1
|
García-Suastegui WA, Navarro-Mabarak C, Silva-Adaya D, Dolores-Raymundo HG, Alvarez-Gonzalez MY, León-Olea M, Ramos-Chávez LA. Neurotransmitter Systems Affected by PBDE Exposure: Insights from In Vivo and In Vitro Neurotoxicity Studies. TOXICS 2025; 13:316. [PMID: 40278631 DOI: 10.3390/toxics13040316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 04/26/2025]
Abstract
Polybrominated diphenyl ethers (PBDEs) are synthetic halogen compounds, industrially used as flame retardants in many flammable products. PBDEs are environmentally persistent and bioaccumulative substances that were used from the 1970s and discontinued in the 1990s. PBDEs are present in air, soil, water, and food, where they remain stable for a long time. Chronic exposure to PBDEs is associated with adverse human health effects, including cancer, immunotoxicity, hepatotoxicity, reproductive and metabolic disorders, motor and hormonal impairments, and neurotoxicity, especially in children. It has been demonstrated that PBDE exposure can cause mitochondrial and DNA damage, apoptosis, oxidative stress, epigenetic modifications, and changes in calcium and neurotransmitter levels. Here, we conduct a comprehensive review of the molecular mechanisms of the neurotoxicity of PBDEs using different approaches. We discuss the main neurotransmitter pathways affected by exposure to PBDEs in vitro and in vivo in different mammalian models. Excitatory and inhibitory signaling pathways are the putative target where PBDEs carry out their neurotoxicity. Based on this evidence, environmental PBDEs are considered a risk to human public health and a hazard to biota, underscoring the need for environmental monitoring to mitigate exposure to PBDEs.
Collapse
Affiliation(s)
- Wendy Argelia García-Suastegui
- Departamento de Biología y Toxicología de la Reproducción, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico
| | - Cynthia Navarro-Mabarak
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City C.P. 04510, Mexico
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Ciudad de Mexico C.P. 14330, Mexico
| | - Heidy Galilea Dolores-Raymundo
- Departamento de Biología y Toxicología de la Reproducción, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico
| | - Mhar Yovavyn Alvarez-Gonzalez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de Mexico C.P. 14370, Mexico
| | - Martha León-Olea
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de Mexico C.P. 14370, Mexico
| | - Lucio Antonio Ramos-Chávez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de Mexico C.P. 14370, Mexico
| |
Collapse
|
2
|
Knutsen HK, Åkesson A, Bampidis V, Bignami M, Bodin L, Chipman JK, Degen G, Hernández‐Jerez A, Hofer T, Landi S, Leblanc J, Machera K, Ntzani E, Rychen G, Sand S, Schwerdtle T, Vejdovszky K, Viviani B, Benford D, Hart A, Rose M, Schroeder H, Vleminckx C, Vrijheid M, Gkimprixi E, Kouloura E, Riolo F, Bordajandi LR, Hogstrand C. Update of the risk assessment of brominated phenols and their derivatives in food. EFSA J 2024; 22:e9034. [PMID: 39444985 PMCID: PMC11496907 DOI: 10.2903/j.efsa.2024.9034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
The European Commission asked EFSA to update its 2012 risk assessment on brominated phenols and their derivatives in food, focusing on five bromophenols and one derivative: 2,4,6-tribromophenol (2,4,6-TBP), 2,4-dibromophenol (2,4-DBP), 4-bromophenol (4-BP), 2,6-dibromophenol (2,6-DBP), tetrabrominated bisphenol S (TBBPS), tetrabromobisphenol S bismethyl ether (TBBPS-BME). Based on the overall evidence, the CONTAM Panel considered in vivo genotoxicity of 2,4,6-TBP to be unlikely. Effects in liver and kidney were considered as the critical effects of 2,4,6-tribromophenol (2,4,6-TBP) in studies in rats. A BMDL10 of 353 mg/kg body weight (bw) per day for kidney papillary necrosis in male rats was identified and was selected as the reference point for the risk characterisation. The derivation of a health-based guidance value was not considered appropriate due to major limitations in the toxicological database. Instead, the margin of exposure (MOE) approach was applied to assess possible health concerns. Around 78,200 analytical results for 2,4,6-TBP in food were used to estimate dietary exposure for the European population. Considering the resulting MOE values, all far above an MOE of 6000 that does not raise a health concern, and accounting for the uncertainties affecting the exposure and hazard assessments, the CONTAM Panel concluded with at least 95% probability that the current dietary exposure to 2,4,6-TBP does not raise a health concern. Due to lack of occurrence data, no risk assessment could be performed for breastfed or formula-fed infants. No risk characterisation could be performed for any of the other brominated phenols and derivatives included in the assessment, due to lack of data both on the toxicity and occurrence.
Collapse
|
3
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
4
|
Smythe TA, Su G, Bergman Å, Letcher RJ. Metabolic transformation of environmentally-relevant brominated flame retardants in Fauna: A review. ENVIRONMENT INTERNATIONAL 2022; 161:107097. [PMID: 35134713 DOI: 10.1016/j.envint.2022.107097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Over the past few decades, production trends of the flame retardant (FR) industry, and specifically for brominated FRs (BFRs), is for the replacement of banned and regulated compounds with more highly brominated, higher molecular weight compounds including oligomeric and polymeric compounds. Chemical, biological, and environmental stability of BFRs has received some attention over the years but knowledge is currently lacking in the transformation potential and metabolism of replacement emerging or novel BFRs (E/NBFRs). For articles published since 2015, a systematic search strategy reviewed the existing literature on the direct (e.g., in vitro or in vivo) non-human BFR metabolism in fauna (animals). Of the 51 papers reviewed, and of the 75 known environmental BFRs, PBDEs were by far the most widely studied, followed by HBCDDs and TBBPA. Experimental protocols between studies showed large disparities in exposure or incubation times, age, sex, depuration periods, and of the absence of active controls used in in vitro experiments. Species selection emphasized non-standard test animals and/or field-collected animals making comparisons difficult. For in vitro studies, confounding variables were generally not taken into consideration (e.g., season and time of day of collection, pollution point-sources or human settlements). As of 2021 there remains essentially no information on the fate and metabolic pathways or kinetics for 30 of the 75 environmentally relevant E/BFRs. Regardless, there are clear species-specific and BFR-specific differences in metabolism and metabolite formation (e.g. BDE congeners and HBCDD isomers). Future in vitro and in vivo metabolism/biotransformation research on E/NBFRs is required to better understand their bioaccumulation and fate in exposed organisms. Also, studies should be conducted on well characterized lab (e.g., laboratory rodents, zebrafish) and commonly collected wildlife species used as captive models (crucian carp, Japanese quail, zebra finches and polar bears).
Collapse
Affiliation(s)
- Tristan A Smythe
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Guanyong Su
- School of Environmental Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Åke Bergman
- Department of Analytical Chemistry and Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
5
|
Pietron WJ, Warenik-Bany M, Wozniak B. Polybrominated diphenyl ethers (PBDEs) in raw milk from different animal species and in infant formula. Occurrence and risk assessment. CHEMOSPHERE 2021; 278:130479. [PMID: 34126691 DOI: 10.1016/j.chemosphere.2021.130479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 05/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widespread, persistent in the environment, and classified as global pollutants. Their presence has been confirmed in various types of food which adversely affect human health when consumed in sufficient amounts. Although milk has advantageous nutritional qualities and there are health benefits associated with its consumption, it could also contain toxic PBDEs. The aim of the study was the determination of the concentrations of ten congeners (BDE -28, -47, -49, -99, -100, -138, -153, -154, -183, and 209) in cow's, sheep's, and goat's milk obtained from Polish farms and their determination in infant formula. A total of 103 samples of raw milk and infant formula were tested using an accredited high-resolution gas chromatography-high-resolution mass spectrometry method. PBDEs were detected in all analyzed samples, the highest concentration being found in sheep's milk (11.9 ng g-1 fat), and cow's milk containing the least contamination. BDE-209 makes the predominant contribution to the sum of the ten congeners, constituting at least 38%. The profiles of PBDEs were dependent on the milk type and the differences between its varieties are discussed. The highest median concentration of the sum of ten PBDEs (0.473 ng g-1 fat) was determined in infant formula, which was identified as an important source of infants' exposure (5.48 ng kg-1 b.w. day-1 calculated based on P95 concentration). Milk is a source of PBDE in the diet; however, considered in isolation its consumption does not pose a risk to either adults' or children's health.
Collapse
Affiliation(s)
- Wojciech Jerzy Pietron
- Radiobiology Department, National Veterinary Research Institute (NVRI), 57 Partyzantow Avenue, 24-100, Pulawy, Poland.
| | - Malgorzata Warenik-Bany
- Radiobiology Department, National Veterinary Research Institute (NVRI), 57 Partyzantow Avenue, 24-100, Pulawy, Poland
| | - Barbara Wozniak
- Pharmacology and Toxicology Department, National Veterinary Research Institute (NVRI), 57 Partyzantow Avenue, 24-100, Pulawy, Poland
| |
Collapse
|
6
|
Hakk H, Pfaff C, Lupton SJ, Singh A. Absorption, distribution, metabolism, and excretion of three [ 14C]PBDE congeners in laying hens and transfer to eggs. Xenobiotica 2020; 51:335-344. [PMID: 33287643 DOI: 10.1080/00498254.2020.1860269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) levels in environmental matrices have generally declined following their phaseout as flame retardants. The objective of this study was to determine the absorption, distribution, metabolism, and excretion of three persistent PBDEs in laying hens and their transfer into eggs. Laying hens (n = 4 per congener) received a single oral dose of BDE-99, -153, or -209 and eggs and excreta were collected daily for 7 days, then tissues were collected and analysed. Cumulative BDE-209 excretion was 93% of dose, and bioavailability was approximately 17%. Lesser amounts of BDE-99 (41%) and -153 (26%) were excreted with bioavailabilities of 87% and 79%, respectively. Phenolic metabolites were observed in excreta extracts from BDE-99 dosed birds. Cumulative transfers based on bioavailability of BDE-99, -153, and -209 to eggs were 17%, 34%, and 15%, respectively. Egg residues were primarily present in yolk (12.3%, 23.5%, and 2.1% of the total dose for BDE-99, -153, and -209, respectively). Adipose, skin, ova, intestine, and thigh muscle contained the highest levels of radioactive tissue residues. These studies demonstrate movement of PBDE residues into edible tissues and eggs of laying hens.
Collapse
Affiliation(s)
- Heldur Hakk
- USDA-ARS Edward T. Schafer Agricultural Research Center, Fargo, ND, USA
| | - Colleen Pfaff
- USDA-ARS Edward T. Schafer Agricultural Research Center, Fargo, ND, USA
| | - Sara J Lupton
- USDA-ARS Edward T. Schafer Agricultural Research Center, Fargo, ND, USA
| | | |
Collapse
|
7
|
Park JC, Hagiwara A, Park HG, Lee JS. The glutathione S-transferase genes in marine rotifers and copepods: Identification of GSTs and applications for ecotoxicological studies. MARINE POLLUTION BULLETIN 2020; 156:111080. [PMID: 32510351 DOI: 10.1016/j.marpolbul.2020.111080] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Various xenobiotics are constantly being released and accumulated into the aquatic environments and consequently, the aquatic organisms are continuously being exposed to exogenous stressors. Among various xenobiotic detoxifying enzymes, Glutathione S-transferase (GST) is one of the major xenobiotic detoxifying enzyme which is widely distributed among living organisms and thus, understanding of the nature of GSTs is crucial. Previous studies have shown GST activity in response to various xenobiotics yet, full identification of GSTs in marine invertebrates is still limited. This review covers information on the importance of GSTs as a biomarker for emerging chemicals and their response to wide ranges of environmental pollutants as well as in-depth phylogenetic analysis of marine invertebrates, including recently identified GSTs belonging to rotifers (Brachionus spp.) and copepods (Tigriopus japonicus and Paracyclopina nana), with unique class-specific features of GSTs, as well as a new suggestion of GST evolutionary pathway.
Collapse
Affiliation(s)
- Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU), Suwon 16419, South Korea.
| |
Collapse
|
8
|
Armstrong LE, Akinbo S, Slitt AL. 2,2',4,4',5-Pentabromodiphenyl ether induces lipid accumulation throughout differentiation in 3T3-L1 and human preadipocytes in vitro. J Biochem Mol Toxicol 2020; 34:e22485. [PMID: 32128945 PMCID: PMC11920890 DOI: 10.1002/jbt.22485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/20/2019] [Accepted: 02/14/2020] [Indexed: 03/21/2025]
Abstract
Flame retardants, specifically polybrominated diphenyl ethers (PBDEs), are chemical compounds widely used for industrial purposes and household materials. NHANES data indicate that nearly all Americans have trace amounts of PBDEs in serum, with even higher levels associated with occupational exposure. PBDEs are known to bioaccumulate in the environment due to their lipophilicity and stability, and more importantly, they have been detected in human adipose tissue. The present study examined whether the PBDE congener, BDE-99 (2,2',4,4',5-pentabromodiphenyl ether; 0.2-20 μM), enhances the adipogenesis of mouse and human preadipocyte cell models in vitro via induced lipid accumulation. 3T3-L1 mouse preadipocytes and human visceral preadipocytes demonstrated enhanced hormone-induced lipid accumulation upon BDE-99 treatment. In addition, BDE-99 (20 μM) induced preadipocyte differentiation and lipid development in nondifferentiated human preadipocytes. BDE-99, the second most abundant congener in human adipose tissue, increased total lipids in differentiating adipocytes and therefore showed a potential role in the regulation of adipogenesis. This warrants more research to further understand the impact of lipophilic persistent pollutants on adipose tissue homeostasis.
Collapse
Affiliation(s)
- Laura E Armstrong
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island
| | - Stephen Akinbo
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island
| | - Angela L Slitt
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island
| |
Collapse
|
9
|
Dunnick JK, Shockley KR, Morgan DL, Travlos G, Gerrish KE, Ton TV, Wilson RE, Brar SS, Brix AE, Waidyanatha S, Mutlu E, Pandiri AR. Hepatic Transcriptomic Patterns in the Neonatal Rat After Pentabromodiphenyl Ether Exposure. Toxicol Pathol 2020; 48:338-349. [PMID: 31826744 PMCID: PMC7596650 DOI: 10.1177/0192623319888433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human exposure to pentabromodiphenyl ether (PBDE) mixture (DE-71) and its PBDE-47 congener can occur both in utero and during lactation. Here, we tested the hypothesis that PBDE-induced neonatal hepatic transcriptomic alterations in Wistar Han rat pups can inform on potential toxicity and carcinogenicity after longer term PBDE exposures. Wistar Han rat dams were exposed to either DE-71 or PBDE-47 daily from gestation day (GD 6) through postnatal day 4 (PND 4). Total plasma thyroxine (T4) was decreased in PND 4 pups. In liver, transcripts for CYPs and conjugation enzymes, Nrf2, and ABC transporters were upregulated. In general, the hepatic transcriptomic alterations after exposure to DE-71 or PBDE-47 were similar and provided early indicators of oxidative stress and metabolic alterations, key characteristics of toxicity processes. The transcriptional benchmark dose lower confidence limits of the most sensitive biological processes were lower for PBDE-47 than for the PBDE mixture. Neonatal rat liver transcriptomic data provide early indicators on molecular pathway alterations that may lead to toxicity and/or carcinogenicity if the exposures continue for longer durations. These early toxicogenomic indicators may be used to help prioritize chemicals for a more complete toxicity and cancer risk evaluation.
Collapse
Affiliation(s)
- J. K. Dunnick
- Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - K. R. Shockley
- Biostatistics & Computational Biology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - D. L. Morgan
- Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - G. Travlos
- Cellular & Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - K. E. Gerrish
- Molecular Genomics Core, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - T. V. Ton
- Cellular & Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - R. E. Wilson
- Cellular & Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - S. S. Brar
- Cellular & Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - A. E. Brix
- EPL, Inc., Research Triangle Park, North Carolina
| | - S. Waidyanatha
- Program Operations Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - E. Mutlu
- Program Operations Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - A. R. Pandiri
- Cellular & Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
10
|
Dorman DC, Chiu W, Hales BF, Hauser R, Johnson KJ, Mantus E, Martel S, Robinson KA, Rooney AA, Rudel R, Sathyanarayana S, Schantz SL, Waters KM. Polybrominated diphenyl ether (PBDE) neurotoxicity: a systematic review and meta-analysis of animal evidence. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:269-289. [PMID: 30352012 PMCID: PMC6786272 DOI: 10.1080/10937404.2018.1514829] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A recent systematic review (SR) and meta-analysis of human studies found an association between prenatal serum polybrominated diphenyl ethers (PBDE) concentrations and a decrease in the IQ of children. A SR of experimental developmental animal PBDE-mediated neurotoxicity studies was performed in the present study. Outcomes assessed included measures related to learning, memory, and attention, which parallel the intelligence-related outcomes evaluated in the human studies SR. PubMed, Embase, and Toxline were searched for relevant experimental non-human mammalian studies. Evaluation of risk of bias (RoB) and overall body of evidence followed guidance developed by the National Toxicology Program. Animal studies using varying designs and outcomes were available for BDEs 47, 99, 153, 203, 206, and 209 and the technical mixture DE-71. Study reporting of methods and results was often incomplete leading to concerns regarding RoB. A meta-analysis of 6 Morris water maze studies showed evidence of a significant increase in last trial latency (effect size of 25.8 [CI, 20.3 to 31.2]) in PBDE-exposed animals with low heterogeneity. For most endpoints, there were unexplained inconsistencies across studies and no consistent evidence of a dose-response relationship. There is a "moderate" level of evidence that exposure to BDEs 47, 99, and 209 affects learning. For other PBDEs and other endpoints, the level of evidence was "low" or "very low". The meta-analysis led to stronger conclusions than that based upon a qualitative review of the evidence. The SR also identified RoB concerns that might be remedied by better study reporting.
Collapse
Affiliation(s)
- David C. Dorman
- Department of Molecular and Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Weihsueh Chiu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Barbara F. Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Russ Hauser
- Department of Environmental Health and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kamin J. Johnson
- Predictive Safety Center, Corteva Agriscience™, Agriculture Division of DowDuPont™, Indianapolis, IN, USA
| | - Ellen Mantus
- Board on Environmental Studies and Toxicology at the National Academies of Sciences, Engineering, and Medicine, Washington DC, USA
| | - Susan Martel
- Board on Environmental Studies and Toxicology at the National Academies of Sciences, Engineering, and Medicine, Washington DC, USA
| | - Karen A. Robinson
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew A. Rooney
- Office of Health Assessment and Translation, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | | | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle Children’s Research Institute, Seattle WA, USA
| | - Susan L. Schantz
- Department of Comparative Biosciences, College of Veterinary Medicine and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Katrina M. Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
11
|
Koch C, Sures B. Environmental concentrations and toxicology of 2,4,6-tribromophenol (TBP). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:706-713. [PMID: 29126092 DOI: 10.1016/j.envpol.2017.10.127] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/29/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
2,4,6-Tribromophenol is the most widely produced brominated phenol. In the present review, we summarize studies dealing with this substance from an environmental point of view. We cover concentrations in the abiotic and biotic environment including humans, toxicokinetics as well as toxicodynamics, and show gaps of the current knowledge about this chemical. 2,4,6-Tribomophenol occurs as an intermediate during the synthesis of brominated flame retardants and it similarly represents a degradation product of these substances. Moreover, it is used as a pesticide but also occurs as a natural product of some aquatic organisms. Due to its many sources, 2,4,6-tribromophenol is ubiquitously found in the environment. Nevertheless, not much is known about its toxicokinetics and toxicodynamics. It is also unclear which role the structural isomer 2,4,5-tribromophenol and several degradation products such as 2,4-dibromophenol play in the environment. Due to new flame retardants that enter the market and can degrade to 2,4,6-tribromophenol, this compound will remain relevant in future years - not only in aquatic matrices, but also in house dust and foodstuff, which are an important exposure route for humans.
Collapse
Affiliation(s)
- Christoph Koch
- Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, 45141 Essen, Germany; Deutsche Rockwool GmbH & Co. KG, 45966 Gladbeck, Germany.
| | - Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
12
|
Wang Z, Fu Z, Yu Q, Chen J. Oxidation reactivity of 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) by Compound I model of cytochrome P450s. J Environ Sci (China) 2017; 62:11-21. [PMID: 29289282 DOI: 10.1016/j.jes.2017.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
Alternative brominated flame retardants (BFRs) have become prevalent as a consequence of restrictions on the use of polybrominated diphenyl ethers (PBDEs). For risk assessment of these alternatives, knowledge of their metabolism via cytochrome P450 enzymes is needed. We have previously proved that density functional theory (DFT) is able to predict the metabolism of PBDEs by revealing the molecular mechanisms. In the current study, the reactivity of 1,2-bis(2,4,6-tribromophenoxy)ethane and structurally similar chemicals with the Compound I model representing the active site of P450 enzymes was investigated. The DFT calculations delineated reaction pathways which lead to reasonable explanations for products that were detected by wet experiments, meanwhile intermediates which cannot be determined were also proposed. Results showed that alkyl hydrogen abstraction will lead to bis(2,4,6-tribromophenoxy)ethanol, which may undergo hydrolysis yielding 2,4,6-tribromophenol, a neurotoxic compound. In addition, a general pattern of oxidation reactivity regarding the 2,4,6-tribromophenyl moiety was observed among several model compounds. Our study has provided insights for convenient evaluation of the metabolism of other structurally similar BFRs.
Collapse
Affiliation(s)
- Zhongyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Zhiqiang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qi Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
13
|
Li CY, Lee S, Cade S, Kuo LJ, Schultz IR, Bhatt DK, Prasad B, Bammler TK, Cui JY. Novel Interactions between Gut Microbiome and Host Drug-Processing Genes Modify the Hepatic Metabolism of the Environmental Chemicals Polybrominated Diphenyl Ethers. Drug Metab Dispos 2017; 45:1197-1214. [PMID: 28864748 PMCID: PMC5649562 DOI: 10.1124/dmd.117.077024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome is a novel frontier in xenobiotic metabolism. Polybrominated diphenyl ethers (PBDEs), especially BDE-47 (2, 2', 4, 4'-tetrabromodiphenyl ether) and BDE-99 (2, 2', 4, 4',5-pentabromodiphenyl ether), are among the most abundant and persistent environmental contaminants that produce a variety of toxicities. Little is known about how the gut microbiome affects the hepatic metabolism of PBDEs and the PBDE-mediated regulation of drug-processing genes (DPGs) in vivo. The goal of this study was to determine the role of gut microbiome in modulating the hepatic biotransformation of PBDEs. Nine-week-old male C57BL/6J conventional (CV) or germ-free (GF) mice were treated with vehicle, BDE-47 or BDE-99 (100 μmol/kg) for 4 days. Following BDE-47 treatment, GF mice had higher levels of 5-OH-BDE-47 but lower levels of four other metabolites in liver than CV mice; whereas following BDE-99 treatment GF mice had lower levels of four minor metabolites in liver than CV mice. RNA sequencing demonstrated that the hepatic expression of DPGs was regulated by both PBDEs and enterotypes. Under basal conditions, the lack of gut microbiome upregulated the Cyp2c subfamily but downregulated the Cyp3a subfamily. Following PBDE exposure, certain DPGs were differentially regulated by PBDEs in a gut microbiome-dependent manner. Interestingly, the lack of gut microbiome augmented PBDE-mediated upregulation of many DPGs, such as Cyp1a2 and Cyp3a11 in mouse liver, which was further confirmed by targeted metabolomics. The lack of gut microbiome also augmented the Cyp3a enzyme activity in liver. In conclusion, our study has unveiled a novel interaction between gut microbiome and the hepatic biotransformation of PBDEs.
Collapse
Affiliation(s)
- Cindy Yanfei Li
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Soowan Lee
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Sara Cade
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Li-Jung Kuo
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Irvin R Schultz
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Deepak K Bhatt
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Bhagwat Prasad
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| |
Collapse
|
14
|
Chen X, Lin Y, Dang K, Puschner B. Quantification of Polychlorinated Biphenyls and Polybrominated Diphenyl Ethers in Commercial Cows' Milk from California by Gas Chromatography-Triple Quadruple Mass Spectrometry. PLoS One 2017; 12:e0170129. [PMID: 28085917 PMCID: PMC5234792 DOI: 10.1371/journal.pone.0170129] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/29/2016] [Indexed: 12/04/2022] Open
Abstract
We determined 12 polybrominated diphenyl ethers (PBDEs) and 19 polychlorinated biphenyls (PCBs) congeners in eight different brands of commercial whole milk (WM) and fat free milk (FFM) produced and distributed in California. Congeners were extracted using a modified quick, easy, cheap, effective, rugged and safe (QuEChERS) method, purified by gel permeation chromatography, and quantified using gas chromatography-triple quadruple mass spectrometry. PBDEs and PCBs were detected in all FFM and WM samples. The most prevalent PBDE congeners in WM were BDE-47 (geometric mean: 18.0 pg/mL, 0.51 ng/g lipid), BDE-99 (geometric mean: 9.9 pg/mL, 0.28 ng/g lipid), and BDE-49 (geometric mean: 6.0 pg/mL, 0.17 ng/g lipid). The dominant PCB congeners in WM were PCB-101(geometric mean: 23.6 pg/mL, 0.67 ng/g lipid), PCB-118 (geometric mean: 25.2 pg/mL, 0.72 ng/g lipid), and PCB-138 (geometric mean: 25.3 pg/mL, 0.72 ng/g lipid). The sum of all 19 PCB congeners in FFM and WM were several orders of magnitude below the U.S. FDA tolerance. The sum of PBDEs in milk samples suggest close proximity to industrial emissions, and confirm previous findings of elevated PBDE levels in California compared to other regions in the United States.
Collapse
Affiliation(s)
- Xiaopeng Chen
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Yanping Lin
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Katherine Dang
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Birgit Puschner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Ho KL, Yau MS, Murphy MB, Wan Y, Fong BMW, Tam S, Giesy JP, Leung KSY, Lam MHW. Urinary bromophenol glucuronide and sulfate conjugates: Potential human exposure molecular markers for polybrominated diphenyl ethers. CHEMOSPHERE 2015; 133:6-12. [PMID: 25817024 DOI: 10.1016/j.chemosphere.2015.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/18/2015] [Accepted: 03/01/2015] [Indexed: 05/17/2023]
Abstract
One possible source of urinary bromophenol (BP) glucuronide and sulfate conjugates in mammalian animal models and humans is polybromodiphenyl ethers (PBDEs), a group of additive flame-retardants found ubiquitously in the environment. In order to study the correlation between levels of PBDEs in human blood plasma and those of the corresponding BP-conjugates in human urine, concentrations of 17 BDE congeners, 22 OH-BDE and 13 MeO-BDE metabolites, and 3 BPs in plasma collected from 100 voluntary donors in Hong Kong were measured by gas chromatograph tandem mass spectrometry (GC-MS). Geometric mean concentration of ΣPBDEs, ΣOH-BDEs, ΣMeO-BDEs and ΣBPs in human plasma were 4.45 ng g(-1) lw, 1.88 ng g(-1) lw, 0.42 ng g(-1) lw and 1.59 ng g(-1) lw respectively. Concentrations of glucuronide and sulfate conjugates of 2,4-dibromophenol (2,4-DBP) and 2,4,6-tribromophenol (2,4,6-TBP) in paired samples of urine were determined by liquid chromatography tandem triple quadrupole mass spectrometry (LC-MS/MS). BP-conjugates were found in all of the parallel urine samples, in the range of 0.08-106.49 μg g(-1)-creatinine. Correlations among plasma concentrations of ΣPBDEs/ΣOH-BDEs/ΣMeO-BDEs/ΣBPs and BP-conjugates in urine were evaluated by multivariate regression and Pearson product correlation analyses. These urinary BP-conjugates were positively correlated with ΣPBDEs in blood plasma, but were either not or negatively correlated with other organobromine compounds in blood plasma. Stronger correlations (Pearson's r as great as 0.881) were observed between concentrations of BDE congeners having the same number and pattern of bromine substitution on their phenyl rings in blood plasma and their corresponding BP-conjugates in urine.
Collapse
Affiliation(s)
- Ka-Lok Ho
- State Key Laboratory for Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Man-Shan Yau
- State Key Laboratory for Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Margaret B Murphy
- State Key Laboratory for Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region.
| | - Yi Wan
- Department of Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Canada
| | - Bonnie M-W Fong
- Division of Clinical Biochemistry, Queen Mary Hospital, Hong Kong Special Administrative Region; Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Sidney Tam
- Division of Clinical Biochemistry, Queen Mary Hospital, Hong Kong Special Administrative Region
| | - John P Giesy
- State Key Laboratory for Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region; Department of Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Canada; Department of Zoology and Center for Integrative Toxicology, Michigan State University, USA; School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Kelvin S-Y Leung
- Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Michael H-W Lam
- State Key Laboratory for Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
16
|
Feng C, Xu Y, Zha J, Li J, Wu F, Wang Z. Metabolic pathways of decabromodiphenyl ether (BDE209) in rainbow trout (Oncorhynchus mykiss) via intraperitoneal injection. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:536-544. [PMID: 25681704 DOI: 10.1016/j.etap.2015.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/05/2015] [Accepted: 01/10/2015] [Indexed: 06/04/2023]
Abstract
Decabromodiphenyl ether (BDE209) was of great concern due to its biotransformation in different organisms. However, most studies devoted to the metabolic intermediates of BDE209, less has been done on the metabolic pathways in vivo, especially on the relationships among debrominated-BDEs, OH-BDEs and MeO-BDEs. In this study, the metabolic pathways and intermediates of BDE209 in rainbow trout (Oncorhynchus mykiss) were investigated, and the time-dependent transformations of the metabolites were also examined. The primary debrominated metabolites were BDE47, 49, 99, 197, 207; the main MeO-BDEs were MeO-BDE47, MeO-BDE68 and MeO-BDE100; OH-BDEs were primarily composed of OH-BDE28 and OH-BDE42. From the time-dependent and dose-effect relationships, the debromination should be followed by hydroxylation, and then by methoxylation. The increasing in body burden of MeO-BDEs corresponded to the decreasing of OH-BDEs, which could indirectly prove the inter-conversion between OH-BDEs and MeO-BDEs. This study would motivate the future research of toxicological mechanisms of BDEs.
Collapse
Affiliation(s)
- Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yiping Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jinmiao Zha
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jian Li
- Engineering research center of ground water pollution control and remediation, Beijing Normal university, Beijing 100875, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
17
|
Yang J, Chan KM. Evaluation of the toxic effects of brominated compounds (BDE-47, 99, 209, TBBPA) and bisphenol A (BPA) using a zebrafish liver cell line, ZFL. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:138-147. [PMID: 25544063 DOI: 10.1016/j.aquatox.2014.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 06/04/2023]
Abstract
The toxic effects of three polybrominated diphenyl ether (PBDE) congeners (BDE-47, -99, and -209), tetrabromobisphenol A (TBBPA) and bisphenol A (BPA), were evaluated by determining their 24h and 96 h median lethal concentrations using a zebrafish liver cell line, ZFL. It was found that BDE-47, BDE-99 and TBBPA showed comparative cytotoxicity within the range of 1.2-4.2 μM, and were more toxic than BPA (367.1 μM at 24 h and 357.6 μM at 96 h). However, BDE-209 induced only 15% lethality with exposures up to 25 μM. The molecular stresses of BDE-47, -99, TBBPA and BPA involved in thyroid hormone (TH) homeostasis and hepatic metabolism were also investigated. Using a reporter gene system to detect zebrafish thyroid hormone receptor β (zfTRβ) transcriptional activity, the median effective concentration of triiodothyronine (T3) was determined to be 9.2×10(-11) M. BDE-47, BDE-99, TBBPA and BPA alone, however, did not exhibit zfTRβ agonistic activity. BPA displayed T3 (0.1 nM) induced zfTRβ antagonistic activity with a median inhibitory concentration of 19.3 μM. BDE-47, BDE-99 and TBBPA displayed no antagonistic effects of T3-induced zfTRβ activity. Target gene expressions were also examined under acute exposures. The significant inhibition of different types of deiodinases by all of the test chemicals indicated TH circulation disruption. All four chemicals, especially BPA, were able to affect transcripts of phase II hepatic metabolizing enzymes (UGT2A1, SULT1) in vitro. In conclusion, the zfTRβ reporter gene system developed here helps delineate an in vitro model to enable the analysis of the TH disruption effects of environmental pollutants in fish. BPA and the brominated compounds tested were able to disrupt the TH system at the gene expression level, probably through the deiodination pathways.
Collapse
Affiliation(s)
- Jie Yang
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong Special Administrative Region
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong Special Administrative Region.
| |
Collapse
|
18
|
Zhang F, Lu G, Liu J, Yan Z, Zhang Z. Bioaccumulation, distribution and metabolism of BDE-153 in the freshwater fish Carassius auratus after dietary exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 108:16-22. [PMID: 25038267 DOI: 10.1016/j.ecoenv.2014.06.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 06/03/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are of great environmental concern due to bioaccumulation and biomagnification in different food chains. However, significant biotransformation of some congeners via reductive debromination has been observed during in vivo and in vitro laboratory exposures. Little is known about the fate of 2,2',4,4',5,5'-hexabromodiphenyl ether (BDE-153) in fish. In the present study, crucian carp (Carassius auratus) were exposed to BDE-153 at a concentration of 10μg/g in food for 28 days. BDE-153 and its metabolites in different tissues were identified and quantified using gas chromatography coupled with tandem mass spectrometry and ultra-high performance liquid chromatography coupled with tandem mass spectrometry. In addition to eight debrominated metabolites, four oxidative metabolites were detected 4'-hydroxy-2,2',4,5'-tetra-BDE, 6-hydroxy-2,2',4,4'-tetra-BDE, 2,4-dibromophenol and 2,4,6-tribromophenol. With regard to the concentrations of BDE-153 and the major metabolites, the contribution order of different tissues was bile>brain>liver>gill>muscle. The highest concentrations of BDE-153 and metabolite 2,2',4,4'-tetrabromodiphenyl ether were detected in bile at 808ng/g and 157ng/g, respectively. Our results suggested that three possible metabolic pathways of BDE-153 occurred in crucian carp via dietary exposure: debromination, hydroxylation and cleavage of the diphenyl ether bond. These findings indicated evidence of the bioavailability of BDE-153 from food in the form of debrominated metabolites and oxidative metabolites in freshwater fish, which is critical to understanding the complete risks associated with PBDE bioaccumulation and metabolism in humans and wildlife.
Collapse
Affiliation(s)
- Fuhai Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Anhui Environmental Monitoring Center, Hefei 230061, PR China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zhenghua Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
19
|
|
20
|
Zimmer B, Pallocca G, Dreser N, Foerster S, Waldmann T, Westerhout J, Julien S, Krause KH, van Thriel C, Hengstler JG, Sachinidis A, Bosgra S, Leist M. Profiling of drugs and environmental chemicals for functional impairment of neural crest migration in a novel stem cell-based test battery. Arch Toxicol 2014; 88:1109-26. [PMID: 24691702 PMCID: PMC3996367 DOI: 10.1007/s00204-014-1231-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/18/2014] [Indexed: 11/28/2022]
Abstract
Developmental toxicity in vitro assays have hitherto been established as stand-alone systems, based on a limited number of toxicants. Within the embryonic stem cell-based novel alternative tests project, we developed a test battery framework that allows inclusion of any developmental toxicity assay and that explores the responses of such test systems to a wide range of drug-like compounds. We selected 28 compounds, including several biologics (e.g., erythropoietin), classical pharmaceuticals (e.g., roflumilast) and also six environmental toxicants. The chemical, toxicological and clinical data of this screen library were compiled. In order to determine a non-cytotoxic concentration range, cytotoxicity data were obtained for all compounds from HEK293 cells and from murine embryonic stem cells. Moreover, an estimate of relevant exposures was provided by literature data mining. To evaluate feasibility of the suggested test framework, we selected a well-characterized assay that evaluates ‘migration inhibition of neural crest cells.’ Screening at the highest non-cytotoxic concentration resulted in 11 hits (e.g., geldanamycin, abiraterone, gefitinib, chlorpromazine, cyproconazole, arsenite). These were confirmed in concentration–response studies. Subsequent pharmacokinetic modeling indicated that triadimefon exerted its effects at concentrations relevant to the in vivo situation, and also interferon-β and polybrominated diphenyl ether showed effects within the same order of magnitude of concentrations that may be reached in humans. In conclusion, the test battery framework can identify compounds that disturb processes relevant for human development and therefore may represent developmental toxicants. The open structure of the strategy allows rich information to be generated on both the underlying library, and on any contributing assay.
Collapse
Affiliation(s)
- B Zimmer
- Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York City, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sun J, Liu J, Liu Y, Jiang G. Levels and distribution of methoxylated and hydroxylated polybrominated diphenyl ethers in plant and soil samples surrounding a seafood processing factory and a seafood market. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 176:100-105. [PMID: 23416744 DOI: 10.1016/j.envpol.2013.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/14/2013] [Accepted: 01/18/2013] [Indexed: 06/01/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) along with hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and methoxylated polybrominated diphenyl ethers (MeO-PBDEs) were found in plant and soil samples collected surrounding a seafood processing factory and a seafood market in China. The profiles of MeO-PBDE congeners were different between seafood processing factory and seafood market. The detection frequency and concentration of 6-OH-BDE-47 were lower than that of MeO-PBDEs. Near seafood processing factory, a decreasing trend of analyte concentrations in plants was found downstream the river where factory wastewater was discharged. Concentrations of ΣMeO-PBDEs in plant and soil samples showed difference as root > soil > leaf. However, at seafood market, the concentrations of ΣMeO-PBDEs were much higher in leaves than those in soil. The concentration of ΣMeO-PBDEs in leaves showed a remarkable difference between Calystegia soldanella (Linn.) R. Br. and Setaira viridis (L.) Beauv.
Collapse
Affiliation(s)
- Jianteng Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085, China
| | | | | | | |
Collapse
|
22
|
Sun J, Liu J, Yu M, Wang C, Sun Y, Zhang A, Wang T, Lei Z, Jiang G. In vivo metabolism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in young whole pumpkin plant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:3701-3707. [PMID: 23510101 DOI: 10.1021/es4003263] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely distributed persistent organic pollutants. In vitro and in vivo research using various animal models have shown that PBDEs might be transformed to hydroxylated PBDEs, but there are few studies on in vivo metabolism of PBDEs by intact whole plants. In this research, pumpkin plants (Cucurbita maxima × C. moschata) were hydroponically exposed to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47). A debromination product (BDE-28) and four hydroxylated metabolites (5-OH-BDE-47, 6-OH-BDE-47, 4'-OH-BDE-49, and 4-OH-BDE-42) were detected in different parts of the whole plant. In addition, 4-methoxylated-2,2',3,4'-tetraBDE (4-MeO-BDE-42) was observed as a methoxylation product. Root exudates in solution were found to play an important role in metabolizing BDE-47 to a specific OH-PBDE: 4'-OH-BDE-49. BDE-28 was found to translocate more easily and accumulate in shoots than BDE-47 due to the lower hydrophobicity and molecular weight. The concentration ratio between metabolites and parent compound BDE-47 was lower for OH-PBDEs than that for both BDE-28 and 4-MeO-BDE-42. The metabolism pathway of BDE-47 in young whole plants was proposed in this study.
Collapse
Affiliation(s)
- Jianteng Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dong H, Li Z, Man X, Zhou J, Lu H, Wang S. Identification of the metabolites of polybrominated diphenyl ether 99 and its related cytochrome P450s. J Biomed Res 2013; 24:223-32. [PMID: 23554634 PMCID: PMC3596558 DOI: 10.1016/s1674-8301(10)60032-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE To investigate the metabolites of polybrominated diphenyl ether 99 (BDE-99) and its related cytochrome P450s in an in vitro system. METHODS Rat primary hepatocytes were isolated and treated with BDE-99 for 24-72 h. Metabolites were then extracted from the hepatocytes and media, and detected by GC/MS. Several mRNAs of metabolic enzymes were also extracted from the same cells and the gene expression levels were determined using quantitative real-time PCR. In addition, selected recombinant cytochrome P450s (CYPs) were expressed in a bacurovirus/sf9 system, and these were further used to explore the metabolism of BDE-99 in vitro. The parent depletion approach was used for screening the ability of CYPs to eliminate BDE-99. RESULTS A reductively debrominated metabolite, BDE-47, and three oxidative metabolites, 2, 4, 5-tribromophenol, 5-OH-BDE-47, and 5'-OH-BDE-99, were identified from the BDE-99-treated rat hepatocytes, whereas no MeO metabolite was detected in the system. RT-PCR analysis showed that CYP 3A23/3A1, 1A2, and 2B1/2 were induced by BDE-99. Furthermore, using the heterological expressed CYP proteins in in vitro BDE-99 metabolism experiments we found that CYP1A2 and CYP3A4 showed the highest metabolic efficiency for BDE-99, with the metabolic clearance rates of CYP1A2 and CYP3A4 being 30.3% and 27.7%, respectively. CYP1A1 and CYP2A6 displayed relatively low clearance rates, while CYP2E1 seemed not to be associated with the BDE-99 metabolism. CONCLUSIONS In our in vitro rat primary hepatocyte metabolism system, four metabolites of BDE-99 were identified, and CYP3A4 and CYP1A2 were demonstrated to be involved in the BDE-99 metabolism.
Collapse
Affiliation(s)
- Huibin Dong
- Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|
24
|
Ho KL, Murphy MB, Wan Y, Fong BMW, Tam S, Giesy JP, Leung KSY, Lam MHW. Synthesis and characterization of bromophenol glucuronide and sulfate conjugates for their direct LC-MS/MS quantification in human urine as potential exposure markers for polybrominated diphenyl ethers. Anal Chem 2012; 84:9881-8. [PMID: 23075377 DOI: 10.1021/ac302161t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bromophenol glucuronide and sulfate conjugates have been reported to be products of mammalian metabolism of polybrominated diphenyl ethers (PBDEs), a group of additive flame-retardants found ubiquitously in the environment. In order to explore their occurrence in human urine, four water-soluble bromophenol conjugates, namely, 2,4-dibromophenyl glucuronide, 2,4,6-tribromophenyl glucuronide, 2,4-dibromophenyl sulfate, and 2,4,6-tribromophenyl sulfate, were synthesized, purified, and characterized. An analytical protocol using solid-phase extraction and ion-paired liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS/MS) quantification has been developed for the direct and simultaneous determination of these glucuronide and sulfate conjugates in human urine samples. The limit of detections for all analytes were below 13 pg mL(-1), with 73-101% analyte recovery and 7.2-8.6% repeatability. The method was applied to analyze 20 human urine samples collected randomly from voluntary donors in Hong Kong SAR, China. All the samples were found to contain one or more of the bromophenol conjugates, with concentration ranging from 0.13-2.45 μg g(-1) creatinine. To the best of our knowledge, this is the first analytical protocol for the direct and simultaneous monitoring of these potential phase II metabolites of PBDEs in human urine. Our results have also suggested the potential of these bromophenol conjugates in human urine to be convenient molecular markers for the quantification of population exposure to PBDEs.
Collapse
Affiliation(s)
- Ka-Lok Ho
- State Key Laboratory for Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Norrgran J, Jones B, Lindquist NG, Bergman A. Decabromobiphenyl, polybrominated diphenyl ethers, and brominated phenolic compounds in serum of cats diagnosed with the endocrine disease feline hyperthyroidism. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 63:161-168. [PMID: 22311549 DOI: 10.1007/s00244-012-9750-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/09/2012] [Indexed: 05/31/2023]
Abstract
The incidence of cats being diagnosed with feline hyperthyroidism (FH) has increased greatly since it was first described in 1979. The cause of FH has not been established. Hypothetically, there is a link between increasing FH and exposure to brominated flame retardants. Much greater polybrominated diphenyl ethers (PBDE) concentrations have been reported in cat serum compared with human serum, likely due to cat licking behaviour. This study aimed to extend the present identification of brominated compounds in cat serum, with a focus on hydroxylated metabolites of PBDE, to improve the understanding of feline metabolism of PBDEs. A pooled serum sample from 30 Swedish pet cats with FH was analysed, and brominated species were identified. The results showed exposure to the discontinued flame retardant decabromobiphenyl (BB-209) and technical penta- and octa-BDEs. Altogether 12 PBDE congeners were identified along with 2'-MeO-BDE68. Furthermore, 2,4-dibromophenol, 2,4,6-, 2,4,5- and 2,3,4-tribromophenol plus 2'-OH-BDE68, 6-OH-BDE47, 5-OH-BDE47, 4'-OH-BDE49 were identified. 2,4,6-tribromophenol and 6-OH-BDE47 were the most prominent species in cat serum. Considering that these are natural products, it can be concluded that metabolism of PBDEs to OH-PBDEs is not a major route of PBDE elimination in cats. It is notable that BB-209, 6-OH-BDE47, and 2,4,6-tribromophenol all suggested that endocrine-disrupting chemicals were present in high concentrations in cat serum.
Collapse
Affiliation(s)
- Jessica Norrgran
- Environmental Chemistry Unit, Department of Materials and Environmental Chemistry, Stockholm University, Sweden.
| | | | | | | |
Collapse
|
26
|
Marteau C, Chevolleau S, Jouanin I, Perdu E, De Sousa G, Rahmani R, Antignac JP, LeBizec B, Zalko D, Debrauwer L. Development of a liquid chromatography/atmospheric pressure photo-ionization high-resolution mass spectrometry analytical method for the simultaneous determination of polybrominated diphenyl ethers and their metabolites: application to BDE-47 metabolism in human hepatocytes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:599-610. [PMID: 22328212 DOI: 10.1002/rcm.6136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are flame retardants widely used in electronic and domestic goods. These persistent pollutants are present in the environment and in humans, and their toxicological properties are of growing concern. PBDEs can be metabolised into compounds suspected to be responsible for their toxicity. These metabolites have been characterised quite well in rodents and fish, but available information in humans remains scarce. For their identification, an efficient method for the simultaneous analysis of PBDEs, hydroxylated PBDEs (OH-PBDEs), and other PBDE metabolites in a single run was needed and has been developed in this work. Atmospheric pressure ionisation modes were compared, and Atmospheric Pressure Photo-Ionization (APPI) was selected. After careful setting of APPI parameters such as dopant and operating temperature, the optimised method was based on APPI ionization coupled to High-Resolution Mass Spectrometry operating in the full scan mode at a resolution of 60 000. This provided excellent sensitivity and specificity, allowing the discrimination of signals which could not be resolved on a triple quadrupole used as a reference. The full-scan high-resolution acquisition mode allowed monitoring of both parent PBDEs and their metabolites, including hydroxylated PBDEs, with detection limits ranging from 0.1 pg to 4.5 pg injected on-column based on the investigated standard compounds. The method was applied to the study of BDE-47 metabolism after incubation with human primary cultures of hepatocytes, and proved to be efficient not only for monitoring the parent compound and expected hydroxylated metabolites, but also for the identification of other non-targeted metabolites. In addition to hydroxy-BDE-47, several conjugated metabolites could be located, and the formation of a dihydrodiol derivative was evidenced for the first time in the case of PBDEs in this work.
Collapse
Affiliation(s)
- Charlotte Marteau
- INRA, UMR 1331 Toxalim INRA-INP, 180 chemin de Tournefeuille, BP 93173, F31027, Toulouse cedex 3, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lai Y, Lu M, Lin S, Cai Z. Glucuronidation of hydroxylated polybrominated diphenyl ethers and their modulation of estrogen UDP-glucuronosyltransferases. CHEMOSPHERE 2012; 86:727-734. [PMID: 22119418 DOI: 10.1016/j.chemosphere.2011.10.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 10/05/2011] [Accepted: 10/20/2011] [Indexed: 05/31/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) can be metabolically converted to their hydroxylated metabolites (OH-PBDEs). The estrogenic effects of PBDEs may be mediated by OH-PBDEs, but the mechanisms of which are still not understood. This study investigated the glucuronidation of 11 OH-PBDEs and their potential in modulating UDP-glucuronosyltransferases (UGTs) activity of 17β-estradiol (E2) in rat liver microsomes. The number of bromine atoms at phenolic ring was observed as the most influential factor of OH-PBDEs glucuronidation. 2'-OH-BDE-28 having one bromine atom at phenolic ring showed the fastest metabolic rates with t(1/2) value of 3.86 min, while 6-OH-BDE-137 having four bromine atoms at phenolic ring was the poorest substrate with t(1/2) value over 60 min. Regarding to the modulation of E2-UGTs activity, the phenolic hydroxyl group in OH-PBDEs played an essential role. Depending on the substitution patterns of bromine and hydroxyl group, OH-PBDEs inhibited or stimulated E2-UGTs activity. Ten of OH-PBDEs inhibited both 3-glucuronidation and 17-glucuronidation of E2 with IC(50) values varying from 3.80 to 129.38 μM, while 3'-OH-BDE-100 exhibited stimulating effects on 3-glucuronidation with EC(50) value of 35.95 μM. Kinetic analysis suggested noncompetitive inhibition mode of E2 glucuronidation by 3'-OH-BDE-7, 6-OH-BDE-47 and 2'-OH-BDE-68 with K(i) values varying from 11.95 to 67.22 μM. This study demonstrated OH-PBDEs exhibited large interindividual differences in glucuronidation and modulation of E2-UGTs activity. By inhibiting the formation of E2 glucuronidation, OH-PBDEs may increase E2 bioavailability in target tissue, thereby exerting an indirect estrogenic effect.
Collapse
Affiliation(s)
- Yongquan Lai
- Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | | | | | | |
Collapse
|
28
|
Andra SS, Makris KC. Thyroid disrupting chemicals in plastic additives and thyroid health. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2012; 30:107-151. [PMID: 22690712 DOI: 10.1080/10590501.2012.681487] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The globally escalating thyroid nodule incidence rates may be only partially ascribed to better diagnostics, allowing for the assessment of environmental risk factors on thyroid disease. Endocrine disruptors or thyroid-disrupting chemicals (TDC) like bisphenol A, phthalates, and polybrominated diphenyl ethers are widely used as plastic additives in consumer products. This comprehensive review studied the magnitude and uncertainty of TDC exposures and their effects on thyroid hormones for sensitive subpopulation groups like pregnant women, infants, and children. Our findings qualitatively suggest the mixed, significant (α = 0.05) TDC associations with natural thyroid hormones (positive or negative sign). Future studies should undertake systematic meta-analyses to elucidate pooled TDC effect estimates on thyroid health indicators and outcomes.
Collapse
Affiliation(s)
- Syam S Andra
- Water and Health Laboratory, Cyprus International Institute for Environmental and Public Health in association with Harvard School of Public Health, Cyprus University of Technology, Limassol, Cyprus
| | | |
Collapse
|
29
|
Bondy GS, Gaertner D, Cherry W, MacLellan E, Coady L, Arnold DL, Doucet J, Rowsell PR. Brominated diphenyl ether (BDE) levels in liver, adipose, and milk from adult and juvenile rats exposed by gavage to the DE-71 technical mixture. ENVIRONMENTAL TOXICOLOGY 2011; 26:677-690. [PMID: 20549633 DOI: 10.1002/tox.20603] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/01/2010] [Accepted: 03/03/2010] [Indexed: 05/29/2023]
Abstract
Brominated diphenyl ethers (BDEs) are used as flame retardants in consumer products. Rodent studies indicate that the liver, thyroid, and nervous system of developing animals are targets of BDEs. To explore the relationship between exposure and health in developing animals, BDE accumulation in adult and juvenile rats was examined in conjunction with changes in liver weight and serum thyroxine (T4). Adult (F0) rats received the commercial BDE mixture DE-71 by gavage at doses of 0.5, 5, and 25 mg kg(-1) body weight (bw)/day for 21 weeks. F0 rats were mated and exposure continued throughout breeding, pregnancy, lactation, and postweaning until the pups (F1 generation) reached postnatal day (PND) 42. Milk was collected from lactating dams. Adipose and liver samples were collected from F0 and F1 males and females for BDE congener analysis. Congener prevalence in rat tissues mimicked congener prevalence in wildlife and humans. Tissue concentrations of all congeners except BDE-153 were lower than would be expected based on dose proportionality, confirming that BDE-153 has a high capacity for bioaccumulation. BDEs were transferred from maternal tissues to milk during lactation. Milk congener profiles differed from maternal tissue profiles indicating that degree of bromination and maternal sequestration influenced BDE transfer to milk. Female F1 rats accumulated more BDEs than F1 males, indicating that female rats were less able to metabolize and/or excrete BDEs. Significant effects on liver weight and serum T4 levels were observed in adults and juveniles in the middle and high dose groups, corresponding to BDE levels in the μg g(-1) range. Although it remains to be determined how human liver and thyroid are affected by exposure to much lower BDE levels, the present study confirmed that gender and reproductive status influence BDE accumulation in tissues and BDE transfer to the neonate via milk.
Collapse
Affiliation(s)
- G S Bondy
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Lai Y, Lu M, Lin S, Wu H, Cai Z. Electrospray ionization tandem mass spectrometric characterization of DNA adducts formed by bromobenzoquinones. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:2943-2950. [PMID: 21913273 DOI: 10.1002/rcm.5191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bromobenzoquinones (BBQs) represent a class of reactive metabolites of various aromatic contaminants with bromine-containing substituents, including bromobenzene, bromophenols, polybrominated diphenyl ethers (PBDEs). Recently, 2,6-dibromobenzoquinone also has been detected directly from drinking water. The alternation of the genome caused by covalent binding of chemicals or their metabolites to DNA provides a viable mechanism for carcinogenicity. In the present study, electrospray ionization coupled with ion trap mass spectrometry (ITMS), triple quadrupole MS or quadrupole time-of-flight MS was applied for the analysis of DNA adducts formed by BBQs. The study demonstrated 2-monobromobenzoquinone and 2,6-dibromobenzoquinone could covalently bind to deoxyguanosine (dG) and DNA in vitro. The chemical structures of the DNA adducts were confirmed by accurate mass values, collision-induced fragmentation tandem mass spectra as well as isotopic patterns. Generally, the reaction mechanism for the DNA adduction involved Michael addition between the electron-deficient carbon from the quinone and the nucleophilic exocyclic nitrogen from the dG followed by reductive cyclization with loss of a small molecule such as H(2)O, or HBrO. It was of particular interest to note that some adducts were generated from the reaction of one dG molecule with two BBQ molecules. The obtained results provided new information for assessing the potential cancer risk associated with bromobenzene, bromophenols, PBDEs and BBQs.
Collapse
Affiliation(s)
- Yongquan Lai
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, China
| | | | | | | | | |
Collapse
|
31
|
Stapleton HM, Eagle S, Anthopolos R, Wolkin A, Miranda ML. Associations between polybrominated diphenyl ether (PBDE) flame retardants, phenolic metabolites, and thyroid hormones during pregnancy. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:1454-9. [PMID: 21715241 PMCID: PMC3230439 DOI: 10.1289/ehp.1003235] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 06/29/2011] [Indexed: 05/17/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) are chemical additives used as flame retardants in commercial products. PBDEs are bioaccumulative and persistent and have been linked to several adverse health outcomes. OBJECTIVES This study leverages an ongoing pregnancy cohort to measure PBDEs and PBDE metabolites in serum collected from an understudied population of pregnant women late in their third trimester. A secondary objective was to determine whether the PBDEs or their metabolites were associated with maternal thyroid hormones. METHODS One hundred forty pregnant women > 34 weeks into their pregnancy were recruited into this study between 2008 and 2010. Blood samples were collected during a routine prenatal clinic visit. Serum was analyzed for a suite of PBDEs, three phenolic metabolites (i.e., containing an -OH moiety), and five thyroid hormones. RESULTS PBDEs were detected in all samples and ranged from 3.6 to 694 ng/g lipid. Two hydroxylated BDE congeners (4´-OH-BDE 49 and 6-OH-BDE 47) were detected in > 67% of the samples. BDEs 47, 99, and 100 were significantly and positively associated with free and total thyroxine (T4) levels and with total triiodothyronine levels above the normal range. Associations between T4 and PBDEs remained after controlling for smoking status, maternal age, race, gestational age, and parity. CONCLUSIONS PBDEs and OH-BDEs are prevalent in this cohort, and levels are similar to those in the general population. Given their long half-lives, PBDEs may be affecting thyroid regulation throughout pregnancy. Further research is warranted to determine mechanisms through which PBDEs affect thyroid hormone levels in developing fetuses and newborn babies.
Collapse
Affiliation(s)
- Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA.
| | | | | | | | | |
Collapse
|
32
|
Organic anion transporting polypeptides in the hepatic uptake of PBDE congeners in mice. Toxicol Appl Pharmacol 2011; 257:23-31. [PMID: 21884716 DOI: 10.1016/j.taap.2011.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/08/2011] [Accepted: 08/13/2011] [Indexed: 11/21/2022]
Abstract
BDE47, BDE99 and BDE153 are the predominant polybrominated diphenyl ether (PBDE) congeners detected in humans and can induce drug metabolizing enzymes in the liver. We have previously demonstrated that several human liver organic anion transporting polypeptides (humans: OATPs; rodents: Oatps) can transport PBDE congeners. Mice are commonly used to study the toxicity of chemicals like the PBDE congeners. However, the mechanism of the hepatic PBDE uptake in mice is not known. Therefore, the purpose of the current study was to test the hypothesis that BDE47, BDE99, and BDE153 are substrates of mouse hepatic Oatps (Oatp1a1, Oatp1a4, Oatp1b2, and Oatp2b1). We used Human Embryonic Kidney 293 (HEK293) cells transiently expressing individual Oatps and quantified the uptake of BDE47, BDE99, and BDE153. Oatp1a4, Oatp1b2, and Oatp2b1 transported all three PBDE congeners, whereas Oatp1a1 did transport none. Kinetic studies demonstrated that Oatp1a4 and Oatp1b2 transported BDE47 with the greatest affinity, followed by BDE99 and BDE153. In contrast, Oatp2b1 transported all three PBDE congeners with similar affinities. The importance of hepatic Oatps for the liver accumulation of BDE47 was confirmed using Oatp1a4-, and Oatp1b2-null mice.
Collapse
|
33
|
Vagula MC, Kubeldis N, Nelatury CF. Effects of BDE-85 on the Oxidative Status and Nerve Conduction in Rodents. Int J Toxicol 2011; 30:428-34. [DOI: 10.1177/1091581811411109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BDE-85 is a congener of a class of flame-retardant compounds called polybrominated diphenyl ethers (PBDEs). Although there are some studies on other congeners of PBDEs, there are none on the toxicity potential of this penta-BDE member. This study, therefore, reports the oxidative status and sciatic nerve conduction properties following BDE-85 treatment in rodents. The oxidative stress markers, lipid hydroperoxides, and the activities of antioxidant enzymes, namely superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and catalase, in the exposed mice liver and brain tissues showed tissue-specific alterations following intraperitoneal injection of 0.25 mg/kg body weight of BDE-85 for 4 days. The results indicate a significant disruption in the oxidant/antioxidant equilibrium and setting in of oxidative stress. Isolated sciatic nerves of rats exposed to 5 µg/mL or 20 µg/mL of BDE-85 showed a significant reduction in nerve conduction velocity and compound action potential amplitudes, indicating physiological damage to the sciatic nerves.
Collapse
|
34
|
McKinney MA, Dietz R, Sonne C, De Guise S, Skirnisson K, Karlsson K, Steingrímsson E, Letcher RJ. Comparative hepatic microsomal biotransformation of selected PBDEs, including decabromodiphenyl ether, and decabromodiphenyl ethane flame retardants in Arctic marine-feeding mammals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:1506-1514. [PMID: 21437940 DOI: 10.1002/etc.535] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 12/27/2010] [Accepted: 01/23/2011] [Indexed: 05/27/2023]
Abstract
The present study assessed and compared the oxidative and reductive biotransformation of brominated flame retardants, including established polybrominated diphenyl ethers (PBDEs) and emerging decabromodiphenyl ethane (DBDPE) using an in vitro system based on liver microsomes from various arctic marine-feeding mammals: polar bear (Ursus maritimus), beluga whale (Delphinapterus leucas), and ringed seal (Pusa hispida), and in laboratory rat as a mammalian model species. Greater depletion of fully brominated BDE209 (14-25% of 30 pmol) and DBDPE (44-74% of 90 pmol) occurred in individuals from all species relative to depletion of lower brominated PBDEs (BDEs 99, 100, and 154; 0-3% of 30 pmol). No evidence of simply debrominated metabolites was observed. Investigation of phenolic metabolites in rat and polar bear revealed formation of two phenolic, likely multiply debrominated, DBDPE metabolites in polar bear and one phenolic BDE154 metabolite in polar bear and rat microsomes. For BDE209 and DBDPE, observed metabolite concentrations were low to nondetectable, despite substantial parent depletion. These findings suggested possible underestimation of the ecosystem burden of total-BDE209, as well as its transformation products, and a need for research to identify and characterize the persistence and toxicity of major BDE209 metabolites. Similar cause for concern may exist regarding DBDPE, given similarities of physicochemical and environmental behavior to BDE209, current evidence of biotransformation, and increasing use of DBDPE as a replacement for BDE209.
Collapse
|
35
|
Biomonitoring Equivalents for 2,2′,4,4′,5-pentabromodiphenylether (PBDE-99). Regul Toxicol Pharmacol 2011; 60:165-71. [DOI: 10.1016/j.yrtph.2011.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 03/29/2011] [Indexed: 11/20/2022]
|
36
|
Erratico CA, Moffatt SC, Bandiera SM. Comparative oxidative metabolism of BDE-47 and BDE-99 by rat hepatic microsomes. Toxicol Sci 2011; 123:37-47. [PMID: 21673328 DOI: 10.1093/toxsci/kfr155] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are flame-retardant chemicals that have become ubiquitous environmental pollutants. 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) and 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) are among the most prevalent PBDEs detected in humans, wildlife, and abiotic environmental matrices. The purpose of this study was to investigate the oxidative metabolism of BDE-47 and BDE-99 in rat hepatic microsomes by comparing metabolite formation rates, kinetic parameters associated with metabolite formation, and the effects of prototypical cytochrome P450 (CYP) inducers. The CYP enzymes involved were also identified. Incubation of BDE-47 with hepatic microsomes from phenobarbital-treated rats generated a total of five hydroxylated (OH-BDE) metabolites, among which 4'-hydroxy-2,2',4,5'-tetrabromodiphenyl ether (4'-OH-BDE-49) and 3-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (3-OH-BDE-47) were the major metabolites, as identified using authentic standards and quantified by liquid chromatography/mass spectrometry. Incubations of BDE-99 with hepatic microsomes from dexamethasone-treated rats produced a total of seven hydroxylated metabolites, among which 4-hydroxy-2,2',3,4',5-pentabromodiphenyl ether (4-OH-BDE-90) and 6'-hydroxy-2,2',4,4',5-pentabromodiphenyl ether (6'-OH-BDE-99) were the major metabolites. Although the overall rate of oxidative metabolism of BDE-99 by hepatic microsomes was greater than that of BDE-47, para-hydroxylation involving a National Institutes of Health shift mechanism represented a major metabolic pathway for both PBDE congeners. Among the rat recombinant CYP enzymes tested, CYP2A2 and CYP3A1 were the most active in BDE-47 and BDE-99 metabolism, respectively. However, CYP1A1 exhibited the highest activity for 4'-OH-BDE-49 and 6'-OH-BDE-99 formation, and CYP3A1 exhibited the highest activity for 3-OH-BDE-47 and 4-OH-BDE-90 formation. Collectively, the results demonstrate that oxidative metabolism of BDE-47 and BDE-99 is mediated by distinct but overlapping sets of CYP enzymes and represents a key process that determines the bioaccumulation of BDE-47 and BDE-99 in mammals.
Collapse
Affiliation(s)
- Claudio A Erratico
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | |
Collapse
|
37
|
|
38
|
Lai Y, Chen X, Lam MHW, Cai Z. Analysis of hydroxylated polybrominated diphenyl ethers in rat plasma by using ultra performance liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:1086-90. [DOI: 10.1016/j.jchromb.2011.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 02/27/2011] [Accepted: 03/10/2011] [Indexed: 11/26/2022]
|
39
|
Wiseman SB, Wan Y, Chang H, Zhang X, Hecker M, Jones PD, Giesy JP. Polybrominated diphenyl ethers and their hydroxylated/methoxylated analogs: environmental sources, metabolic relationships, and relative toxicities. MARINE POLLUTION BULLETIN 2011; 63:179-88. [PMID: 21439595 DOI: 10.1016/j.marpolbul.2011.02.008] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 01/03/2011] [Accepted: 02/09/2011] [Indexed: 05/17/2023]
Abstract
Brominated compounds are ubiquitous in the aquatic environment. The polybrominated diphenyl ether (PBDE) flame retardants are anthropogenic compounds of concern. Studies suggest that PBDEs can be biotransformed to hydroxylated brominated diphenyl ethers (OH-BDE). However, the rate of OH-BDE formation observed has been extremely small. OH-BDEs have also been identified as natural compounds produced by some marine invertebrates. Another class of compounds, the methoxylated BDEs (MeO-BDEs), has also been identified as natural compounds in the marine environment. Both the OH-BDEs and MeO-BDEs bioaccumulate in higher marine organisms. Recent studies have demonstrated that MeO-BDEs can be biotransformed to OH-BDEs and this generates greater amounts of OH-BDEs than could be generated from PBDEs. Consequently, MeO-BDEs likely represent the primary source of metabolically derived OH-BDEs. Given that for some endpoints OH-BDEs often exhibit greater toxicity compared to PBDEs, it is prudent to consider OH-BDEs as chemicals of concern, despite their seemingly "natural" origins.
Collapse
Affiliation(s)
- Steve B Wiseman
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5B3
| | | | | | | | | | | | | |
Collapse
|
40
|
Suchecka D, Banasik M, Zhu Y, D. Harbison R, Biesemeier J, Stedeford T. Letter to the Editor. J Toxicol Sci 2011; 36:687-9; author reply 691-3. [DOI: 10.2131/jts.36.687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | - Marek Banasik
- Institute of Public Health and Environmental Protection, Poland
| | - Yiliang Zhu
- University of South Florida, Tampa, Florida, USA
| | | | | | | |
Collapse
|
41
|
Porphyrogenic effect of pentabromodiphenyl ether after repeated administration to rats. Arch Toxicol 2010; 85:965-74. [PMID: 21113805 DOI: 10.1007/s00204-010-0621-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
Abstract
Until recently, pentabromodiphenyl ether (PentaBDE) was most commonly used as a flame retardant. On account of the hazardous effect of PentaBDE on the environment, its use was discontinued some years ago. The toxicity of this compound has been well documented in the literature, especially with regard to the endocrine system, induction of liver microsomal enzymes, and disturbance of redox homeostasis. The aim of this study was to investigate the porphyrogenic effect of PentaBDE after its repeated administration to rats at doses of 2, 8, 40, or 200 mg/kg/day. After a 28-day exposure, a dose-dependent increase (maximum 2.5-fold) in ALA-S activity in the liver was observed. The enhanced concentration of total porphyrins in the liver (3- to 19-fold after doses of 8-200 mg/kg/day) was also found. The most pronounced changes in liver concentrations of porphyrins were shown by high carboxylated porphyrins (a 19-fold increase for octacarboxyporphyrins and a 36-fold increase for heptacarboxyporphyrins). They made over 95% of total porphyrins accumulated in the liver. The porphyrogenic effect of PentaBDE was also evidenced by the augmented urinary excretion of total porphyrins. After 28 days of exposure, the observed changes (2- to 7-fold increase) were found to be dose-dependent. Tetracarboxyporphyrins predominated in urine; their urinary concentrations were 4-12 times higher, and their daily urinary excretion is 2-9 times higher. A dose of 2 mg/kg/day was the lowest dose that caused changes in the levels of porphyrins (LOAEL). The experiment revealed the effect of PentaBDE on the heme biosynthesis and porphyrin concentrations, which indicates its porphyrogenic effect.
Collapse
|
42
|
Wang D, Li QX. Application of mass spectrometry in the analysis of polybrominated diphenyl ethers. MASS SPECTROMETRY REVIEWS 2010; 29:737-775. [PMID: 19722247 DOI: 10.1002/mas.20263] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review summarized the applications of mass spectrometric techniques for the analysis of the important flame retardants polybrominated diphenyl ethers (PBDEs) to understand the environmental sources, fate and toxicity of PBDEs that were briefly discussed to give a general idea for the need of analytical methodologies. Specific performance of various mass spectrometers hyphenated with, for example, gas chromatograph, liquid chromatograph, and inductively coupled plasma (GC/MS, LC/MS, and ICP/MS, respectively) for the analysis of PBDEs was compared with an objective to present the information on the evolution of MS techniques for determining PBDEs in environmental and human samples. GC/electron capture negative ionization quadrupole MS (GC/NCI qMS), GC/high resolution MS (GC/HRMS) and GC ion trap MS (GC/ITMS) are most commonly used MS techniques for the determination of PBDEs. New analytical technologies such as fast tandem GC/MS and LC/MS become available to improve analyses of higher PBDEs. The development and application of the tandem MS techniques have helped to understand environmental fate and transformations of PBDEs of which abiotic and biotic degradation of decaBDE is thought to be one major source of Br(1-9)BDEs present in the environment in addition to direct loading from commercial mixtures. MS-based proteomics will offer an insight into the molecular mechanisms of toxicity and potential developmental and neurotoxicity of PBDEs.
Collapse
Affiliation(s)
- Dongli Wang
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, Hawaii 96822, USA
| | | |
Collapse
|
43
|
Hakk H, Huwe JK, Murphy K, Rutherford D. Metabolism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in chickens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:8757-8762. [PMID: 20681664 DOI: 10.1021/jf1012924] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are an important class of persistent, organic pollutant that, based on previous studies in rodents, are poorly metabolized and bioaccumulate in lipophilic stores of the body. Because humans typically consume the fat and skin of chicken, a single (14)C-radiolabeled dose (2.7 mg/kg; 5.64 mumol/kg) of the most common PBDE in the environment, that is, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), was administered to determine its metabolic disposition in male broiler chickens. Orally dosed BDE-47 was readily absorbed from the gut of chickens and was estimated to be 73% bioavailable. Cumulative tissue retention at 72 h was 60.2% of the dose. BDE-47 was deposited preferentially in lipophilic tissues, and the decreasing rank order of concentration on a wet weight basis was adipose tissue, skin, gastrointestinal tract, lung, carcass, muscle, liver, and kidney. When concentrations were adjusted for lipid content, the levels of BDE-47 in the principal edible tissues in chicken, that is, adipose tissue, skin, liver, and white and dark meat, were very similar to one another. Excretion of unbound metabolites in excreta was <1% of the dose, but bound radioactivity was a major component of excreta at >12% of the dose. Alkaline hydrolysis of bound material yielded a hydroxylated tetrabromo metabolite. The metabolic pathway of BDE-47 in chicken included mono-oxidation, mono-oxidation/debromination, and debromination. The present results suggest that trimming the fat and skin from chicken would substantially reduce human exposure to PBDEs during the consumption of chicken.
Collapse
Affiliation(s)
- Heldur Hakk
- Biosciences Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, 1605 Albrecht Boulevard, Fargo, North Dakota 58105-5674, USA.
| | | | | | | |
Collapse
|
44
|
Alonso V, Linares V, Bellés M, Albina ML, Pujol A, Domingo JL, Sánchez DJ. Effects of BDE-99 on hormone homeostasis and biochemical parameters in adult male rats. Food Chem Toxicol 2010; 48:2206-11. [DOI: 10.1016/j.fct.2010.05.048] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/11/2010] [Accepted: 05/13/2010] [Indexed: 11/28/2022]
|
45
|
Lee E, Kim TH, Choi JS, Nabanata P, Kim NY, Ahn MY, Jung KK, Kang IH, Kim TS, Kwack SJ, Park KL, Kim SH, Kang TS, Lee J, Lee BM, Kim HS. Evaluation of liver and thyroid toxicity in Sprague-Dawley rats after exposure to polybrominated diphenyl ether BDE-209. J Toxicol Sci 2010; 35:535-545. [PMID: 20686340 DOI: 10.2131/jts.35.535] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Our goal in the present study was to evaluate whether decabromodiphenyl ether (BDE-209), which is the most abundant polybrominated diphenyl ether (PBDE) found in human samples, affects against target organs. Sprague-Dawley male rats were exposed to vehicle or BDE-209 (100, 300, or 600 mg/kg body weight, daily) from postnatal day (PND) 10 to PND 42. There was no significant difference in body and male reproductive organ weight changes compared with controls. However, liver, thyroid and adrenal gland weights were significantly increased in the high-dose of BDE-209 group. BDE-209 significantly induced the expression of cytochrome P450 (CYP1A2, CYP3A1, and CYP2B1) enzymes in the liver. Furthermore, constitutive androstane receptor (CAR) and pregnane xenobiotic receptor (PXR) expression levels were also increased in a dose-dependent manner. Total serum triiodothyronine (T3) concentration was significantly reduced in a dose-dependent manner, whereas the level of thyroid-stimulating hormone was significantly increased with BDE-209 treatment. In the histological findings, multiple areas of degenerated follicular epithelium and slight attenuation of the follicular epithelium were observed in the thyroid glands by high doses (300 and 600 mg/kg) of BDE-209 treatment. The presence of hepatocytic fatty degeneration and inflammatory foci were also observed in the 300 and 600 mg/kg of BDE-209 group. These findings demonstrate that BDE-209 induces hyperthyroidism and hepatotoxicity. In the future, further research is needed to determine the relationship between target organ toxicity and blood concentrations of BDE-209.
Collapse
Affiliation(s)
- Ena Lee
- College of Pharmacy, Pusan National University, Busan, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Validation of a novel in vitro assay using ultra performance liquid chromatography–mass spectrometry (UPLC/MS) to detect and quantify hydroxylated metabolites of BDE-99 in rat liver microsomes. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:1562-8. [DOI: 10.1016/j.jchromb.2010.04.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 04/01/2010] [Accepted: 04/11/2010] [Indexed: 11/20/2022]
|
47
|
Bruchajzer E, Frydrych B, Sporny S, Szymańska JA. The effect of short-term intoxication of rats with pentabromodiphenyl ether (in mixture mimic commercial products). Hum Exp Toxicol 2010; 30:363-78. [PMID: 20488850 DOI: 10.1177/0960327110371261] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Until quite recently, pentabromodiphenyl ether (PentaBDE) was most commonly used as a flame retardant. Due to the considerably long atmospheric half-life of PentaBDE and its contribution to environmental pollution, it is categorized as a persistent organic pollutant (POP). As the data on the toxicity of PentaBDE is rather scarce, its potential acute toxicity was the subject of this study. PentaBDE was administered intragastrically to female rats, in a single dose (25, 200 or 2000 mg/kg b.w.). PentaBDE administered to rats disturbed redox homeostasis, which was manifested by lower total antioxidant status (TAS) in serum and by higher liver glutathione reduced (GSH) concentration. The toxic effect of PentaBDE intensified lipid peroxidation. On histopathological examination, administration of the highest PentaBDE dose (2000 mg/kg b.w.) was seen to induce symptoms of fatty liver. PentaBDE caused an increase in relative liver mass, cytochromes P-450 (after two highest doses), a dose-dependent increase in the activity of CYP lA (12-26 fold) and CYP 2B (5-6 fold) as well as the levels of CYP lAl (16-50 fold) and CYP 4A (2-3 fold) in liver.
Collapse
Affiliation(s)
- Elzbieta Bruchajzer
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland.
| | | | | | | |
Collapse
|
48
|
Effects of exposure to BDE-99 on oxidative status of liver and kidney in adult rats. Toxicology 2010; 271:51-6. [DOI: 10.1016/j.tox.2010.03.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 11/18/2022]
|
49
|
McKernan MA, Rattner BA, Hatfield JS, Hale RC, Ann Ottinger M. Absorption and biotransformation of polybrominated diphenyl ethers DE-71 and DE-79 in chicken (Gallus gallus), mallard (Anas platyrhynchos), American kestrel (Falco sparverius) and black-crowned night-heron (Nycticorax nycticorax) eggs. CHEMOSPHERE 2010; 79:100-109. [PMID: 20079516 DOI: 10.1016/j.chemosphere.2009.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/04/2009] [Accepted: 12/08/2009] [Indexed: 05/28/2023]
Abstract
We recently reported that air cell administration of penta-brominated diphenyl ether (penta-BDE; DE-71) evokes biochemical and immunologic effects in chicken (Gallus gallus) embryos at very low doses, and impairs pipping (i.e., stage immediately prior to hatching) and hatching success at 1.8mugg(-1) egg (actual dose absorbed) in American kestrels (Falco sparverius). In the present study, absorption of polybrominated diphenyl ether (PBDE) congeners was measured following air cell administration of a penta-BDE mixture (11.1mug DE-71g(-1) egg) or an octa-brominated diphenyl ether mixture (octa-BDE; DE-79; 15.4mug DE-79g(-1) egg). Uptake of PBDE congeners was measured at 24h post-injection, midway through incubation, and at pipping in chicken, mallard (Anas platyrhynchos), and American kestrel egg contents, and at the end of incubation in black-crowned night-heron (Nycticorax nycticorax) egg contents. Absorption of penta-BDE and octa-BDE from the air cell into egg contents occurred throughout incubation; at pipping, up to 29.6% of penta-BDE was absorbed, but only 1.40-6.48% of octa-BDE was absorbed. Higher brominated congeners appeared to be absorbed more slowly than lower brominated congeners, and uptake rate was inversely proportional to the log K(ow) of predominant BDE congeners. Six congeners or co-eluting pairs of congeners were detected in penta-BDE-treated eggs that were not found in the dosing solution suggesting debromination in the developing embryo, extraembryonic membranes, and possibly even in the air cell membrane. This study demonstrates the importance of determining the fraction of xenobiotic absorbed into the egg following air cell administration for estimation of the lowest-observed-effect level.
Collapse
Affiliation(s)
- Moira A McKernan
- Marine, Estuarine and Environmental Sciences and Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
50
|
Pacyniak E, Roth M, Hagenbuch B, Guo GL. Mechanism of polybrominated diphenyl ether uptake into the liver: PBDE congeners are substrates of human hepatic OATP transporters. Toxicol Sci 2010; 115:344-53. [PMID: 20176623 DOI: 10.1093/toxsci/kfq059] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are flame-retardants that upon chronic exposure enter the liver where they are biotransformed to potentially toxic metabolites. The mechanism by which PBDEs enter the liver is not known. However, due to their large molecular weights (MWs approximately 485 to 1000 Da), they cannot enter hepatocytes by simple diffusion. Organic anion-transporting polypeptides (OATPs) are responsible for hepatic uptake of a variety of amphipathic compounds of MWs larger than 350 Da. Therefore, in the present study, Chinese hamster ovary cell lines expressing OATP1B1, OATP1B3, and OATP2B1 were used to test the hypothesis that OATPs expressed in human hepatocytes would be responsible for the uptake of PBDE congeners 47, 99, and 153. The results demonstrated that PBDE congeners inhibited OATP1B1- and OATP1B3-mediated uptake of estradiol-17-beta-glucuronide as well as OATP2B1-mediated uptake of estrone-3-sulfate in a concentration-dependent manner. Direct uptake studies confirmed that all three PBDE congeners are substrates for the three tested hepatic OATPs. Detailed kinetic analysis revealed that OATP1B1 transported 2,2',4,4'-tetrabromodiphenyl ether (BDE47) with the highest affinity (K(m) = 0.31 microM) followed by 2,2',4,4',5-pentabromodiphenyl ether (BDE99) (K(m) = 0.91 microM) and 2,2',4,4',5,5'-hexabromodiphenyl ether (BDE153) (K(m) = 1.91 microM). For OATP1B3, the order was the same (BDE47: K(m) = 0.41 microM; BDE99: K(m) = 0.70 microM; BDE153: K(m) = 1.66 microM), while OATP2B1 transported all three congeners with similar affinities (BDE47: K(m) = 0.81 microM; BDE99: K(m) = 0.87 microM; BDE153: K(m) = 0.65 microM). These results clearly suggest that uptake of PBDEs via these OATPs is a mechanism responsible for liver-specific accumulation of PBDEs.
Collapse
Affiliation(s)
- Erik Pacyniak
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|