liver-derived exosomes was significantly higher, and lipid accumulation was accelerated in the HFS than in the HF group. Based on these results, continuous exposure to HF and HFS diets induces lipid accumulation mediated by liver-derived exosomes; however, there is a difference in lipid metabolism. These results contribute to the elucidation of the mechanisms of exosome function in relation to obesity-related metabolic diseases and the metabolic relationship between tissues.
Collapse
|
12
|
Gerstner C, Saín J, Lavandera J, González M, Bernal C. Functional milk fat enriched in conjugated linoleic acid prevented liver lipid accumulation induced by a high-fat diet in male rats. Food Funct 2021; 12:5051-5065. [PMID: 33960342 DOI: 10.1039/d0fo03296d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim was to investigate the potential effect of functional milk fat (FMF), naturally enriched in conjugated linoleic acid, on the prevention of liver lipid accumulation and some biochemical mechanisms involved in the liver triacylglycerol (TAG) regulation in high-fat (HF) fed rats. Male Wistar rats were fed (60 days) with S7 (soybean oil, 7%) or HF diets: S30 (soybean oil, 30%), MF30 (soybean oil, 3% + milk fat -MF-, 27%) or FMF30 (soybean oil, 3% + FMF, 27%). Nutritional parameters, hepatic fatty acid (FA) composition, liver and serum TAG levels, hepatic TAG secretion rate (TAG-SR), lipoprotein lipase (LPL) activity in adipose tissue and muscle, activities and/or mRNA levels of lipogenic and β-oxidative enzymes, and mRNA levels of transcription factors and FA transport proteins were assessed. The hepatic lipid accumulation induced by the S30 diet was associated with increased mRNA levels of FA transporters; and it was prevented by FMF through an increase in the hepatic TAG-SR, carnitine palmitoyltransferase-1a activity and peroxisome proliferator-activated receptor alpha mRNA levels, as well as by a reduction of the mRNA levels of FA transporters. The hypotriacylglyceridaemia observed in S30 was related with an increased LPL activity in adipose tissue and it was reverted by FMF through the increased hepatic TAG-SR. In brief, FMF prevented the liver lipid accumulation induced by HF diets by increasing the hepatic TAG-SR and β-oxidation, and reducing the hepatic FA uptake. The increased hepatic TAG-SR induced by FMF could be responsible for the attenuation of serum TAG alterations.
Collapse
Affiliation(s)
- Carolina Gerstner
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Juliana Saín
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina. and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Jimena Lavandera
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina. and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Marcela González
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Claudio Bernal
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina. and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| |
Collapse
|
13
|
Longo L, de Souza VEG, Stein DJ, de Freitas JS, Uribe-Cruz C, Torres ILS, Álvares-da-Silva MR. Transcranial direct current stimulation (tDCS) has beneficial effects on liver lipid accumulation and hepatic inflammatory parameters in obese rats. Sci Rep 2021; 11:11037. [PMID: 34040131 PMCID: PMC8154948 DOI: 10.1038/s41598-021-90563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 05/04/2021] [Indexed: 02/04/2023] Open
Abstract
Obesity is key to liver steatosis development and progression. Transcranial direct current stimulation (tDCS) is a promising tool for eating disorders management but was not yet evaluated in steatosis. This study investigated tDCS' effects on liver steatosis and inflammation in an experimental obesity model. Male Wistar rats (60 days-old) were randomly allocated (n = 10/group) as follows: standard-diet/sham tDCS (SDS), standard-diet/tDCS (SDT), hypercaloric-cafeteria-diet/sham tDCS (HDS), and hypercaloric-cafeteria-diet/tDCS (HDT). After 40 days of diet, animals received active or sham tDCS for eight days and were euthanized for liver fat deposition and inflammation analysis. HDS and HDT animals showed cumulative food consumption, total liver lipid deposits, IL-1β, TNF-α levels, IL-1β/IL-10 and TNF-α/IL-10 ratios significantly higher than the SDS and SDT groups (p < 0.001 for all parameters). tDCS (SDT and HDT) reduced liver lipid deposits (0.7 times for both, p < 0.05), IL-1β (0.7 times and 0.9 times, respectively, p < 0.05) and IL-1β/IL-10 index (0.6 times and 0.8 times, respectively, p < 0.05) in relation to sham (SDS and HDS). There was an interaction effect on the accumulation of hepatic triglycerides (p < 0.05). tDCS reduced 0.8 times the average liver triglyceride concentration in the HDT vs. HDS group (p < 0.05). In this obesity model, tDCS significantly decreased liver steatosis and hepatic inflammation. These results may justify looking into tDCS utility for human steatosis.
Collapse
Affiliation(s)
- Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| | - Valessa Emanoele Gabriel de Souza
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Dirson João Stein
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Medicine: Medical Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil
| | - Joice Soares de Freitas
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Carolina Uribe-Cruz
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Iraci L S Torres
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Medicine: Medical Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Biological Sciences, Pharmacology and Therapeutics, Universidade Federal Rio Grande do Sul, Porto Alegre, Brazil
| | - Mário Reis Álvares-da-Silva
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
14
|
Carreres L, Jílková ZM, Vial G, Marche PN, Decaens T, Lerat H. Modeling Diet-Induced NAFLD and NASH in Rats: A Comprehensive Review. Biomedicines 2021; 9:biomedicines9040378. [PMID: 33918467 PMCID: PMC8067264 DOI: 10.3390/biomedicines9040378] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, characterized by hepatic steatosis without any alcohol abuse. As the prevalence of NAFLD is rapidly increasing worldwide, important research activity is being dedicated to deciphering the underlying molecular mechanisms in order to define new therapeutic targets. To investigate these pathways and validate preclinical study, reliable, simple and reproducible tools are needed. For that purpose, animal models, more precisely, diet-induced NAFLD and nonalcoholic steatohepatitis (NASH) models, were developed to mimic the human disease. In this review, we focus on rat models, especially in the current investigation of the establishment of the dietary model of NAFLD and NASH in this species, compiling the different dietary compositions and their impact on histological outcomes and metabolic injuries, as well as external factors influencing the course of liver pathogenesis.
Collapse
Affiliation(s)
- Lydie Carreres
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (L.C.); (Z.M.J.); (P.N.M.); (T.D.)
- Université Grenoble-Alpes, 38000 Grenoble, France;
| | - Zuzana Macek Jílková
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (L.C.); (Z.M.J.); (P.N.M.); (T.D.)
- Université Grenoble-Alpes, 38000 Grenoble, France;
| | - Guillaume Vial
- Université Grenoble-Alpes, 38000 Grenoble, France;
- Inserm U 1300, Hypoxia PathoPhysiology (HP2), 38000 Grenoble, France
| | - Patrice N. Marche
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (L.C.); (Z.M.J.); (P.N.M.); (T.D.)
- Université Grenoble-Alpes, 38000 Grenoble, France;
| | - Thomas Decaens
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (L.C.); (Z.M.J.); (P.N.M.); (T.D.)
- Université Grenoble-Alpes, 38000 Grenoble, France;
- Service D’hépato-Gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Hervé Lerat
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (L.C.); (Z.M.J.); (P.N.M.); (T.D.)
- Université Grenoble-Alpes, 38000 Grenoble, France;
- Unité Mixte de Service UGA hTAG, Inserm US 046, CNRS UAR 2019, 38700 La Tronche, France
- Correspondence:
| |
Collapse
|
15
|
Diesinger T, Lautwein A, Buko V, Belonovskaya E, Lukivskaya O, Naruta E, Kirko S, Andreev V, Dvorsky R, Buckert D, Bergler S, Renz C, Müller‐Enoch D, Wirth T, Haehner T. ω-Imidazolyl-alkyl derivatives as new preclinical drug candidates for treating non-alcoholic steatohepatitis. Physiol Rep 2021; 9:e14795. [PMID: 33769703 PMCID: PMC7995547 DOI: 10.14814/phy2.14795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/15/2023] Open
Abstract
Cytochrome P450 2E1 (CYP2E1)-associated reactive oxygen species production plays an important role in the development and progression of inflammatory liver diseases such as alcoholic steatohepatitis. We developed two new inhibitors for this isoenzyme, namely 12-imidazolyl-1-dodecanol (I-ol) and 1-imidazolyldodecane (I-an), and aimed to test their effects on non-alcoholic steatohepatitis (NASH). The fat-rich and CYP2E1 inducing Lieber-DeCarli diet was administered over 16 weeks of the experimental period to induce the disease in a rat model, and the experimental substances were administered simultaneously over the last four weeks. The high-fat diet (HFD) pathologically altered the balance of reactive oxygen species and raised the activities of the liver enzymes alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AP) and γ-glutamyl-transferase (γ-GT); lowered the level of adiponectine and raised the one of tumor necrosis factor (TNF)-α; increased the hepatic triglyceride and phospholipid content and diminished the serum HDL cholesterol concentration. Together with the histological findings, we concluded that the diet led to the development of NASH. I-ol and, to a lesser extent, I-an shifted the pathological values toward the normal range, despite the continued administration of the noxious agent (HFD). The hepatoprotective drug ursodeoxycholic acid (UDCA), which is used off-label in clinical practice, showed a lower effectiveness overall. I-ol, in particular, showed extremely good tolerability during the acute toxicity study in rats. Therefore, cytochrome P450 2E1 may be considered a suitable drug target, with I-ol and I-an being promising drug candidates for the treatment of NASH.
Collapse
Affiliation(s)
- Torsten Diesinger
- Chair of Biochemistry and Molecular MedicineFaculty of Health/School of MedicineWitten/Herdecke UniversityWittenGermany
- Department of Internal MedicineNeu‐Ulm HospitalNeu‐UlmGermany
- Institute of Physiological ChemistryUniversity of UlmUlmGermany
| | - Alfred Lautwein
- Institute of Physiological ChemistryUniversity of UlmUlmGermany
| | - Vyacheslav Buko
- Division of Biochemical PharmacologyInstitute of Biochemistry of Biologically Active CompoundsNational Academy of SciencesBulvar Leninskogo KomsomolaGrodnoBelarus
- Department of BiotechnologyUniversity of Medical SciencesBiałystokPoland
| | - Elena Belonovskaya
- Division of Biochemical PharmacologyInstitute of Biochemistry of Biologically Active CompoundsNational Academy of SciencesBulvar Leninskogo KomsomolaGrodnoBelarus
| | - Oksana Lukivskaya
- Division of Biochemical PharmacologyInstitute of Biochemistry of Biologically Active CompoundsNational Academy of SciencesBulvar Leninskogo KomsomolaGrodnoBelarus
| | - Elena Naruta
- Division of Biochemical PharmacologyInstitute of Biochemistry of Biologically Active CompoundsNational Academy of SciencesBulvar Leninskogo KomsomolaGrodnoBelarus
| | - Siarhei Kirko
- Division of Biochemical PharmacologyInstitute of Biochemistry of Biologically Active CompoundsNational Academy of SciencesBulvar Leninskogo KomsomolaGrodnoBelarus
| | - Viktor Andreev
- Department of Medical Biology and GeneticsGrodno State Medical UniversityGrodnoBelarus
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology IIMedical Faculty of the Heinrich Heine University DüsseldorfDüsseldorfGermany
- Max Planck Institute of Molecular PhysiologyDortmundGermany
| | - Dominik Buckert
- Institute of Physiological ChemistryUniversity of UlmUlmGermany
- Department of Internal Medicine IIUniversity Hospital UlmUlmGermany
| | | | - Christian Renz
- Institute of Physiological ChemistryUniversity of UlmUlmGermany
| | | | - Thomas Wirth
- Institute of Physiological ChemistryUniversity of UlmUlmGermany
| | - Thomas Haehner
- Institute of Physiological ChemistryUniversity of UlmUlmGermany
| |
Collapse
|
16
|
Fan L, Fu Z, Xiong Y, Ye S, Wang Y, Peng G, Ye Q. Double-lobectomy in a steatotic liver transplantation rat model. Exp Ther Med 2021; 21:256. [PMID: 33603863 PMCID: PMC7851671 DOI: 10.3892/etm.2021.9687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 09/16/2020] [Indexed: 11/23/2022] Open
Abstract
Establishing a steatotic liver transplantation animal model can be a challenging process, which requires complex microsurgical technologies. The present study established a novel rat model of stable steatotic liver transplantation for marginal liver graft research, which notably minimized the number of animals used for the experiment. Briefly, male Sprague-Dawley rats (n=90) were fed with a high-fat diet (HFD; 60%, kJ) or standard chow diet (SCD) for 8 weeks. The liver enzymes and lipid levels were assessed every week, and the degree of steatosis was determined via hematoxylin and eosin and Oil Red O staining. The results demonstrated that there were no significant differences in alanine aminotransaminase and aspartate aminotransferase levels between the SCD and HFD groups (P>0.05), whereas the level of plasma triglyceride (TG) increased by 1.76-fold in the HFD group at week 2, and progressively decreased to baseline levels by week 8. Significantly higher levels of TG were observed in the HFD group compared with the SCD group at week 2 (P<0.05). In addition, the levels of plasma glucose (P<0.05), portal insulin (P<0.05) and content of liver lipid (P<0.01) increased in the HFD group compared with the SCD group. After 6 weeks, the liver steatosis was successfully formed and stable. Consequently, a rat liver developed hepatic macrovesicular steatosis >60%, which was subsequently used for transplantation after double-lobectomy. Post-transplantation survival rates in the HFD and SCD groups were as follows: Week 1, 80 vs. 100% and 1 month, 20 vs. 100%. A total of 20 rats were not sacrificed by performing double-lobectomy for biopsy. Taken together, the results of the present study suggest that rat liver double-lobectomy may be safely applied in steatotic liver transplantation without the need to sacrifice a large number of animals.
Collapse
Affiliation(s)
- Lin Fan
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Zhen Fu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Yan Xiong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Shaojun Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Guizhu Peng
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China.,The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
17
|
Sarrafan A, Ghobeh M, Yaghmaei P. The effect of 6-gingerol on biochemical and histological parameters in cholesterol-induced nonalcoholic fatty liver disease in NMRI mice. BRAZ J PHARM SCI 2021. [DOI: 10.1590/s2175-979020200003181020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
18
|
Preguiça I, Alves A, Nunes S, Fernandes R, Gomes P, Viana SD, Reis F. Diet-induced rodent models of obesity-related metabolic disorders-A guide to a translational perspective. Obes Rev 2020; 21:e13081. [PMID: 32691524 DOI: 10.1111/obr.13081] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Diet is a critical element determining human health and diseases, and unbalanced food habits are major risk factors for the development of obesity and related metabolic disorders. Despite technological and pharmacological advances, as well as intensification of awareness campaigns, the prevalence of metabolic disorders worldwide is still increasing. Thus, novel therapeutic approaches with increased efficacy are urgently required, which often depends on cellular and molecular investigations using robust animal models. In the absence of perfect rodent models, those induced by excessive consumption of fat and sugars better replicate the key aspects that are the root causes of human metabolic diseases. However, the results obtained using these models cannot be directly compared, particularly because of the use of different dietary protocols, and animal species and strains, among other confounding factors. This review article revisits diet-induced models of obesity and related metabolic disorders, namely, metabolic syndrome, prediabetes, diabetes and nonalcoholic fatty liver disease. A critical analysis focused on the main pathophysiological features of rodent models, as opposed to the criteria defined for humans, is provided as a practical guide with a translational perspective for the establishment of animal models of obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Inês Preguiça
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| | - André Alves
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| | - Sara Nunes
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| | - Rosa Fernandes
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| | - Pedro Gomes
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal.,Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Center for Health Technology and Services Research (CINTESIS), University of Porto, Porto, Portugal
| | - Sofia D Viana
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal.,ESTESC-Coimbra Health School, Pharmacy, Polytechnic Institute of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
19
|
Relative contribution of fat diet and physical inactivity to the development of metabolic syndrome and non-alcoholic fat liver disease in Wistar rats. Physiol Behav 2020; 225:113040. [PMID: 32603747 DOI: 10.1016/j.physbeh.2020.113040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 01/22/2023]
|
20
|
St-Amand R, Ngo Sock ÉT, Quinn S, Lavoie JM, St-Pierre DH. Two weeks of western diet disrupts liver molecular markers of cholesterol metabolism in rats. Lipids Health Dis 2020; 19:192. [PMID: 32825820 PMCID: PMC7442981 DOI: 10.1186/s12944-020-01351-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
Background The present study was designed to test the hypothesis that in the liver, excessive fat accumulation impairs cholesterol metabolism mainly by altering the low-density lipoprotein-receptor (LDL-R) pathway. Method Young male Wistar rats were fed standard (SD), high fat (HFD; 60% kcal) or Western (WD; 40% fat + 35% sucrose (17.5% fructose)) diets for 2 or 6 weeks. Results Weight gain (~ 40 g) was observed only following 6 weeks of the obesogenic diets (P < 0.01). Compared to the 2-week treatment, obesogenic diets tripled fat pad weight (~ 20 vs 7 g) after 6 weeks. Hepatic triglyceride (TG) levels were greater in response to both the WD and HFD compared to the SD (P < 0.01) at 2 and 6 weeks and their concentrations were greater (P < 0.05) in WD than HFD at 2 weeks. Plasma total cholesterol levels were higher (P < 0.05) in animals submitted to WD. After 2 and 6 weeks, liver expression of LDL-R, proprotein convertase subtilisin/kexin 9 (PCSKk9) and sterol regulatory element binding protein 2 (SREBP2), involved in LDL-cholesterol uptake, was lower in animals submitted to WD than in others treated with HFD or SD (P < 0.01). Similarly, low-density lipoprotein-receptor-related protein 1 (LRP1) and acyl-CoA cholesterol acyltransferase-2 (ACAT-2) mRNA levels were lower (P < 0.01) among WD compared to SD-fed rats. Expression of the gene coding the main regulator of endogenous cholesterol synthesis, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCoAR) was reduced in response to WD compared to SD and HFD at 2 (P < 0.001) and 6 (P < 0.05) weeks. Being enriched in fructose, the WD strongly promoted the expression of carbohydrate-response element binding protein (ChREBP) and acetyl-CoA carboxylase (ACC), two key regulators of de novo lipogenesis. Conclusion These results show that the WD promptly increased TG levels in the liver by potentiating fat storage. This impaired the pathway of hepatic cholesterol uptake via the LDL-R axis, promoting a rapid increase in plasma total cholesterol levels. These results indicate that liver fat content is a factor involved in the regulation of plasma cholesterol.
Collapse
Affiliation(s)
- Roxane St-Amand
- École de Kinésiologie et des Sciences de l'Activité Physique, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Émilienne T Ngo Sock
- École de Kinésiologie et des Sciences de l'Activité Physique, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Samantha Quinn
- Department of Exercise Sciences, Université du Québec à Montréal, 141, Avenue Président-Kennedy, C.P. 8888, succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada
| | - Jean-Marc Lavoie
- École de Kinésiologie et des Sciences de l'Activité Physique, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - David H St-Pierre
- Department of Exercise Sciences, Université du Québec à Montréal, 141, Avenue Président-Kennedy, C.P. 8888, succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada.
| |
Collapse
|
21
|
Radhakrishnan S, Ke JY, Pellizzon MA. Targeted Nutrient Modifications in Purified Diets Differentially Affect Nonalcoholic Fatty Liver Disease and Metabolic Disease Development in Rodent Models. Curr Dev Nutr 2020; 4:nzaa078. [PMID: 32494762 PMCID: PMC7250583 DOI: 10.1093/cdn/nzaa078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a complex spectrum of disorders ranging from simple benign steatosis to more aggressive forms of nonalcoholic steatohepatitis (NASH) and fibrosis. Although not every patient with NAFLD/NASH develops liver complications, if left untreated it may eventually lead to cirrhosis and hepatocellular carcinoma. Purified diets formulated with specific nutritional components can drive the entire spectrum of NAFLD in rodent models. Although they may not perfectly replicate the clinical and histological features of human NAFLD, they provide a model to gain further understanding of disease progression in humans. Owing to the growing demand of diets for NAFLD research, and for our further understanding of how manipulation of dietary components can alter disease development, we outlined several commonly used dietary approaches for rodent models, including mice, rats, and hamsters, time frames required for disease development and whether other metabolic diseases commonly associated with NAFLD in humans occur.
Collapse
Affiliation(s)
| | - Jia-Yu Ke
- Research Diets, Inc., New Brunswick, NJ, USA
| | | |
Collapse
|
22
|
Real-Sandoval SA, Gutiérrez-López GF, Domínguez-López A, Paniagua-Castro N, Michicotl-Meneses MM, Jaramillo-Flores ME. Downregulation of proinflammatory liver gene expression by Justicia spicigera and kaempferitrin in a murine model of obesity-induced by a high-fat diet. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
23
|
Masuda S, Mizukami S, Eguchi A, Ichikawa R, Nakamura M, Nakamura K, Okada R, Tanaka T, Shibutani M, Yoshida T. Immunohistochemical expression of autophagosome markers LC3 and p62 in preneoplastic liver foci in high fat diet-fed rats. J Toxicol Sci 2019; 44:565-574. [PMID: 31378768 DOI: 10.2131/jts.44.565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive deposition of droplets in hepatocytes. Patients with NAFLD can be at risk for nonalcoholic steatohepatitis, which can lead to hepatocellular carcinoma. Autophagy is a cellular pathway that is crucial for survival and homeostasis, and which protects against pathophysiological changes like obesity and cancer. We determined the expression of autophagy markers in preneoplastic hepatic lesions and the effects of an autophagy repressor chloroquine (CQ) or inducer amiodarone (AM) in a steatosis-related hepatocarcinogenesis model. Male F344 rats were fed a control diet or high fat diet (HFD), and subjected to initiation and promotion steps with N-nitrosodiethylamine injection at week 0 and a partial hepatectomy at week 3. Several HFD-fed rats were administered 0.1% CQ and 0.5% AM in their drinking water during week 2 and 8. CQ and AM did not improve HFD-induced obesity. AM, but not CQ, significantly decreased the number of glutathione S-transferase placental form-positive preneoplastic liver foci in the liver. Autophagosome markers LC3 and the LC3-binding protein p62 were heterogeneously expressed in the preneoplastic foci. CQ might inhibit autophagy by significantly increased p62/LC3 ratio, while AM might have a potential of inducing autophagy by showing an increased gene expression of the autophagy regulator, Atg5. These results suggest that preneoplastic lesions express autophagosome markers and that AM might decrease steatosis-related early hepatocarcinogenesis by potentially inducing autophagy in HFD-fed rats, while inhibition of autophagy by CQ did not alter the hepatocarcinogenesis. However, an immunohistochemical trial revealed a technical limitation in detecting autophagosome markers because there were variations in each preneoplastic lesion.
Collapse
Affiliation(s)
- Sosuke Masuda
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Sayaka Mizukami
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Ayumi Eguchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Ryo Ichikawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Misato Nakamura
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Kazuki Nakamura
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Rena Okada
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Takaharu Tanaka
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| |
Collapse
|
24
|
Saiyasit N, Chunchai T, Prus D, Suparan K, Pittayapong P, Apaijai N, Pratchayasakul W, Sripetchwandee J, Chattipakorn M D Ph D N, Chattipakorn SC. Gut dysbiosis develops before metabolic disturbance and cognitive decline in high-fat diet-induced obese condition. Nutrition 2019; 69:110576. [PMID: 31580986 DOI: 10.1016/j.nut.2019.110576] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/02/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVES High-fat diet (HFD) consumption caused metabolic disturbance, gut dysbiosis, brain pathology, microglia hyperactivity, and cognitive decline. However, the exact timeline of these abnormalities following HFD consumption is still elusive. Therefore, the aim of this study was to test the hypothesis that gut dysbiosis, peripheral inflammation, and peripheral insulin resistance occur before the brain inflammatory response, hippocampal synaptic dysplasticity, oxidative stress, apoptosis, and cognitive impairment in HFD-fed rats. METHODS Male Wistar rats received either a normal diet or an HFD for 2, 8, 12, 20, or 40 wk. At the end of each time point, cognitive functions and metabolic parameters were determined. Gut microbiota, brain immune cell activity, amyloid-β level, microglia morphology, hippocampal reactive oxygen species and apoptosis, hippocampal synaptic plasticity, and dendritic spine density were measured. RESULTS We found that HFD-fed rats developed gut dysbiosis at week 2 and peripheral insulin resistance at week 8. Rats fed an HFD for 12 wk displayed hippocampal synaptic dysplasticity, decreased dendritic spine density, an elevation of ionized calcium-binding adapter molecule 1+ cells, increased hippocampal reactive oxygen species levels and hippocampal apoptosis with cognitive decline. The decreased percentage of resident microglia and increased percentage of infiltrated macrophage were observed at weeks 20 and 40. Surprisingly, brain amyloid-β levels were increased after 40 wk of an HFD diet. CONCLUSIONS These findings demonstrated that gut dysbiosis develops in the earliest phase of consumption of an HFD, followed by brain pathology, which leads to cognitive decline in obese insulin-resistant rats. Therefore, an improvement in gut dysbiosis should provide beneficial effects in the prevention of neuropathology and cognitive decline in the obese.
Collapse
Affiliation(s)
- Napatsorn Saiyasit
- Neurophysiology Unit, Cardiac Electrophysiology Research, and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research, and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Dillon Prus
- Neurophysiology Unit, Cardiac Electrophysiology Research, and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Kanokphong Suparan
- Neurophysiology Unit, Cardiac Electrophysiology Research, and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Pansa Pittayapong
- Neurophysiology Unit, Cardiac Electrophysiology Research, and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research, and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research, and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Jirapas Sripetchwandee
- Neurophysiology Unit, Cardiac Electrophysiology Research, and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn M D Ph D
- Neurophysiology Unit, Cardiac Electrophysiology Research, and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research, and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
25
|
Vidé J, Bonafos B, Fouret G, Benlebna M, Poupon J, Jover B, Casas F, Jouy N, Feillet-Coudray C, Gaillet S, Coudray C. Spirulina platensis and silicon-enriched spirulina equally improve glucose tolerance and decrease the enzymatic activity of hepatic NADPH oxidase in obesogenic diet-fed rats. Food Funct 2019; 9:6165-6178. [PMID: 30431036 DOI: 10.1039/c8fo02037j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The prevalence of metabolic syndrome components, such as obesity, glucose intolerance and hepatic steatosis, is rapidly increasing and becoming a major issue of public health. The present work was designed to determine the effects of Spirulina platensis (Sp) algae and silicon-enriched Sp on major metabolic syndrome components in obesogenic diet-fed rats. Forty male Wistar rats were divided into 4 groups. Ten rats were fed a control diet and 30 rats were fed a high fat (HF) diet. The HF groups were divided into three groups and supplemented with placebo or Sp or Si-enriched Sp for 12 weeks. Dietary intake and body weight were recorded. Oral glucose tolerance test and surrogate metabolic syndrome (insulin, leptin, adiponectin and lipids), mitochondrial function (enzymatic activity of respiratory chain complexes and β-hydroxyacyl-CoA dehydrogenase), NADPH oxidase activity and several long-established oxidative stress markers were measured in the blood and liver. The HF diet induced obesity, glucose intolerance, hepatic steatosis and huge metabolic alterations, associated with higher NADPH oxidase activity and lower hepatic sulfhydryl group and glutathione contents. Otherwise, the Sp and Sp + Si supplements showed some interesting effects on rat characteristics and particularly on blood and hepatic metabolic parameters. Indeed, the intake of Sp or Sp + Si mainly improved glucose tolerance and decreased the enzymatic activity of hepatic NADPH oxidase. Overall, Si supplementation of spirulina does not appear to have more beneficial effects than spirulina alone. Other experiments with different species of rats/mice, different diets or different durations of diet intake should be undertaken to confirm or invalidate these results.
Collapse
Affiliation(s)
- Joris Vidé
- DMEM, INRA, Univ. Montpellier, Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Otto AC, Gan-Schreier H, Zhu X, Tuma-Kellner S, Staffer S, Ganzha A, Liebisch G, Chamulitrat W. Group VIA phospholipase A2 deficiency in mice chronically fed with high-fat-diet attenuates hepatic steatosis by correcting a defect of phospholipid remodeling. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:662-676. [PMID: 30735855 DOI: 10.1016/j.bbalip.2019.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/15/2022]
Abstract
A defect of hepatic remodeling of phospholipids (PL) is seen in non-alcoholic fatty liver disease and steatohepatitis (NASH) indicating pivotal role of PL metabolism in this disease. The deletion of group VIA calcium-independent phospholipase A2 (iPla2β) protects ob/ob mice from hepatic steatosis (BBAlip 1861, 2016, 440-461), however its role in high-fat diet (HFD)-induced NASH is still elusive. Here, wild-type and iPla2β-null mice were subjected to chronic feeding with HFD for 6 months. We showed that protection was observed in iPla2β-null mice with an attenuation of diet-induced body and liver-weight gains, liver enzymes, serum free fatty acids as well as hepatic TG and steatosis scores. iPla2β deficiency under HFD attenuated the levels of 1-stearoyl lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), and lysophosphatidylinositol (LPI) as well as elevation of hepatic arachidonate, arachidonate-containing cholesterol esters and prostaglandin E2. More importantly, this deficiency rescued a defect in PL remodeling and attenuated the ratio of saturated and unsaturated PL. The protection by iPla2β deficiency was not observed during short-term HFD feeding of 3 or 5 weeks which showed no PL remodeling defect. In addition to PC/PE, this deficiency reversed the suppression of PC/PI and PE/PI among monounsaturated PL. However, this deficiency did not modulate hepatic PL contents and PL ratios in ER fractions, ER stress, fibrosis, and inflammation markers. Hence, iPla2β inactivation protected mice against hepatic steatosis and obesity during chronic dietary NASH by correcting PL remodeling defect and PI composition relative to PC and PE.
Collapse
Affiliation(s)
- Ann-Christin Otto
- Department of Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Hongying Gan-Schreier
- Department of Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Xingya Zhu
- Department of Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Simone Staffer
- Department of Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Alexandra Ganzha
- Institute of Clinical Chemistry and Laboratory Medicine, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| |
Collapse
|
27
|
20-Week follow-up of hepatic steatosis installation and liver mitochondrial structure and activity and their interrelation in rats fed a high-fat-high-fructose diet. Br J Nutr 2019; 119:368-380. [PMID: 29498345 DOI: 10.1017/s0007114517003713] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The incidence of obesity and its metabolic complications are rapidly increasing and become a major public health issue. This trend is associated with an increase in the prevalence of non-alcoholic fatty liver disease (NAFLD), insulin resistance and diabetes. The sequence of events leading to NAFLD progression and mitochondrial dysfunction and their interrelation remains to be elucidated. This study aimed to explore the installation and progression of NAFLD and its association with the liver mitochondrial structure and activity changes in rats fed an obesogenic diet up to 20 weeks. Male Wistar rats were fed either a standard or high-fat-high-fructose (HFHFR) diet and killed on 4, 8, 12, 16 and 20 weeks of diet intake. Rats fed the HFHFR diet developed mildly overweight, associated with increased adipose tissue weight, hepatic steatosis, hyperglycaemia and hyperinsulinaemia after 8 weeks of HFHFR diet. Hepatic steatosis and many biochemical modifications plateaued at 8-12 weeks of HFHFR diet with slight amelioration afterwards. Interestingly, several biochemical and physiological parameters of mitochondrial function, as well as its phospholipid composition, in particular cardiolipin content, were tightly related to hepatic steatosis installation. These results showed once again the interrelation between hepatic steatosis development and mitochondrial activity alterations without being able to say whether the mitochondrial alterations preceded or followed the installation/progression of hepatic steatosis. Because both hepatic steatosis and mitochondrial alterations occurred as early as 4 weeks of diet, future studies should consider these four 1st weeks to reveal the exact interconnection between these major consequences of obesogenic diet intake.
Collapse
|
28
|
Magri-Tomaz L, Melbouci L, Mercier J, Ou Y, Auclair N, Lira FS, Lavoie JM, St-Pierre DH. Two weeks of high-fat feeding disturb lipid and cholesterol molecular markers. Cell Biochem Funct 2018; 36:387-393. [DOI: 10.1002/cbf.3358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/15/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022]
Affiliation(s)
- L. Magri-Tomaz
- Département des Sciences de l'Activité Physique; UQAM; Montréal Québec Canada
- Centre de Recherche du CHU Sainte-Justine; Montréal Québec Canada
- Département de Kinésiologie; Université de Montréal; Montréal Québec Canada
| | - L. Melbouci
- Département des Sciences de l'Activité Physique; UQAM; Montréal Québec Canada
- Centre de Recherche du CHU Sainte-Justine; Montréal Québec Canada
| | - J. Mercier
- Département des Sciences de l'Activité Physique; UQAM; Montréal Québec Canada
- Centre de Recherche du CHU Sainte-Justine; Montréal Québec Canada
| | - Ya Ou
- Département des Sciences de l'Activité Physique; UQAM; Montréal Québec Canada
- Centre de Recherche du CHU Sainte-Justine; Montréal Québec Canada
| | - N. Auclair
- Département des Sciences de l'Activité Physique; UQAM; Montréal Québec Canada
- Centre de Recherche du CHU Sainte-Justine; Montréal Québec Canada
| | - F. S. Lira
- Department of Physical Education; State University of São Paulo, Presidente Prudente; São Paulo Brazil
| | - J-M. Lavoie
- Département de Kinésiologie; Université de Montréal; Montréal Québec Canada
| | - D. H. St-Pierre
- Département des Sciences de l'Activité Physique; UQAM; Montréal Québec Canada
- Centre de Recherche du CHU Sainte-Justine; Montréal Québec Canada
| |
Collapse
|
29
|
Bae CR, Hino J, Hosoda H, Miyazato M, Kangawa K. C-type natriuretic peptide (CNP) in endothelial cells attenuates hepatic fibrosis and inflammation in non-alcoholic steatohepatitis. Life Sci 2018; 209:349-356. [PMID: 30114411 DOI: 10.1016/j.lfs.2018.08.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/09/2018] [Accepted: 08/12/2018] [Indexed: 12/13/2022]
Abstract
AIMS Our previous study revealed that mice transgenic for endothelial-cell-specific overexpression of CNP (E-CNP Tg mice) are protected against the increased fat weight, inflammation, and insulin resistance associated with high-fat diet (HFD)-induced obesity. In addition, E-CNP overexpression prevented abnormal lipid profiles and metabolism and blocked inflammation in the livers of HFD-fed mice. Because obesity, dyslipidemia, and insulin resistance increase the risk of various liver diseases, including non-alcoholic steatohepatitis (NASH), we here studied the role of E-CNP overexpression in the livers of mice in which NASH was induced through feeding of either HFD or a choline-deficient defined l‑amino-acid diet (CDAA). MAIN METHODS Wild-type (Wt) and E-CNP Tg mice were fed either a standard diet or HFD for 25 weeks or CDAA for 10 weeks. We then assessed hepatic and serum biochemistry; measured blood glucose during glucose tolerance test (GTT) and insulin tolerance test (ITT); evaluated hepatic fibrosis and inflammation; and performed hepatic histology and gene expression analysis. KEY FINDINGS Serum triglycerides, total cholesterol, non-esterified fatty acids, asparagine transaminase, glucose tolerance, and insulin resistance were ameliorated by CNP overexpression in endothelial cells of HFD-fed E-CNP Tg mice. In addition, hepatic fibrosis and inflammation were decreased in HFD-fed E-CNP Tg mice compared with HFD-fed Wt mice. CDAA-fed E-CNP Tg mice showed improved glycemic control, but liver parameters, fibrosis, and inflammation were remained elevated and equivalent to those in CDAA-fed Wt mice. SIGNIFICANCE The overexpression of CNP in endothelial cells has anti-fibrotic and anti-inflammatory effects in liver during HFD-induced NASH in mice.
Collapse
Affiliation(s)
- Cho-Rong Bae
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Jun Hino
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| | - Hiroshi Hosoda
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| |
Collapse
|
30
|
Tanajak P, Sa-Nguanmoo P, Apaijai N, Wang X, Liang G, Li X, Jiang C, Chattipakorn SC, Chattipakorn N. Comparisons of cardioprotective efficacy between fibroblast growth factor 21 and dipeptidyl peptidase-4 inhibitor in prediabetic rats. Cardiovasc Ther 2018; 35. [PMID: 28391633 DOI: 10.1111/1755-5922.12263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/27/2017] [Accepted: 04/05/2017] [Indexed: 01/12/2023] Open
Abstract
AIMS Comparative efficacy between fibroblast growth factor 21 (FGF21) and vildagliptin on metabolic regulation, cardiac mitochondrial function, heart rate variability (HRV), and left ventricular (LV) function is not known. We hypothesized that FGF21 and vildagliptin share a similar efficacy in improving these parameters in high fat diet (HFD)-induced obese-insulin resistant rats. METHODS Twenty-four male Wistar rats were fed with either a normal diet (ND) or a HFD for 12 weeks. Then, ND rats were received vehicle (NDV). Rats in the HFD group were divided into three subgroups to receive either vehicle (HFV), recombinant human FGF21 (rhFGF21, 0.1 mg/kg/d, ip; HFF), or vildagliptin (3 mg/kg/d, PO; HFVil) for 28 days. RESULTS HFV rats developed obese-insulin resistance, increased serum tumor necrosis factors alpha (TNF-α) level, impaired heart rate variability (HRV) together with cardiac mitochondrial dysfunction, and LV dysfunction. Cardiac apoptosis was markedly increased in HFV rats indicated by decreased B-cell lymphoma 2 (Bcl-2) with increased Bcl2-associated X-protein (Bax) and cleaved caspase 3 expression. Cardiac FGF21 signaling pathways were markedly decreased in HFV rats indicated by decreased phosphor-fibroblast growth factor receptors 1 (p-FGFR1), phosphor-extracellular signal-regulated protein kinases 1 (p-ERK1/2), proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and carnitine palmitoyltransferase-1 (CPT-1) expression. Although both FGF21 and vildagliptin similarly attenuated these impairments, only HFF rats had decreased body weight, visceral fat, and serum TNF-α levels. CONCLUSIONS FGF21 exerts better metabolic regulation and inflammation reduction than vildagliptin. However, FGF21 and vildagliptin shared a similar efficacy for cardioprotection by improving HRV and LV function.
Collapse
Affiliation(s)
- Pongpan Tanajak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Piangkwan Sa-Nguanmoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Xiaojie Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chao Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
31
|
Altered Feeding Behaviors and Adiposity Precede Observable Weight Gain in Young Rats Submitted to a Short-Term High-Fat Diet. J Nutr Metab 2018; 2018:1498150. [PMID: 29805802 PMCID: PMC5901484 DOI: 10.1155/2018/1498150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/28/2018] [Indexed: 12/20/2022] Open
Abstract
Information regarding the early effects of obesogenic diets on feeding patterns and behaviors is limited. To improve knowledge regarding the etiology of obesity, young male Wistar rats were submitted to high-fat (HFD) or regular chow diets (RCDs) for 14 days. Various metabolic parameters were continuously measured using metabolic chambers. Total weight gain was similar between groups, but heavier visceral fat depots and reduced weight of livers were found in HFD rats. Total calorie intake was increased while individual feeding bouts were shorter and of higher calorie intake in response to HFD. Ambulatory activity and sleep duration were decreased in HFD rats during passive and active phase, respectively. Acylated and unacylated ghrelin levels were unaltered by the increased calorie intake and the early changes in body composition. This indicates that at this early stage, the orexigenic signal did not adapt to the high-calorie content of HFD. We hereby demonstrate that, although total weight gain is not affected, a short-term obesogenic diet alters body composition, feeding patterns, satiation, ambulatory activity profiles, and behaviours in a young rat model. Moreover, this effect precedes changes in weight gain, obesity, and ensuing metabolic disorders.
Collapse
|
32
|
Helal MG, Ayoub SE, Elkashefand WF, Ibrahim TM. Caffeine affects HFD-induced hepatic steatosis by multifactorial intervention. Hum Exp Toxicol 2017; 37:983-990. [DOI: 10.1177/0960327117747026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The incidence of nonalcoholic fatty liver disease (NAFLD) is considered a risk factor for hepatic fibrosis. Therefore, there is critical need to develop novel cheap and effective therapeutic approaches to prevent and reverse NAFLD. Caffeine is commonly consumed beverage and has antioxidant and anti-inflammatory activities. This study examined whether caffeine can ameliorate liver injury induced by high-fat diet (HFD) feeding. Four groups of rats were used and treated for 16 weeks as follows: control group, rats were fed a standard diet; HFD group, rats were fed HFD; and caffeine 20 and caffeine 30 groups, rats were fed HFD for 16 weeks in addition to different doses of caffeine (20 or 30 mg/kg, respectively) for last 8 weeks. The HFD-induced liver injury is determined biochemically by evaluating serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin, bilirubin, triglycerides, cholesterol, and high-density lipoprotein-cholesterol and by histopathological examination. Tissue malondialdehyde, total nitrate/nitrite, and glutathione concentration were also measured. Real-time reverse transcription polymerase chain reaction technique was used to determine the expression of lipogenic enzyme genes. Caffeine treatment significantly decreased the elevated serum ALT, AST, and bilirubin and increased the reduced albumin level. Interestingly, the hepatic mRNA expression of Fatty acid synthase and acetyl CoA carboxylase was decreased by caffeine, while the protein expression of hepatic carnitine palmitoyltransferase 1 and proliferation-activated receptor α was increased. Furthermore, caffeine reduced tissue lipid peroxidation and oxidative stress. These effects suggest that caffeine could improve HFD-induced hepatic injury by suppressing inflammatory response and oxidative stress and regulating hepatic de novo lipogenesis and β-oxidation.
Collapse
Affiliation(s)
- MG Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - SE Ayoub
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafr El-sheikh University, Kafr El-sheikh, Egypt
| | - WF Elkashefand
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - TM Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
33
|
Animal Models of Nonalcoholic Fatty Liver Disease-A Starter's Guide. Nutrients 2017; 9:nu9101072. [PMID: 28953222 PMCID: PMC5691689 DOI: 10.3390/nu9101072] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/13/2017] [Accepted: 09/25/2017] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) constitutes a major health concern with the increasing incidence of obesity and diabetes in many Western countries, reaching a prevalence of up to 30% in the general population. Animal models have played a vital role in elucidating the pathophysiological mechanisms of NAFLD and continue to do so. A myriad of different models exists, each with its advantages and disadvantages. This review presents a brief overview of these models with a particular focus on the basic mechanisms and physical, biochemical and histological phenotype. Both nutritional and chemically induced, as well as genetic models are examined, including models combining different approaches.
Collapse
|
34
|
Flavonoids extracted from Linaria vulgaris protect against hyperlipidemia and hepatic steatosis induced by western-type diet in mice. Arch Pharm Res 2017; 41:1190-1198. [PMID: 28770537 DOI: 10.1007/s12272-017-0941-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/27/2017] [Indexed: 01/14/2023]
Abstract
Previous studies have shown that flavonoids (Fs) present in Linaria vulgaris inhibit lipid accumulation in vitro. This study was designed to evaluate the effects of Fs extracted from Linaria vulgaris ssp. sinensis (Bebeaux) Hong, on hyperlipidemia and hepatic steatosis induced by a western-type diet in mice. The major constituents of Fs were analyzed by LC-MS analysis. C57BL/6 mice were fed a western-type diet for 8 weeks to induce hyperlipidemia (model group), or fed a western-type diet followed by Fs treatment (90, 30 or 10 mg/kg/day) or atorvastatin treatment (1.0 mg/kg/day), for 8 weeks. It was found that Fs treatment resulted in significant reductions in serum levels of AST, ALT, TC, TG, LDL-C, free fatty acid and hepatic TC, and TG compared to those in model mice with hyperlipidemia (P < 0.05). The mice treated with Fs showed a relatively normal hepatic architecture compared to the hepatic steatosis shown in the model group. Moreover, the expressions of mature forms of sterol regulatory element-binding proteins (nuclear form of srebps, n-SREBPs) and 3-hydroxy-3-methylglutaryl coenzyme reductase (HMGCR) involved in lipid metabolism, were suppressed in the Fs-treated groups. Taken together, these results suggest Fs exert protective effects against hyperlipidemia and hepatic steatosis, which may involve the inhibition of mature SREBPs expressions.
Collapse
|
35
|
Engin A. Non-Alcoholic Fatty Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:443-467. [DOI: 10.1007/978-3-319-48382-5_19] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Tanajak P, Pintana H, Siri-Angkul N, Khamseekaew J, Apaijai N, Chattipakorn SC, Chattipakorn N. Vildagliptin and caloric restriction for cardioprotection in pre-diabetic rats. J Endocrinol 2017; 232:189-204. [PMID: 27875248 DOI: 10.1530/joe-16-0406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/13/2016] [Indexed: 11/08/2022]
Abstract
Long-term high-fat diet (HFD) consumption causes cardiac dysfunction. Although calorie restriction (CR) has been shown to be useful in obesity, we hypothesized that combined CR with dipeptidyl peptidase-4 (DPP-4) inhibitor provides greater efficacy than monotherapy in attenuating cardiac dysfunction and metabolic impairment in HFD-induced obese-insulin resistant rats. Thirty male Wistar rats were divided into 2 groups to be fed on either a normal diet (ND, n = 6) or a HFD (n = 24) for 12 weeks. Then, HFD rats were divided into 4 subgroups (n = 6/subgroup) to receive just the vehicle, CR diet (60% of mean energy intake and changed to ND), vildagliptin (3 mg/kg/day) or combined CR and vildagliptin for 4 weeks. Metabolic parameters, heart rate variability (HRV), cardiac mitochondrial function, left ventricular (LV) and fibroblast growth factor (FGF) 21 signaling pathway were determined. Rats on a HFD developed insulin and FGF21 resistance, oxidative stress, cardiac mitochondrial dysfunction and impaired LV function. Rats on CR alone showed both decreased body weight and visceral fat accumulation, whereas vildagliptin did not alter these parameters. Rats in CR, vildagliptin and CR plus vildagliptin subgroups had improved insulin sensitivity and oxidative stress. However, vildagliptin improved heart rate variability (HRV), cardiac mitochondrial function and LV function better than the CR. Chronic HFD consumption leads to obese-insulin resistance and FGF21 resistance. Although CR is effective in improving metabolic regulation, vildagliptin provides greater efficacy in preventing cardiac dysfunction by improving anti-apoptosis and FGF21 signaling pathways and attenuating cardiac mitochondrial dysfunction in obese-insulin-resistant rats.
Collapse
Affiliation(s)
- Pongpan Tanajak
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| | - Hiranya Pintana
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| | - Natthaphat Siri-Angkul
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| | - Juthamas Khamseekaew
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic SciencesFaculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
37
|
Yoshida T, Murayama H, Kawashima M, Nagahara R, Kangawa Y, Mizukami S, Kimura M, Abe H, Hayashi SM, Shibutani M. Apocynin and enzymatically modified isoquercitrin suppress the expression of a NADPH oxidase subunit p22phox in steatosis-related preneoplastic liver foci of rats. ACTA ACUST UNITED AC 2017; 69:9-16. [DOI: 10.1016/j.etp.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 09/05/2016] [Accepted: 10/15/2016] [Indexed: 01/28/2023]
|
38
|
Li Z, Jin H, Oh SY, Ji GE. Anti-obese effects of two Lactobacilli and two Bifidobacteria on ICR mice fed on a high fat diet. Biochem Biophys Res Commun 2016; 480:222-227. [DOI: 10.1016/j.bbrc.2016.10.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/13/2016] [Indexed: 02/07/2023]
|
39
|
Effect of 3-keto-1,5-bisphosphonates on obese-liver's rats. Biomed Pharmacother 2016; 83:186-193. [PMID: 27470564 DOI: 10.1016/j.biopha.2016.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/03/2016] [Accepted: 06/10/2016] [Indexed: 11/22/2022] Open
Abstract
Obesity is associated with an oxidative stress status, which is defined by an excess of reactive oxygen species (ROS) vs. the antioxidant defense system. We report in this present work, the link between fat deposition and oxidative stress markers using a High Fat Diet-(HFD) induced rat obesity and liver-oxidative stress. We further determined the impact of chronic administration of 3-keto-1, 5-BPs 1 (a & b) (40μg/kg/8 weeks/i.p.) on liver's level. In fact, exposure of rats to HFD during 16 weeks induced body and liver weight gain and metabolic disruption with an increase on liver Alanine amino transférase (ALAT) and Aspartate aminotransférase (ASAT) concentration. HFD increased liver calcium level as well as free iron, whereas, it provoked a decrease on liver lipase activity. HFD also induced liver-oxidative stress status vocalized by an increase in reactive oxygen species (ROS) as superoxide radical (O2), hydroxyl radical (OH) and Hydrogen peroxide (H2O2). Consequently, different deleterious damages as an increase on Malon Dialdehyde MDA, Carbonyl protein PC levels with a decrease in non-protein sulfhydryls NPSH concentrations, have been detected. Interestingly, our results demonstrate a decrease in antioxidant enzymes activities such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx) and peroxidases (POD). Importantly, 3-keto-1,5-bisphosphonates treatment corrected the majority of the deleterious effects caused by HFD, but it failed to correct some liver's disruptions as mineral profile, oxidative damages (PC and NPSH levels) as well as SOD and lipase activities. Our investigation point that 3-keto-1,5-bisphosphonates could be considered as safe antioxidant agents on the hepatic level that should also find other potential biological applications.
Collapse
|
40
|
Donaldson J, Madziva MT, Erlwanger KH. The effects of high-fat diets composed of different animal and vegetable fat sources on the health status and tissue lipid profiles of male Japanese quail ( Coturnix coturnix japonica). ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:700-711. [PMID: 27764914 PMCID: PMC5411830 DOI: 10.5713/ajas.16.0486] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/02/2016] [Accepted: 10/18/2016] [Indexed: 11/27/2022]
Abstract
Objective The current study aimed to investigate the impact of high-fat diets composed of different animal and vegetable fat sources on serum metabolic health markers in Japanese quail, as well as the overall lipid content and fatty acid profiles of the edible bird tissues following significantly increased dietary lipid supplementation. Methods Fifty seven male quail were divided into six groups and fed either a standard diet or a diet enriched with one of five different fats (22% coconut oil, lard, palm oil, soybean oil, or sunflower oil) for 12 weeks. The birds were subjected to an oral glucose tolerance test following the feeding period, after which they were euthanized and blood, liver, breast, and thigh muscle samples collected. Total fat content and fatty acid profiles of the tissue samples, as well as serum uric acid, triglyceride, cholesterol, total protein, albumin, aspartate transaminase, and total bilirubin concentrations were assessed. Results High-fat diet feeding had no significant effects on the glucose tolerance of the birds. Dietary fatty acid profiles of the added fats were reflected in the lipid profiles of both the liver and breast and thigh muscle tissues, indicating successful transfer of dietary fatty acids to the edible bird tissues. The significantly increased level of lipid inclusion in the diets of the quail used in the present study was unsuccessful in increasing the overall lipid content of the edible bird tissues. Serum metabolic health markers in birds on the high-fat diets were not significantly different from those observed in birds on the standard diet. Conclusion Thus, despite the various high-fat diets modifying the fatty acid profile of the birds’ tissues, unlike in most mammals, the birds maintained a normal health status following consumption of the various high-fat diets.
Collapse
Affiliation(s)
- Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, Johannesburg, South Africa
| | - Michael Taurai Madziva
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, Johannesburg, South Africa
| | - Kennedy Honey Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, Johannesburg, South Africa
| |
Collapse
|
41
|
Breij LM, Kerkhof GF, Hokken-Koelega ACS. Risk for Nonalcoholic Fatty Liver Disease in Young Adults Born Preterm. Horm Res Paediatr 2016; 84:199-205. [PMID: 26278463 DOI: 10.1159/000437054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/18/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of metabolic syndrome. Accelerated catch-up in weight during infancy in subjects born at full term has been associated with increased risk for NAFLD in adulthood, but this association has not been studied in subjects born preterm. METHODS In 162 young adults born at a gestational age <36 weeks, we assessed the associations between fatty liver index (FLI, 0-100) and birth weight standard deviation score and first-year weight gain. We performed comparisons between subjects with and without accelerated catch-up in weight in the first year after term age. An FLI score was assigned to each participant to determine the clinical relevance, and regression analyses were performed. RESULTS Accelerated weight gain in the first 3 months after term age was associated with FLI as a continuous variable, whereas gestational age and low birth weight were not. Of the subjects with accelerated catch-up in weight-for-length after term age, 7.3% had a high FLI at the age of 21 years, whereas none of the subjects without accelerated catch-up in weight had a high FLI. CONCLUSION Our study shows that accelerated weight gain after term age is associated with an increased risk of developing NAFLD in young adults born preterm.
Collapse
Affiliation(s)
- Laura M Breij
- Subdivision of Endocrinology, Department of Pediatrics, Erasmus Medical Centre/Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | |
Collapse
|
42
|
Najt CP, Senthivinayagam S, Aljazi MB, Fader KA, Olenic SD, Brock JRL, Lydic TA, Jones AD, Atshaves BP. Liver-specific loss of Perilipin 2 alleviates diet-induced hepatic steatosis, inflammation, and fibrosis. Am J Physiol Gastrointest Liver Physiol 2016; 310:G726-38. [PMID: 26968211 PMCID: PMC4867327 DOI: 10.1152/ajpgi.00436.2015] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/08/2016] [Indexed: 01/31/2023]
Abstract
Hepatic inflammation and fibrosis are key elements in the pathogenesis of nonalcoholic steatohepatitis (NASH), a progressive liver disease initiated by excess hepatic lipid accumulation. Lipid droplet protein Perilipin 2 (Plin2) alleviates dietary-induced hepatic steatosis when globally ablated; however, its role in the progression of NASH remains unknown. To investigate this further, we challenged Plin2 liver-specific knockout mice (designated L-KO) and their respective wild-type (WT) controls with a methionine-choline-deficient (MCD) diet for 15 days to induce a NASH phenotype of increased hepatic triglyceride levels through impaired phosphatidylcholine (PC) synthesis and very-low-density lipoprotein (VLDL) secretion. Results on liver weights, body weights, fat tissue mass, and histology in WT and L-KO mice fed the MCD diet revealed signs of hepatic steatosis, fibrosis, and inflammation; however, these effects were blunted in L-KO mice. In addition, levels of PC and VLDL were unchanged, and hepatic steatosis was reduced in L-KO mice fed the MCD diet, due in part to an increase in remodeling of PE to PC via the enzyme phosphatidylethanolamine N-methyltransferase (PEMT). These mice also exhibited decreased hepatic expression of proinflammatory markers cyclooxygenase 2, IL-6, TNF-α, IL-1β, and reduced expression of endoplasmic reticulum (ER) stress proteins C/EBP homologous protein and cleaved caspase-1. Taken together, these results suggest that Plin2 liver-specific ablation alleviates diet-induced hepatic steatosis and inflammation via a PEMT-mediated mechanism that involves compensatory changes in proteins involved in phospholipid remodeling, inflammation, and ER stress that work to alleviate diet-induced NASH. Overall, these findings support a role for Plin2 as a target for NASH therapy.
Collapse
Affiliation(s)
- Charles P. Najt
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan;
| | | | - Mohammad B. Aljazi
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan;
| | - Kelly A. Fader
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan;
| | - Sandra D. Olenic
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan;
| | - Julienne R. L. Brock
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan;
| | - Todd A. Lydic
- 2Department of Physiology, Michigan State University, East Lansing, Michigan; and
| | - A. Daniel Jones
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan; ,3Department of Chemistry, Michigan State University, East Lansing, Michigan
| | - Barbara P. Atshaves
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan;
| |
Collapse
|
43
|
Piao D, Sultana N, Holyoak GR, Ritchey JW, Wall CR, Murray JK, Bartels KE. In vivo assessment of diet-induced rat hepatic steatosis development by percutaneous single-fiber spectroscopy detects scattering spectral changes due to fatty infiltration. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:117002. [PMID: 26538183 DOI: 10.1117/1.jbo.20.11.117002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/09/2015] [Indexed: 06/05/2023]
Abstract
This study explores percutaneous single-fiber spectroscopy (SfS) of rat livers undergoing fatty infiltration. Eight test rats were fed a methionine-choline-deficient (MCD) diet, and four control rats were fed a normal diet. Two test rats and one control rat were euthanized on days 12, 28, 49, and 77 following initiation of the diet, after percutaneous SfS of the liver under transabdominal ultrasound guidance. Histology of each set of the two euthanized test rats showed mild and mild hepatic lipid accumulations on day 12, moderate and severe on day 28, severe and mild on day 49, and moderate and mild on day 77. Livers with moderate or higher lipid accumulation generally presented higher spectral reflectance intensity when compared to lean livers. Livers of the eight test rats on day 12, two of which had mild lipid accumulation, revealed an average scattering power of 0.37±0.14 in comparison to 0.07±0.14 for the four control rats (p<0.01 ). When livers of the test rats with various levels of fatty infiltration were combined, the average scattering power was 0.36±0.15 0.36±0.15 in comparison to 0.14±0.24 of the control rats (0.05<p<0.1). Increasing lipid accumulation in concentration and size seemed to cause an increase of the scattering power prior to increasing total spectral reflectance.
Collapse
Affiliation(s)
- Daqing Piao
- Oklahoma State University, School of Electrical and Computer Engineering, 202 Engineering South, Stillwater, Oklahoma 74078, United States
| | - Nigar Sultana
- Oklahoma State University, Graduate Program on Interdisciplinary Sciences, Stillwater, Oklahoma 74078, United States
| | - G Reed Holyoak
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Clinical Sciences, 002 VTH, Stillwater, Oklahoma 74078, United States
| | - Jerry W Ritchey
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, 250 McElroy Hall, Stillwater, Oklahoma 74078, United States
| | - Corey R Wall
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Clinical Sciences, 002 VTH, Stillwater, Oklahoma 74078, United States
| | - Jill K Murray
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Clinical Sciences, 002 VTH, Stillwater, Oklahoma 74078, United States
| | - Kenneth E Bartels
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Clinical Sciences, 002 VTH, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
44
|
Seo S, Lee MS, Chang E, Shin Y, Oh S, Kim IH, Kim Y. Rutin Increases Muscle Mitochondrial Biogenesis with AMPK Activation in High-Fat Diet-Induced Obese Rats. Nutrients 2015; 7:8152-69. [PMID: 26402699 PMCID: PMC4586580 DOI: 10.3390/nu7095385] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/02/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022] Open
Abstract
Decreased mitochondrial number and dysfunction in skeletal muscle are associated with obesity and the progression of obesity-associated metabolic disorders. The specific aim of the current study was to investigate the effects of rutin on mitochondrial biogenesis in skeletal muscle of high-fat diet-induced obese rats. Supplementation with rutin reduced body weight and adipose tissue mass, despite equivalent energy intake (p < 0.05). Rutin significantly increased mitochondrial size and mitochondrial DNA (mtDNA) content as well as gene expression related to mitochondrial biogenesis, such as peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factor-1 (NRF-1), transcription factor A (Tfam), and nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, sirtulin1 (SIRT1) in skeletal muscle (p < 0.05). Moreover, rutin consumption increased muscle adenosine monophosphate-activated protein kinase (AMPK) activity by 40% (p < 0.05). Taken together, these results suggested at least partial involvement of muscle mitochondria and AMPK activation in the rutin-mediated beneficial effect on obesity.
Collapse
Affiliation(s)
- Sangjin Seo
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 120-750, Korea.
| | - Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 120-750, Korea.
| | - Eugene Chang
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 120-750, Korea.
| | - Yoonjin Shin
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 120-750, Korea.
| | - Soojung Oh
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 120-750, Korea.
| | - In-Hwan Kim
- Department of Food and Nutrition, Korea University, Seoul 136-703, Korea.
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
45
|
Fakhoury-Sayegh N, Trak-Smayra V, Khazzaka A, Esseily F, Obeid O, Lahoud-Zouein M, Younes H. Characteristics of nonalcoholic fatty liver disease induced in wistar rats following four different diets. Nutr Res Pract 2015; 9:350-7. [PMID: 26244072 PMCID: PMC4523477 DOI: 10.4162/nrp.2015.9.4.350] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/23/2014] [Accepted: 02/11/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/OBJECTIVES The prevalence of nonalcoholic fatty liver disease (NAFLD) has increased worldwide in parallel with overnutrition characterized by high-fat and high-carbohydrate intake. Our objective was to establish, in 16 weeks, a model of NAFLD in Wistar pathogen-free rats following four dietary types. MATERIALS/METHODS Forty (6 weeks old) healthy Wistar male rats, weighing an average of 150 g were randomly divided into four groups of ten and assigned a diet with the same quantity (15 g/rat/day), but with different composition. The moderate-fat (MF) group was fed a moderate-fat diet (31.5% fat and 50% carbohydrates), the high-fat (HF) group was fed a fat-rich diet (51% fat), the high-sucrose (HS) group and the high-fructose (HFr) group were fed a carbohydrate-rich diet (61%). The carbohydrate contents of the HS group was composed of 60.3% sucrose while that of the HFr group was composed of 59.3% fructose. RESULTS At week 16, the HF group had the highest percentage of cells enriched in fat (40%) and the highest weight and liver weight (P < 0.05). The HFr group showed significantly higher levels of serum triglycerides, alanine aminotransferase and adiponectin at week 16 as compared to week 1 (P < 0.05). CONCLUSIONS The 15 g/rat/day diet composed of 51% fat or 61% carbohydrates enriched mainly in fructose may induce characteristics of NAFLD in rats.
Collapse
Affiliation(s)
- Nicole Fakhoury-Sayegh
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University, Damascus Road, Beirut, Lebanon
| | - Viviane Trak-Smayra
- Department of Pathology, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Aline Khazzaka
- Department of Surgical Research, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Fady Esseily
- Department of Laboratory Sciences, Faculty of Public Health II, Lebanese University, Beirut, Lebanon
| | - Omar Obeid
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - May Lahoud-Zouein
- Department of Laboratory Sciences, Faculty of Public Health II, Lebanese University, Beirut, Lebanon
| | - Hassan Younes
- Department of Nutrition and Health Sciences, Institut Polytechnique LaSalle Beauvais, 19, rue Pierre Waguet, France
| |
Collapse
|
46
|
Zhu X, Jiang S, Hu N, Luo F, Dong H, Kang YM, Jones KR, Zou Y, Xiong L, Ren J. Tumour necrosis factor-α inhibition with lenalidomide alleviates tissue oxidative injury and apoptosis in ob/ob obese mice. Clin Exp Pharmacol Physiol 2015; 41:489-501. [PMID: 24739012 DOI: 10.1111/1440-1681.12240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 12/28/2022]
Abstract
Lenalidomide (Revlimid; Selleck Chemicals, Houston, TX, USA), an analogue of thalidomide, possesses potent cytokine modulatory capacity through inhibition of cytokines such as tumour necrosis factor (TNF)-α, a cytokine pivotal for the onset and development of complications in obesity and diabetes mellitus. The present study was designed to evaluate the effect of lenalidomide on oxidative stress, protein and DNA damage in multiple organs in an ob/ob murine model of obesity. To this end, C57BL/6 lean and ob/ob obese mice were administered lenalidomide (50 mg/kg per day, p.o.) for 5 days. Oxidative stress, protein and DNA damage were assessed using the conversion of reduced glutathione (GSH) to oxidized glutathione (GSSG), carbonyl formation and Comet assay, respectively. Apoptosis was evaluated using caspase 3 activity, and levels of Bax, Bcl-2, Bip, caspase 8, caspase 9 and TNF-α were assessed using western blot analysis. Lenalidomide treatment did not affect glucose clearance in lean or ob/ob mice. Obese mice exhibited a reduced GSH/GSSG ratio in the liver, gastrocnemius skeletal muscle and small intestine, as well as enhanced protein carbonyl formation, DNA damage and caspase 3 activity in the liver, kidney, skeletal muscle and intestine; these effects were alleviated by lenalidomide, with the exception of obesity-associated DNA damage in the liver and kidney. Western blot analysis revealed elevated TNF-α, Bax, Bcl-2, Bip, caspase 8 and caspase 9 in ob/ob mice with various degrees of reversal by lenalidomide treatment. Together, these data indicate that lenalidomide protects against obesity-induced tissue injury and protein damage, possibly in association with antagonism of cytokine production and cytokine-induced apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Xiaoling Zhu
- Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lahbib K, Aouani I, Cavalier JF, Touil S. 3-Keto-1,5-bisphosphonates Alleviate Serum-Oxidative Stress in the High-fat Diet Induced Obesity in Rats. Chem Biol Drug Des 2015; 86:291-301. [DOI: 10.1111/cbdd.12493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Karima Lahbib
- Laboratory of Heteroatom organic chemistry; Department of Chemistry; Faculty of Sciences of Bizerta; University of Carthage; 7021 Jarzouna Tunisia
| | - Iyadh Aouani
- Laboratory of Heteroatom organic chemistry; Department of Chemistry; Faculty of Sciences of Bizerta; University of Carthage; 7021 Jarzouna Tunisia
| | - Jean-François Cavalier
- CNRS; Aix-Marseille University; UMR 7282 Enzymologie Interfaciale et Physiologie de la Lipolyse; 31 Chemin Joseph Aiguier 13402 Marseille Cedex 20 France
| | - Soufiane Touil
- Laboratory of Heteroatom organic chemistry; Department of Chemistry; Faculty of Sciences of Bizerta; University of Carthage; 7021 Jarzouna Tunisia
| |
Collapse
|
48
|
Mookkan J, De S, Shetty P, Kulkarni NM, Devisingh V, Jaji MS, Lakshmi VP, Chaudhary S, Kulathingal J, Rajesh NB, Narayanan S. Combination of vildagliptin and rosiglitazone ameliorates nonalcoholic fatty liver disease in C57BL/6 mice. Indian J Pharmacol 2014; 46:46-50. [PMID: 24550584 PMCID: PMC3912807 DOI: 10.4103/0253-7613.125166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 06/14/2013] [Accepted: 11/21/2013] [Indexed: 12/19/2022] Open
Abstract
Objectives: To evaluate the effect of vildagliptin alone and in combination with metformin or rosiglitazone on murine hepatic steatosis in diet-induced nonalcoholic fatty liver disease (NAFLD). Materials and Methods: Male C57BL/6 mice were fed with high fat diet (60 Kcal %) and fructose (40%) in drinking water for 60 days to induce NAFLD. After the induction period, animals were divided into different groups and treated with vildagliptin (10 mg/kg), metformin (350 mg/kg), rosiglitazone (10 mg/kg), vildagliptin (10 mg/kg) + metformin (350 mg/kg), or vildagliptin (10 mg/kg) + rosiglitazone (10 mg/kg) orally for 28 days. Following parameters were measured: body weight, food intake, plasma glucose, triglyceride (TG), total cholesterol, liver function tests, and liver TG. Liver histopathology was also examined. Results: Oral administration of vildagliptin and rosiglitazone in combination showed a significant reduction in fasting plasma glucose, hepatic steatosis, and liver TGs. While other treatments showed less or no improvement in the measured parameters. Conclusions: These preliminary results demonstrate that administration of vildagliptin in combination with rosiglitazone could be a promising therapeutic strategy for the treatment of NAFLD.
Collapse
Affiliation(s)
- Jeyamurugan Mookkan
- Department of Biology, Drug Discovery Research, Orchid Chemicals and Pharmaceuticals Limited, Sozhanganallur, Chennai, Tamil Nadu, India
| | - Soumita De
- Department of Biology, Drug Discovery Research, Orchid Chemicals and Pharmaceuticals Limited, Sozhanganallur, Chennai, Tamil Nadu, India ; Department of Pharmacology, Rolland Institute of Pharmaceutical Sciences, Berhampur, Orissa, India
| | - Pranesha Shetty
- Department of Biology, Drug Discovery Research, Orchid Chemicals and Pharmaceuticals Limited, Sozhanganallur, Chennai, Tamil Nadu, India
| | - Nagaraj M Kulkarni
- Department of Biology, Drug Discovery Research, Orchid Chemicals and Pharmaceuticals Limited, Sozhanganallur, Chennai, Tamil Nadu, India
| | - Vijayaraj Devisingh
- Department of Biology, Drug Discovery Research, Orchid Chemicals and Pharmaceuticals Limited, Sozhanganallur, Chennai, Tamil Nadu, India
| | - Mallikarjun S Jaji
- Department of Biology, Drug Discovery Research, Orchid Chemicals and Pharmaceuticals Limited, Sozhanganallur, Chennai, Tamil Nadu, India
| | - Vinitha P Lakshmi
- Department of Biology, Drug Discovery Research, Orchid Chemicals and Pharmaceuticals Limited, Sozhanganallur, Chennai, Tamil Nadu, India
| | - Shilpee Chaudhary
- Department of Biology, Drug Discovery Research, Orchid Chemicals and Pharmaceuticals Limited, Sozhanganallur, Chennai, Tamil Nadu, India
| | - Jayanarayan Kulathingal
- Department of Biology, Drug Discovery Research, Orchid Chemicals and Pharmaceuticals Limited, Sozhanganallur, Chennai, Tamil Nadu, India
| | - Navin B Rajesh
- Department of Biology, Drug Discovery Research, Orchid Chemicals and Pharmaceuticals Limited, Sozhanganallur, Chennai, Tamil Nadu, India
| | - Shridhar Narayanan
- Department of Biology, Drug Discovery Research, Orchid Chemicals and Pharmaceuticals Limited, Sozhanganallur, Chennai, Tamil Nadu, India
| |
Collapse
|
49
|
Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Estrogen restores brain insulin sensitivity in ovariectomized non-obese rats, but not in ovariectomized obese rats. Metabolism 2014; 63:851-9. [PMID: 24742706 DOI: 10.1016/j.metabol.2014.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/26/2014] [Accepted: 03/17/2014] [Indexed: 11/21/2022]
Abstract
OBJECTIVE We previously demonstrated that obesity caused the reduction of peripheral and brain insulin sensitivity and that estrogen therapy improved these defects. However, the beneficial effect of estrogen on brain insulin sensitivity and oxidative stress in either ovariectomy alone or ovariectomy with obesity models has not been determined. We hypothesized that ovariectomy alone or ovariectomy with obesity reduces brain insulin sensitivity and increases brain oxidative stress, which are reversed by estrogen treatment. MATERIALS/METHODS Thirty female rats were assigned as either sham-operated or ovariectomized. After the surgery, each group was fed either a normal diet or high-fat diet for 12 weeks. At week 13, rats in each group received either the vehicle or estradiol for 30 days. At week 16, blood and brain were collected for determining the peripheral and brain insulin sensitivity as well as brain oxidative stress. RESULTS We found that ovariectomized rats and high-fat diet fed rats incurred obesity, reduced peripheral and brain insulin sensitivity, and increased brain oxidative stress. Estrogen ameliorated peripheral insulin sensitivity in these rats. However, the beneficial effect of estrogen on brain insulin sensitivity and brain oxidative stress was observed only in ovariectomized normal diet-fed rats, but not in ovariectomized high fat diet-fed rats. CONCLUSIONS Our results suggested that reduced brain insulin sensitivity and increased brain oxidative stress occurred after either ovariectomy or obesity. However, the reduced brain insulin sensitivity and the increased brain oxidative stress in ovariectomy with obesity could not be ameliorated by estrogen treatment.
Collapse
Affiliation(s)
- Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
50
|
Breij LM, Kerkhof GF, Hokken-Koelega ACS. Accelerated infant weight gain and risk for nonalcoholic fatty liver disease in early adulthood. J Clin Endocrinol Metab 2014; 99:1189-95. [PMID: 24423333 DOI: 10.1210/jc.2013-3199] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is considered the hepatic metabolic syndrome. Some studies demonstrated an association between small size at birth and NAFLD. Rapid catch-up in weight often follows small birth size and has been associated with metabolic syndrome, but its association with NAFLD remained unknown. PATIENTS AND METHODS In 268 adults aged 18-24 years, body mass index, waist circumference, triglyceride, γ-glutamyltransferase, alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase levels were determined. Fatty liver index (FLI; 0-100) was calculated. Associations of birth weight SD score and first year gain in weight and length SD scores were determined with FLI and other liver markers. Comparisons were performed between subjects with and without rapid catch-up in weight in the first year of life. Furthermore, a FLI score (low, intermediate, high risk for NAFLD) was assigned to each participant to determine clinical relevance, and ordinal regression analyses were performed. RESULTS Gain in weight in the first 3 months of life was associated with FLI as a continuous variable, whereas low birth weight was not. There were no significant associations with γ-glutamyltransferase, alanine aminotransferase, or aspartate aminotransferase. Of the subjects with rapid catch-up in weight for length, 27.8% had an intermediate or high FLI at the age of 21 years, compared with 5.3% of subjects with slow catch-up. Rapid catch-up was also associated with a higher FLI score after adjustments (odds ratio, 11.7; P = .016). CONCLUSION Accelerated gain in weight for length in the first 3 months of life is associated with a higher risk for NAFLD in early adulthood, whereas small size at birth is not.
Collapse
Affiliation(s)
- Laura M Breij
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus MC/Sophia Children's Hospital, 3015 GJ Rotterdam, The Netherlands
| | | | | |
Collapse
|