1
|
Mennitti C, Farina G, Imperatore A, De Fonzo G, Gentile A, La Civita E, Carbone G, De Simone RR, Di Iorio MR, Tinto N, Frisso G, D’Argenio V, Lombardo B, Terracciano D, Crescioli C, Scudiero O. How Does Physical Activity Modulate Hormone Responses? Biomolecules 2024; 14:1418. [PMID: 39595594 PMCID: PMC11591795 DOI: 10.3390/biom14111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/16/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Physical activity highly impacts the neuroendocrine system and hormonal secretion. Numerous variables, both those related to the individual, including genetics, age, sex, biological rhythms, nutritional status, level of training, intake of drugs or supplements, and previous or current pathologies, and those related to the physical activity in terms of type, intensity, and duration of exercise, or environmental conditions can shape the hormonal response to physical exercise. The aim of this review is to provide an overview of the effects of physical exercise on hormonal levels in the human body, focusing on changes in concentrations of hormones such as cortisol, testosterone, and insulin in response to different types and intensities of physical activity. Regular monitoring of hormonal responses in athletes could be a potential tool to design individual training programs and prevent overtraining syndrome.
Collapse
Affiliation(s)
- Cristina Mennitti
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
| | - Gabriele Farina
- Department of Human Exercise and Health Sciences, University of Rome “Foro Italico” Piazza L. de Bosis 6, 00135 Rome, Italy;
| | - Antonio Imperatore
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
| | - Giulia De Fonzo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
| | - Alessandro Gentile
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
| | - Evelina La Civita
- Department of Translational Medical Sciences, University of Naples Federico II, 80138 Naples, Italy; (E.L.C.); (G.C.); (D.T.)
| | - Gianluigi Carbone
- Department of Translational Medical Sciences, University of Naples Federico II, 80138 Naples, Italy; (E.L.C.); (G.C.); (D.T.)
| | - Rosa Redenta De Simone
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (M.R.D.I.); (V.D.)
| | - Maria Rosaria Di Iorio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (M.R.D.I.); (V.D.)
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (M.R.D.I.); (V.D.)
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (M.R.D.I.); (V.D.)
| | - Valeria D’Argenio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (M.R.D.I.); (V.D.)
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, 00166 Rome, Italy
| | - Barbara Lombardo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (M.R.D.I.); (V.D.)
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples Federico II, 80138 Naples, Italy; (E.L.C.); (G.C.); (D.T.)
| | - Clara Crescioli
- Department of Human Exercise and Health Sciences, University of Rome “Foro Italico” Piazza L. de Bosis 6, 00135 Rome, Italy;
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (A.I.); (G.D.F.); (A.G.); (R.R.D.S.); (N.T.); (G.F.); (B.L.); (O.S.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (M.R.D.I.); (V.D.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| |
Collapse
|
2
|
Álvarez-Jimenez L, Moreno-Cabañas A, Morales-Palomo F, Mora-Rodriguez R. Effects of metabolic syndrome on fuel utilization during exercise on middle-aged moderately trained individuals. J Appl Physiol (1985) 2022; 132:1423-1431. [PMID: 35511719 DOI: 10.1152/japplphysiol.00040.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
People with the metabolic syndrome (MetS) may have blunted exercise stimulation of metabolism explaining their resistance to lower blood glucose and triglycerides with exercise training. Glycerol and glucose rate of appearance (Ra) in plasma and substrate oxidation were determined at rest and during cycle ergometer exercise at three increasing intensities (55, 80 and 95% of maximal heart rate) in 9 middle-aged (61±7 yr) individuals with MetS. Data were compared to 8 healthy-younger (29±10 yr) individuals matched for habitual exercise training and fat free mass (Healthy-young). At rest, fasting plasma triglycerides (TG), blood glucose and insulin were higher in MetS than in Healthy-young (38%, 42% and 85%, respectively; all p<0.05). At rest, and during low intensity exercise (32-43% VO2MAX), plasma glycerol Ra (index of whole-body lipolysis) and glucose Ra and Rd (index of glucose appearance and disposal) were similar in MetS and Healthy-young. Fat oxidation peaked at low intensity exercise similarly in MetS and Healthy-young (0.273±0.082 vs 0.272±0.078 g·min-1, respectively; p = 0.961). Ra glycerol increased with exercise intensity but was lower in MetS at moderate and high exercise intensities (i.e., 60-100% VO2MAX; p<0.05). Metabolic clearance rate of glucose at high intensity (85-100% VO2MAX) was lower in MetS compared to Healthy-young (p = 0.029). The MetS that develops in middle adulthood, reduces exercise lipolysis and plasma glucose clearance at high exercise intensities, but does not blunt fat or carbohydrate metabolism at low exercise intensity.
Collapse
|
3
|
Han JH, Kim MT, Myung CS. Garcinia Cambogia Improves High-Fat Diet-Induced Glucose Imbalance by Enhancing Calcium/CaMKII/AMPK/GLUT4-Mediated Glucose Uptake in Skeletal Muscle. Mol Nutr Food Res 2022; 66:e2100669. [PMID: 35213784 DOI: 10.1002/mnfr.202100669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/01/2022] [Indexed: 12/20/2022]
Abstract
SCOPE Garcinia cambogia (G. cambogia) is known to have antiobesity effects. In this study, the therapeutic effects of G. cambogia on glucose homeostasis in obesity-induced diabetes are explored and the underlying mechanisms are investigated. METHODS AND RESULTS C2C12 myotubes are treated with G. cambogia; glucose uptake, intracellular Ca2+ levels, and related alterations in signaling pathways are examined. High-fat diet (HFD)-fed mice are administered G. cambogia for 8 weeks; oral glucose tolerance is evaluated, and the regulation of identified targets of signaling pathways in quadriceps skeletal muscle are examined in vivo. G. cambogia increases glucose uptake in C2C12 myotubes and induces the upregulation of AMPK, ACC, and p38 MAPK phosphorylation. Notably, G. cambogia markedly elevates both intracellular Ca2+ levels, activating CaMKII, a Ca2+ -sensing protein, and TBC1D4-mediated GLUT4 translocation, to facilitate glucose uptake. Furthermore, high-glucose-induced inhibition of glucose uptake and signal transduction is reverted by G. cambogia. In an HFD-induced diabetes mouse model, G. cambogia administration results in significant blood glucose-lowering effects, which are attributed to the regulation of targets that have been identified in vitro, in quadricep skeletal muscle. CONCLUSION These findings provide new insights into the mechanism by which G. cambogia regulates glucose homeostasis in obesity-induced diabetes.
Collapse
Affiliation(s)
- Joo-Hui Han
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Min-Tae Kim
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Chang-Seon Myung
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
4
|
Kang JH, Park JE, Dagoon J, Masson SWC, Merry TL, Bremner SN, Dent JR, Schenk S. Sirtuin 1 is not required for contraction-stimulated glucose uptake in mouse skeletal muscle. J Appl Physiol (1985) 2021; 130:1893-1902. [PMID: 33886385 DOI: 10.1152/japplphysiol.00065.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
While it has long been known that contraction robustly stimulates skeletal muscle glucose uptake, the molecular steps regulating this increase remain incompletely defined. The mammalian ortholog of Sir2, sirtuin 1 (SIRT1), is an NAD+-dependent protein deacetylase that is thought to link perturbations in energy flux associated with exercise to subsequent cellular adaptations. Nevertheless, its role in contraction-stimulated glucose uptake has not been described. The objective of this study was to determine the importance of SIRT1 to contraction-stimulated glucose uptake in mouse skeletal muscle. Using a radioactive 2-deoxyglucose uptake (2DOGU) approach, we measured ex vivo glucose uptake in unstimulated (rested) and electrically stimulated (100 Hz contraction every 15 s for 10 min; contracted) extensor digitorum longus (EDL) and soleus from ∼15-wk-old male and female mice with muscle-specific knockout of SIRT1 deacetylase activity and their wild-type littermates. Skeletal muscle force decreased over the contraction protocol, although there were no differences in the rate of fatigue between genotypes. In EDL and soleus, loss of SIRT1 deacetylase activity did not affect contraction-induced increase in glucose uptake in either sex. Interestingly, the absolute rate of contraction-stimulated 2DOGU was ∼1.4-fold higher in female compared with male mice, regardless of muscle type. Taken together, our findings demonstrate that SIRT1 is not required for contraction-stimulated glucose uptake in mouse skeletal muscle. Moreover, to our knowledge, this is the first demonstration of sex-based differences in contraction-stimulated glucose uptake in mouse skeletal muscle.NEW & NOTEWORTHY Here, we demonstrate that glucose uptake in response to ex vivo contractions is not affected by the loss of sirtuin 1 (SIRT1) deacetylase function in muscle, regardless of sex or muscle type. Interestingly, however, similar to studies on insulin-stimulated glucose uptake, we demonstrate that contraction-stimulated glucose uptake is robustly higher in female compared with the male skeletal muscle. To our knowledge, this is the first demonstration of sex-based differences in contraction-stimulated glucose uptake in skeletal muscle.
Collapse
Affiliation(s)
- Ji H Kang
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Ji E Park
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Jason Dagoon
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Stewart W C Masson
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Troy L Merry
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Shannon N Bremner
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Jessica R Dent
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California.,Department of Surgery, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California
| |
Collapse
|
5
|
Quiclet C, Dubouchaud H, Berthon P, Sanchez H, Vial G, Siti F, Fontaine E, Batandier C, Couturier K. Maternal exercise modifies body composition and energy substrates handling in male offspring fed a high-fat/high-sucrose diet. J Physiol 2017; 595:7049-7062. [PMID: 28971475 DOI: 10.1113/jp274739] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/21/2017] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Maternal training during gestation enhances offspring body composition and energy substrates handling in early adulthood. Offspring nutrition also plays a role as some beneficial effects of maternal training during gestation disappear after consumption of a high-fat diet. ABSTRACT Maternal exercise during gestation has been reported to modify offspring metabolism and health. Whether these effects are exacerbated when offspring are receiving a high-fat diet remains unclear. Our purpose was to evaluate the effect of maternal exercise before and during gestation on the offspring fed a high-fat/high-sucrose diet (HF) by assessing its body composition, pancreatic function and energy substrates handling by two major glucose-utilizing tissues: liver and muscle. Fifteen-week-old nulliparous female Wistar rats exercised 4 weeks before as well as during gestation at a constant submaximal intensity (TR) or remained sedentary (CT). At weaning, pups from each group were fed either a standard diet (TRCD or CTCD) or a high-fat/high-sucrose diet (TRHF or CTHF) for 10 weeks. Offspring from TR dams gained less weight compared to those from CT dams. Selected fat depots were larger with the HF diet compared to control diet (CD) but significantly smaller in TRHF compared to CTHF. Surprisingly, the insulin secretion index was higher in islets from HF offspring compared to CD. TR offspring showed a higher muscle insulin sensitivity estimated by the ratio of phosphorylated protein kinase B to total protein kinase B compared with CT offspring (+48%, P < 0.05). With CD, permeabilized isolated muscle fibres from TR rats displayed a lower apparent affinity constant (Km ) for pyruvate and palmitoyl coenzyme A as substrates compared to the CT group (-46% and -58%, respectively, P < 0.05). These results suggest that maternal exercise has positive effects on young adult offspring body composition and on muscle carbohydrate and lipid metabolism depending on the nutritional status.
Collapse
Affiliation(s)
- Charline Quiclet
- Université Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble, France.,Inserm, U1055, Grenoble, France.,Université Grenoble Alpes, UFR Sciences et Techniques des Activités Physiques et Sportives (UFR STAPS), Structure Fédérative de Recherche Sport Exercice Motricité (SFR SEM), Grenoble, France
| | - Hervé Dubouchaud
- Université Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble, France.,Inserm, U1055, Grenoble, France.,Université Grenoble Alpes, UFR Sciences et Techniques des Activités Physiques et Sportives (UFR STAPS), Structure Fédérative de Recherche Sport Exercice Motricité (SFR SEM), Grenoble, France
| | - Phanélie Berthon
- Laboratoire Interdisciplinaire de Biologie de la Motricité, Université Savoie Mont Blanc, Le Bourget du Lac, France
| | - Hervé Sanchez
- French Armed Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Guillaume Vial
- Université Grenoble Alpes, UFR Sciences et Techniques des Activités Physiques et Sportives (UFR STAPS), Structure Fédérative de Recherche Sport Exercice Motricité (SFR SEM), Grenoble, France.,Inserm, U1042, Grenoble, France
| | - Farida Siti
- Université Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble, France.,Inserm, U1055, Grenoble, France.,Faculty of Universitas Indonesia, Jakarta, Indonesia
| | - Eric Fontaine
- Université Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble, France.,Inserm, U1055, Grenoble, France.,Grenoble University Hospital, Grenoble, France
| | - Cécile Batandier
- Université Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble, France.,Inserm, U1055, Grenoble, France
| | - Karine Couturier
- Université Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble, France.,Inserm, U1055, Grenoble, France.,Université Grenoble Alpes, UFR Sciences et Techniques des Activités Physiques et Sportives (UFR STAPS), Structure Fédérative de Recherche Sport Exercice Motricité (SFR SEM), Grenoble, France
| |
Collapse
|
6
|
Motiani KK, Savolainen AM, Eskelinen JJ, Toivanen J, Ishizu T, Yli-Karjanmaa M, Virtanen KA, Parkkola R, Kapanen J, Grönroos TJ, Haaparanta-Solin M, Solin O, Savisto N, Ahotupa M, Löyttyniemi E, Knuuti J, Nuutila P, Kalliokoski KK, Hannukainen JC. Two weeks of moderate-intensity continuous training, but not high-intensity interval training, increases insulin-stimulated intestinal glucose uptake. J Appl Physiol (1985) 2017; 122:1188-1197. [PMID: 28183816 PMCID: PMC5451533 DOI: 10.1152/japplphysiol.00431.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 01/10/2017] [Accepted: 02/02/2017] [Indexed: 01/13/2023] Open
Abstract
This is the first study where the effects of exercise training on the intestinal substrate uptake have been investigated using the most advanced techniques available. We also show the importance of exercise intensity in inducing these changes. Similar to muscles, the intestine is also insulin resistant in obese subjects and subjects with impaired glucose tolerance. Exercise training improves muscle insulin sensitivity, but its effects on intestinal metabolism are not known. We studied the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on intestinal glucose and free fatty acid uptake from circulation in humans. Twenty-eight healthy, middle-aged, sedentary men were randomized for 2 wk of HIIT or MICT. Intestinal insulin-stimulated glucose uptake and fasting free fatty acid uptake from circulation were measured using positron emission tomography and [18F]FDG and [18F]FTHA. In addition, effects of HIIT and MICT on intestinal GLUT2 and CD36 protein expression were studied in rats. Training improved aerobic capacity (P = 0.001) and whole body insulin sensitivity (P = 0.04), but not differently between HIIT and MICT. Insulin-stimulated glucose uptake increased only after the MICT in the colon (HIIT = 0%; MICT = 37%) (P = 0.02 for time × training) and tended to increase in the jejunum (HIIT = −4%; MICT = 13%) (P = 0.08 for time × training). Fasting free fatty acid uptake decreased in the duodenum in both groups (HIIT = −6%; MICT = −48%) (P = 0.001 time) and tended to decrease in the colon in the MICT group (HIIT = 0%; MICT = −38%) (P = 0.08 for time × training). In rats, both training groups had higher GLUT2 and CD36 expression compared with control animals. This study shows that already 2 wk of MICT enhances insulin-stimulated glucose uptake, while both training modes reduce fasting free fatty acid uptake in the intestine in healthy, middle-aged men, providing an additional mechanism by which exercise training can improve whole body metabolism. NEW & NOTEWORTHY This is the first study where the effects of exercise training on the intestinal substrate uptake have been investigated using the most advanced techniques available. We also show the importance of exercise intensity in inducing these changes.
Collapse
Affiliation(s)
| | | | | | | | - Tamiko Ishizu
- Turku PET Centre, University of Turku, Turku, Finland.,Medicity Research Laboratory, University of Turku, Turku, Finland.,Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Turku, Finland
| | | | | | - Riitta Parkkola
- Department of Radiology, Turku University Hospital, Turku, Finland
| | | | - Tove J Grönroos
- Turku PET Centre, University of Turku, Turku, Finland.,Medicity Research Laboratory, University of Turku, Turku, Finland
| | | | - Olof Solin
- Turku PET Centre, Abo Akademi University, Turku, Finland
| | - Nina Savisto
- Turku PET Centre, University of Turku, Turku, Finland
| | - Markku Ahotupa
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | | | - Juhani Knuuti
- Turku PET Centre, University of Turku, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland.,Department of Endocrinology, Turku University Hospital, Turku, Finland
| | | | | |
Collapse
|
7
|
Quiclet C, Siti F, Dubouchaud H, Vial G, Berthon P, Fontaine E, Batandier C, Couturier K. Short-term and long-term effects of submaximal maternal exercise on offspring glucose homeostasis and pancreatic function. Am J Physiol Endocrinol Metab 2016; 311:E508-18. [PMID: 27382034 DOI: 10.1152/ajpendo.00126.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/01/2016] [Indexed: 12/22/2022]
Abstract
Only a few studies have explored the effects of maternal exercise during gestation on adult offspring metabolism. We set out to test whether maternal controlled submaximal exercise maintained troughout all gestational periods induces persistant metabolic changes in the offspring. We used a model of 15-wk-old nulliparous female Wistar rats that exercised (trained group) before and during gestation at a submaximal intensity or remained sedentary (control group). At weaning, male offspring from trained dams showed reduced basal glycemia (119.7 ± 2.4 vs. 130.5 ± 4.1 mg/dl, P < 0.05), pancreas relative weight (3.96 ± 0.18 vs. 4.54 ± 0.14 g/kg body wt, P < 0.05), and islet mean area (22,822 ± 4,036 vs. 44,669 ± 6,761 μm(2), P < 0.05) compared with pups from control dams. Additionally, they had better insulin secretory capacity when stimulated by 2.8 mM glucose + 20 mM arginine compared with offspring from control dams (+96%, P < 0.05). At 7 mo of age, offspring from trained mothers displayed altered glucose tolerance (AUC = 15,285 ± 527 vs. 11,898 ± 988 mg·dl(-1)·120 min, P < 0.05) and decreased muscle insulin sensitivity estimated by the phosphorylated PKB/total PKB ratio (-32%, P < 0.05) and tended to have a reduced islet insulin secretory capacity compared with rats from control dams. These results suggest that submaximal maternal exercise modifies short-term male offspring pancreatic function and appears to have rather negative long-term consequences on sedentary adult offspring glucose handling.
Collapse
Affiliation(s)
- Charline Quiclet
- Laboratory of Fundamental and Applied Bioenergetics, University Grenoble Alpes, Grenoble, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1055, Grenoble, France; Unité de Formation et de Recherche en Activités Physiques et Sportives, Structure Fédérative de Recherche Sport Exercice Motricité, University Grenoble Alpes, Grenoble, France;
| | - Farida Siti
- Laboratory of Fundamental and Applied Bioenergetics, University Grenoble Alpes, Grenoble, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1055, Grenoble, France; Faculty of Universitas Indonesia, Jakarta, Indonesia
| | - Hervé Dubouchaud
- Laboratory of Fundamental and Applied Bioenergetics, University Grenoble Alpes, Grenoble, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1055, Grenoble, France; Unité de Formation et de Recherche en Activités Physiques et Sportives, Structure Fédérative de Recherche Sport Exercice Motricité, University Grenoble Alpes, Grenoble, France
| | - Guillaume Vial
- INSERM, U1060,Faculté de Médecine Lyon-Sud, Oullins, France; Center for European Nutrition and Health, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
| | - Phanélie Berthon
- Laboratoire Interuniversitaire de Biologie de la Motricité, University Savoie Mont Blanc, Le Bourget du Lac, France
| | - Eric Fontaine
- Laboratory of Fundamental and Applied Bioenergetics, University Grenoble Alpes, Grenoble, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1055, Grenoble, France; Grenoble University Hospital, Grenoble, France; and
| | - Cécile Batandier
- Laboratory of Fundamental and Applied Bioenergetics, University Grenoble Alpes, Grenoble, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1055, Grenoble, France
| | - Karine Couturier
- Laboratory of Fundamental and Applied Bioenergetics, University Grenoble Alpes, Grenoble, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1055, Grenoble, France; Unité de Formation et de Recherche en Activités Physiques et Sportives, Structure Fédérative de Recherche Sport Exercice Motricité, University Grenoble Alpes, Grenoble, France
| |
Collapse
|
8
|
ALVIM RAFAELO, CHEUHEN MARCELR, MACHADO SILMARAR, SOUSA ANDRÉGUSTAVOP, SANTOS PAULOC. General aspects of muscle glucose uptake. ACTA ACUST UNITED AC 2015; 87:351-68. [PMID: 25761221 DOI: 10.1590/0001-3765201520140225] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/06/2014] [Indexed: 12/25/2022]
Abstract
Glucose uptake in peripheral tissues is dependent on the translocation of GLUT4 glucose transporters to the plasma membrane. Studies have shown the existence of two major signaling pathways that lead to the translocation of GLUT4. The first, and widely investigated, is the insulin activated signaling pathway through insulin receptor substrate-1 and phosphatidylinositol 3-kinase. The second is the insulin-independent signaling pathway, which is activated by contractions. Individuals with type 2 diabetes mellitus have reduced insulin-stimulated glucose uptake in skeletal muscle due to the phenomenon of insulin resistance. However, those individuals have normal glucose uptake during exercise. In this context, physical exercise is one of the most important interventions that stimulates glucose uptake by insulin-independent pathways, and the main molecules involved are adenosine monophosphate-activated protein kinase, nitric oxide, bradykinin, AKT, reactive oxygen species and calcium. In this review, our main aims were to highlight the different glucose uptake pathways and to report the effects of physical exercise, diet and drugs on their functioning. Lastly, with the better understanding of these pathways, it would be possible to assess, exactly and molecularly, the importance of physical exercise and diet on glucose homeostasis. Furthermore, it would be possible to assess the action of drugs that might optimize glucose uptake and consequently be an important step in controlling the blood glucose levels in diabetic patients, in addition to being important to clarify some pathways that justify the development of drugs capable of mimicking the contraction pathway.
Collapse
|
9
|
Hooper PL, Balogh G, Rivas E, Kavanagh K, Vigh L. The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes. Cell Stress Chaperones 2014; 19:447-64. [PMID: 24523032 PMCID: PMC4041942 DOI: 10.1007/s12192-014-0493-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/24/2013] [Accepted: 01/02/2014] [Indexed: 01/06/2023] Open
Abstract
Organisms have evolved to survive rigorous environments and are not prepared to thrive in a world of caloric excess and sedentary behavior. A realization that physical exercise (or lack of it) plays a pivotal role in both the pathogenesis and therapy of type 2 diabetes mellitus (t2DM) has led to the provocative concept of therapeutic exercise mimetics. A decade ago, we attempted to simulate the beneficial effects of exercise by treating t2DM patients with 3 weeks of daily hyperthermia, induced by hot tub immersion. The short-term intervention had remarkable success, with a 1 % drop in HbA1, a trend toward weight loss, and improvement in diabetic neuropathic symptoms. An explanation for the beneficial effects of exercise and hyperthermia centers upon their ability to induce the cellular stress response (the heat shock response) and restore cellular homeostasis. Impaired stress response precedes major metabolic defects associated with t2DM and may be a near seminal event in the pathogenesis of the disease, tipping the balance from health into disease. Heat shock protein inducers share metabolic pathways associated with exercise with activation of AMPK, PGC1-a, and sirtuins. Diabetic therapies that induce the stress response, whether via heat, bioactive compounds, or genetic manipulation, improve or prevent all of the morbidities and comorbidities associated with the disease. The agents reduce insulin resistance, inflammatory cytokines, visceral adiposity, and body weight while increasing mitochondrial activity, normalizing membrane structure and lipid composition, and preserving organ function. Therapies restoring the stress response can re-tip the balance from disease into health and address the multifaceted defects associated with the disease.
Collapse
Affiliation(s)
- Philip L. Hooper
- />Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Gabor Balogh
- />Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Eric Rivas
- />Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital of Dallas and University of Texas Southwestern Medical Center, Dallas, TX USA
- />Department of Kinesiology, Texas Woman’s University, Denton, TX USA
| | - Kylie Kavanagh
- />Department of Pathology, Wake Forest School of Medicine, Winston–Salem, NC USA
| | - Laszlo Vigh
- />Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
10
|
Carter LG, Qi NR, De Cabo R, Pearson KJ. Maternal exercise improves insulin sensitivity in mature rat offspring. Med Sci Sports Exerc 2014; 45:832-40. [PMID: 23247711 DOI: 10.1249/mss.0b013e31827de953] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE Recent findings have shown that the intrauterine environment can negatively influence long-term insulin sensitivity in the offspring. Here we look at maternal voluntary exercise as an intervention to improve offspring insulin sensitivity and glucose homeostasis. METHODS Female Sprague-Dawley rats were split into sedentary and exercise groups with the exercise cohort having voluntary access to a running wheel in the cage before and during mating, pregnancy, and nursing. Female offspring were weaned into sedentary cages. Glucose tolerance tests and hyperinsulinemic-euglycemic clamp were performed in adult offspring to evaluate glucose regulation and insulin sensitivity. RESULTS Adult female offspring born to exercised dams had enhanced glucose disposal during glucose tolerance testing (P < 0.05) as well as increased glucose infusion rates (P < 0.01) and whole body glucose turnover rates (P < 0.05) during hyperinsulinemic-euglycemic clamp testing compared with offspring from sedentary dams. Offspring from exercised dams also had decreased insulin levels (P < 0.01) and hepatic glucose production (P < 0.05) during the clamp procedure compared with offspring born to sedentary dams. Offspring from exercised dams had increased glucose uptake in skeletal muscle (P < 0.05) and decreased heart glucose uptake (P < 0.01) compared with offspring from sedentary dams in response to insulin infusion during the clamp procedure. CONCLUSIONS Exercise during pregnancy enhances offspring insulin sensitivity and improves offspring glucose homeostasis. This can decrease offspring susceptibility to insulin-resistant related diseases such as type 2 diabetes mellitus. Maternal exercise could be an easy, short-term, nonpharmacological method of preventing disease in future generations.
Collapse
Affiliation(s)
- Lindsay G Carter
- Graduate Center for Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
11
|
Koshinaka K, Kawamoto E, Abe N, Toshinai K, Nakazato M, Kawanaka K. Elevation of muscle temperature stimulates muscle glucose uptake in vivo and in vitro. J Physiol Sci 2013; 63:409-18. [PMID: 23836025 PMCID: PMC10718043 DOI: 10.1007/s12576-013-0278-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 06/19/2013] [Indexed: 01/13/2023]
Abstract
The purpose of this study was to examine whether elevation of muscle temperature per se might be a stimulatory factor to increase muscle glucose uptake. Heat stimulation to rat hindlimbs increased glucose uptake measured in vivo in the extensor digitorum longus (EDL) and soleus muscles with a significant increase in muscle temperature. This thermal effect was observed again when glucose uptake was measured in vitro in both isolated muscles immediately after the heat stimulation in vivo. When heat stimulation was imposed on isolated EDL muscles, glucose uptake was facilitated in proportion to the increase in muscle temperature. The heat stimulation led to a significant amplification in the phosphorylation of AMP-activated protein kinase (AMPK) and Akt, and treatment with compound C, wortmannin, or LY294002 partially blocked the thermal effect on muscle glucose uptake. We provide evidence that elevation of muscle temperature per se can directly stimulate muscle glucose uptake and that this thermal effect is compound C-, wortmannin-, and LY294002-inhibitable.
Collapse
Affiliation(s)
- Keiichi Koshinaka
- Department of Health and Nutrition, Niigata University of Health and Welfare, Niigata, Japan,
| | | | | | | | | | | |
Collapse
|
12
|
Schaller S, Willmann S, Lippert J, Schaupp L, Pieber TR, Schuppert A, Eissing T. A Generic Integrated Physiologically based Whole-body Model of the Glucose-Insulin-Glucagon Regulatory System. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2013; 2:e65. [PMID: 23945606 PMCID: PMC3828004 DOI: 10.1038/psp.2013.40] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/03/2013] [Indexed: 11/23/2022]
Abstract
Models of glucose metabolism are a valuable tool for fundamental and applied medical research in diabetes. Use cases range from pharmaceutical target selection to automatic blood glucose control. Standard compartmental models represent little biological detail, which hampers the integration of multiscale data and confines predictive capabilities. We developed a detailed, generic physiologically based whole-body model of the glucose-insulin-glucagon regulatory system, reflecting detailed physiological properties of healthy populations and type 1 diabetes individuals expressed in the respective parameterizations. The model features a detailed representation of absorption models for oral glucose, subcutaneous insulin and glucagon, and an insulin receptor model relating pharmacokinetic properties to pharmacodynamic effects. Model development and validation is based on literature data. The quality of predictions is high and captures relevant observed inter- and intra-individual variability. In the generic form, the model can be applied to the development and validation of novel diabetes treatment strategies.
Collapse
Affiliation(s)
- S Schaller
- 1] Bayer Technology Services GmbH, Computational Systems Biology, Leverkusen, Germany [2] Aachen Institute for Advanced Study in Computational Engineering Sciences, RWTH Aachen, Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
McConell GK, Rattigan S, Lee-Young RS, Wadley GD, Merry TL. Skeletal muscle nitric oxide signaling and exercise: a focus on glucose metabolism. Am J Physiol Endocrinol Metab 2012; 303:E301-7. [PMID: 22550064 DOI: 10.1152/ajpendo.00667.2011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) is an important vasodilator and regulator in the cardiovascular system, and this link was the subject of a Nobel prize in 1998. However, NO also plays many other regulatory roles, including thrombosis, immune function, neural activity, and gastrointestinal function. Low concentrations of NO are thought to have important signaling effects. In contrast, high concentrations of NO can interact with reactive oxygen species, causing damage to cells and cellular components. A less-recognized site of NO production is within skeletal muscle, where small increases are thought to have beneficial effects such as regulating glucose uptake and possibly blood flow, but higher levels of production are thought to lead to deleterious effects such as an association with insulin resistance. This review will discuss the role of NO in skeletal muscle during and following exercise, including in mitochondrial biogenesis, muscle efficiency, and blood flow with a particular focus on its potential role in regulating skeletal muscle glucose uptake during exercise.
Collapse
Affiliation(s)
- Glenn K McConell
- Institute of Sport, Exercise and Active Living and the School of Biomedical and Health Sciences, Victoria University, Footscray, Victoria, Australia.
| | | | | | | | | |
Collapse
|
14
|
Da Pureza DY, Jorge L, Sanches IC, Irigoyen MC, De Souza RR, De Angelis K. Acute exercise adjustments of cardiovascular autonomic control in diabetic rats. Muscle Nerve 2012; 46:96-101. [DOI: 10.1002/mus.23275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2011] [Indexed: 11/07/2022]
|
15
|
Resistance Training in Type II Diabetes Mellitus: Impact on Areas of Metabolic Dysfunction in Skeletal Muscle and Potential Impact on Bone. J Nutr Metab 2012; 2012:268197. [PMID: 22474580 PMCID: PMC3306910 DOI: 10.1155/2012/268197] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/24/2011] [Accepted: 11/24/2011] [Indexed: 12/25/2022] Open
Abstract
The prevalence of Type II Diabetes mellitus (T2DM) is increasing rapidly and will continue to be a major healthcare expenditure burden. As such, identification of effective lifestyle treatments is paramount. Skeletal muscle and bone display metabolic and functional disruption in T2DM. Skeletal muscle in T2DM is characterized by insulin resistance, impaired glycogen synthesis, impairments in mitochondria, and lipid accumulation. Bone quality in T2DM is decreased, potentially due to the effects of advanced glycation endproducts on collagen, impaired osteoblast activity, and lipid accumulation. Although exercise is widely recognized as an important component of treatment for T2DM, the focus has largely been on aerobic exercise. Emerging research suggests that resistance training (strength training) may impose potent and unique benefits in T2DM. The purpose of this review is to examine the role of resistance training in treating the dysfunction in skeletal muscle and the potential role for resistance training in treating the associated dysfunction in bone.
Collapse
|
16
|
Fisher G, Hunter GR, Gower BA. Aerobic exercise training conserves insulin sensitivity for 1 yr following weight loss in overweight women. J Appl Physiol (1985) 2011; 112:688-93. [PMID: 22174391 DOI: 10.1152/japplphysiol.00843.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The objectives of this study were to 1) identify the independent effects of exercise (aerobic or resistance training) and weight loss on whole body insulin sensitivity and 2) determine if aerobic or resistance training would be more successful for maintaining improved whole body insulin sensitivity 1 yr following weight loss. Subjects were 97 healthy, premenopausal women, body mass index (BMI) 27-30 kg/m(2). Following randomized assignment to one of three groups, diet only, diet + aerobic, or diet + resistance training until a BMI <25 kg/m(2) was achieved, body composition, fat distribution, and whole body insulin sensitivity were determined at baseline, in the weight reduced state, and at 1-yr follow up. The whole body insulin sensitivity index (S(I)) was determined using a frequently sampled intravenous glucose tolerance test. Results of repeated-measures ANOVA indicated a significant improvement in S(I) following weight loss. However, there were no group or group×time interactions. At 1-yr follow up, there were no significant time or group interactions for S(I;) however, there was a significant group×time interaction for S(I). Post hoc analysis revealed that women in the aerobic training group showed a significant increased S(I) from weight reduced to 1-yr follow up (P < 0.05), which was independent of intra-abdominal adipose tissue and %fat. No significant differences in S(I) from weight reduced to 1-yr follow up were observed for diet only or diet + resistance groups. Additionally, multiple linear regression analysis revealed that change in whole body insulin sensitivity from baseline to 1-yr follow up was independently associated with the change in Vo(2max) from baseline to 1-yr follow up (P < 0.05). These results suggest that long-term aerobic exercise training may conserve improvements in S(I) following weight loss and that maintaining cardiovascular fitness following weight loss may be important for maintaining improvements in S(I).
Collapse
Affiliation(s)
- Gordon Fisher
- Departments of Nutrition Sciences, University of Alabama-Birmingham, Birmingham, AL 35294-3360, USA.
| | | | | |
Collapse
|
17
|
Guerra B, Olmedillas H, Guadalupe-Grau A, Ponce-González JG, Morales-Alamo D, Fuentes T, Chapinal E, Fernández-Pérez L, De Pablos-Velasco P, Santana A, Calbet JAL. Is sprint exercise a leptin signaling mimetic in human skeletal muscle? J Appl Physiol (1985) 2011; 111:715-25. [PMID: 21659488 DOI: 10.1152/japplphysiol.00805.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was designed to determine whether sprint exercise activates signaling cascades linked to leptin actions in human skeletal muscle and how this pattern of activation may be interfered by glucose ingestion. Muscle biopsies were obtained in 15 young healthy men in response to a 30-s sprint exercise (Wingate test) randomly distributed into two groups: the fasting (n = 7, C) and the glucose group (n = 8, G), who ingested 75 g of glucose 1 h before the Wingate test. Exercise elicited different patterns of JAK2, STAT3, STAT5, ERK1/2, p38 MAPK phosphorylation, and SOCS3 protein expression during the recovery period after glucose ingestion. Thirty minutes after the control sprint, STAT3 and ERK1/2 phosphorylation levels were augmented (both, P < 0.05). SOCS3 protein expression was increased 120 min after the control sprint but PTP1B protein expression was unaffected. Thirty and 120 min after the control sprint, STAT5 phosphorylation was augmented (P < 0.05). Glucose abolished the 30 min STAT3 and ERK1/2 phosphorylation and the 120 min SOCS3 protein expression increase while retarding the STAT5 phosphorylation response to sprint. Activation of these signaling cascades occurred despite a reduction of circulating leptin concentration after the sprint. Basal JAK2 and p38 MAPK phosphorylation levels were reduced and increased (both P < 0.05), respectively, by glucose ingestion prior to exercise. During recovery, JAK2 phosphorylation was unchanged and p38 MAPK phosphorylation was transiently reduced when the exercise was preceded by glucose ingestion. In conclusion, sprint exercise performed under fasting conditions is a leptin signaling mimetic in human skeletal muscle.
Collapse
Affiliation(s)
- Borja Guerra
- Department of Physical Education, University of Las Palmas de Gran Canaria, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Benatti FB, Lira FS, Oyama LM, do Nascimento CMDPO, Lancha AH. Strategies for reducing body fat mass: effects of liposuction and exercise on cardiovascular risk factors and adiposity. Diabetes Metab Syndr Obes 2011; 4:141-54. [PMID: 21779146 PMCID: PMC3138146 DOI: 10.2147/dmso.s12143] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Indexed: 11/26/2022] Open
Abstract
Liposuction is the most popular aesthetic surgery performed in Brazil and worldwide. Evidence showing that adipose tissue is a metabolically active tissue has led to the suggestion that liposuction could be a viable method for improving metabolic profile through the immediate loss of adipose tissue. However, the immediate liposuction-induced increase in the proportion of visceral to subcutaneous adipose tissue could be detrimental to metabolism, because a high proportion of visceral to subcutaneous adipose tissue is associated with risk factors for cardiovascular disease. The results of studies investigating the effects of liposuction on the metabolic profile are inconsistent, however, with most studies reporting either no change or improvements in one or more cardiovascular risk factors. In addition, animal studies have demonstrated a compensatory growth of intact adipose tissue in response to lipectomy, although studies with humans have reported inconsistent results. Exercise training improves insulin sensitivity, inflammatory balance, lipid oxidation, and adipose tissue distribution; increases or preserves the fat-free mass; and increases total energy expenditure. Thus, liposuction and exercise appear to directly affect metabolism in similar ways, which suggests a possible interaction between these two strategies. To our knowledge, no studies have reported the associated effects of liposuction and exercise in humans. Nonetheless, one could suggest that exercise training associated with liposuction could attenuate or even block the possible compensatory fat deposition in intact depots or regrowth of the fat mass and exert an additive or even a synergistic effect to liposuction on improving insulin sensitivity and the inflammatory balance, resulting in an improvement of cardiovascular risk factors. Consequently, one could suggest that liposuction and exercise appear to be safe and effective strategies for either the treatment of metabolic disorders or aesthetic purposes.
Collapse
Affiliation(s)
- Fabiana Braga Benatti
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
- Correspondence: Fabiana Braga Benatti, Av. Professor Mello Moraes, 65, CEP 05508-030, Sao Paulo, SP, Brazil, Tel +55 11 3091 3096, Fax +55 11 3813 5921, Email
| | - Fábio Santos Lira
- Department of Physiology, Division of Nutrition Physiology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Lila Missae Oyama
- Department of Physiology, Division of Nutrition Physiology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | | |
Collapse
|
19
|
Treiber KH, Hess TM, Kronfeld DS, Boston RC, Geor RJ, Friere M, Silva AMGB, Harris PA. Glucose dynamics during exercise: dietary energy sources affect minimal model parameters in trained Arabian geldings during endurance exercise. Equine Vet J 2010:631-6. [PMID: 17402496 DOI: 10.1111/j.2042-3306.2006.tb05617.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
REASONS FOR PERFORMING STUDY Glucose regulation is critical for health and exercise performance. OBJECTIVES To quantify the effects of exercise and diet on insulin sensitivity (SI), glucose effectiveness (Sg), acute insulin response to glucose (AIRg) and disposition index (DI) in horses. METHODS This study applied the minimal model of glucose and insulin dynamics to exercise-trained Arabian geldings during rest or constant moderate-intensity exercise after 8 weeks adaptation to feeds high in sugar and starch (SS, n = 6) or fat and fibre (FF, n = 6). Horses underwent 2 frequently sampled i.v. glucose tolerance tests (FSIGT). For both tests, a resting basal sample was collected, followed by an i.v. dose of 600 mg/kg bwt glucose defining 0 min of the test. Insulin (0.01 iu/kg bwt) was administered 20 min post glucose for each test. Resting horses were sampled for 240 min. The exercise FSIGT began after each horse had warmed-up for 25 min on the treadmill at which point they had reached the speed representing 60% of their predetermined lactate breakpoint maintained for the rest of the FSIGT. Exercising horses were sampled identically to rest, but for only 150 min post glucose. RESULTS Exercise increased (P<0.008) SI, Sg and DI and decreased AIRg in all horses. Overall, horses adapted to FF tended to have higher SI (P = 0.070) and DI (P = 0.058). During exercise, FF horses tended to have higher (P< or =0.085) SI and DI, than SS horses and these variables tended to be increased more (P< or =0.075) by exercise in FF horses than SS horses. CONCLUSIONS Insulin and glucose dynamics adjust during exercise, increasing plasma glucose uptake, presumably to meet demand by contracting skeletal muscle. Trained horses adapted to a high fat diet showed greater metabolic adjustment during exercise than trained horses adapted to a high starch and sugar diet, potentially allowing them to better meet energy demands. POTENTIAL RELEVANCE Nutrition and exercise impact glucose and insulin dynamics, potentially influencing health and performance.
Collapse
Affiliation(s)
- K H Treiber
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0306, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Bradley EA, Eringa EC, Stehouwer CDA, Korstjens I, van Nieuw Amerongen GP, Musters R, Sipkema P, Clark MG, Rattigan S. Activation of AMP-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside in the muscle microcirculation increases nitric oxide synthesis and microvascular perfusion. Arterioscler Thromb Vasc Biol 2010; 30:1137-42. [PMID: 20224051 DOI: 10.1161/atvbaha.110.204404] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate the effects of activation of the AMP-activated protein kinase (AMPK) on muscle perfusion and to elucidate the mechanisms involved. METHODS AND RESULTS In a combined approach, we studied the vasoactive actions of AMPK activator by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) on rat cremaster muscle resistance arteries ( approximately 100 mum) ex vivo and on microvascular perfusion in the rat hindlimb in vivo. In isolated resistance arteries, AICAR increased Thr172 phosphorylation of AMPK in arteriolar endothelium, which was predominantly located in microvascular endothelium. AICAR induced vasodilation (19+/-4% at 2 mmol/L, P<0.01), which was abolished by endothelium removal, inhibition of NO synthase (with N-nitro-L-arginine), or AMPK (with compound C). Smooth muscle sensitivity to NO, determined by studying the effects of the NO donor S-nitroso-N-acetylpenicillamine (SNAP), was not affected by AICAR except at the highest dose. AICAR increased endothelial nitric oxide synthase activity, as indicated by Ser1177 phosphorylation. In vivo, infusion of AICAR markedly increased muscle microvascular blood volume (approximately 60%, P<0.05), as was evidenced by contrast-enhanced ultrasound, without effects on blood pressure, femoral blood flow, or hind leg glucose uptake. CONCLUSIONS Activation of AMPK by AICAR activates endothelial nitric oxide synthase in arteriolar endothelium by increasing its Ser1177 phosphorylation, which leads to vasodilation of resistance arteries and recruitment of microvascular perfusion in muscle.
Collapse
Affiliation(s)
- Eloise A Bradley
- Menzies Research Institute, University of Tasmania, Hobart, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Glatz JFC, Luiken JJFP, Bonen A. Membrane Fatty Acid Transporters as Regulators of Lipid Metabolism: Implications for Metabolic Disease. Physiol Rev 2010; 90:367-417. [DOI: 10.1152/physrev.00003.2009] [Citation(s) in RCA: 544] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Long-chain fatty acids and lipids serve a wide variety of functions in mammalian homeostasis, particularly in the formation and dynamic properties of biological membranes and as fuels for energy production in tissues such as heart and skeletal muscle. On the other hand, long-chain fatty acid metabolites may exert toxic effects on cellular functions and cause cell injury. Therefore, fatty acid uptake into the cell and intracellular handling need to be carefully controlled. In the last few years, our knowledge of the regulation of cellular fatty acid uptake has dramatically increased. Notably, fatty acid uptake was found to occur by a mechanism that resembles that of cellular glucose uptake. Thus, following an acute stimulus, particularly insulin or muscle contraction, specific fatty acid transporters translocate from intracellular stores to the plasma membrane to facilitate fatty acid uptake, just as these same stimuli recruit glucose transporters to increase glucose uptake. This regulatory mechanism is important to clear lipids from the circulation postprandially and to rapidly facilitate substrate provision when the metabolic demands of heart and muscle are increased by contractile activity. Studies in both humans and animal models have implicated fatty acid transporters in the pathogenesis of diseases such as the progression of obesity to insulin resistance and type 2 diabetes. As a result, membrane fatty acid transporters are now being regarded as a promising therapeutic target to redirect lipid fluxes in the body in an organ-specific fashion.
Collapse
Affiliation(s)
- Jan F. C. Glatz
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Joost J. F. P. Luiken
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Arend Bonen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; and Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
22
|
Neutrophil response of anaerobic jump trained diabetic rats. Eur J Appl Physiol 2008; 104:1079-86. [PMID: 18781318 DOI: 10.1007/s00421-008-0865-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2008] [Indexed: 01/13/2023]
Abstract
This paper investigated the effect of jump training on blood biochemical parameters and neutrophil responses of diabetic rats. Male Wistar rats were divided into control, trained, diabetic and trained-diabetic groups. Diabetes was induced by i.v. injection of streptozotocin. Jump training consisted of six sets of ten jumps in water with overload of 50% of body mass with 1-min of resting, four times per week during 6 weeks. Plasma glucose, lactate, triacylglycerol and total cholesterol concentrations, differential leukocyte count, phagocytosis and anion superoxide production by neutrophils were evaluated. Diabetes caused hyperglycemia, hypertriacylglycerolemia, and body weight loss. Physical training reversed hypertriacylglycerolemia. Jump training increased phagocytosis and anion superoxide production by blood neutrophils from trained and trained-diabetic rats. Neutrophilia and lymphocytopenia occur in diabetic and trained-diabetic rats. Anaerobic jump training in diabetic rats reduced hypertriacylglycerolemia and increased neutrophil anion superoxide production. Phagocytosis was not altered in trained-diabetic rats.
Collapse
|
23
|
McConell GK, Wadley GD. Potential role of nitric oxide in contraction-stimulated glucose uptake and mitochondrial biogenesis in skeletal muscle. Clin Exp Pharmacol Physiol 2008; 35:1488-92. [PMID: 18759853 DOI: 10.1111/j.1440-1681.2008.05038.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
1. The present review discusses the potential role of nitric oxide (NO) in the: (i) regulation of skeletal muscle glucose uptake during exercise; and (ii) activation of mitochondrial biogenesis after exercise. 2. We have shown in humans that local infusion of an NO synthase inhibitor during exercise attenuates increases in skeletal muscle glucose uptake without affecting blood flow. Recent studies from our laboratory in rodents support these findings in humans, although rodent studies from other laboratories have yielded conflicting results. 3. There is clear evidence that NO increases mitochondrial biogenesis in non-contracting cells and that NO influences basal skeletal muscle mitochondrial biogenesis. However, there have been few studies examining the potential role of NO in the activation of mitochondrial biogenesis following an acute bout of exercise or in response to exercise training. Early indications are that NO is not involved in regulating the increase in mitochondrial biogenesis that occurs in response to exercise. 4. Exercise is considered the best prevention and treatment option for diabetes, but unfortunately many people with diabetes do not or cannot exercise regularly. Alternative therapies are therefore critical to effectively manage diabetes. If skeletal muscle NO is found to play an important role in regulating glucose uptake and/or mitochondrial biogenesis, pharmaceutical agents designed to mimic these effects of exercise may improve glycaemic control.
Collapse
Affiliation(s)
- Glenn K McConell
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia.
| | | |
Collapse
|
24
|
Taylor EB, An D, Kramer HF, Yu H, Fujii NL, Roeckl KSC, Bowles N, Hirshman MF, Xie J, Feener EP, Goodyear LJ. Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle. J Biol Chem 2008; 283:9787-96. [PMID: 18276596 PMCID: PMC2442306 DOI: 10.1074/jbc.m708839200] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 02/06/2008] [Indexed: 11/06/2022] Open
Abstract
The Akt substrate of 160 kDa (AS160) is phosphorylated on Akt substrate (PAS) motifs in response to insulin and contraction in skeletal muscle, regulating glucose uptake. Here we discovered a dissociation between AS160 protein expression and apparent AS160 PAS phosphorylation among soleus, tibialis anterior, and extensor digitorum longus muscles. Immunodepletion of AS160 in tibialis anterior muscle lysates resulted in minimal depletion of the PAS band at 160 kDa, suggesting the presence of an additional PAS immunoreactive protein. By immunoprecipitation and mass spectrometry, we identified this protein as the AS160 paralog TBC1D1, an obesity candidate gene regulating GLUT4 translocation in adipocytes. TBC1D1 expression was severalfold higher in skeletal muscles compared with all other tissues and was the dominant protein detected by the anti-PAS antibody at 160 kDa in tibialis anterior and extensor digitorum longus but not soleus muscles. In vivo stimulation by insulin, contraction, and the AMP-activated protein kinase (AMPK) activator AICAR increased TBC1D1 PAS phosphorylation. Using mass spectrometry on TBC1D1 from mouse skeletal muscle, we identified several novel phosphorylation sites on TBC1D1 and found the majority were consensus or near consensus sites for AMPK. Semiquantitative analysis of spectra suggested that AICAR caused greater overall phosphorylation of TBC1D1 sites compared with insulin. Purified Akt and AMPK phosphorylated TBC1D1 in vitro, and AMPK, but not Akt, reduced TBC1D1 electrophoretic mobility. TBC1D1 is a major PAS immunoreactive protein in skeletal muscle that is phosphorylated in vivo by insulin, AICAR, and contraction. Both Akt and AMPK phosphorylate TBC1D1, but AMPK may be the more robust regulator.
Collapse
Affiliation(s)
- Eric B Taylor
- The Joslin Diabetes Center Section on Metabolism and Proteomics Core and Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jurczak MJ, Danos AM, Rehrmann VR, Brady MJ. The role of protein translocation in the regulation of glycogen metabolism. J Cell Biochem 2008; 104:435-43. [DOI: 10.1002/jcb.21634] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Abstract
Individuals with insulin resistance are characterized by impaired insulin action on whole-body glucose uptake, in part due to impaired insulin-stimulated glucose uptake into skeletal muscle. A single bout of exercise increases skeletal muscle glucose uptake via an insulin-independent mechanism that bypasses the typical insulin signalling defects associated with these conditions. However, this 'insulin sensitizing' effect is short-lived and disappears after approximately 48 h. In contrast, repeated physical activity (i.e. exercise training) results in a persistent increase in insulin action in skeletal muscle from obese and insulin-resistant individuals. The molecular mechanism(s) for the enhanced glucose uptake with exercise training have been attributed to the increased expression and/or activity of key signalling proteins involved in the regulation of glucose uptake and metabolism in skeletal muscle. Evidence now suggests that the improvements in insulin sensitivity associated with exercise training are also related to changes in the expression and/or activity of proteins involved in insulin signal transduction in skeletal muscle such as the AMP-activated protein kinase (AMPK) and the protein kinase B (Akt) substrate AS160. In addition, increased lipid oxidation and/or turnover is likely to be another mechanism by which exercise improves insulin sensitivity: exercise training results in an increase in the oxidative capacity of skeletal muscle by up-regulating lipid oxidation and the expression of proteins involved in mitochondrial biogenesis. Determination of the underlying biological mechanisms that result from exercise training is essential in order to define the precise variations in physical activity that result in the most desired effects on targeted risk factors, and to aid in the development of such interventions.
Collapse
Affiliation(s)
- J A Hawley
- Exercise Metabolism Group, School of Medical Sciences, RMIT University, Bundoora, Vic., Australia.
| | | |
Collapse
|
27
|
Ross RM, Wadley GD, Clark MG, Rattigan S, McConell GK. Local nitric oxide synthase inhibition reduces skeletal muscle glucose uptake but not capillary blood flow during in situ muscle contraction in rats. Diabetes 2007; 56:2885-92. [PMID: 17881613 DOI: 10.2337/db07-0745] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE We have previously shown in humans that local infusion of a nitric oxide synthase (NOS) inhibitor into the femoral artery attenuates the increase in leg glucose uptake during exercise without influencing total leg blood flow. However, rodent studies examining the effect of NOS inhibition on contraction-stimulated skeletal muscle glucose uptake have yielded contradictory results. This study examined the effect of local infusion of an NOS inhibitor on skeletal muscle glucose uptake (2-deoxyglucose) and capillary blood flow (contrast-enhanced ultrasound) during in situ contractions in rats. RESEARCH DESIGN AND METHODS Male hooded Wistar rats were anesthetized and one hindleg electrically stimulated to contract (2 Hz, 0.1 ms) for 30 min while the other leg rested. After 10 min, the NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) (arterial concentration of 5 micromol/l) or saline was infused into the epigastric artery of the contracting leg. RESULTS Local NOS inhibition had no effect on blood pressure, heart rate, or muscle contraction force. Contractions increased (P < 0.05) skeletal muscle NOS activity, and this was prevented by L-NAME infusion. NOS inhibition caused a modest significant (P < 0.05) attenuation of the increase in femoral blood flow during contractions, but importantly there was no effect on capillary recruitment. NOS inhibition attenuated (P < 0.05) the increase in contraction-stimulated skeletal muscle glucose uptake by approximately 35%, without affecting AMP-activated protein kinase (AMPK) activation. CONCLUSIONS NOS inhibition attenuated increases in skeletal muscle glucose uptake during contraction without influencing capillary recruitment, suggesting that NO is critical for part of the normal increase in skeletal muscle fiber glucose uptake during contraction.
Collapse
Affiliation(s)
- Renee M Ross
- Menzies Research Institute, University of Tasmania, Hobart, Tasmania, Australia
| | | | | | | | | |
Collapse
|
28
|
Inyard AC, Clerk LH, Vincent MA, Barrett EJ. Contraction stimulates nitric oxide independent microvascular recruitment and increases muscle insulin uptake. Diabetes 2007; 56:2194-200. [PMID: 17563063 DOI: 10.2337/db07-0020] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We examined whether contraction-induced muscle microvascular recruitment would expand the surface area for insulin and nutrient exchange and thereby contribute to insulin-mediated glucose disposal. We measured in vivo rat hindlimb microvascular blood volume (MBV) using contrast ultrasound and femoral blood flow (FBF) using Doppler ultrasound in response to a stimulation frequency range. Ten minutes of 0.1-Hz isometric contraction more than doubled MBV (P < 0.05; n = 6) without affecting FBF (n = 7), whereas frequencies >0.5 Hz increased both. Specific inhibition of nitric oxide (NO) synthase with N(omega)-l-nitro-arginine-methyl ester (n = 5) significantly elevated mean arterial pressure by approximately 30 mmHg but had no effect on basal FBF or MBV. We next examined whether selectively elevating MBV without increasing FBF (0.1-Hz contractions) increased muscle uptake of albumin-bound Evans blue dye (EBD). Stimulation at 0.1 Hz (10 min) elicited more than twofold increases in EBD content (micrograms EBD per gram dry tissue) in stimulated versus contralateral muscle (n = 8; 52.2 +/- 3.8 vs. 20 +/- 2.5, respectively; P < 0.001). We then measured muscle uptake of EBD and (125)I-labeled insulin (dpm per gram dry tissue) with 0.1-Hz stimulation (n = 6). Uptake of EBD (19.1 +/- 3.8 vs. 9.9 +/- 1; P < 0.05) and (125)I-insulin (5,300 +/- 800 vs. 4,244 +/- 903; P < 0.05) was greater in stimulated muscle versus control. Low-frequency contraction increases muscle MBV by a NO-independent pathway and facilitates muscle uptake of albumin and insulin in the absence of blood flow increases. This microvascular response may, in part, explain enhanced insulin action in exercising skeletal muscle.
Collapse
Affiliation(s)
- April C Inyard
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
29
|
Henriksen EJ. Improvement of insulin sensitivity by antagonism of the renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol 2007; 293:R974-80. [PMID: 17581838 DOI: 10.1152/ajpregu.00147.2007] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The reduced capacity of insulin to stimulate glucose transport into skeletal muscle, termed insulin resistance, is a primary defect leading to the development of prediabetes and overt type 2 diabetes. Although the etiology of this skeletal muscle insulin resistance is multifactorial, there is accumulating evidence that one contributor is overactivity of the renin-angiotensin system (RAS). Angiotensin II (ANG II) produced from this system can act on ANG II type 1 receptors both in the vascular endothelium and in myocytes, with an enhancement of the intracellular production of reactive oxygen species (ROS). Evidence from animal model and cultured skeletal muscle cell line studies indicates ANG II can induce insulin resistance. Chronic ANG II infusion into an insulin-sensitive rat produces a markedly insulin-resistant state that is associated with a negative impact of ROS on the skeletal muscle glucose transport system. ANG II treatment of L6 myocytes causes impaired insulin receptor substrate (IRS)-1-dependent insulin signaling that is accompanied by augmentation of NADPH oxidase-mediated ROS production. Further critical evidence has been obtained from the TG(mREN2)27 rat, a model of RAS overactivity and insulin resistance. The TG(mREN2)27 rat displays whole body and skeletal muscle insulin resistance that is associated with local oxidative stress and a significant reduction in the functionality of the insulin receptor (IR)/IRS-1-dependent insulin signaling. Treatment with a selective ANG II type 1 receptor antagonist leads to improvements in whole body insulin sensitivity, enhanced insulin-stimulated glucose transport in muscle, and reduced local oxidative stress. In addition, exercise training of TG(mREN2)27 rats enhances whole body and skeletal muscle insulin action. However, these metabolic improvements elicited by antagonism of ANG II action or exercise training are independent of upregulation of IR/IRS-1-dependent signaling. Collectively, these findings support targeting the RAS in the design of interventions to improve metabolic and cardiovascular function in conditions of insulin resistance associated with prediabetes and type 2 diabetes.
Collapse
Affiliation(s)
- Erik J Henriksen
- Department of Physiology, Ina E. Gittings Bldg. #93, University of Arizona, Tucson, AZ 85721-0093, USA.
| |
Collapse
|
30
|
Hesselink MKC, van Baak MA. Physical activity and health, novel concepts and new targets: report from the 12th Conference of the International Research Group on the Biochemistry of Exercise. Proc Nutr Soc 2007; 63:189-97. [PMID: 15294029 DOI: 10.1079/pns2004353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present paper is the introductory paper to a series of brief reviews representing the proceedings of a recent conference on ‘The biochemical basis for the health effects of exercise’ organized by the International Research Group on the Biochemistry of Exercise in conjunction with the Nutrition Society. Here the aim is to briefly review and highlight the main innovations presented during this meeting. The following topics were covered during the meeting: exercise signalling pathways controlling fuel oxidation during and after exercise; the fatty acid transporters of skeletal muscle; mechanisms involved in exercise-induced mitochondrial biogenesis in skeletal muscle; new methodologies and insights in the regulation of fat metabolism during exercise; muscle hypertrophy: the signals of insulin, amino acids and exercise; adipose tissue–liver–muscle interactions leading to insulin resistance. In these symposia state-of-the-art knowledge on how physical exercise exerts its effects on health was presented. The fast-growing number of identified pathways and processes involved in the health effects of physical exercise, which were discussed during the meeting, will help to develop tailored physical-activity regimens in the prevention of inactivity-induced deterioration of health.
Collapse
Affiliation(s)
- Matthijs K C Hesselink
- Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | | |
Collapse
|
31
|
Xiong Y, Collins QF, An J, Lupo E, Liu HY, Liu D, Robidoux J, Liu Z, Cao W. p38 mitogen-activated protein kinase plays an inhibitory role in hepatic lipogenesis. J Biol Chem 2006; 282:4975-4982. [PMID: 17172644 DOI: 10.1074/jbc.m606742200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatic lipogenesis is the principal route to convert excess carbohydrates into fatty acids and is mainly regulated by two opposing hormones, insulin and glucagon. Although insulin stimulates hepatic lipogenesis, glucagon inhibits it. However, the mechanism by which glucagon suppresses lipogenesis remains poorly understood. In this study, we have observed that p38 mitogen-activated protein kinase plays an inhibitory role in hepatic lipogenesis. Levels of plasma triglyceride and triglyceride accumulation in the liver were both elevated when p38 activation was blocked. Expression levels of central lipogenic genes, including sterol regulatory element-binding protein-1 (SREBP-1), fatty acid synthase, hydroxy-3-methylglutaryl coenzyme A reductase, farnesyl pyrophosphate synthase, and cytochrome P-450-51, were decreased in liver by fasting and in primary hepatocytes by glucagon but increased by the inhibition of p38. In addition, we have shown that p38 can inhibit insulin-induced expression of key lipogenic genes in isolated hepatocytes. Our results in hepatoma cells demonstrate that p38 plays an inhibitory role in the activation of the SREBP-1c promoter. Finally, we have shown that transcription of the PGC-1beta gene, a key coactivator of SREBP-1c, was reduced in liver by fasting and in isolated hepatocytes by glucagon. This reduction was significantly reversed by the blockade of p38. Insulin-induced expression of the PGC-1beta gene was enhanced by the inhibition of p38 but suppressed by the activation of p38. Together, we have identified an inhibitory role for p38 in the transcription of central lipogenic genes, SREBPs, and PGC-1beta and hepatic lipogenesis.
Collapse
Affiliation(s)
- Yan Xiong
- Endocrine Biology Program, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709; Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, 410078 Hunan, China
| | - Qu Fan Collins
- Endocrine Biology Program, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Jie An
- The Sarah W. Stedman Center for Nutrition and Metabolism, School of Pharmaceutical Sciences, Central South University, Changsha, 410078 Hunan, China
| | - Edgar Lupo
- Endocrine Biology Program, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Hui-Yu Liu
- Endocrine Biology Program, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Delong Liu
- Center for Integrated Genomics, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Jacques Robidoux
- Endocrine Biology Program, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Zhenqi Liu
- Division of Endocrinology, Department of Internal Medicine, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, and
| | - Wenhong Cao
- Endocrine Biology Program, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709; Division of Endocrinology, Department of Internal Medicine, Duke University, Medical Center, Durham, North Carolina 27710.
| |
Collapse
|
32
|
Kim JS, Saengsirisuwan V, Sloniger JA, Teachey MK, Henriksen EJ. Oxidant stress and skeletal muscle glucose transport: roles of insulin signaling and p38 MAPK. Free Radic Biol Med 2006; 41:818-24. [PMID: 16895802 DOI: 10.1016/j.freeradbiomed.2006.05.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 05/19/2006] [Accepted: 05/30/2006] [Indexed: 01/11/2023]
Abstract
Oxidative stress can impact the regulation of glucose transport activity in a variety of cell lines. In the present study, we assessed the direct effects of an oxidant stress on the glucose transport system in intact mammalian skeletal muscle preparations. Type IIb (epitrochlearis) and type I (soleus) muscles from insulin-sensitive lean Zucker rats were incubated in 8 mM glucose for 2 h in the absence or presence of 100 mU/ml glucose oxidase to produce the oxidant hydrogen peroxide (H(2)O(2)) (60-90 microM). Glucose transport, glycogen synthase activity, and metabolic signaling factors were then assessed. H(2)O(2) significantly (p < 0.05) activated basal glucose transport and glycogen synthase activities and increased insulin receptor tyrosine phosphorylation, insulin receptor substrate-1 associated with the p85 subunit of phosphatidylinositol-3' kinase (PI3-kinase), and Ser(473) phosphorylation of Akt in both muscle types. This induction of glucose transport by the oxidant stress was prevented by the PI3-kinase inhibitor wortmannin. The oxidant stress also significantly increased phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) and 5'-AMP-dependent protein kinase. Interestingly, selective inhibition of p38 MAPK using A304000 substantially reduced the activation of glucose transport induced by the oxidant stress. These results support a direct role for oxidative stress in the activation of the glucose transport system in mammalian skeletal muscle and indicate that this process involves engagement of and possible interactions between the PI3-kinase-dependent signaling pathway and activation of p38 MAPK.
Collapse
Affiliation(s)
- John S Kim
- Muscle Metabolism Laboratory, Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85721-0093, USA
| | | | | | | | | |
Collapse
|
33
|
Greenberg CC, Jurczak MJ, Danos AM, Brady MJ. Glycogen branches out: new perspectives on the role of glycogen metabolism in the integration of metabolic pathways. Am J Physiol Endocrinol Metab 2006; 291:E1-8. [PMID: 16478770 DOI: 10.1152/ajpendo.00652.2005] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycogen is the storage form of carbohydrate for virtually every organism from yeast to primates. Most mammalian tissues store glucose as glycogen, with the major depots located in muscle and liver. The French physiologist Claude Bernard first identified a starch-like substance in liver and muscle and coined the term glycogen, or "sugar former," in the 1850s. During the 150 years since its identification, researchers in the field of glycogen metabolism have made numerous discoveries that are now recognized as significant milestones in biochemistry and cell signaling. Even so, more questions remain, and studies continue to demonstrate the complexity of the regulation of glycogen metabolism. Under classical definitions, the functions of glycogen seem clear: muscle glycogen is degraded to generate ATP during increased energy demand, whereas hepatic glycogen is broken down for release of glucose into the bloodstream to supply other tissues. However, recent findings demonstrate that the roles of glycogen metabolism in energy sensing, integration of metabolic pathways, and coordination of cellular responses to hormonal stimuli are far more complex.
Collapse
Affiliation(s)
- Cynthia C Greenberg
- Department of Medicine, Committee on Molecular Metabolism and Nutrition, the University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
34
|
Jørgensen SB, Richter EA, Wojtaszewski JFP. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. J Physiol 2006; 574:17-31. [PMID: 16690705 PMCID: PMC1817795 DOI: 10.1113/jphysiol.2006.109942] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The 5'-AMP-activated protein kinase (AMPK) is a potent regulator of skeletal muscle metabolism and gene expression. AMPK is activated both in response to in vivo exercise and ex vivo contraction. AMPK is therefore believed to be an important signalling molecule in regulating muscle metabolism during exercise as well as in adaptation of skeletal muscle to exercise training. The first part of this review is focused on different mechanisms regulating AMPK activity during muscle work such as alterations in nucleotide concentrations, availability of energy substrates and upstream AMPK kinases. We furthermore discuss the possible role of AMPK as a master switch in skeletal muscle metabolism with the main focus on AMPK in metabolic regulation during muscle work. Finally, AMPK has a well established role in regulating expression of genes encoding various enzymes in muscle, and this issue is discussed in relation to adaptation of skeletal muscle to exercise training.
Collapse
Affiliation(s)
- Sebastian B Jørgensen
- Department of Human Physiology, Copenhagen Muscle Research Centre, Inst. of Exercise and Sport Sciences, 13-Universitetsparken, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
35
|
Guigas B, Bertrand L, Taleux N, Foretz M, Wiernsperger N, Vertommen D, Andreelli F, Viollet B, Hue L. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an AMP-activated protein kinase-independent effect on glucokinase translocation. Diabetes 2006; 55:865-74. [PMID: 16567505 DOI: 10.2337/diabetes.55.04.06.db05-1178] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AMP-activated protein kinase (AMPK) controls glucose uptake and glycolysis in muscle. Little is known about its role in liver glucose uptake, which is controlled by glucokinase. We report here that 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), metformin, and oligomycin activated AMPK and inhibited glucose phosphorylation and glycolysis in rat hepatocytes. In vitro experiments demonstrated that this inhibition was not due to direct phosphorylation of glucokinase or its regulatory protein by AMPK. By contrast, AMPK phosphorylated liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase without affecting activity. Inhibitors of the endothelial nitric oxide synthase, stress kinases, and phosphatidylinositol 3-kinase pathways did not counteract the effects of AICAR, metformin, or oligomycin, suggesting that these signaling pathways were not involved. Interestingly, the inhibitory effect on glucose phosphorylation of these well-known AMPK activators persisted in primary cultured hepatocytes from newly engineered mice lacking both liver alpha1 and alpha2 AMPK catalytic subunits, demonstrating that this effect was clearly not mediated by AMPK. Finally, AICAR, metformin, and oligomycin were found to inhibit the glucose-induced translocation of glucokinase from the nucleus to the cytosol by a mechanism that could be related to the decrease in intracellular ATP concentrations observed in these conditions.
Collapse
Affiliation(s)
- Bruno Guigas
- Hormone and Metabolic Research Unit, Institute of Cellular Pathology, UCL 7529, avenue Hippocrate 75, 1200 Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Juel C. Training-induced changes in membrane transport proteins of human skeletal muscle. Eur J Appl Physiol 2006; 96:627-35. [PMID: 16456673 DOI: 10.1007/s00421-006-0140-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2006] [Indexed: 11/29/2022]
Abstract
Training improves human physical performance by inducing structural and cardiovascular changes, metabolic changes, and changes in the density of membrane transport proteins. This review focuses on the training-induced changes in proteins involved in sarcolemmal membrane transport. It is concluded that the same type of training affects many transport proteins, suggesting that all transport proteins increase with training, and that both sprint and endurance training in humans increase the density of most membrane transport proteins. There seems to be an upper limit for these changes: intense training for 6-8 weeks substantially increases the density of membrane proteins, whereas years of training (as performed by athletes) have no further effect. Studies suggest that training-induced changes at the protein level are important functionally. The underlying factors responsible for these changes in transport proteins might include changes in substrate concentration, but the existence of "exercise factors" mediating these responses is more likely. Exercise factors might include Ca(2+), mitogen-activated protein kinases, adenosine monophosphate kinases, other kinases, or interleukin-6. Although the magnitudes of training-induced changes have been investigated at the protein level, the underlying signal mechanisms have not been fully described.
Collapse
Affiliation(s)
- Carsten Juel
- Copenhagen Muscle Research Centre, Institute of Molecular Biology and Physiology, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100 Copenhagen, Denmark.
| |
Collapse
|
37
|
Thong FSL, Dugani CB, Klip A. Turning signals on and off: GLUT4 traffic in the insulin-signaling highway. Physiology (Bethesda) 2005; 20:271-84. [PMID: 16024515 DOI: 10.1152/physiol.00017.2005] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Insulin stimulation of glucose uptake into skeletal muscle and adipose tissues is achieved by accelerating glucose transporter GLUT4 exocytosis from intracellular compartments to the plasma membrane and minimally reducing its endocytosis. The round trip of GLUT4 is intricately regulated by diverse signaling molecules impinging on specific compartments. Here we highlight the key molecular signals that are turned on and off by insulin to accomplish this task.
Collapse
Affiliation(s)
- Farah S L Thong
- Programme in Cell Biology, The Hospital for Sick Children, Ontario, Canada
| | | | | |
Collapse
|