1
|
Al-Matouq J, Al-Ghafli H, Alibrahim NN, Alsaffar N, Radwan Z, Ali MD. Unveiling the Interplay Between the Human Microbiome and Gastric Cancer: A Review of the Complex Relationships and Therapeutic Avenues. Cancers (Basel) 2025; 17:226. [PMID: 39858007 PMCID: PMC11763844 DOI: 10.3390/cancers17020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The human microbiota plays a crucial role in maintaining overall health and well-being. The gut microbiota has been implicated in developing and progressing various diseases, including cancer. This review highlights the related mechanisms and the compositions that influence cancer pathogenesis with a highlight on gastric cancer. We provide a comprehensive overview of the mechanisms by which the microbiome influences cancer development, progression, and response to treatment, with a focus on identifying potential biomarkers for early detection, prevention strategies, and novel therapeutic interventions that leverage microbiome modulation. This comprehensive review can guide future research and clinical practices in understanding and harnessing the microbiome to optimize gastric cancer therapies.
Collapse
Affiliation(s)
- Jenan Al-Matouq
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Hawra Al-Ghafli
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Noura N. Alibrahim
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Nida Alsaffar
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Zaheda Radwan
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Mohammad Daud Ali
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia;
| |
Collapse
|
2
|
Ma BT, Sang LX, Chang B. Gastric microbiota transplantation as a potential treatment for immune checkpoint inhibitor-associated gastritis. World J Gastroenterol 2024; 30:3123-3125. [PMID: 38983955 PMCID: PMC11230055 DOI: 10.3748/wjg.v30.i24.3123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/27/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024] Open
Abstract
Immune-related adverse events (irAEs) are complications of the use of immune checkpoint inhibitors (ICIs). ICI-associated gastritis is one of the main irAEs. The gastric microbiota is often related to the occurrence and development of many gastric diseases. Gastric microbiota adjustment may be used to treat gastric disorders in the future. Faecal microbiota transplantation can alter the gut microbiota of patients and has been used for treating ICI-associated colitis. Therefore, we propose gastric microbiota transplantation as a supplementary treatment for patients with ICI-associated gastritis who do not respond well to conventional therapy.
Collapse
Affiliation(s)
- Bo-Tong Ma
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
3
|
Raoul P, De Gaetano V, Sciaraffia G, Ormea G, Cintoni M, Pozzo C, Strippoli A, Gasbarrini A, Mele MC, Rinninella E. Gastric Cancer, Immunotherapy, and Nutrition: The Role of Microbiota. Pathogens 2024; 13:357. [PMID: 38787209 PMCID: PMC11124250 DOI: 10.3390/pathogens13050357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) have revolutionized the treatment of gastric cancer (GC), which still represents the third leading cause of cancer-related death in Western countries. However, ICI treatment outcomes vary between individuals and need to be optimized. Recent studies have shown that gut microbiota could represent a key influencer of immunotherapy responses. At the same time, the nutritional status and diet of GC patients are also predictive of immunotherapy treatment response and survival outcomes. The objective of this narrative review is to gather recent findings about the complex relationships between the oral, gastric, and gut bacterial communities, dietary factors/nutritional parameters, and immunotherapy responses. Perigastric/gut microbiota compositions/functions and their metabolites could be predictive of response to immunotherapy in GC patients and even overall survival. At the same time, the strong influence of diet on the composition of the microbiota could have consequences on immunotherapy responses through the impact of muscle mass in GC patients during immunotherapy. Future studies are needed to define more precisely the dietary factors, such as adequate daily intake of prebiotics, that could counteract the dysbiosis of the GC microbiota and the impaired nutritional status, improving the clinical outcomes of GC patients during immunotherapy.
Collapse
Affiliation(s)
- Pauline Raoul
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (M.C.); (M.C.M.)
| | - Valeria De Gaetano
- School of Specialization in Internal Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.D.G.); (G.S.)
| | - Gianmario Sciaraffia
- School of Specialization in Internal Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.D.G.); (G.S.)
| | - Ginevra Ormea
- Degree Course in Pharmacy, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Marco Cintoni
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (M.C.); (M.C.M.)
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Carmelo Pozzo
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.P.); (A.S.)
| | - Antonia Strippoli
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.P.); (A.S.)
| | - Antonio Gasbarrini
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Digestive Disease Center (CEMAD), Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Maria Cristina Mele
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (M.C.); (M.C.M.)
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Emanuele Rinninella
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (M.C.); (M.C.M.)
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
4
|
Jeong S, Liao YT, Tsai MH, Wang YK, Wu IC, Liu CJ, Wu MS, Chan TS, Chen MY, Hu PJ, Kao WY, Liu HC, Tsai MJ, Liu CY, Chang CC, Wu DC, Hsu YH. Microbiome signatures associated with clinical stages of gastric Cancer: whole metagenome shotgun sequencing study. BMC Microbiol 2024; 24:139. [PMID: 38658841 PMCID: PMC11040827 DOI: 10.1186/s12866-024-03219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/08/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Gastric cancer is one of the global health concerns. A series of studies on the stomach have confirmed the role of the microbiome in shaping gastrointestinal diseases. Delineation of microbiome signatures to distinguish chronic gastritis from gastric cancer will provide a non-invasive preventative and treatment strategy. In this study, we performed whole metagenome shotgun sequencing of fecal samples to enhance the detection of rare bacterial species and increase genome sequence coverage. Additionally, we employed multiple bioinformatics approaches to investigate the potential targets of the microbiome as an indicator of differentiating gastric cancer from chronic gastritis. RESULTS A total of 65 patients were enrolled, comprising 33 individuals with chronic gastritis and 32 with gastric cancer. Within each group, the chronic gastritis group was sub-grouped into intestinal metaplasia (n = 15) and non-intestinal metaplasia (n = 18); the gastric cancer group, early stage (stages 1 and 2, n = 13) and late stage (stages 3 and 4, n = 19) cancer. No significant differences in alpha and beta diversities were detected among the patient groups. However, in a two-group univariate comparison, higher Fusobacteria abundance was identified in phylum; Fusobacteria presented higher abundance in gastric cancer (LDA scored 4.27, q = 0.041 in LEfSe). Age and sex-adjusted MaAsLin and Random Forest variable of importance (VIMP) analysis in species provided meaningful features; Bacteria_caccae was the most contributing species toward gastric cancer and late-stage cancer (beta:2.43, se:0.891, p:0.008, VIMP score:2.543). In contrast, Bifidobacterium_longum significantly contributed to chronic gastritis (beta:-1.8, se:0.699, p:0.009, VIMP score:1.988). Age, sex, and BMI-adjusted MasAsLin on metabolic pathway analysis showed that GLCMANNANAUT-PWY degradation was higher in gastric cancer and one of the contributing species was Fusobacterium_varium. CONCLUSION Microbiomes belonging to the pathogenic phylum Fusobacteria and species Bacteroides_caccae and Streptococcus_anginosus can be significant targets for monitoring the progression of gastric cancer. Whereas Bifidobacterium_longum and Lachnospiraceae_bacterium_5_1_63FAA might be protection biomarkers against gastric cancer.
Collapse
Affiliation(s)
- Sohyun Jeong
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, 1200 Centre Street, Boston, MA, 02131, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Yi-Tyng Liao
- Development Center for Biotechnology, Taipei, Taiwan
| | - Min-Hsuan Tsai
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 TzYou 1st Rd, Kaohsiung City, 80756, Taiwan
| | - Yao-Kuang Wang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 TzYou 1st Rd, Kaohsiung City, 80756, Taiwan
- Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Chen Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 TzYou 1st Rd, Kaohsiung City, 80756, Taiwan
- Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 TzYou 1st Rd, Kaohsiung City, 80756, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Shun Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St., Xinyi Dist, Taipei, 110, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, No.252, Wuxing St., Xinyi Dist, Taipei, 110, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tze-Sian Chan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St., Xinyi Dist, Taipei, 110, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, No.252, Wuxing St., Xinyi Dist, Taipei, 110, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ming-Yao Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St., Xinyi Dist, Taipei, 110, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, No.252, Wuxing St., Xinyi Dist, Taipei, 110, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ping-Jen Hu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St., Xinyi Dist, Taipei, 110, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, No.252, Wuxing St., Xinyi Dist, Taipei, 110, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wei-Yu Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, 110, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St., Xinyi Dist, Taipei, 110, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, No.252, Wuxing St., Xinyi Dist, Taipei, 110, Taiwan
| | | | - Ming-Ju Tsai
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, 1200 Centre Street, Boston, MA, 02131, USA
| | | | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, 110, Taiwan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St., Xinyi Dist, Taipei, 110, Taiwan.
- TMU Research Center for Digestive Medicine, Taipei Medical University, No.252, Wuxing St., Xinyi Dist, Taipei, 110, Taiwan.
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 TzYou 1st Rd, Kaohsiung City, 80756, Taiwan.
- Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yi-Hsiang Hsu
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, 1200 Centre Street, Boston, MA, 02131, USA.
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Baud A, Kennedy SP. Targeted Metagenomic Databases Provide Improved Analysis of Microbiota Samples. Microorganisms 2024; 12:135. [PMID: 38257962 PMCID: PMC10819777 DOI: 10.3390/microorganisms12010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
We report on Moonbase, an innovative pipeline that builds upon the established tools of MetaPhlAn and Kraken2, enhancing their capabilities for more precise taxonomic detection and quantification in diverse microbial communities. Moonbase enhances the performance of Kraken2 mapping by providing an efficient method for constructing project-specific databases. Moonbase was evaluated using synthetic metagenomic samples and compared against MetaPhlAn3 and generalized Kraken2 databases. Moonbase significantly improved species precision and quantification, outperforming marker genes and generalized databases. Construction of a phylogenetic tree from 16S genome data in Moonbase allowed for the incorporation of UniFrac-type phylogenetic information into diversity calculations of samples. We demonstrated that the resulting analysis increased statistical power in distinguishing microbial communities. This study highlights the continual evolution of metagenomic tools with the goal of improving metagenomic analysis and highlighting the potential of the Moonbase pipeline.
Collapse
Affiliation(s)
| | - Sean P. Kennedy
- Institut Pasteur, Université Paris Cité, Département de Biologie Computationnelle, F-75015 Paris, France
| |
Collapse
|
6
|
Zhang J, Hu C, Zhang R, Xu J, Zhang Y, Yuan L, Zhang S, Pan S, Cao M, Qin J, Cheng X, Xu Z. The role of macrophages in gastric cancer. Front Immunol 2023; 14:1282176. [PMID: 38143746 PMCID: PMC10746385 DOI: 10.3389/fimmu.2023.1282176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
As one of the deadliest cancers of the gastrointestinal tract, there has been limited improvement in long-term survival rates for gastric cancer (GC) in recent decades. The poor prognosis is attributed to difficulties in early detection, minimal opportunity for radical resection and resistance to chemotherapy and radiation. Macrophages are among the most abundant infiltrating immune cells in the GC stroma. These cells engage in crosstalk with cancer cells, adipocytes and other stromal cells to regulate metabolic, inflammatory and immune status, generating an immunosuppressive tumour microenvironment (TME) and ultimately promoting tumour initiation and progression. In this review, we summarise recent advances in our understanding of the origin of macrophages and their types and polarisation in cancer and provide an overview of the role of macrophages in GC carcinogenesis and development and their interaction with the GC immune microenvironment and flora. In addition, we explore the role of macrophages in preclinical and clinical trials on drug resistance and in treatment of GC to assess their potential therapeutic value in this disease.
Collapse
Affiliation(s)
- Jiaqing Zhang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Can Hu
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ruolan Zhang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jingli Xu
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yanqiang Zhang
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Li Yuan
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shengjie Zhang
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Siwei Pan
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Mengxuan Cao
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiangjiang Qin
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhiyuan Xu
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
7
|
Chattopadhyay I, Gundamaraju R, Rajeev A. Diversification and deleterious role of microbiome in gastric cancer. Cancer Rep (Hoboken) 2023; 6:e1878. [PMID: 37530125 PMCID: PMC10644335 DOI: 10.1002/cnr2.1878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023] Open
Abstract
Gut microbiota dictates the fate of several diseases, including cancer. Most gastric cancers (GC) belong to gastric adenocarcinomas (GAC). Helicobacter pylori colonizes the gastric epithelium and is the causative agent of 75% of all stomach malignancies globally. This bacterium has several virulence factors, including cytotoxin-associated gene A (CagA), vacuolating cytotoxin (VacA), and outer membrane proteins (OMPs), all of which have been linked to the development of gastric cancer. In addition, bacteria such as Escherichia coli, Streptococcus, Clostridium, Haemophilus, Veillonella, Staphylococcus, and Lactobacillus play an important role in the development of gastric cancer. Besides, lactic acid bacteria (LAB) such as Bifidobacterium, Lactobacillus, Lactococcus, and Streptococcus were found in greater abundance in GAC patients. To identify potential diagnostic and therapeutic interventions for GC, it is essential to understand the mechanistic role of H. pylori and other bacteria that contribute to gastric carcinogenesis. Furthermore, understanding bacteria-host interactions and bacteria-induced inflammatory pathways in the host is critical for developing treatment targets for gastric cancer.
Collapse
Affiliation(s)
| | - Rohit Gundamaraju
- ER stress and Mucosal Immunology TeamSchool of Health Sciences, University of TasmaniaLauncestonTasmaniaAustralia
| | - Ashwin Rajeev
- Department of BiotechnologyCentral University of Tamil NaduThiruvarurIndia
| |
Collapse
|
8
|
Wang Y, Han W, Wang N, Han M, Ban M, Dai J, Dong Y, Sun T, Xu J. The role of microbiota in the development and treatment of gastric cancer. Front Oncol 2023; 13:1224669. [PMID: 37841431 PMCID: PMC10572359 DOI: 10.3389/fonc.2023.1224669] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023] Open
Abstract
The stomach was once considered a sterile organ until the discovery of Helicobacter pylori (HP). With the application of high-throughput sequencing technology and macrogenomics, researchers have identified fungi and fivemajor bacterial phyla within the stomachs of healthy individuals. These microbial communities exert regulatory influence over various physiological functions, including energy metabolism and immune responses. HP is a well-recognized risk factor for gastric cancer, significantly altering the stomach's native microecology. Currently, numerous studies are centered on the mechanisms by which HP contributes to gastric cancer development, primarily involving the CagA oncoprotein. However, aside from exogenous infections such as HP and EBV, certain endogenous dysbiosis can also lead to gastric cancer through multiple mechanisms. Additionally, gut microbiota and its metabolites significantly impact the development of gastric cancer. The role of microbial therapies, including diet, phages, probiotics and fecal microbiota transplantation, in treating gastric cancer should not be underestimated. This review aims to study the mechanisms involved in the roles of exogenous pathogen infection and endogenous microbiota dysbiosis in the development of gastric cancer. Also, we describe the application of microbiota therapy in the treatment and prognosis of gastric cancer.
Collapse
Affiliation(s)
- Yiwen Wang
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Wenjie Han
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Na Wang
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Mengzhen Han
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Meng Ban
- Department of Bioinformatics, Kanghui Biotechnology Co., Ltd., Shenyang, China
| | - Jianying Dai
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yuesheng Dong
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Tao Sun
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- Department of Oncology Medicine, Key Laboratory of Liaoning Breast Cancer Research, Shenyang, Liaoning, China
| | - Junnan Xu
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- Department of Oncology Medicine, Key Laboratory of Liaoning Breast Cancer Research, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Sharma P, Phatak SM, Warikoo P, Mathur A, Mahant S, Das K, Das R. Crosstalk between Helicobacter pylori and gastrointestinal microbiota in various gastroduodenal diseases-A systematic review. 3 Biotech 2023; 13:303. [PMID: 37588796 PMCID: PMC10425313 DOI: 10.1007/s13205-023-03734-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Gastroduodenal diseases have prevailed for a long time and more so due to dominance of gut bacteria Helicobacter pylori in most of the cases. But habitation by other gut microbiota in gastroduodenal diseases and the relationship between Helicobacter pylori and gastrointestinal microbiota in different gastroduodenal diseases is somewhat being unravelled in the current times. For this systematic review, we did a literature search of various gastroduodenal diseases and the effect on gut microbiota pertaining to it. A search of the online bibliographic databases PUBMED and PUBMED CENTRAL was carried out to identify articles published between 1977 and May 2022. The analysis of these selected studies highlighted the inhabitation of other gut microbiota such as Fusobacteria, Bacteroidetes, Streptococcaceae, Prevotellaceae, Fusobacteriaceae, and many others. Interplay between these microbiota and H. pylori have also been noted which suggested that gastroduodenal diseases and gut microbiota are intertwined by a symbiotic association regardless of the H. pylori status. The relationship between the gut microbiota and many gastroduodenal diseases, such as gastritis, gastric cancer, lymphomas, and ulcers, demonstrates the dysbiosis of the gut microbiota in both the presence and absence of H. pylori. The evolving ways for eliminating H. pylori are provided along with inhibiting qualities of other species on H. pylori. Most significant member of our gut system is Helicobacter pylori which has been associated with numerous diseases like gastric cancer, gastritis, duodenal ulcer.
Collapse
Affiliation(s)
- Prateek Sharma
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Shravani M. Phatak
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Prisha Warikoo
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Akshita Mathur
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Shweta Mahant
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Kunal Das
- Department of Gastroenterology, Yashoda Super Speciality Hospital, Kaushambi, Ghaziabad, Uttar Pradesh India
| | - Rajashree Das
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| |
Collapse
|
10
|
Yang R, Li J, Jiang C, Shi J. Preventive and therapeutic effects of an exopolysaccharide produced by Lacticaseibacillus rhamnosus on alcoholic gastric ulcers. Int J Biol Macromol 2023; 235:123845. [PMID: 36863673 DOI: 10.1016/j.ijbiomac.2023.123845] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/26/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Crude exopolysaccharides produced by Lacticaseibacillus rhamnosus SHA113 were previously found to exhibit anti-alcoholic gastric ulcer activity in mice, but their major active fraction, structural characteristics, and underlying mechanisms remain unknown. Here, LRSE1 was identified as the active exopolysaccharide fraction produced by L. rhamnosus SHA113 responsible for the above effects. Purified LRSE1 had a molecular weight of 4.9 × 104 Da and was comprised of L-fucose, D-mannose, D-glucuronic acid, d-glucose, D-galactose, and L-arabinose in the molar ratio of 2.4:6.5:1.2:1.00:0.3:0.6, respectively. The oral administration of LRSE1 resulted in a significant protective and therapeutic effect on alcoholic gastric ulcers in mice. These effects were identified to involve a reduction in reactive oxygen species, apoptosis, and the inflammatory response, increases in antioxidant enzyme activities, and increases in the phylum Firmicutes and decreases in the genera Enterococcus, Enterobacter, and Bacteroides in the gastric mucosa of mice. In vitro experiments showed that the administration of LRSE1 both inhibited apoptosis in GEC-1 cells via the TRPV1-P65-Bcl-2 pathway and inhibited the inflammatory response in RAW264.7 cells via the TRPV1-PI3K pathway. For the first time, we have identified the active exopolysaccharide fraction produced by Lacticaseibacillus that protects against alcoholic gastric ulcers and determined that its effect involves TRPV1-mediated pathways.
Collapse
Affiliation(s)
- Rongrong Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shanxi Province 710072, China
| | - Junjun Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shanxi Province 710072, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shanxi Province 710072, China.
| |
Collapse
|
11
|
Gai X, Qian P, Guo B, Zheng Y, Fu Z, Yang D, Zhu C, Cao Y, Niu J, Ling J, Zhao J, Shi H, Liu G. Heptadecanoic acid and pentadecanoic acid crosstalk with fecal-derived gut microbiota are potential non-invasive biomarkers for chronic atrophic gastritis. Front Cell Infect Microbiol 2023; 12:1064737. [PMID: 36699724 PMCID: PMC9868245 DOI: 10.3389/fcimb.2022.1064737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Background Chronic atrophic gastritis (CAG), premalignant lesions of gastric cancer (GC), greatly increases the risk of GC. Gastroscopy with tissue biopsy is the most commonly used technology for CAG diagnosis. However, due to the invasive nature, both ordinary gastroscope and painless gastroscope result in a certain degree of injury to the esophagus as well as inducing psychological pressure on patients. In addition, patients need fast for at least half a day and take laxatives. Methods In this study, fecal metabolites and microbiota profiles were detected by metabolomics and 16S rRNA V4-V5 region sequencing. Results Alteration of fecal metabolites and microbiota profiles was found in CAG patients, compared with healthy volunteers. To identify the most relevant features, 7 fecal metabolites and 4 microbiota were selected by random forest (RF), from A and B sample sets, respectively. Furthermore, we constructed support vector machines (SVM) classifification model using 7 fecal metabolites or 4 gut microbes, or 7 fecal metabolites with 4 gut microbes, respectively, on C sample set. The accuracy of classifification model was 0.714, 0.857, 0.857, respectively, and the AUC was 0.71, 0.88, 0.9, respectively. In C sample set, Spearman's rank correlation analysis demonstrated heptadecanoic acid and pentadecanoic acid were signifificantly negatively correlated to Erysipelotrichaceae_UCG-003 and Haemophilus, respectively. We constructed SVM classifification model using 2 correlated fecal metabolites and 2 correlated gut microbes on C sample set. The accuracy of classification model was 0.857, and the AUC was 0.88. Conclusion Therefore, heptadecanoic acid and pentadecanoic acid, crosstalk with fecal-derived gut microbiota namely Erysipelotrichaceae_UCG-003 and Haemophilus, are potential non-invasive biomarkers for CAG diagnosis.
Collapse
Affiliation(s)
- Xiao Gai
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peng Qian
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Benqiong Guo
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yixin Zheng
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhihao Fu
- School of Computer Science, Fudan University, Shanghai, China
| | - Decai Yang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunmei Zhu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Cao
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingbin Niu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianghong Ling
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin Zhao
- School of Computer Science, Fudan University, Shanghai, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guoping Liu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Bozomitu L, Miron I, Adam Raileanu A, Lupu A, Paduraru G, Marcu FM, Buga AML, Rusu DC, Dragan F, Lupu VV. The Gut Microbiome and Its Implication in the Mucosal Digestive Disorders. Biomedicines 2022; 10:biomedicines10123117. [PMID: 36551874 PMCID: PMC9775516 DOI: 10.3390/biomedicines10123117] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/10/2022] Open
Abstract
The gastrointestinal (GI) tract is one of the most studied compartments of the human body as it hosts the largest microbial community including trillions of germs. The relationship between the human and its associated flora is complex, as the microbiome plays an important role in nutrition, metabolism and immune function. With a dynamic composition, influenced by many intrinsic and extrinsic factors, there is an equilibrium maintained in the composition of GI microbiota, translated as "eubiosis". Any disruption of the microbiota leads to the development of different local and systemic diseases. This article reviews the human GI microbiome's composition and function in healthy individuals as well as its involvement in the pathogenesis of different digestive disorders. It also highlights the possibility to consider flora manipulation a therapeutic option when treating GI diseases.
Collapse
Affiliation(s)
- Laura Bozomitu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ingrith Miron
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Anca Adam Raileanu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (A.A.R.); (A.L.)
| | - Ancuta Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (A.A.R.); (A.L.)
| | - Gabriela Paduraru
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Florin Mihai Marcu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Ana Maria Laura Buga
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Daniela Carmen Rusu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Felicia Dragan
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Vasile Valeriu Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
13
|
Liang B, Yuan Y, Peng XJ, Liu XL, Hu XK, Xing DM. Current and future perspectives for Helicobacter pylori treatment and management: From antibiotics to probiotics. Front Cell Infect Microbiol 2022; 12:1042070. [PMID: 36506013 PMCID: PMC9732553 DOI: 10.3389/fcimb.2022.1042070] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative anaerobic bacterium that colonizes the human stomach and is the leading cause of gastric diseases such as chronic gastritis and peptic ulcers, as well as the most definite and controllable risk factor for the development of gastric cancer. Currently, the regimen for H. pylori eradication has changed from triple to quadruple, the course of treatment has been extended, and the type and dose of antibiotics have been adjusted, with limited improvement in efficacy but gradually increasing side effects and repeated treatment failures in an increasing number of patients. In recent years, probiotics have become one of the most important tools for supporting intestinal health and immunity. Numerous in vitro studies, animal studies, and clinical observations have demonstrated that probiotics have the advantage of reducing side effects and increasing eradication rates in adjuvant anti-H. pylori therapy and are a valuable supplement to conventional therapy. However, many different types of probiotics are used as adjuncts against H. pylori, in various combinations, with different doses and timing, and the quality of clinical studies varies, making it difficult to standardize the results. In this paper, we focus on the risk, status, prevention, control, and treatment of H. pylori infection and review international consensus guidelines. We also summarize the available scientific evidence on using Limosilactobacillus reuteri (L. reuteri) as a critical probiotic for H. pylori treatment and discuss its clinical research and application from an evidence-based perspective.
Collapse
Affiliation(s)
- Bing Liang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yang Yuan
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao-Jin Peng
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin-Lin Liu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao-Kun Hu
- Intervention Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dong-Ming Xing
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China,School of Life Sciences, Tsinghua University, Beijing, China,*Correspondence: Dong-Ming Xing,
| |
Collapse
|
14
|
Gut Microbiota Host-Gene Interaction. Int J Mol Sci 2022; 23:ijms232213717. [PMID: 36430197 PMCID: PMC9698405 DOI: 10.3390/ijms232213717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Studies carried out in the last ten years have shown that the metabolites made up from the gut microbiota are essential for multiple functions, such as the correct development of the immune system of newborns, interception of pathogens, and nutritional enrichment of the diet. Therefore, it is not surprising that alteration of the gut microbiota is the starting point of gastrointestinal infection, obesity, type 2 diabetes, inflammatory bowel disease, colorectal cancer, and lung cancer. Diet changes and antibiotics are the major factors damaging the gut microbiota. Early exposure of the newborns to antibiotics may prevent their correct development of the immune system, exposing them to pathogen infections, allergies, and chronic inflammatory diseases. We already know much on how host genes, microbiota, and the environment interact, owing to experiments in several model animals, especially in mice; advances in molecular technology; microbiota transplantation; and comparative metagenomic analysis. However, much more remains to be known. Longitudinal studies on patients undergoing to therapy, along with the identification of bacteria prevalent in responding patients may provide valuable data for improving therapies.
Collapse
|
15
|
Fakharian F, Asgari B, Nabavi-Rad A, Sadeghi A, Soleimani N, Yadegar A, Zali MR. The interplay between Helicobacter pylori and the gut microbiota: An emerging driver influencing the immune system homeostasis and gastric carcinogenesis. Front Cell Infect Microbiol 2022; 12:953718. [PMID: 36046747 PMCID: PMC9423097 DOI: 10.3389/fcimb.2022.953718] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 01/06/2023] Open
Abstract
The human gut microbiota are critical for preserving the health status because they are required for digestion and nutrient acquisition, the development of the immune system, and energy metabolism. The gut microbial composition is greatly influenced by the colonization of the recalcitrant pathogen Helicobacter pylori (H. pylori) and the conventional antibiotic regimens that follow. H. pylori is considered to be the main microorganism in gastric carcinogenesis, and it appears to be required for the early stages of the process. However, a non-H. pylori microbiota profile is also suggested, primarily in the later stages of tumorigenesis. On the other hand, specific groups of gut microbes may produce beneficial byproducts such as short-chain fatty acids (acetate, butyrate, and propionate) that can modulate inflammation and tumorigenesis pathways. In this review, we aim to present how H. pylori influences the population of the gut microbiota to modify the host immunity and trigger the development of gastric carcinogenesis. We will also highlight the effect of the gut microbiota on immunotherapeutic approaches such as immune checkpoint blockade in cancer treatment to present a perspective for further development of innovative therapeutic paradigms to prevent the progression of H. pylori-induced stomach cancer.
Collapse
Affiliation(s)
- Farzaneh Fakharian
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnoush Asgari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Soleimani
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Liatsos C, Papaefthymiou A, Kyriakos N, Galanopoulos M, Doulberis M, Giakoumis M, Petridou E, Mavrogiannis C, Rokkas T, Kountouras J. Helicobacter pylori, gastric microbiota and gastric cancer relationship: Unrolling the tangle. World J Gastrointest Oncol 2022; 14:959-972. [PMID: 35646287 PMCID: PMC9124990 DOI: 10.4251/wjgo.v14.i5.959] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/12/2021] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori infection (Hp-I) represents a typical microbial agent intervening in the complex mechanisms of gastric homeostasis by disturbing the balance between the host gastric microbiota and mucosa-related factors, leading to inflammatory changes, dysbiosis and eventually gastric cancer. The normal gastric microbiota shows diversity, with Proteobacteria [Helicobacter pylori (H. pylori) belongs to this family], Firmicutes, Actinobacteria, Bacteroides and Fusobacteria being the most abundant phyla. Most studies indicate that H. pylori has inhibitory effects on the colonization of other bacteria, harboring a lower diversity of them in the stomach. When comparing the healthy with the diseased stomach, there is a change in the composition of the gastric microbiome with increasing abundance of H. pylori (where present) in the gastritis stage, while as the gastric carcinogenesis cascade progresses to gastric cancer, the oral and intestinal-type pathogenic microbial strains predominate. Hp-I creates a premalignant environment of atrophy and intestinal metaplasia and the subsequent alteration in gastric microbiota seems to play a crucial role in gastric tumorigenesis itself. Successful H. pylori eradication is suggested to restore gastric microbiota, at least in primary stages. It is more than clear that Hp-I, gastric microbiota and gastric cancer constitute a challenging tangle and the strong interaction between them makes it difficult to unroll. Future studies are considered of crucial importance to test the complex interaction on the modulation of the gastric microbiota by H. pylori as well as on the relationships between the gastric microbiota and gastric carcinogenesis.
Collapse
Affiliation(s)
- Christos Liatsos
- Department of Gastroenterology, 401 General Military Hospital of Athens, Athens 11525, Greece
| | - Apostolis Papaefthymiou
- Department of Gastroenterology, 401 General Military Hospital of Athens, Athens 11525, Greece
- Gastroenterology, University Hospital of Larissa, Larissa 41336, Greece
| | - Nikolaos Kyriakos
- Department of Gastroenterology, 401 General Military Hospital of Athens, Athens 11525, Greece
| | - Michail Galanopoulos
- Department of Gastroenterology, 401 General Military Hospital of Athens, Athens 11525, Greece
| | - Michael Doulberis
- Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, Aarau 1234, Switzerland
| | - Marios Giakoumis
- Department of Gastroenterology, 401 General Military Hospital of Athens, Athens 11525, Greece
| | - Evangelia Petridou
- Department of Microbiology, “Agia Sofia” Paediatric Hospital, Goudi, Athens 11527, Greece
| | - Christos Mavrogiannis
- Gastrointestinal and Liver Unit, Faculty of Nursing, Kifissia General and Oncology Hospital, Kaliftaki, N.Kifisia 14564, Greece
| | - Theodore Rokkas
- Gastroenterological Clinic, Henry Dunant Hospital, Athens 11525, Greece
| | - Jannis Kountouras
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki 41336, Macedonia, Greece
| |
Collapse
|
17
|
Zhou P, Yang T, Xu M, Zhao Y, Shen P, Wang Y. 16S rRNA sequencing-based evaluation of the protective effects of Hua-Zhuo-Jie-Du on rats with chronic atrophic gastritis. BMC Complement Med Ther 2022; 22:71. [PMID: 35296316 PMCID: PMC8928654 DOI: 10.1186/s12906-022-03542-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background Disturbance of the intestinal flora is a pathogenic factor for chronic atrophic gastritis (CAG). Hua-Zhuo-Jie-Du (HZJD) has been shown to be an effective Chinese herbal preparation for treating CAG. However, the effects of HZJD on the intestinal flora of CAG is unclear. In this study, we probed the regulating effects of HZJD on intestinal microbes in CAG rats using 16S rRNA gene sequencing. Methods High-performance liquid chromatography (HPLC) analysis was used to perform quality control of HZJD preparations. We then administered 1-methyl-3-nitro-1-nitrosoguanidine (200 μg/ml) to Sprague–Dawley rats to establish a CAG model. HZJD and vitacoenzyme were administered orally to these rats over a 10 week period. Hematoxylin and eosin (H&E) staining was performed to observe the histopathology of CAG rats. A rarefaction curve, species accumulation curve, Chao1 index, and ACE index were calculated to assess the alpha diversity. Principal component analysis (PCA), non-metric multi-dimensional scaling (NMDS), and unweighted pair group method with arithmetic mean (UPGMA) were conducted to examine the beta diversity. The LEfSe method was used to identify differential bacteria. Differential function analysis used PCA based on KEGG function prediction. Results HPLC showed that our HZJD preparation method was feasible. H&E staining showed that HZJD significantly improved the pathological state of the gastric mucosa in CAG rats. The rarefaction curve and species accumulation curve showed that the sequencing data were reasonable. The Chao1 and ACE indices were significantly increased in CAG rats compared to the N group. Following HZJD and vitacoenzyme treatment, the Chao1 and ACE indices were decreased. PCA, NMDS, and UPGMA results showed that the M group was separated from the N, HZJD, and V groups, and LEfSe results showed that the relative abundance of Akkermansia, Oscillospira, Prevotella, and CF231 were significantly higher in the N group. Proteobacteria and Escherichia were significantly enriched in the M group, Allobaculum, Bacteroides, Jeotgalicoccus, Corynebacterium, and Sporosarcina were significantly enriched in the V group, and Firmicutes, Lactobacillus, and Turicibacter were significantly enriched in the HZJD group. Conclusion HZJD exhibited a therapeutic effect on the intestinal flora of CAG rats. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03542-z.
Collapse
Affiliation(s)
- Pingping Zhou
- Hebei University of Chinese Medicine, Shijiazhuang, 050091, Hebei, China.,The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Tianxiao Yang
- Hebei University of Chinese Medicine, Shijiazhuang, 050091, Hebei, China.,The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Miaochan Xu
- Shijiazhuang Pingan Hospital Co., Ltd, Shijiazhuang, 050025, Hebei, China
| | - Yuejia Zhao
- Hebei University of Chinese Medicine, Shijiazhuang, 050091, Hebei, China.,The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Pengpeng Shen
- Hebei University of Chinese Medicine, Shijiazhuang, 050091, Hebei, China.,The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yangang Wang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Anwai Xiaoguan Street No. 51, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
18
|
Yang Y, Huang Y, Lin W, Liu J, Chen X, Chen C, Yu X, Teng L. Host miRNAs-microbiota interactions in gastric cancer. J Transl Med 2022; 20:52. [PMID: 35093110 PMCID: PMC8800214 DOI: 10.1186/s12967-022-03264-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022] Open
Abstract
It is widely acknowledged that gastric cancer seriously affects the quality of life and survival of patients. The correlation between the microbiota and gastric cancer has attracted extensive attention in recent years, nonetheless the specific mechanism of its impact on gastric cancer remain largely unclear. Recent studies have shown that in addition to its role in the host’s inflammatory and immune response, the microbiota can also affect the occurrence and development of gastric cancer by affecting the expression of miRNAs. This paper brings together all currently available data on miRNAs, microbiota and gastric cancer, and preliminarily describes the relationship among them.
Collapse
|
19
|
Kaźmierczak-Siedlecka K, Daca A, Roviello G, Catalano M, Połom K. Interdisciplinary insights into the link between gut microbiome and gastric carcinogenesis-what is currently known? Gastric Cancer 2022; 25:1-10. [PMID: 34741681 PMCID: PMC8732854 DOI: 10.1007/s10120-021-01260-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
Currently, gastric cancer is one of the leading death-related cancer globally. The etiopathogenesis of gastric cancer is multifactorial and includes among others dysbiotic alterations of gastric microbiota. Molecular techniques revealed that stomach is not a sterile organ and it is resides with ecosystem of microbes. Due to the fact that the role of Helicobacter pylori infection in development of gastric cancer is established and well-studied, this paper is mainly focused on the role of other bacterial as well as viral and fungal gut microbiota imbalance in gastric carcinogenesis. Notably, not only the composition of gastric microbiota may play an important role in development of gastric cancer, but also its activity. Microbial metabolites, such as short-chain fatty acids, polyamines, N-nitroso compounds, and lactate, may significantly affect gastric carcinogenesis. Therefore, this paper discussed aforementioned aspects with the interdisciplinary insights (regarding also immunological point of view) into the association between gut microbiome and gastric carcinogenesis based on up-to-date studies.
Collapse
Affiliation(s)
| | - Agnieszka Daca
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, Gdańsk, Poland
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - Martina Catalano
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - Karol Połom
- Department of Surgical Oncology, Medical University of Gdansk, ul. Smoluchowskiego 17, 80-214, Gdańsk, Poland
| |
Collapse
|
20
|
Retnakumar R, Nath AN, Nair GB, Chattopadhyay S. Gastrointestinal microbiome in the context of Helicobacter pylori infection in stomach and gastroduodenal diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:53-95. [DOI: 10.1016/bs.pmbts.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
The composition and functional profile of the microbial communities in human gastric cancer tissues and adjacent normal tissues. Acta Biochim Biophys Sin (Shanghai) 2021; 54:47-54. [PMID: 35130625 PMCID: PMC9909298 DOI: 10.3724/abbs.2021010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
(.) is known to be a major risk factor for the development of gastric cancer. In recent years, increasing attention is being paid to the role of non-. (NHPHs) in this disease and the role of microorganisms in local tumor microenvironment. In this study, we aimed to compare the microbial community composition and the predicted functional profile in paired cancer and adjacent normal tissues of gastric cancer patients. Cancer tissues and adjacent normal tissues were collected from 10 patients with gastric cancer under endoscopy, and genomic DNA was extracted. The V3-V4 region of the 16S rRNA gene was amplified by PCR and paired-end sequencing was performed on the Illumina MiSeq System. The data was analyzed using QIIME 2 software. The results showed that microbial richness and diversity as well as genetic diversity are significantly lower in cancer tissues compared with adjacent normal tissues. At the phylum level, the dominant taxa are , , , and in both groups. At the genus level, some taxa, such as and, are significantly enriched in cancer tissues, while other taxa, such as , are enriched in adjacent normal tissues. Moreover, those taxa enriched in cancer tissues are associated with the synthesis and degradation of ketone bodies. In conclusion, there is a significant difference in the composition of the mucosa-related microbial communities between cancer tissues and adjacent normal tissues in patients with gastric cancer.
Collapse
|
22
|
Yang Y, Ji R, Zhao X, Cao X, Wang Q, Jiang Q, Zhang Y, Zheng W, Wu X, Yang A. Alterations in Gastric Mucosal Microbiota in Gastric Carcinogenesis: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2021; 8:754959. [PMID: 34926502 PMCID: PMC8678046 DOI: 10.3389/fmed.2021.754959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022] Open
Abstract
Background: The gastric microbiota profile alters during gastric carcinogenesis. We aimed to identify the alterations in the alpha diversity and relative abundance of bacterial phyla and genera of gastric microbiota in the development of gastric cancer (GC). Methods: The systematic review was performed based on a published protocol with the registration number CRD42020206973. We searched through PubMed, EMBASE and Cochrane databases, as well as conference proceedings and references of review articles (May 2021) for observational studies reporting either the relative abundance of bacterial phyla or genera, or alpha diversity indexes in both GC and non-cancer groups. Selection of studies and data extraction were performed independently by two researchers, with disagreements resolved through discussion. Risk of bias was assessed using the self-modified Newcastle-Ottawa Scale. Results of random-effects meta-analyses were presented as mean differences (MD). Results: Our systematic review included 751 GC patients and 792 non-cancer patients from 14 case-control studies. Gastric cancer group had fewer operational taxonomic units (OTUs) (MD = -68.52, 95%CI: -126.65 to -10.39) and a lower Simpson index (MD = -0.13, 95%CI: -0.20 to -0.07) compared with non-cancer group. At the phylum level, gastric cancer group had a higher abundance of Firmicutes (MD = 7.11, 95%CI: 1.76 to 12.46). At the genus level, Streptococcus (MD = 3.03, 95%CI: 0.07 to 6.00) and Lactobacillus (MD = 5.15, 95%CI: 1.27 to 9.04) were found to be enriched in GCgroup. The relative abundance of the rest bacterial phyla or genera analyzed in our study did not significantly differ between two groups. Subgroup analyses indicated that the source of samples was the major source of interstudy heterogeneity. Conclusion: This systematic review suggested that gastric microbiota dysbiosis occurred in gastric carcinogenesis, with alpha diversity declined and microbiota composition altered.
Collapse
Affiliation(s)
- Yingyun Yang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Ruoyu Ji
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xinyu Zhao
- National Clinical Research Center for Digestive Diseases, Department of Clinical Epidemiology and Evidence-based Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinyuan Cao
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Qiang Wang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Qingwei Jiang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yizhen Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Weiyang Zheng
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xi Wu
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
23
|
Bakhti SZ, Latifi-Navid S. Interplay and cooperation of Helicobacter pylori and gut microbiota in gastric carcinogenesis. BMC Microbiol 2021; 21:258. [PMID: 34556055 PMCID: PMC8461988 DOI: 10.1186/s12866-021-02315-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/07/2021] [Indexed: 01/10/2023] Open
Abstract
Chronic Helicobacter pylori infection is a critical risk factor for gastric cancer (GC). However, only 1-3 % of people with H. pylori develop GC. In gastric carcinogenesis, non-H. pylori bacteria in the stomach might interact with H. pylori. Bacterial dysbiosis in the stomach can strengthen gastric neoplasia development via generating tumor-promoting metabolites, DNA damaging, suppressing antitumor immunity, and activating oncogenic signaling pathways. Other bacterial species may generate short-chain fatty acids like butyrate that may inhibit carcinogenesis and inflammation in the human stomach. The present article aimed at providing a comprehensive overview of the effects of gut microbiota and H. pylori on the development of GC. Next, the potential mechanisms of intestinal microbiota were discussed in gastric carcinogenesis. We also disserted the complicated interactions between H. pylori, intestinal microbiota, and host in gastric carcinogenesis, thus helping us to design new strategies for preventing, diagnosing, and treating GC.
Collapse
Affiliation(s)
- Seyedeh Zahra Bakhti
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran.
| |
Collapse
|
24
|
Öztekin M, Yılmaz B, Ağagündüz D, Capasso R. Overview of Helicobacter pylori Infection: Clinical Features, Treatment, and Nutritional Aspects. Diseases 2021; 9:66. [PMID: 34698140 PMCID: PMC8544542 DOI: 10.3390/diseases9040066] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/11/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a 0.5-1 µm wide, 2-4 µm long, short helical, S-shaped Gram-negative microorganism. It is mostly found in the pyloric region of the stomach and causes chronic gastric infection. It is estimated that these bacteria infect more than half of the world's population. The mode of transmission and infection of H. pylori is still not known exactly, but the faecal-oral and oral-oral routes via water or food consumption are thought to be a very common cause. In the last three decades, research interest has increased regarding the pathogenicity, microbial activity, genetic predisposition, and clinical treatments to understand the severity of gastric atrophy and gastric cancer caused by H. pylori. Studies have suggested a relationship between H. pylori infection and malabsorption of essential micronutrients, and noted that H. pylori infection may affect the prevalence of malnutrition in some risk groups. On the other hand, dietary factors may play a considerably important role in H. pylori infection, and it has been reported that an adequate and balanced diet, especially high fruit and vegetable consumption and low processed salty food consumption, has a protective effect against the outcomes of H. pylori infection. The present review provides an overview of all aspects of H. pylori infection, such as clinical features, treatment, and nutrition.
Collapse
Affiliation(s)
- Merve Öztekin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey; (M.Ö.); (B.Y.)
| | - Birsen Yılmaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey; (M.Ö.); (B.Y.)
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Çukurova University, Sarıçam, Adana 01330, Turkey
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey; (M.Ö.); (B.Y.)
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
25
|
Research progress on gut microbiota in patients with gastric cancer, esophageal cancer, and small intestine cancer. Appl Microbiol Biotechnol 2021; 105:4415-4425. [PMID: 34037843 DOI: 10.1007/s00253-021-11358-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 12/12/2022]
Abstract
The pathogenesis of gut microbiota in humans can be indicated due to the wide application of techniques, such as 16S rRNA sequencing. Presently, several studies have found a significant difference in fecal flora between normal individuals and patients with gastric cancer. Although clinical research on the feedback mechanism of gastric flora and gut microbiota is lacking, clarifying the relationship between gut microbiota and the characteristics of cancer is significant for the early diagnosis of gastric cancer. This study was conducted to review the results of several studies in the past 5 years and analyze the intestinal bacteria in patients with gastric cancer and compare them with those in patients with esophageal and small intestine cancers. It was found that the gut microbiota in patients with gastric cancer was similar to that in patients with esophageal cancer. However, making an analysis and comparing the gut microbiota in patients with small intestine and gastric cancers was impossible due to the low incidence of small intestinal cancer. Our review summarized the research progress on using the gut microbiota for early screening for gastric cancer, and the results of this study will provide a further direction in this field. KEY POINTS: • We reviewed several relative mechanisms of the gut microbiota related to gastric cancer. • The gut microbiota in gastric, esophageal, and small intestine cancers are significantly different in types and quantity, and we have provided some tips for further research. • A prospective review of sequencing methods and study results on the gut microbiota in gastric, esophageal, and small intestine cancers was described.
Collapse
|
26
|
Potential of probiotics for use as functional foods in patients with non-infectious gastric ulcer. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Zhou P, Hao X, Liu Y, Yang Z, Xu M, Liu S, Zhang S, Yang T, Wang X, Wang Y. Determination of the protective effects of Hua-Zhuo-Jie-Du in chronic atrophic gastritis by regulating intestinal microbiota and metabolites: combination of liquid chromatograph mass spectrometer metabolic profiling and 16S rRNA gene sequencing. Chin Med 2021; 16:37. [PMID: 33933119 PMCID: PMC8088729 DOI: 10.1186/s13020-021-00445-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
Background
Hua-Zhuo-Jie-Du (HZJD), a Chinese herbal prescription consisting of 11 herbs, is commonly used in China to treat chronic atrophic gastritis (CAG). We aimed to determine the effect of HZJD on the microbiome-associated metabolic changes in CAG rats. Methods
The CAG rat models were induced by 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) combined with irregular fasting and 2% sodium salicylate, which was intragastrically administrated in fasted animals for 24 weeks. The CAG rats in the Chinese medicine (CM) group were administered a daily dose of 14.81 g/kg/day HZJD, and the vitacoenzyme (V) group were administered a daily dose of 0.08 g/kg/day vitacoenzyme. All animals were treated for 10 consecutive weeks, consecutively. Hematoxylin and eosin (H&E) staining was used to assess the histopathological changes in the gastric tissues. An integrated approach based on liquid chromatograph mass spectrometer (LC-MS) metabolic profiling combined with 16S rRNA gene sequencing was carried out to assess the effects of HZJD on CAG rats. Spearman analysis was used to calculate the correlation coefficient between the different intestinal microbiota and the metabolites. Results The H&E results indicated that HZJD could improve the pathological condition of CAG rats. The LC–MS results indicated that HZJD could significantly improve 21 gastric mucosal tissue perturbed metabolites in CAG rats; the affected metabolites were found to be involved in multiple metabolic pathways, such as the central carbon metabolism in cancer. The results of 16S rRNA gene sequencing indicated that HZJD could regulate the diversity, microbial composition, and abundance of the intestinal microbiota of CAG rats. Following HZJD treatment, the relative abundance of Turicibacter was increased, and the relative abundance of Desulfococcus and Escherichia were decreased in the CM group when compared with the M group. Spearman analysis revealed that perturbed intestinal microbes had a strong correlation with differential metabolites, Escherichia exhibited a negative correlation with l-Leucine, Turicibacter was negatively correlated with urea, and Desulfococcus exhibited a positive correlation with trimethylamine, and a negative correlation with choline. Conclusions HZJD could protect CAG by regulating intestinal microbiota and its metabolites.
Collapse
Affiliation(s)
- Pingping Zhou
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Xinyu Hao
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Yu Liu
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Zeqi Yang
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Miaochan Xu
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Shaowei Liu
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Shixiong Zhang
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Tianxiao Yang
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Xiaomei Wang
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Yangang Wang
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China. .,Beijing University of Chinese Medicine Third Affiliated Hospital, Anwai Xiaoguan Street No. 51, Chaoyang District, 100029, Beijing, China.
| |
Collapse
|
28
|
Yang J, Zhou X, Liu X, Ling Z, Ji F. Role of the Gastric Microbiome in Gastric Cancer: From Carcinogenesis to Treatment. Front Microbiol 2021; 12:641322. [PMID: 33790881 PMCID: PMC8005548 DOI: 10.3389/fmicb.2021.641322] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
The development of sequencing technology has expanded our knowledge of the human gastric microbiome, which is now known to play a critical role in the maintenance of homeostasis, while alterations in microbial community composition can promote the development of gastric diseases. Recently, carcinogenic effects of gastric microbiome have received increased attention. Gastric cancer (GC) is one of the most common malignancies worldwide with a high mortality rate. Helicobacter pylori is a well-recognized risk factor for GC. More than half of the global population is infected with H. pylori, which can modulate the acidity of the stomach to alter the gastric microbiome profile, leading to H. pylori-associated diseases. Moreover, there is increasing evidence that bacteria other than H. pylori and their metabolites also contribute to gastric carcinogenesis. Therefore, clarifying the contribution of the gastric microbiome to the development and progression of GC can lead to improvements in prevention, diagnosis, and treatment. In this review, we discuss the current state of knowledge regarding changes in the microbial composition of the stomach caused by H. pylori infection, the carcinogenic effects of H. pylori and non-H. pylori bacteria in GC, as well as the potential therapeutic role of gastric microbiome in H. pylori infection and GC.
Collapse
Affiliation(s)
- Jinpu Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaosun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
29
|
Abstract
INTRODUCTION The human stomach is a complex and diverse microbial ecosystem. Consecutive alternations of gastric microbiota occur in gastric carcinogenesis, while the changing pattern during this process remains controversial across studies. We aim to identify the changes in the diversity and composition of gastric mucosal microbiota in gastric tumorigenesis. METHODS AND ANALYSIS We will search through PubMed, EMBASE and Cochrane databases, as well as conference proceedings and references of review articles for observational articles reporting either the relative abundance of bacteria at the phylum or genus level or at least one of the alpha diversity indexes respectively and clearly in both gastric cancer and non-cancer groups. Selection of studies and data extraction will be performed independently by two researchers. Disagreements will be resolved through discussion. Risk of bias will be assessed using the modified Newcastle-Ottawa Scale. Quantitative analyses will be performed using a random effects model, where the effect measurement will be expressed as the MD. ETHICS AND DISSEMINATION Ethical approval for this systematic review is not required, as the study is based exclusively on published documents and will not include any individual data. Findings of this study are expected to be disseminated through peer-reviewed journals or conference proceedings. PROSPERO REGISTRATION NUMBER CRD42020206973.
Collapse
Affiliation(s)
- Ruoyu Ji
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xinyu Zhao
- Department of Clinical Epidemiology and EBM, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xinyuan Cao
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yizhen Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yingyun Yang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
30
|
Zhu J, Zhu Z, Cai P, Gu Z, Wang J. Bladder cancer-associated transcript 2 contributes to nephroblastoma progression. J Gene Med 2020; 24:e3292. [PMID: 33142356 DOI: 10.1002/jgm.3292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Nephroblastoma is a common pediatric kidney tumor. Existing evidence has indicated that long non-coding RNAs (lncRNAs) may be associated with tumorigenesis such as nephroblastoma. However, the contribution of lncRNA bladder cancer-associated transcript 2 (BLACAT2) to tumorigenesis and postoperative nephroblastoma prognosis remains unknown. METHODS A total of 50 pairs of patient nephroblastoma and corresponding adjacent non-tumorous tissues were analyzed for BLACAT2 expression. The underlying roles of BLACAT2 in nephroblastoma cells were also investigated. BLACAT2 level was detected in four nephroblastoma cell lines and normal cell line NGC-407 using quantitative real-time PCR. The potential influence of BLACAT2 on nephroblastoma cells was explored based on RNA interference technology in vitro and in vivo. Moreover, the miRNA targeted by BLACAT2 and its target gene were predicted and verified. RESULTS BLACAT2 silencing suppressed cell proliferation, colony formation, and tumor growth in vivo and promoted cell apoptosis in vitro. Furthermore, BLACAT2 could directly bind to miR-504-3p, thereby decreasing miR-504-3p expression. In addition, the impact of miR-504-3p on proliferation, colony formation, and nephroblastoma cell apoptosis was reversed by BLACAT2. Wnt11 was identified as a target of miR-504-3p. CONCLUSIONS Our study revealed that a novel BLACAT2/miR-504-3p/Wnt11 axis is associated with nephroblastoma, where BLACAT2 is able to sponge miR-504-3p to down-regulate Wnt11.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Pediatric Surgery, Children's hospital of Soochow University, Su Zhou, Jiangsu, China
| | - Zhenwei Zhu
- Department of Pediatric Surgery, Children's hospital of Soochow University, Su Zhou, Jiangsu, China
| | - Peng Cai
- Department of Pediatric Surgery, Children's hospital of Soochow University, Su Zhou, Jiangsu, China
| | - Zhicheng Gu
- Department of Pediatric Surgery, Children's hospital of Soochow University, Su Zhou, Jiangsu, China
| | - Jian Wang
- Department of Pediatric Surgery, Children's hospital of Soochow University, Su Zhou, Jiangsu, China
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW To review recent evidence on the association of urticaria and the gut diseases, focusing on the roles of chronic inflammation with or without Helicobacter pylori (H. Pylori) infection. RECENT FINDINGS The connection between the gut and urticaria has been discussed for a long time. Some publications have shown that H. pylori can induce chronic spontaneous urticaria (CSU). Recently, it was reported that upper gastrointestinal inflammatory disorders can cause CSU and trigger exacerbations independently of H. pylori. SUMMARY Gastritis and especially H. pylori-induced gastritis has been implicated as potential trigger of CSU. Chronic parasite infection and inflammation of the gut are relevant comorbidities and also potential inducing factors for the development of urticaria.
Collapse
|
32
|
He C, Xu X, Lu N. RE: Eradication of Helicobacter pylori in Children Restores the Structure of the Gastric Bacterial Community to That of Noninfected Children. Gastroenterology 2020; 158:1848. [PMID: 31953067 DOI: 10.1053/j.gastro.2019.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/11/2019] [Indexed: 12/02/2022]
Affiliation(s)
- Cong He
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinbo Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
33
|
Papaefthymiou A, Doulberis M, Katsinelos P, Liatsos C, Polyzos SA, Kotronis G, Papanikolaou K, Kountouras J. Impact of nitric oxide's bidirectional role on glaucoma: focus onHelicobacter pylori–related nitrosative stress. Ann N Y Acad Sci 2020; 1465:10-28. [DOI: 10.1111/nyas.14253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/07/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Affiliation(s)
| | - Michael Doulberis
- Department of Gastroenterology and HepatologyUniversity of Zurich Zurich Switzerland
- Department of Internal Medicine, Second Medical Clinic, Ippokration HospitalAristotle University of Thessaloniki Thessaloniki Macedonia Greece
| | - Panagiotis Katsinelos
- Department of Internal Medicine, Second Medical Clinic, Ippokration HospitalAristotle University of Thessaloniki Thessaloniki Macedonia Greece
| | - Christos Liatsos
- Department of Gastroenterology401 General Military Hospital of Athens Athens Greece
| | - Stergios A. Polyzos
- Department of Internal Medicine, Second Medical Clinic, Ippokration HospitalAristotle University of Thessaloniki Thessaloniki Macedonia Greece
- First Department of Pharmacology, School of MedicineAristotle University of Thessaloniki Thessaloniki Macedonia Greece
| | - Georgios Kotronis
- Department of Internal MedicineAgios Pavlos General Hospital Thessaloniki Macedonia Greece
| | - Katerina Papanikolaou
- Department of Internal Medicine, Second Medical Clinic, Ippokration HospitalAristotle University of Thessaloniki Thessaloniki Macedonia Greece
| | - Jannis Kountouras
- Department of Internal Medicine, Second Medical Clinic, Ippokration HospitalAristotle University of Thessaloniki Thessaloniki Macedonia Greece
| |
Collapse
|