1
|
|
Liu X, Wang F, Chen Y, An Y, Cheng L, Wang L, Kong D, Zhao W, Tian J, Niu Y, Cui W, Zhang W, Xu Y, Ba Y, Zhou H. Research progress on chemical components and pharmacological action of Solanum lyratum Thunb. J Pharm Pharmacol 2023; 75:328-62. [PMID: 36632823 DOI: 10.1093/jpp/rgac099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Solanum lyratum Thunb (SLT) is a perennial plant of the Solanaceae family, and is extensively used in the clinical practice of traditional Chinese medicine. Malaria, oedema, gonorrhoea, cancer, wind and fever, jaundiced hepatitis, cholecystitis and rheumatoid arthritis are among the diseases that it is used to treat. To offer a foundation for further development and usage of SLT, the pieces of literature about the chemical composition and pharmacological action of SLT were reviewed and analysed. KEY FINDINGS The chemical constituents of SLT mainly included steroids, alkaloids, flavonoids, terpenoids, anthraquinones, phenylpropanoids and others. Pharmacological action mainly contains anti-tumour, antibacterial, anti-inflammatory, anti-oxidation and other pharmacological actions, among them, the anti-tumour effect is particularly outstanding. SUMMARY At present, studies on the pharmacological effects of SLT mainly focus on alkaloids and steroidal saponins. In the follow-up studies, studies on the pharmacological activities of other chemical components in SLT, such as flavonoids and terpenoids, should be strengthened. It has the potential to pave the way for more research and development of novel SLT medicines.
Collapse
Affiliation(s)
- Xue Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Fulin Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Yueru Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Ying An
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Lingmei Cheng
- The Third Hospital of Jinan, Jinan, Shandong Province, PR China
| | - Lu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Degang Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Wei Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Jinli Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Yingshuo Niu
- Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Weiliang Cui
- Shandong Institute for Food and Drug Control, Jinan, Shandong Province, PR China
| | - Wenru Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Yang Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Yahui Ba
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Honglei Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| |
Collapse
|
2
|
|
Kowalczyk T, Merecz-sadowska A, Rijo P, Mori M, Hatziantoniou S, Górski K, Szemraj J, Piekarski J, Śliwiński T, Bijak M, Sitarek P. Hidden in Plants—A Review of the Anticancer Potential of the Solanaceae Family in In Vitro and In Vivo Studies. Cancers (Basel) 2022; 14:1455. [PMID: 35326606 DOI: 10.3390/cancers14061455] [Citation(s) in RCA: 4] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The Solanaceae family is one of the most important arable and economic families in the world. In addition, it includes a wide range of valuable active secondary metabolites of species with biological and medical properties. This literature review focuses on the assessment of the anticancer properties of the extracts and pure compounds, and the synergistic effects with chemotherapeutic agents and nanoparticles from various species of the Solanaceae family, as well as their potential molecular mechanisms of action in in vitro and in vivo studies in various types of tumours. Abstract Many of the anticancer agents that are currently in use demonstrate severe side effects and encounter increasing resistance from the target cancer cells. Thus, despite significant advances in cancer therapy in recent decades, there is still a need to discover and develop new, alternative anticancer agents. The plant kingdom contains a range of phytochemicals that play important roles in the prevention and treatment of many diseases. The Solanaceae family is widely used in the treatment of various diseases, including cancer, due to its bioactive ingredient content. The purpose of this literature review is to highlight the antitumour activity of Solanaceae extracts—single isolated compounds and nanoparticles with extracts—and their synergistic effect with chemotherapeutic agents in various in vitro and in vivo cancer models. In addition, the biological properties of many plants of the Solanaceae family have not yet been investigated, which represents a challenge and an opportunity for future anticancer therapy.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| | - Patricia Rijo
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisbon, Portugal;
- iMed.ULisboa—Research Institute for Medicines, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Karol Górski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Janusz Piekarski
- Department of Surgical Oncology, Chair of Oncology, Medical University in Lodz, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, 93-513 Lodz, Poland;
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
- Correspondence:
| |
Collapse
|
3
|
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CTM 2021; 07. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
4
|
|
Zhang C, Li Z, Wang J, Jiang X, Xia M, Wang J, Lu S, Li S, Wang H. Ethanol Extracts of Solanum lyratum Thunb Regulate Ovarian Cancer Cell Proliferation, Apoptosis, and Epithelial-to-Mesenchymal Transition (EMT) via the ROS-Mediated p53 Pathway. J Immunol Res 2021; 2021:5569354. [PMID: 33869638 DOI: 10.1155/2021/5569354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ovarian cancer is a type of common gynecological tumors with high incidence and poor survival. The anticancer effects of the traditional Chinese medicine Solanum lyratum Thunb (SLT) have been intensively investigated in various cancers but in ovarian cancer is rare. The current study is aimed at investigating the effect of SLT on ovarian cancer cells. Lactate dehydrogenase (LDH) and MTT assays indicated that SLT concentrations of 0.25 and 0.5 μg/mL were not cytotoxic and had significant inhibitory effects on the cell viabilities of A2780 and SKOV3 cells, hence were used for subsequent experiments. Flow cytometric and western blot analysis revealed that SLT effectively suppressed ovarian cancer cell proliferation via inducing cell cycle arrest and increasing apoptosis. Cell cycle and apoptosis-related protein expressions were also regulated in SLT-treated cells. Moreover, DCFH-DA and western blot assays demonstrated that SLT enhanced ROS accumulation and subsequently activated the p53 signaling pathway. However, SLT-regulated ovarian cancer cell proliferation, apoptosis, migration, invasion, and EMT were significantly reversed by an ROS inhibitor (NAC, N-acetyl-L-cysteine). Furthermore, A2780 and SKOV3 cells cocultured with M0 macrophages showed that SLT activated the polarization of M0 macrophages to M1 macrophages and inhibited the polarization to M2 macrophages, with the increased percentage of CD86+ cells and decreased percentage of CD206+ cells were detected. In summary, this study illustrated the anticancer effects of SLT on ovarian cancer cells, suggesting that SLT may have the potential to provide basic evidence for the discovery of antiovarian cancer agents.
Collapse
|
5
|
|
An W, Lai H, Zhang Y, Liu M, Lin X, Cao S. Apoptotic Pathway as the Therapeutic Target for Anticancer Traditional Chinese Medicines. Front Pharmacol 2019; 10:758. [PMID: 31354479 DOI: 10.3389/fphar.2019.00758] [Citation(s) in RCA: 42] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. Apoptosis is a process of programmed cell death and it plays a vital role in human development and tissue homeostasis. Mounting evidence indicates that apoptosis is closely related to the survival of cancer and it has emerged as a key target for the discovery and development of novel anticancer drugs. Various studies indicate that targeting the apoptotic signaling pathway by anticancer drugs is an important mechanism in cancer therapy. Therefore, numerous novel anticancer agents have been discovered and developed from traditional Chinese medicines (TCMs) by targeting the cellular apoptotic pathway of cancer cells and shown clinically beneficial effects in cancer therapy. This review aims to provide a comprehensive discussion for the role, pharmacology, related biology, and possible mechanism(s) of a number of important anticancer TCMs and their derivatives mainly targeting the cellular apoptotic pathway. It may have important clinical implications in cancer therapy.
Collapse
Affiliation(s)
- Weixiao An
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Nanchong Central Hospital, Nanchong, China
| | - Honglin Lai
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Yangyang Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
|
Chen H, Du K, Sun Y, Hao Z, Zhang Y, Bai J, Wang Q, Hu H, Feng W. Solanrubiellin A, a hydroanthraquinone dimer with antibacterial and cytotoxic activity from Solanum lyratum. Nat Prod Res 2020; 34:3176-81. [DOI: 10.1080/14786419.2018.1553173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hui Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis, Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | - Kun Du
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis, Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yan-Jun Sun
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis, Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhi-You Hao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis, Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yan-Li Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis, Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiang Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Scineces and Perking Union Medical College, Beijing, China
| | - Qing-Hua Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Scineces and Perking Union Medical College, Beijing, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Scineces and Perking Union Medical College, Beijing, China
| | - Wei-Sheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis, Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
7
|
|
Lee CW, Chi MC, Chang TM, Liu JF. Artocarpin induces cell apoptosis in human osteosarcoma cells through endoplasmic reticulum stress and reactive oxygen species. J Cell Physiol 2019; 234:13157-68. [PMID: 30549031 DOI: 10.1002/jcp.27986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
Osteosarcoma is a malignant primary bone tumor that responds poorly to both chemotherapy and radiation therapy. However, because of side effects and drug resistance in chemotherapy and the insufficiency of an effective adjuvant therapy for osteosarcoma, it is necessary to research novel treatments. This study was the first to investigate the anticancer effects of the flavonoid derivative artocarpin in osteosarcoma. Artocarpin induced cell apoptosis in three human osteosarcoma cell lines-U2OS, MG63, and HOS. Artocarpin was also associated with increased intracellular reactive oxygen species (ROS). Mitochondrial dysfunction was followed by the release of cytochrome c from mitochondria and accompanied by decreased antiapoptotic Bcl-2 and Bcl-xL and increased proapoptotic protein Bak and Bax. Artocarpin triggered endoplasmic reticulum (ER) stress, as indicated by changes in cytosol calcium levels and increased glucose-regulated protein 78 and 94 expressions, and also increased calpains expression and activity. Animal studies revealed a dramatic 40% reduction in tumor volume after 18 days of treatment. This study demonstrated a novel anticancer activity of artocarpin against human osteosarcoma cells and in murine tumor models. In summary, artocarpin significantly induced cell apoptosis through ROS, ER stress, mitochondria, and the caspase pathway, and may thus be a novel anticancer treatment for osteosarcoma.
Collapse
Affiliation(s)
- Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, Taiwan, Republic of China.,Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China.,Department of Rehabilitation, Chang Gung Memorial Hospital, Chia-Yi, Taiwan, Republic of China
| | - Miao-Ching Chi
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi County, Taiwan, Republic of China.,Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi County, Taiwan, Republic of China.,Division of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Taiwan, Republic of China
| | - Tsung-Ming Chang
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Ju-Fang Liu
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, Republic of China.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, Republic of China
| |
Collapse
|
8
|
|
Lu Y, Li F, Xu T, Sun J. Tetrandrine prevents multidrug resistance in the osteosarcoma cell line, U-2OS, by preventing Pgp overexpression through the inhibition of NF-κB signaling. Int J Mol Med 2017; 39:993-1000. [DOI: 10.3892/ijmm.2017.2895] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/16/2017] [Indexed: 11/06/2022] Open
|
9
|
|
Bo P, Lien JC, Chen YY, Yu FS, Lu HF, Yu CS, Chou YC, Yu CC, Chung JG. Allyl Isothiocyanate Induces Cell Toxicity by Multiple Pathways in Human Breast Cancer Cells. Am J Chin Med 2016; 44:415-37. [PMID: 27080949 DOI: 10.1142/S0192415X16500245] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Isothiocyanates (ITCs) occur in many cruciferous vegetables. These compounds, which have significant anticancer actions, can induce apoptosis in different human cancer cell lines. In the present study, we investigated if allyl isothiocyanate (AITC) would induce toxicity in human breast cancer MCF-7 (estrogen receptor positive) and MDA-MB-231 (estrogen receptor negative) cells. We found that AITC stimulated reactive oxygen species and Ca[Formula: see text] production, and decreased the mitochondrial membrane potential. Activity of caspase-8, -9 and -3 was increased by AITC in both cell lines. AITC also induced mitochondrial-mediated apoptosis, as shown by cytochrome c, AIF and Endo G release from mitochondria, activation of caspase-9 and caspase-3, and formation of DAPI-positive cells. There was a significant reduction in the levels of the anti-apoptotic protein Bcl-2 along with a marked increase in the pro-apoptotic protein Bax in both cell lines. AITC induced apoptosis in human breast cancer MCF-7 cells via AIF and Endo G signaling pathways, but in MDA-MB-231 cells apoptosis occurred via the GADD153 pathway. This study has revealed novel anti-cancer mechanisms of AITC, a compound that is ordinarily present in human diets and may have potential therapeutic effects in various cancers.
Collapse
Affiliation(s)
- Peng Bo
- * Departments of Biological Science and Technology
| | | | - Ya-Yin Chen
- ¶ Department of Chinese-Western Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.,∥ School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | | | - Hsu-Feng Lu
- ** Departments of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Chun-Shu Yu
- § School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Yu-Cheng Chou
- †† Division of Neurosurgical Oncology, Neurological Institute, Taichung Veterans General Hospital, Taichung 407, Taiwan.,‡‡ National Defense Medical Center, Taipei 114, Taiwan
| | - Chien-Chih Yu
- § School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Jing-Gung Chung
- * Departments of Biological Science and Technology.,§§ Department of Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
10
|
|
Xu H, Zhao X, Liu X, Xu P, Zhang K, Lin X. Antitumor effects of traditional Chinese medicine targeting the cellular apoptotic pathway. Drug Des Devel Ther 2015; 9:2735-44. [PMID: 26056434 DOI: 10.2147/DDDT.S80902] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Defects in apoptosis are common phenomena in many types of cancer and are also a critical step in tumorigenesis. Targeting the apoptotic pathway has been considered an intriguing strategy for cancer therapy. Traditional Chinese medicine (TCM) has been used in the People’s Republic of China for thousands of years, and many of the medicines have been confirmed to be effective in the treatment of a number of tumors. With increasing cancer rates worldwide, the antitumor effects of TCMs have attracted more and more attention globally. Many of the TCMs have been shown to have antitumor activity through multiple targets, and apoptosis pathway-related targets have been extensively studied and defined to be promising. This review focuses on several antitumor TCMs, especially those with clinical efficacy, based on their effects on the apoptotic signaling pathway. The problems with and prospects of development of TCMs as anticancer agents are also presented.
Collapse
Affiliation(s)
- Huanli Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, 302 Hospital of Chinese People's Liberation Army, Beijing, People's Republic of China
| | - Xiaohui Liu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Pingxiang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Keming Zhang
- Department of Hepatobiliary Surgery, 302 Hospital of Chinese People's Liberation Army, Beijing, People's Republic of China
| | - Xiukun Lin
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
11
|
|
Hou CH, Lin FL, Hou SM, Liu JF. Hyperthermia induces apoptosis through endoplasmic reticulum and reactive oxygen species in human osteosarcoma cells. Int J Mol Sci. 2014;15:17380-17395. [PMID: 25268613 DOI: 10.3390/ijms151017380] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 08/12/2014] [Accepted: 09/16/2014] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is a relatively rare form of cancer, but OS is the most commonly diagnosed bone cancer in children and adolescents. Chemotherapy has side effects and induces drug resistance in OS. Since an effective adjuvant therapy was insufficient for treating OS, researching novel and adequate remedies is critical. Hyperthermia can induce cell death in various cancer cells, and thus, in this study, we investigated the anticancer method of hyperthermia in human OS (U-2 OS) cells. Treatment at 43 °C for 60 min induced apoptosis in human OS cell lines, but not in primary bone cells. Furthermore, hyperthermia was associated with increases of intracellular reactive oxygen species (ROS) and caspase-3 activation in U-2 OS cells. Mitochondrial dysfunction was followed by the release of cytochrome c from the mitochondria, and was accompanied by decreased anti-apoptotic Bcl-2 and Bcl-xL, and increased pro-apoptotic proteins Bak and Bax. Hyperthermia triggered endoplasmic reticulum (ER) stress, which was characterized by changes in cytosolic calcium levels, as well as increased calpain expression and activity. In addition, cells treated with calcium chelator (BAPTA-AM) blocked hyperthermia-induced cell apoptosis in U-2 OS cells. In conclusion, hyperthermia induced cell apoptosis substantially via the ROS, ER stress, mitochondria, and caspase pathways. Thus, hyperthermia may be a novel anticancer method for treating OS.
Collapse
Affiliation(s)
- Chun-Han Hou
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei 100, Taiwan.
| | - Feng-Ling Lin
- Department of Dermatology, Sijhih Cathay General Hospital, Taipei 221, Taiwan.
| | - Sheng-Mon Hou
- Department of Orthopedic Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan.
| | - Ju-Fang Liu
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan.
| |
Collapse
|
12
|
|
Hsia TC, Yu CC, Hsu SC, Tang NY, Lu HF, Huang YP, Wu SH, Lin JG, Chung JG. Cantharidin induces apoptosis of H460 human lung cancer cells through mitochondria-dependent pathways. Int J Oncol 2014; 45:245-54. [PMID: 24818581 DOI: 10.3892/ijo.2014.2428] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/25/2014] [Indexed: 11/05/2022] Open
Abstract
Lung cancer is one of the leading causes of death in cancer-related diseases. Cantharidin (CTD) is one of the components of natural mylabris (Mylabris phalerata Pallas). Numerous studies have shown that CTD induced cytotoxic effects on cancer cells. However, there is no report to demonstrate that CTD induced apoptosis in human lung cancer cells. Herein, we investigated the effect of CTD on the cell death via the induction of apoptosis in H460 human lung cancer cells. Flow cytometry assay was used for examining the percentage of cell viability, sub-G1 phase of the cell cycle, reactive oxygen species (ROS) and Ca²⁺ productions and the levels of mitochondrial membrane potential (∆Ψm). Annexin V/PI staining and DNA gel electrophoresis were also used for examining cell apoptosis. Western blot analysis was used to examine the changes of apoptosis associated protein expression and confocal microscopy for examining the translocation apoptosis associated protein. Results indicated that CTD significantly induced cell morphological changes and decreased the percentage of viable H460 cells. CTD induced apoptosis based on the occurrence of sub-G1 phase and DNA fragmentation. We found that CTD increased gene expression (mRNA) of caspase-3 and -8. Moreover, CTD increased ROS and Ca2+ production and decreased the levels of ∆Ψm. Western blot analysis results showed that CTD increased the expression of cleavage caspase-3 and -8, cytochrome c, Bax and AIF but inhibited the levels of Bcl-xL. CTD promoted ER stress associated protein expression such as GRP78, IRE1α, IRE1β, ATF6α and caspase-4 and it also promoted the expression of calpain 2 and XBP-1, but inhibited calpain 1 that is associated with apoptosis pathways. Based on those observations, we suggest that CTD may be used as a novel anticancer agent for the treatment of lung cancer in the future.
Collapse
Affiliation(s)
- Te-Chun Hsia
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan, R.O.C
| | - Chien-Chih Yu
- School of Pharmacy, China Medical University, Taichung, Taiwan, R.O.C
| | - Shu-Chun Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Nou-Ying Tang
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan, R.O.C
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Yi-Ping Huang
- Department of Physiology, China Medical University, Taichung, Taiwan, R.O.C
| | - Shin-Hwar Wu
- Division of Critical Care Medicine, Department of Medicine, Changhua Christian Hospital, Changhua, Taiwan, R.O.C
| | - Jaung-Geng Lin
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan, R.O.C
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| |
Collapse
|
13
|
|
Li B, Xu Y, Chu X, Gao M, Wang X, Nie S, Yang F, Lv C. Molecular mechanism of inhibitory effects of CD59 gene on atherosclerosis in ApoE (−/−) mice. Immunol Lett 2013; 156:68-81. [DOI: 10.1016/j.imlet.2013.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/13/2013] [Accepted: 09/20/2013] [Indexed: 01/15/2023]
|
14
|
|
Tao L, Zhou X, Shen C, Liang C, Liu B, Tao Y, Tao H. Tetrandrine induces apoptosis and triggers a caspase cascade in U2-OS and MG-63 cells through the intrinsic and extrinsic pathways. Mol Med Rep 2014; 9:345-9. [DOI: 10.3892/mmr.2013.1761] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/16/2013] [Indexed: 11/05/2022] Open
|