1
|
Repasky E, Mohammadpour H. Targeting nerve growth factor: an Achilles' heel for tumors? J Immunother Cancer 2025; 13:e011609. [PMID: 40316307 PMCID: PMC12049907 DOI: 10.1136/jitc-2025-011609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/01/2025] [Indexed: 05/04/2025] Open
Abstract
A tumor's ability to attract innervation is a critical factor in tumor progression and immune escape, with the sympathetic nervous system playing a major role. Catecholamines released by sympathetic nerves activate adrenergic receptors on tumor cells, enhancing growth and resistance to therapies, while activation of adrenergic receptors on immune cells triggers immunosuppressive activity in the tumor microenvironment. Nerve growth factor (NGF) produced by tumor cells is a key driver of tumor innervation, making it a promising target for novel therapeutic strategies. In this commentary, we highlight a recent study by Yang et al, which examines NGF single-chain variable fragment (scFv)-secreting chimeric antigen receptor(CAR) T cells and the impact of NGF neutralization by CAR T cells on CAR T-cell function and the remodeling of the tumor microenvironment. This work shows that we may be able to exploit a tumor-derived survival factor as a vulnerability and a means to enhance antitumor immune activity.
Collapse
Affiliation(s)
- Elizabeth Repasky
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Hemn Mohammadpour
- Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
2
|
Liu X, Zhang S, Qiu H, Xie ZQ, Tang WF, Chen Y, Wei X. Investigation of high-mobility group box 1 variants with lymph node status and colorectal cancer risk. World J Gastrointest Oncol 2025; 17:102584. [PMID: 40235898 PMCID: PMC11995333 DOI: 10.4251/wjgo.v17.i4.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/31/2024] [Accepted: 01/22/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Accumulating studies indicated that maintain nuclei homeostasis was deemed to the protective factors for the occurrence of cancer. Thus, high-mobility group box 1 (HMGB1) might influence the risk and poorer prognoses of colorectal cancer (CRC). AIM This study was designed to investigate whether HMGB1 polymorphisms influence the risk and lymph node metastasis (LNM) of CRC. METHODS Firstly, we designed an investigation with 1003 CRC patients and 1303 cancer-free controls to observe whether HMGB1 rs1412125 T > C and rs1045411 C > T SNPs could influence the risk of cancer. Subsequently, we carried out a correlation-analysis to assess whether these SNPs could alter the risk of LNM. RESULTS The current investigation suggested a relationship of HMGB1 rs1412125 SNP with the increased susceptibility of CRC. In a subgroup analysis, our findings suggested that this SNP could enhance an occurrence of CRC in ≥ 61 years, non-drinker and body mass index < 24 kg/m2 subgroups. However, we found that there was null association between HMGB1 rs1412125 SNP and LNM, even in different CRC region. These observations were confirmed by calculating the power value (more than 0.8). The association of HMGB1 rs1045411 C > T SNP with CRC risk and LNM was not found in any compare. CONCLUSION This study highlights a possible association between HMGB1 rs1412125 polymorphism and the increased risk of CRC. In the future, more studies should be conducted to explore HMGB1 rs1412125 polymorphism in relation to CRC development.
Collapse
Affiliation(s)
- Xin Liu
- Department of General Surgery, Changzhou Third People’s Hospital, Changzhou 213001, Jiangsu Province, China
| | - Sheng Zhang
- Department of General Surgery, Changzhou Third People’s Hospital, Changzhou 213001, Jiangsu Province, China
| | - Hao Qiu
- Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Zhi-Qiang Xie
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Wei-Feng Tang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, China
| | - Yu Chen
- Department of Medical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuqing 350014, Fujian Province, China
| | - Xi Wei
- Department of Pathology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu Province, China
| |
Collapse
|
3
|
Zohdy YM, Lamanna J, Bsn LD, Grossberg JA, Barrow DL, Cawley CM, Saad H, Akbik F, Pradilla G, Garzon-Muvdi T, Sadan O, Samuels OB, Alawieh AM, Howard BM. Earlier onset of cerebral vasospasm in ruptured infectious intracranial aneurysms. Neurosurg Rev 2025; 48:352. [PMID: 40183839 DOI: 10.1007/s10143-025-03493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/23/2025] [Accepted: 03/20/2025] [Indexed: 04/05/2025]
Abstract
INTRODUCTION Infectious intracranial aneurysms(IIAs) are a rare complication of systemic and intracranial infections. IIAs are often diagnosed upon rupture, often leading to subarachnoid hemorrhage(SAH) similar to non-infectious aneurysms(non-IIAs). Although vasospasm is a common complication of both SAH and meningitis, the incidence, timing, and management of vasospasm in IIA patients are yet to be studied. METHODS This is a retrospective study of patients presenting with SAH secondary to IIAs or non-IIAs between 2015 and 2023. Patients with SAH who died within 48 h were excluded. Patients' charts were reviewed for demographics, imaging findings, management, and the timing, severity, and management of vasospasm. Propensity-score-matching was used to compare patients with IIAs versus non-IIAs. Primary outcome included incidence of vasospasm. Secondary outcomes included time to vasospasm, and treatment response. RESULTS Twenty patients with ruptured IIAs were included in this study of which 30%(n = 6) developed vasospasm. Among patients with vasospasm, 83% had neurological deficits due to vasospasm. Vasospasm was managed using intrathecal nicardipine in 5 patients(83%), while 2 patients required intra-arterial vasodilators. Compared to propensity-score-matched non-IIAs, patients with IIAs had a comparable rate of vasospasm(30%vs39%,P = 0.448). However, patients with IIAs developed vasospasm significantly earlier with a mean time from rupture to vasospasm of 3.5 ± 1.05days compared to 5.27 ± 3.15days in non-IIAs(P = 0.002). CONCLUSION Patients with ruptured IIAs are at a similar risk of vasospasm compared to non-IIAs; however, they develop symptomatic and radiographic evidence of vasospasm earlier in the course of their disease. These findings argue for the need for routine and early screening for vasospasm in patients with ruptured IIAs.
Collapse
Affiliation(s)
- Youssef M Zohdy
- Department of Neurosurgery, School of Medicine, Emory University, 1365 Clifton Rd NE Suite B6200, Atlanta, GA, 30322, USA
| | - Jason Lamanna
- Department of Neurosurgery, School of Medicine, Emory University, 1365 Clifton Rd NE Suite B6200, Atlanta, GA, 30322, USA
| | - Laurie Dimisko Bsn
- Department of Neurosurgery, School of Medicine, Emory University, 1365 Clifton Rd NE Suite B6200, Atlanta, GA, 30322, USA
| | - Jonathan A Grossberg
- Department of Neurosurgery, School of Medicine, Emory University, 1365 Clifton Rd NE Suite B6200, Atlanta, GA, 30322, USA
| | - Daniel L Barrow
- Department of Neurosurgery, School of Medicine, Emory University, 1365 Clifton Rd NE Suite B6200, Atlanta, GA, 30322, USA
| | - C Michael Cawley
- Department of Neurosurgery, School of Medicine, Emory University, 1365 Clifton Rd NE Suite B6200, Atlanta, GA, 30322, USA
| | - Hassan Saad
- Department of Neurosurgery, School of Medicine, Emory University, 1365 Clifton Rd NE Suite B6200, Atlanta, GA, 30322, USA
| | - Feras Akbik
- Department of Neurosurgery, School of Medicine, Emory University, 1365 Clifton Rd NE Suite B6200, Atlanta, GA, 30322, USA
| | - Gustavo Pradilla
- Department of Neurosurgery, School of Medicine, Emory University, 1365 Clifton Rd NE Suite B6200, Atlanta, GA, 30322, USA
| | - Tomas Garzon-Muvdi
- Department of Neurosurgery, School of Medicine, Emory University, 1365 Clifton Rd NE Suite B6200, Atlanta, GA, 30322, USA
| | - Ofer Sadan
- Department of Neurosurgery, School of Medicine, Emory University, 1365 Clifton Rd NE Suite B6200, Atlanta, GA, 30322, USA
| | - Owen B Samuels
- Department of Neurosurgery, School of Medicine, Emory University, 1365 Clifton Rd NE Suite B6200, Atlanta, GA, 30322, USA
| | - Ali M Alawieh
- Department of Neurosurgery, School of Medicine, Emory University, 1365 Clifton Rd NE Suite B6200, Atlanta, GA, 30322, USA.
| | - Brian M Howard
- Department of Neurosurgery, School of Medicine, Emory University, 1365 Clifton Rd NE Suite B6200, Atlanta, GA, 30322, USA.
| |
Collapse
|
4
|
Amin A, Ferreira DV, Figueiredo LM. How pathogens drive adipose tissue loss in the host. Curr Opin Microbiol 2025; 85:102597. [PMID: 40080953 DOI: 10.1016/j.mib.2025.102597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 03/15/2025]
Abstract
Weight loss is a hallmark of many infections, including those caused by bacteria, fungi and parasites. This loss is often attributed to infection-induced anorexia and the need to mobilise energy from internal sources to cope with the pathogens. Weight loss during infection results from a significant reduction of muscle and fat mass, two organs that together account for approximately 60% of body mass in the healthy state. While muscle wasting is a well-documented aspect of infection-related weight loss, adipose tissue loss via lipolysis also plays a critical role and can determine disease outcomes. This review explores the regulators of adipose tissue depletion via excessive lipolysis during infection, the probable mechanisms, and the potential consequences for host survival and pathogen fitness.
Collapse
Affiliation(s)
- Abdulbasit Amin
- Gulbenkian Institute for Molecular Medicine, Edificio Egas Moniz, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal; Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - David V Ferreira
- Gulbenkian Institute for Molecular Medicine, Edificio Egas Moniz, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Luisa M Figueiredo
- Gulbenkian Institute for Molecular Medicine, Edificio Egas Moniz, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal.
| |
Collapse
|
5
|
Wang S, Salway RJ, Nicklay M, Kuo J. Effectiveness of Dual Sympathetic Blocks for Sympathetically Mediated Symptoms in Post-acute Sequelae of SARS-CoV-2 (PASC): An Open-Label, Non-randomized Pilot Study. Cureus 2025; 17:e81530. [PMID: 40308396 PMCID: PMC12042720 DOI: 10.7759/cureus.81530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Post-acute sequelae of SARS-CoV-2 (PASC), or Long COVID, is a multi-system disorder often involving dysautonomia and pain, linked to persistent sympathetic nervous system hyperactivity. Dual sympathetic blocks (DSBs), including stellate ganglion blocks (SGBs), are minimally invasive procedures that may recalibrate dysregulated sympathetic signaling and alleviate PASC symptoms. METHODS This open-label, non-randomized pilot study included 20 participants with PASC experiencing pain and autonomic symptoms. Participants received right-sided and left-sided SGB procedures one week apart. Symptoms were assessed at baseline, week one, and week four using the Composite Autonomic Symptom Score (COMPASS-31) and Patient-Reported Outcomes Measurement Information System (PROMIS-29) scales. RESULTS Seventeen participants completed the study, demonstrating significant improvements in autonomic dysfunction (38.4% reduction in COMPASS-31 scores, p = 0.0016) and pain interference (48.4% reduction, p < 0.001) by week four. Improvements in sleep quality and fatigue were also significant by week four (p = 0.016 and p = 0.049, respectively). Overall, 88.2% of participants reported symptom relief, and no adverse events were observed. CONCLUSIONS DSBs appear to be a promising intervention for PASC-related dysautonomia and pain. These findings warrant further investigation in larger, randomized controlled trials to confirm efficacy and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Serena Wang
- Pain Management, Hudson Medical Group, New York, USA
| | | | - Megan Nicklay
- Pain Management, Hudson Medical Group, New York, USA
| | | |
Collapse
|
6
|
Habets D, Gurbanova A, Lombardi A, Al-Nasiry S, Spaanderman M, van der Molen R, Wieten L, Meuleman T. An aerobe exercise intervention for optimizing metabolic, cardiovascular and immune status: protocol of an intervention study with a multi-systemic approach for women with unexplained recurrent pregnancy loss. Front Med (Lausanne) 2025; 12:1397039. [PMID: 40018355 PMCID: PMC11866123 DOI: 10.3389/fmed.2025.1397039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 01/29/2025] [Indexed: 03/01/2025] Open
Abstract
Women confronted with recurrent pregnancy loss (RPL) are often desperately searching for a possible explanation and hoping they will someday fulfill a healthy pregnancy. Unfortunately, in more than 50% of these women no cause for their losses can be identified after clinical investigations and therefore clinicians have no treatment options to help these women. Although adaptations in several systems such as the metabolic, the cardiovascular, and the immune system are highly important to support early pregnancy, especially the contribution of a specific subset of immune cells in the uterus known as CD56bright Natural Killer (NK) cells has gained a lot of interest, investigating separate RPL associated factors might not be the way forward. Moreover, a readily available and non-invasive exercise intervention might optimize all systems simultaneously, reducing metabolic, cardiovascular and immunological risk factors contributing to RPL. Therefore, we propose an aerobe exercise intervention and study the influence on the cardiovascular, the metabolic, and the immune system, with a particular focus on endometrial CD56bright NK cells, in women with unexplained RPL. In this exercise intervention study, women with unexplained RPL will receive two questionnaires to assess baseline characteristics. Moreover, they will receive (1) an immunological assessment (by sampling menstrual blood, peripheral blood and a vaginal swab) (2) an assessment of the cardiovascular system (by transvaginal ultrasound to assess uterine artery perfusion, by measuring hemodynamic and autonomic nerve system responses during a tilt test and by maximum stress test on a cycle ergometer) and (3) a metabolic assessment (by sampling peripheral blood, urine and by measuring body characteristics) before and after intervention. The intervention consists of 12-weeks moderate exercise training based on 50-65% of heart rate reserve. One year after the end of the intervention women will receive a final questionnaire regarding possible subsequent pregnancy outcome. This clinical trial with a multi-systemic approach can not only provide new insights by studying contribution and associations of the immune system, the cardiovascular system and the metabolic system in women with unexplained RPL, it also can support shared decision-making between clinicians and patients by evaluating the importance of a ready available exercise intervention strategy.
Collapse
Affiliation(s)
- Denise Habets
- Department of Transplantation Immunology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Aysel Gurbanova
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Amber Lombardi
- Department of Transplantation Immunology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Salwan Al-Nasiry
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Marc Spaanderman
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Obstetrics and Gynecology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Renate van der Molen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Tess Meuleman
- Department of Obstetrics and Gynecology, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
7
|
McDaniel Mims B, Furr KL, Enriquez J, Grisham MB. Improving bench-to-bedside translation for acute graft-versus-host disease models. Dis Model Mech 2025; 18:DMM052084. [PMID: 40019007 DOI: 10.1242/dmm.052084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
The transplantation of allogeneic hematopoietic stem cells is a potentially curative treatment for hematological malignancies, inherited blood disorders and immune deficiencies. Unfortunately, 30-50% of patients receiving allogeneic hematopoietic stem cells will develop a potentially life-threatening inflammatory disease called acute graft-versus-host disease (aGVHD). In patients with aGVHD, graft-associated T cells, which typically target the skin, intestinal tract and liver, can also damage the lungs and lymphoid tissue. Damage to lymphoid tissue creates prolonged immunodeficiency that markedly increases the risk of infections and bleeding, resulting in considerable morbidity and mortality. Although mouse models of aGVHD have been instrumental to our understanding of this condition's pathogenesis, translation of preclinical data into new and more effective treatments for human disease has been limited for reasons that remain to be fully understood. However, evidence suggests that factors associated with mouse models of aGVHD likely contribute to these unsatisfactory results. In this Review, we identify and discuss the specific factors inherent to mouse models of aGVHD that may limit the translation of preclinical data to patient treatment, and suggest how to improve the translatability of these models.
Collapse
Affiliation(s)
- Brianyell McDaniel Mims
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kathryn L Furr
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79423, USA
| | - Josue Enriquez
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Matthew B Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79423, USA
| |
Collapse
|
8
|
Marwaha K, Cain R, Asmis K, Czaplinski K, Holland N, Mayer DCG, Chacon J. Exploring the complex relationship between psychosocial stress and the gut microbiome: implications for inflammation and immune modulation. J Appl Physiol (1985) 2025; 138:518-535. [PMID: 39813028 DOI: 10.1152/japplphysiol.00652.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
There is growing interest in understanding the complex relationship between psychosocial stress and the human gastrointestinal microbiome (GIM). This review explores the potential physiological pathways connecting these two and how they contribute to a proinflammatory environment that can lead to the development and progression of the disease. Exposure to psychosocial stress triggers the activation of the sympathetic nervous system (SNS) and hypothalamic-pituitary axis (HPA), leading to various physiological responses essential for survival and coping with the stressor. However, chronic stress in susceptible individuals could cause sustained activation of HPA and SNS, leading to immune dysregulation consisting of redistribution of natural killer (NK) cells in the bloodstream, decreased function of T and B cells, and elevation of proinflammatory cytokines such as interleukin-1, interleukin-6, tumor necrotic factor-α, interferon-gamma. It also leads to disruption of the GIM composition and increased intestinal barrier permeability, contributing to GIM dysbiosis. The GIM dysbiosis and elevated cytokines can lead to reciprocal effects and further stimulate the HPA and SNS, creating a positive feedback loop that results in a proinflammatory state underlying the pathogenesis and progression of stress-associated cardiovascular, gastrointestinal, autoimmune, and psychiatric disorders. Understanding these relationships is critical for developing new strategies for managing stress-related health disorders.
Collapse
Affiliation(s)
- Komal Marwaha
- Department of Medical Education, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso, Texas, United States
| | - Ryan Cain
- Department of Medical Education, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso, Texas, United States
| | - Katherine Asmis
- Department of Medical Education, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso, Texas, United States
| | - Katya Czaplinski
- Department of Medical Education, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso, Texas, United States
| | - Nathan Holland
- Department of Medical Education, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso, Texas, United States
| | - Darly C Ghislaine Mayer
- Department of Medical Education, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso, Texas, United States
| | - Jessica Chacon
- Department of Medical Education, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso, Texas, United States
| |
Collapse
|
9
|
Alewel DI, Kodavanti UP. Neuroendocrine contribution to sex-related variations in adverse air pollution health effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:287-314. [PMID: 39075643 PMCID: PMC12032588 DOI: 10.1080/10937404.2024.2383637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Air pollution exposure is ranked as a leading environmental risk factor for not only cardiopulmonary diseases but also for systemic health ailments including diabetes, reproductive abnormalities, and neuropsychiatric disorders, likely mediated by central neural stress mechanisms. Current experimental evidence links many air pollution health outcomes with activation of neuroendocrine sympathetic-adrenal-medullary and hypothalamic-pituitary-adrenal (HPA) stress axes associated with resultant increases in adrenal-derived hormone levels acting as circulating mediators of multi-organ stress reactions. Epidemiological and experimental investigations also demonstrated sex-specific responses to air pollutant inhalation, which may be attributed to hormonal interactions within the stress and reproductive axes. Sex hormones (androgens and estrogens) interact with neuroendocrine functions to influence hypothalamic responses, subsequently augmenting stress-mediated metabolic and immune changes. These neurohormonal interactions may contribute to innate sex-specific responses to inhaled irritants, inducing differing individual susceptibility. The aim of this review was to: (1) examine neuroendocrine co-regulation of the HPA axis by gonadal hormones, (2) provide experimental evidence demonstrating sex-specific respiratory and systemic effects attributed to air pollutant inhalation exposure, and (3) postulate proposed mechanisms of stress and sex hormone interactions during air pollution-related stress.
Collapse
Affiliation(s)
- Devin I. Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
10
|
Shafqat A, Masters MC, Tripathi U, Tchkonia T, Kirkland JL, Hashmi SK. Long COVID as a disease of accelerated biological aging: An opportunity to translate geroscience interventions. Ageing Res Rev 2024; 99:102400. [PMID: 38945306 DOI: 10.1016/j.arr.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
It has been four years since long COVID-the protracted consequences that survivors of COVID-19 face-was first described. Yet, this entity continues to devastate the quality of life of an increasing number of COVID-19 survivors without any approved therapy and a paucity of clinical trials addressing its biological root causes. Notably, many of the symptoms of long COVID are typically seen with advancing age. Leveraging this similarity, we posit that Geroscience-which aims to target the biological drivers of aging to prevent age-associated conditions as a group-could offer promising therapeutic avenues for long COVID. Bearing this in mind, this review presents a translational framework for studying long COVID as a state of effectively accelerated biological aging, identifying research gaps and offering recommendations for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Mary Clare Masters
- Division of Infectious Diseases, Northwestern University, Chicago, IL, USA
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shahrukh K Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Research and Innovation Center, Department of Health, Abu Dhabi, UAE; College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Al Sulaiman K, Alkofide HA, AlFaifi ME, Aljohani SS, Al Harthi AF, Alqahtani RA, Alanazi AM, Nazer LH, Al Shaya AI, Aljuhani O. The concomitant use of ultra short beta-blockers with vasopressors and inotropes in critically ill patients with septic shock: A systematic review and meta-analysis of randomized controlled trials. Saudi Pharm J 2024; 32:102094. [PMID: 38812943 PMCID: PMC11135033 DOI: 10.1016/j.jsps.2024.102094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Background Septic shock is associated with systemic inflammatory response, hemodynamic instability, impaired sympathetic control, and the development of multiorgan dysfunction that requires vasopressor or inotropic support. The regulation of immune function in sepsis is complex and varies over time. However, activating Beta-2 receptors and blocking Beta-1 receptors reduces the proinflammatory response by influencing cytokine production. Evidence that supports the concomitant use of ultra short beta-blockers with inotropes and vasopressors in patients with septic shock is still limited. This study aimed to evaluate the use of ultra short beta-blockers and its impact on the ICU related outcomes such as mortality, length of stay, heart rate control, shock resolution, and vasopressors/inotropes requirements. Methods A systematic review and meta-analysis of randomized controlled trials including critically ill patients with septic shock who received inotropes and vasopressors. Patients who received either epinephrine or norepinephrine without beta-blockers "control group" were compared to patients who received ultra short beta-blockers concomitantly with either epinephrine or norepinephrine "Intervention group". MEDLINE and Embase databases were utilized to systematically search for studies investigating the use of ultra short beta-blockers in critically ill patients on either epinephrine or norepinephrine from inception to October 10, 2023. The primary outcome was the 28-day mortality. While, length of stay, heart rate control, and inotropes/ vasopressors requirements were considered secondary outcomes. Results Among 47 potentially relevant studies, nine were included in the analysis. The 28-day mortality risk was lower in patients with septic shock who used ultra short beta-blockers concomitantly with either epinephrine or norepinephrine compared with the control group (RR (95%CI): 0.69 (0.53, 0.89), I2=26%; P=0.24). In addition, heart rate was statistically significantly lower with a standardized mean difference (SMD) of -22.39 (95% CI: -24.71, -20.06) among the beta-blockers group than the control group. The SMD for hospital length of stay and the inotropes requirement were not statistically different between the two groups (SMD (95%CI): -0.57 (-2.77, 1.64), and SMD (95%CI): 0.08 (-0.02, 0.19), respectively). Conclusion The use of ultra short beta-blockers concomitantly with either epinephrine or norepinephrine in critically ill patients with septic shock was associated with better heart rate control and survival benefits without increment in the inotropes and vasopressors requirement.
Collapse
Affiliation(s)
- Khalid Al Sulaiman
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Saudi Critical Care Pharmacy Research (SCAPE) Platform, Riyadh, Saudi Arabia
- Saudi Society for Multidisciplinary Research Development and Education (SCAPE Society), Riyadh, Saudi Arabia
| | - Hadeel A. Alkofide
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Drug Regulation Research Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mashael E. AlFaifi
- Saudi Critical Care Pharmacy Research (SCAPE) Platform, Riyadh, Saudi Arabia
- Pharmaceutical Services Administration, King Saud Medical City, Riyadh, Saudi Arabia
| | - Sarah S. Aljohani
- Pharmaceutical Care Services, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Abdullah F. Al Harthi
- Saudi Critical Care Pharmacy Research (SCAPE) Platform, Riyadh, Saudi Arabia
- College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| | - Rahaf A. Alqahtani
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Ashwaq M. Alanazi
- Pharmaceutical Services Administration, King Fahad Medical City, Second Health Cluster, Riyadh, Saudi Arabia
| | - Lama H. Nazer
- Department of Pharmacy, King Hussein Cancer Center, Amman, Jordan
| | - Abdulrahman I. Al Shaya
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Ohoud Aljuhani
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Hou YJ, Yang XX, He L, Meng HX. Pathological mechanisms of cold and mechanical stress in modulating cancer progression. Hum Cell 2024; 37:593-606. [PMID: 38538930 DOI: 10.1007/s13577-024-01049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/22/2024] [Indexed: 04/15/2024]
Abstract
Environmental temperature and cellular mechanical force are the inherent factors that participate in various biological processes and regulate cancer progress, which have been hot topics worldwide. They occupy a dominant part in the cancer tissues through different approaches. However, extensive investigation regarding pathological mechanisms in the carcinogenic field. After research, we found cold stress via two means to manipulate tumors: neuroscience and mechanically sensitive ion channels (MICHs) such as TRP families to regulate the physiological and pathological activities. Excessive cold stimulation mediated neuroscience acting on every cancer stage through the hypothalamus-pituitary-adrenocorticoid (HPA) to reach the target organs. Comparatively speaking, mechanical force via Piezo of MICHs controls cancer development. The progression of cancer depends on the internal activation of proto-oncogenes and the external tumorigenic factors; the above two means eventually lead to genetic disorders at the molecular level. This review summarizes the interaction of bidirectional communication between them and the tumor. It covers the main processes from cytoplasm to nucleus related to metastasis cascade and tumor immune escape.
Collapse
Affiliation(s)
- Yun-Jing Hou
- Harbin Medical University, Harbin, China
- Department of Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin-Xin Yang
- Harbin Medical University, Harbin, China
- Department of Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin He
- Department of Stomatology, Heilongjiang Provincial Hospital, Harbin, China
| | - Hong-Xue Meng
- Harbin Medical University, Harbin, China.
- Department of Pathology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, China.
| |
Collapse
|
13
|
Reel JM, Abbadi J, Cox MA. T cells at the interface of neuroimmune communication. J Allergy Clin Immunol 2024; 153:894-903. [PMID: 37952833 PMCID: PMC10999355 DOI: 10.1016/j.jaci.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
The immune system protects the host from infection and works to heal damaged tissue after infection or injury. There is increasing evidence that the immune system and the nervous system work in concert to achieve these goals. The sensory nervous system senses injury, infection, and inflammation, which results in a direct pain signal. Direct activation of peripheral sensory nerves can drive an inflammatory response in the skin. Immune cells express receptors for numerous transmitters released from sensory and autonomic nerves, which allows the nervous system to communicate directly with the immune system. This communication is bidirectional because immune cells can also produce neurotransmitters. Both innate and adaptive immune cells respond to neuronal signaling, but T cells appear to be at the helm of neuroimmune communication.
Collapse
Affiliation(s)
- Jessica M Reel
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Jumana Abbadi
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Maureen A Cox
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Okla.
| |
Collapse
|
14
|
Jurgens SM, Prieto S, Hayes JP. Inflammatory biomarkers link perceived stress with metabolic dysregulation. Brain Behav Immun Health 2023; 34:100696. [PMID: 37928770 PMCID: PMC10623170 DOI: 10.1016/j.bbih.2023.100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023] Open
Abstract
Objective Perceived stress has been identified as a risk factor for metabolic syndrome. However, the intermediate pathways underlying this relationship are not well understood. Inflammatory responses may be one process by which stress leads to metabolic dysregulation. Prior work has shown that chronic stress is associated with elevated systemic inflammation and that altered inflammatory activity contributes to the pathogenesis of metabolic syndrome. The current analyses tested this hypothesis by examining inflammation as a pathway by which perceived stress affects metabolic health. Methods Data from the Midlife in the United States Study (MIDUS) (N = 648; Mean age = 52.3) provided measures of perceived stress, inflammatory biomarkers [C-reactive protein (CRP), interleukin-6 (IL-6), E-selectin, fibrinogen, intracellular adhesion molecule-1 (ICAM-1)] and metabolic health markers. Confirmatory factor analysis (CFA) was used to confirm the fit of a hierarchical model of metabolic syndrome in our sample. Structural equation modeling (SEM) was used to test the assumption that inflammation mediates the association between perceived stress and the latent factor representing metabolic syndrome. Results The CFA of metabolic syndrome demonstrated excellent goodness of fit to our sample [CFI = 0.97, TLI = 0.95, RMSEA = 0.06, SMSR = 0.05]. Mediation analysis with SEM revealed that the indirect pathway linking stress to metabolic dysregulation through inflammation was significant [B = 0.08, SE = 0.01, z = 3.69, p < .001, 95% confidence interval CI (0.04, 0.13)]. Conclusions These results suggest that inflammatory biomarkers are a viable explanatory pathway for the relationship between perceived stress and metabolic health consequences. Interventions that target psychosocial stress may serve as cost-effective and accessible treatment options for mitigating inflammatory health risks.
Collapse
Affiliation(s)
- Savana M. Jurgens
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| | - Sarah Prieto
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| | - Jasmeet P. Hayes
- Department of Psychology, The Ohio State University, Columbus, OH, United States
- Chronic Brain Injury Initiative, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
15
|
Enriquez J, McDaniel Mims B, Stroever S, dos Santos AP, Jones-Hall Y, Furr KL, Grisham MB. Influence of Housing Temperature and Genetic Diversity on Allogeneic T Cell-Induced Tissue Damage in Mice. PATHOPHYSIOLOGY 2023; 30:522-547. [PMID: 37987308 PMCID: PMC10661280 DOI: 10.3390/pathophysiology30040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/12/2023] [Accepted: 11/18/2023] [Indexed: 11/22/2023] Open
Abstract
The objective of this study was to determine how housing temperature and genetic diversity affect the onset and severity of allogeneic T cell-induced tissue damage in mice subjected to reduced intensity conditioning (RIC). We found that adoptive transfer of allogeneic CD4+ T cells from inbred donors into sub-lethally irradiated inbred recipients (I→I) housed at standard housing temperatures (ST; 22-24 °C) induced extensive BM and spleen damage in the absence of injury to any other tissue. Although engraftment of T cells in RIC-treated mice housed at their thermo-neutral temperature (TNT; 30-32 °C) also developed similar BM and spleen damage, their survival was markedly and significantly increased when compared to their ST counterparts. In contrast, the adoptive transfer of allogeneic T cells into RIC-treated outbred CD1 recipients failed to induce disease in any tissue at ST or TNT. The lack of tissue damage was not due to defects in donor T cell trafficking to BM or spleen but was associated with the presence of large numbers of B cells and myeloid cells within these tissues that are known to contain immunosuppressive regulatory B cells and myeloid-derived suppressor cells. These data demonstrate, for the first time, that housing temperature affects the survival of RIC-treated I→I mice and that RIC-conditioned outbred mice are resistant to allogeneic T cell-induced BM and spleen damage.
Collapse
Affiliation(s)
- Josue Enriquez
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Brianyell McDaniel Mims
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stephanie Stroever
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Andrea Pires dos Santos
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Yava Jones-Hall
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kathryn L. Furr
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Matthew B. Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
16
|
Brooke AK, Murrow DP, Caldwell KCN, Witt CE, Ross AE. Measuring neuron-regulated immune cell physiology via the alpha-2 adrenergic receptor in an ex vivo murine spleen model. Cell Mol Life Sci 2023; 80:354. [PMID: 37945921 PMCID: PMC11071927 DOI: 10.1007/s00018-023-05012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
The communication between the nervous and immune systems plays a crucial role in regulating immune cell function and inflammatory responses. Sympathetic neurons, which innervate the spleen, have been implicated in modulating immune cell activity. The neurotransmitter norepinephrine (NE), released by sympathetic neurons, influences immune cell responses by binding to adrenergic receptors on their surface. The alpha-2 adrenergic receptor (α2AR), expressed predominantly on sympathetic neurons, has received attention due to its autoreceptor function and ability to modulate NE release. In this study, we used fast-scan cyclic voltammetry (FSCV) to provide the first subsecond measurements of NE released in the white pulp region of the spleen and validated it with yohimbine, a known antagonist of α2AR. For further application of FSCV in neuroimmunology, we investigated the extent to which subsecond NE from sympathetic neurons is important for immune cell physiology and cytokine production, focusing on tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), and interleukin-6 (IL-6). Our findings provide insights into the regulatory mechanisms underlying sympathetic-immune interactions and show the significance of using FSCV, a traditional neurochemistry technique, to study these neuroimmune mechanisms.
Collapse
Affiliation(s)
- Alexandra K Brooke
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA
| | - Daniel P Murrow
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA
| | - Kaejaren C N Caldwell
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA
| | - Colby E Witt
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA
| | - Ashley E Ross
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA.
| |
Collapse
|
17
|
Fushuku S, Ushikai M, Arimura E, Komaki Y, Horiuchi M. Acute repeated cage exchange stress modifies urinary stress and plasma metabolic profiles in male mice. PLoS One 2023; 18:e0292649. [PMID: 37815996 PMCID: PMC10564260 DOI: 10.1371/journal.pone.0292649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Exposure to a novel environment is psychologically and physically stressful for humans and animals. The response has been reported to involve enhanced sympathetic nervous system activity, but changes in nutrient levels under stress are not fully understood. As a form of exposure to a novel environment, repeated cage exchange (CE, four times at 2-h intervals for 8 h from 08:00 h) during the light phase with no restraint on movement was applied to A/J mice, a strain particularly prone to stress. Body temperature was measured with a temperature-sensing microchip implanted in the interscapular region. The stress conditions and anxiety level were evaluated by measuring urinary catecholamines and corticosterone and by performing an anxiety-like behavior test, respectively. Major nutrients such as glucose, fatty acids, and amino acids in the plasma were also examined. CE mice showed a significant increase in body temperature with each CE. They also showed a significantly greater reduction of body weight change, more water intake, and higher levels of urinary catecholamines and corticosterone and anxiety-like behavior score than control mice. The model revealed a significantly lower plasma glucose level and higher levels of several essential amino acids, such as branched-chain amino acids and phenylalanine, than those of control mice. Meanwhile, free fatty acids and several amino acids such as arginine, aspartic acid, proline, threonine, and tryptophan in both sets of mice were significantly decreased from the corresponding levels at 08:00 h, while similar plasma levels were exhibited between mice with and without CE. In conclusion, repeated CE stress was associated with changes in glucose and amino acids in plasma. Although further study is needed to clarify how these changes are specifically linked to anxiety-like behavior, this study suggests the potential for nutritional intervention to counter stress in humans exposed to novel environments.
Collapse
Affiliation(s)
- Sayuri Fushuku
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Miharu Ushikai
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Emi Arimura
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Major in Food and Nutrition, Department of Life and Environmental Science, Kagoshima Prefectural College, Kagoshima, Japan
| | - Yuga Komaki
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masahisa Horiuchi
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
18
|
Lim DC, Keenan BT. Polysomnographic Subtypes and Incident Cancer: Another Adverse Outcome Related to Period Limb Movements. Chest 2023; 164:287-289. [PMID: 37558323 DOI: 10.1016/j.chest.2023.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 08/11/2023] Open
Affiliation(s)
- Diane C Lim
- Miami VA Healthcare System and University of Miami, Miami, FL
| | - Brendan T Keenan
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
19
|
Rahimi Mansour F, Keyvanfar A, Najafiarab H, Rajaei Firouzabadi S, Sefidgar S, Hooshmand Chayijan S, Tarom M, Fadaei M, Farzaneh F, Karimzadeh Bardeei L, Tehrani S. Menstrual disturbances following COVID-19 vaccination: A probable puzzle about the role of endocrine and immune pathways. J Reprod Immunol 2023; 158:103952. [PMID: 37201456 PMCID: PMC10174728 DOI: 10.1016/j.jri.2023.103952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/15/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Menstruation is a monthly shedding of the uterine wall, presented by menstrual bleeding in women of reproductive age. Menstruation is regulated by fluctuation of estrogen and progesterone, as well as other endocrine and immune pathways. Many women experienced menstrual disturbances after vaccination against the novel coronavirus in the last two years. Vaccine-induced menstrual disturbances have led to discomfort and concern among reproductive-age women, such that some decided not to receive the subsequent doses of the vaccine. Although many vaccinated women report these menstrual disturbances, the mechanism is still poorly understood. This review article discusses the endocrine and immune changes following COVID-19 vaccination and the possible mechanisms of vaccine-related menstrual disturbances.
Collapse
Affiliation(s)
- Farima Rahimi Mansour
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Amirreza Keyvanfar
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hanieh Najafiarab
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sahar Sefidgar
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammadreza Tarom
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahta Fadaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farah Farzaneh
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shabnam Tehrani
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Ammons DT, MacDonald CR, Chow L, Repasky EA, Dow S. Chronic adrenergic stress and generation of myeloid-derived suppressor cells: Implications for cancer immunotherapy in dogs. Vet Comp Oncol 2023; 21:159-165. [PMID: 36876492 DOI: 10.1111/vco.12891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Recent studies have highlighted a key role played by the sympathetic nervous system (SNS) and adrenergic stress in mediating immune suppression associated with chronic inflammation in cancer and other diseases. The connection between chronic SNS activation, adrenergic stress and immune suppression is linked in part to the ability of catecholamines to stimulate the bone marrow release and differentiation of myeloid-derived suppressor cells (MDSC). Rodent model studies have revealed an important role for β-adrenergic receptor signalling in suppression of cancer immunity in mice subjected to chronic stresses, including thermal stress. Importantly, therapeutic blockade of beta-adrenergic responses by drugs such as propranolol can partially reverse the generation and differentiation of MDSC, and partly restore tumour immunity. Clinical trials in both humans and dogs with cancer have demonstrated that propranolol blockade can improve responses to radiation therapy, cancer vaccines and immune checkpoint inhibitors. Thus, the SNS stress response has become an important new target to relieve immune suppression in cancer and other chronic inflammatory conditions.
Collapse
Affiliation(s)
- Dylan T Ammons
- Flint Animal Cancer Center, Fort Collins, Colorado, USA
- Department of Microbiology, Immunology, and Pathology, Fort Collins, Colorado, USA
| | - Cameron R MacDonald
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Lyndah Chow
- Flint Animal Cancer Center, Fort Collins, Colorado, USA
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Steven Dow
- Flint Animal Cancer Center, Fort Collins, Colorado, USA
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
21
|
Singh A, Ranjan A. Adrenergic receptor signaling regulates the CD40-receptor mediated anti-tumor immunity. Front Immunol 2023; 14:1141712. [PMID: 37006295 PMCID: PMC10050348 DOI: 10.3389/fimmu.2023.1141712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
InroductionAnti-CD40 agonistic antibody (αCD40), an activator of dendritic cells (DC) can enhance antigen presentation and activate cytotoxic T-cells against poorly immunogenic tumors. However, cancer immunotherapy trials also suggest that αCD40 is only moderately effective in patients, falling short of achieving clinical success. Identifying factors that decrease αCD40 immune-stimulating effects can aid the translation of this agent to clinical reality.Method/ResultsHere, we reveal that β-adrenergic signaling on DCs directly interferes with αCD40 efficacy in immunologically cold head and neck tumor model. We discovered that β-2 adrenergic receptor (β2AR) activation rewires CD40 signaling in DCs by directly inhibiting the phosphorylation of IκBα and indirectly by upregulating levels of phosphorylated-cAMP response element-binding protein (pCREB). Importantly, the addition of propranolol, a pan β-Blocker reprograms the CD40 pathways, inducing superior tumor regressions, increased infiltration of cytotoxic T-cells, and a reduced burden of regulatory T-cells in tumors compared to monotherapy.Discussion/ConclusionThus, our study highlights an important mechanistic link between stress-induced β2AR signaling and reduced αCD40 efficacy in cold tumors, providing a new combinatorial approach to improve clinical outcomes in patients.
Collapse
|
22
|
Benson LN, Guo Y, Deck K, Mora C, Liu Y, Mu S. The link between immunity and hypertension in the kidney and heart. Front Cardiovasc Med 2023; 10:1129384. [PMID: 36970367 PMCID: PMC10034415 DOI: 10.3389/fcvm.2023.1129384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Hypertension is the primary cause of cardiovascular disease, which is a leading killer worldwide. Despite the prevalence of this non-communicable disease, still between 90% and 95% of cases are of unknown or multivariate cause ("essential hypertension"). Current therapeutic options focus primarily on lowering blood pressure through decreasing peripheral resistance or reducing fluid volume, but fewer than half of hypertensive patients can reach blood pressure control. Hence, identifying unknown mechanisms causing essential hypertension and designing new treatment accordingly are critically needed for improving public health. In recent years, the immune system has been increasingly implicated in contributing to a plethora of cardiovascular diseases. Many studies have demonstrated the critical role of the immune system in the pathogenesis of hypertension, particularly through pro-inflammatory mechanisms within the kidney and heart, which, eventually, drive a myriad of renal and cardiovascular diseases. However, the precise mechanisms and potential therapeutic targets remain largely unknown. Therefore, identifying which immune players are contributing to local inflammation and characterizing pro-inflammatory molecules and mechanisms involved will provide promising new therapeutic targets that could lower blood pressure and prevent progression from hypertension into renal or cardiac dysfunction.
Collapse
Affiliation(s)
- Lance N. Benson
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, United States
| | | | | | | | | | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, United States
| |
Collapse
|
23
|
Kinetics of Plasma Cell-Free DNA under a Highly Standardized and Controlled Stress Induction. Cells 2023; 12:cells12040564. [PMID: 36831231 PMCID: PMC9954572 DOI: 10.3390/cells12040564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Psychological stress affects the immune system and activates peripheral inflammatory pathways. Circulating cell-free DNA (cfDNA) is associated with systemic inflammation, and recent research indicates that cfDNA is an inflammatory marker that is sensitive to psychological stress in humans. The present study investigated the effects of acute stress on the kinetics of cfDNA in a within-subjects design. Twenty-nine males (mean age: 24.34 ± 4.08 years) underwent both the Trier Social Stress Test (TSST) and a resting condition. Blood samples were collected at two time points before and at 9 time points up to 105 min after both conditions. The cfDNA immediately increased 2-fold after the TSST and returned to baseline levels after 30 min after the test, showing that a brief psychological stressor was sufficient to evoke a robust and rapid increase in cfDNA levels. No associations were detected between perceived stress, whereas subjects with higher basal cfDNA levels showed higher increases. The rapid cfDNA regulation might be attributed to the transient activation of immune cells caused by neuroendocrine-immune activation. Further research is required to evaluate the reliability of cfDNA as a marker of neuroendocrine-immune activation, which could be used for diagnostics purposes or monitoring of treatment progression.
Collapse
|
24
|
Molina E, Gould N, Lee K, Krimins R, Hardenbergh D, Timlin H. Stress, mindfulness, and systemic lupus erythematosus: An overview and directions for future research. Lupus 2022; 31:1549-1562. [PMID: 35998903 DOI: 10.1177/09612033221122980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the pathogenesis of autoimmunity is not fully understood, it is thought to involve genetic, hormonal, immunologic, and environmental factors. Stress has been evaluated as a potential trigger for autoimmunity and disease flares in patients with systemic lupus erythematosus (SLE). The physiologic changes that occur with stress involve numerous catecholamines, hormones, and cytokines that communicate intricately with the immune system. There is some evidence that these systems may be dysregulated in patients with autoimmune disease. Mindfulness-based techniques are practices aimed at mitigating stress response and have been shown to improve quality of life in general population. This review will discuss pathophysiology of chronic stress as it relates to SLE, evidence behind mindfulness-based practices in these patients, and directions for future research.
Collapse
Affiliation(s)
- Emily Molina
- Rheumatology Fellowship, 1466Johns Hopkins University, Baltimore, MD, USA
| | - Neda Gould
- Division of Psychiatry and Behavioral Science, 1466Johns Hopkins University, Baltimore, MD, USA
| | - Kristen Lee
- Internal Medicine Residency, 12244Northwestern University Hospitals, Chicago, IL, USA
| | - Rebecca Krimins
- Department of Radiology and Radiological Science, 1466Johns Hopkins University, Baltimore, MD, USA
| | - Dylan Hardenbergh
- Internal Medicine Residency, 21611Columbia and Presbyterian Hospitals, NY, NY, USA
| | - Homa Timlin
- Division of Rheumatology, 1466Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
25
|
Gein SV, Karnaukhova AV. The Role of β-Adrenergic Receptors in the Regulation of the Functions of Innate Immune Cells during Cold Stress In Vivo. Bull Exp Biol Med 2022; 173:72-76. [PMID: 35616789 DOI: 10.1007/s10517-022-05496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 11/27/2022]
Abstract
It was found that 10-min cold stress enhanced stimulated production of ROS, while 60-min cold stress increased both spontaneous and stimulated ROS production by peritoneal macrophages. β-Adrenergic receptor blockade leveled the effect of 10-min stress in stimulated cultures and the effect of 60-min stress in spontaneous cultures. None variants of cold stress affected spontaneous and stimulated production of IL-1β. We observed an increase in the production of IL-1β in stimulated cultures from animals subjected to 10- and 60-min stress against the background of propranolol. At the same time, both variants of cold exposure, irrespective of β-adrenergic receptor blockade, stimulated IL-10 synthesis in spontaneous and activated samples. None of the used models of cold exposure affected the phagocytic activity of peritoneal macrophages. Thus, β-adrenergic receptors are directly involved in the regulation of cytokine production and microbicidal potential of macrophages in acute cold stress.
Collapse
Affiliation(s)
- S V Gein
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm Federal Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia. .,Perm State National Research University, Perm, Russia.
| | - A V Karnaukhova
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm Federal Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
26
|
Bellinger DL, Lorton D. Sympathetic Nerves and Innate Immune System in the Spleen: Implications of Impairment in HIV-1 and Relevant Models. Cells 2022; 11:cells11040673. [PMID: 35203323 PMCID: PMC8870141 DOI: 10.3390/cells11040673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
The immune and sympathetic nervous systems are major targets of human, murine and simian immunodeficiency viruses (HIV-1, MAIDS, and SIV, respectively). The spleen is a major reservoir for these retroviruses, providing a sanctuary for persistent infection of myeloid cells in the white and red pulps. This is despite the fact that circulating HIV-1 levels remain undetectable in infected patients receiving combined antiretroviral therapy. These viruses sequester in immune organs, preventing effective cures. The spleen remains understudied in its role in HIV-1 pathogenesis, despite it hosting a quarter of the body’s lymphocytes and diverse macrophage populations targeted by HIV-1. HIV-1 infection reduces the white pulp, and induces perivascular hyalinization, vascular dysfunction, tissue infarction, and chronic inflammation characterized by activated epithelial-like macrophages. LP-BM5, the retrovirus that induces MAIDS, is a well-established model of AIDS. Immune pathology in MAIDs is similar to SIV and HIV-1 infection. As in SIV and HIV, MAIDS markedly changes splenic architecture, and causes sympathetic dysfunction, contributing to inflammation and immune dysfunction. In MAIDs, SIV, and HIV, the viruses commandeer splenic macrophages for their replication, and shift macrophages to an M2 phenotype. Additionally, in plasmacytoid dendritic cells, HIV-1 blocks sympathetic augmentation of interferon-β (IFN-β) transcription, which promotes viral replication. Here, we review viral–sympathetic interactions in innate immunity and pathophysiology in the spleen in HIV-1 and relevant models. The situation remains that research in this area is still sparse and original hypotheses proposed largely remain unanswered.
Collapse
|
27
|
Adrenergic and Glucocorticoid Receptors in the Pulmonary Health Effects of Air Pollution. TOXICS 2021; 9:toxics9060132. [PMID: 34200050 PMCID: PMC8226814 DOI: 10.3390/toxics9060132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/16/2023]
Abstract
Adrenergic receptors (ARs) and glucocorticoid receptors (GRs) are activated by circulating catecholamines and glucocorticoids, respectively. These receptors regulate the homeostasis of physiological processes with specificity via multiple receptor subtypes, wide tissue-specific distribution, and interactions with other receptors and signaling processes. Based on their physiological roles, ARs and GRs are widely manipulated therapeutically for chronic diseases. Although these receptors play key roles in inflammatory and cellular homeostatic processes, little research has addressed their involvement in the health effects of air pollution. We have recently demonstrated that ozone, a prototypic air pollutant, mediates pulmonary and systemic effects through the activation of these receptors. A single exposure to ozone induces the sympathetic–adrenal–medullary and hypothalamic–pituitary–adrenal axes, resulting in the release of epinephrine and corticosterone into the circulation. These hormones act as ligands for ARs and GRs. The roles of beta AR (βARs) and GRs in ozone-induced pulmonary injury and inflammation were confirmed in a number of studies using interventional approaches. Accordingly, the activation status of ARs and GRs is critical in mediating the health effects of inhaled irritants. In this paper, we review the cellular distribution and functions of ARs and GRs, their lung-specific localization, and their involvement in ozone-induced health effects, in order to capture attention for future research.
Collapse
|
28
|
Duarte LF, Reyes A, Farías MA, Riedel CA, Bueno SM, Kalergis AM, González PA. Crosstalk Between Epithelial Cells, Neurons and Immune Mediators in HSV-1 Skin Infection. Front Immunol 2021; 12:662234. [PMID: 34012447 PMCID: PMC8126613 DOI: 10.3389/fimmu.2021.662234] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) infection is highly prevalent in humans, with approximately two-thirds of the world population living with this virus. However, only a fraction of those carrying HSV-1, which elicits lifelong infections, are symptomatic. HSV-1 mainly causes lesions in the skin and mucosae but reaches the termini of sensory neurons innervating these tissues and travels in a retrograde manner to the neuron cell body where it establishes persistent infection and remains in a latent state until reactivated by different stimuli. When productive reactivations occur, the virus travels back along axons to the primary infection site, where new rounds of replication are initiated in the skin, in recurrent or secondary infections. During this process, new neuron infections occur. Noteworthy, the mechanisms underlying viral reactivations and the exit of latency are somewhat poorly understood and may be regulated by a crosstalk between the infected neurons and components of the immune system. Here, we review and discuss the immune responses that occur at the skin during primary and recurrent infections by HSV-1, as well as at the interphase of latently-infected neurons. Moreover, we discuss the implications of neuronal signals over the priming and migration of immune cells in the context of HSV-1 infection.
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
29
|
Gao P, Wu W, Tian R, Yan X, Qian H, Guo F, Li T, Liu Z, Wang J, Zhou X, Qin Y, Zhao D, Bian X, Lin X, Zhang S. Association between tachyarrhythmia and mortality in a cohort of critically ill patients with coronavirus disease 2019 (COVID-19). ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:883. [PMID: 34164517 PMCID: PMC8184440 DOI: 10.21037/atm-21-2282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Cardiovascular involvement manifesting as arrhythmias has been confirmed in patients with coronavirus disease 2019 (COVID-19), so we aimed to explore the association between primary tachyarrhythmia and death in critically ill patients with COVID-19 in this retrospective study. Methods A total of 79 critically ill patients with COVID-19 were included. Demographic characteristics, clinical data (past history, vital signs, therapeutic management, and outcomes), and results of laboratory findings and cardiac investigations were collected. All statistical analyses were performed using SPSS 23.0 software (IBM, Armonk, NY, USA). Results The median age was 65±12 years, and 53 patients (67%) were male. A total of 57 (72%) patients died, and compared with survivors, these patients were older and had significantly higher Acute Physiology and Chronic Health Evaluation (APACHE) II score, Sequential Organ Failure Assessment (SOFA) score and fewer lymphocytes as well as higher heart rate (P<0.05). Autopsy findings did not suggest severe myocarditis. A total of 19 (24%) patients had tachyarrhythmias, including 10 (13%) with atrial fibrillation (AF) and 9 (11%) with ventricular tachycardia or fibrillation. The incidence of tachyarrhythmias in non-survivor was much higher than in survivors (P=0.04). In a Cox regression model, older patients with ventricular tachyarrhythmias (VTAs) age were at a higher risk of death, with hazard ratio (HR) of 3.302 [95% confidence interval (CI), 1.524-7.154, P=0.002] and 1.045 (95% CI, 1.020-1.071, P=0.000), respectively. The use of beta-blockers [HR, 0.219 (95% CI, 0.066-0.722); P=0.013] was associated with a lower risk of death. Conclusions Critically ill patients with COVID-19 had a poor prognosis. VTA and older age were independent prognostic factors of death. Beta-blockers might be an effective therapy to improve survival.
Collapse
Affiliation(s)
- Peng Gao
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Wu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ran Tian
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaowei Yan
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Qian
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fan Guo
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhengyin Liu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinglan Wang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiang Zhou
- Department of Intensive Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Qin
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dachun Zhao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xue Lin
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
Lucas TA, Zhu L, Buckwalter MS. Spleen glia are a transcriptionally unique glial subtype interposed between immune cells and sympathetic axons. Glia 2021; 69:1799-1815. [DOI: 10.1002/glia.23993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Tawaun A. Lucas
- Department of Neurology and Neurological Sciences Stanford School of Medicine Stanford California USA
| | - Li Zhu
- Department of Neurology and Neurological Sciences Stanford School of Medicine Stanford California USA
| | - Marion S. Buckwalter
- Department of Neurology and Neurological Sciences Stanford School of Medicine Stanford California USA
- Department of Neurosurgery Stanford School of Medicine Stanford California USA
| |
Collapse
|
31
|
Wieduwild É, Daher C, Ugolini S. Des signaux adrénergiques liés au stress affaiblissent les défenses immunitaires antivirales. Med Sci (Paris) 2020; 36:993-996. [DOI: 10.1051/medsci/2020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
How does stellate ganglion block alleviate immunologically-linked disorders? Med Hypotheses 2020; 144:110000. [DOI: 10.1016/j.mehy.2020.110000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/04/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022]
|
33
|
Derakhshan M, Ansarian HR, Ghomshei M. Possible effect of epinephrine in minimizing COVID-19 severity: a review. J Int Med Res 2020; 48:300060520958594. [PMID: 32962495 PMCID: PMC7511802 DOI: 10.1177/0300060520958594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Coronavirus disease 2019 (COVID-19) shows a wide range of severity, ranging from an asymptomatic presentation to a severe illness requiring intensive care unit admission. Identification of a strategy to manage the severity of this disease will not only help to reduce its case fatality but also help to remove some of the burden from the already overwhelmed health care systems. While successful management of symptoms in general is important, identifying measures to modify the severity of the illness is a key factor in the fight against this pandemic. METHODS This paper presents a short literature review to suggest a new treatment modality for COVID-19. RESULTS COVID-19 is less severe and rarely fatal in children than in adults, which could be caused by greater fluctuations of plasma epinephrine in children. Our literature survey endorses this hypothesis according to both the epidemiological and immunological findings. CONCLUSION Application of epinephrine pulses with a specific amplitude may be considered an intervention to minimize the severity of COVID-19.
Collapse
Affiliation(s)
- Mahnaz Derakhshan
- Conovita Technologies Inc., Winnipeg, Canada.,Queen Mary University of London Alumni, London, UK
| | - Hamid Reza Ansarian
- Conovita Technologies Inc., Winnipeg, Canada.,Easton Place Medical Center, Silkirk, Canada.,Interlake Medicentre, Stonewall, Canada.,University of Manitoba Alumni, Winnipeg, Canada
| | - Mory Ghomshei
- Conovita Technologies Inc., Winnipeg, Canada.,British Columbia Institute of Technology, Burnaby, Canada
| |
Collapse
|
34
|
Enriquez J, Mims BMD, Trasti S, Furr KL, Grisham MB. Genomic, microbial and environmental standardization in animal experimentation limiting immunological discovery. BMC Immunol 2020; 21:50. [PMID: 32878597 PMCID: PMC7464063 DOI: 10.1186/s12865-020-00380-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Background The use of inbred mice housed under standardized environmental conditions has been critical in identifying immuno-pathological mechanisms in different infectious and inflammatory diseases as well as revealing new therapeutic targets for clinical trials. Unfortunately, only a small percentage of preclinical intervention studies using well-defined mouse models of disease have progressed to clinically-effective treatments in patients. The reasons for this lack of bench-to-bedside transition are not completely understood; however, emerging data suggest that genetic diversity and housing environment may greatly influence muring immunity and inflammation. Results Accumulating evidence suggests that certain immune responses and/or disease phenotypes observed in inbred mice may be quite different than those observed in their outbred counterparts. These differences have been thought to contribute to differing immune responses to foreign and/or auto-antigens in mice vs. humans. There is also a growing literature demonstrating that mice housed under specific pathogen free conditions possess an immature immune system that remarkably affects their ability to respond to pathogens and/or inflammation when compared with mice exposed to a more diverse spectrum of microorganisms. Furthermore, recent studies demonstrate that mice develop chronic cold stress when housed at standard animal care facility temperatures (i.e. 22–24 °C). These temperatures have been shown alter immune responses to foreign and auto-antigens when compared with mice housed at their thermo-neutral body temperature of 30–32 °C. Conclusions Exposure of genetically diverse mice to a spectrum of environmentally-relevant microorganisms at housing temperatures that approximate their thermo-neutral zone may improve the chances of identifying new and more potent therapeutics to treat infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Josue Enriquez
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6591, Lubbock, TX, 79430-6591, USA
| | - Brianyell Mc Daniel Mims
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6591, Lubbock, TX, 79430-6591, USA
| | - Scott Trasti
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6591, Lubbock, TX, 79430-6591, USA.,Laboratory Animal Research Center, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Kathryn L Furr
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6591, Lubbock, TX, 79430-6591, USA
| | - Matthew B Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6591, Lubbock, TX, 79430-6591, USA.
| |
Collapse
|
35
|
Abstract
Communication between the nervous and immune systems is required for the body to regulate physiological homeostasis. Beta-adrenergic receptors expressed on immune cells mediate the modulation of immune response by neural activity. Activation of beta-adrenergic signaling results in suppression of antitumor immune response and limits the efficacy of cancer immunotherapy. Beta-adrenergic signaling is also involved in regulation of hematopoietic reconstitution, which is critical to the graft-versus-tumor (GVT) effect and to graft-versus-host disease (GVHD) following allogeneic hematopoietic cell transplantation (HCT). In this review, the function of beta-adrenergic signaling in mediating tumor immunosuppression will be highlighted. We will also discuss the implication of targeting beta-adrenergic signaling to improve the efficacy of cancer immunotherapy including the GVT effect, and to diminish the adverse effects including GVHD.
Collapse
Affiliation(s)
- Wei Wang
- Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland
| | - Xuefang Cao
- Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland
| |
Collapse
|
36
|
Gandhi S, Elkhanany A, Oshi M, Dai T, Opyrchal M, Mohammadpour H, Repasky EA, Takabe K. Contribution of Immune Cells to Glucocorticoid Receptor Expression in Breast Cancer. Int J Mol Sci 2020; 21:E4635. [PMID: 32629782 PMCID: PMC7370149 DOI: 10.3390/ijms21134635] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC) patients experience increased stress with elevated cortisol levels, increasing risk of cancer recurrence. Cortisol binds to a cytoplasmic receptor, glucocorticoid receptor (GR) encoded by GR gene (NR3C1). We hypothesized that not only cancer cells, but even immune cells in the tumor microenvironment (TME) may contribute to GR expression in bulk tumor and influence prognosis. To test this, mRNA expression data was accessed from METABRIC and TCGA. "High" and "low" expression was based on highest and lowest quartiles of NR3C1 gene expression, respectively. Single-cell sequencing data were obtained from GSE75688 and GSE114725 cohorts. Computer algorithms CIBERSORT, Gene Set Enrichment Analysis and TIMER were used. GR-high BC has better median disease-free and disease-specific survival. Single cell sequencing data showed higher GR expression on immune cells compared to cancer and stromal cells. Positive correlation between GR-high BC and CD8+ T-cells was noted. In GR-high tumors, higher cytolytic activity (CYT) with decreased T-regulatory and T-follicular helper cells was observed. High GR expression was associated with lower proliferation index Ki67, enriched in IL-2_STAT5, apoptosis, KRAS, TGF-β signaling, and epithelial-to-mesenchymal transition. Immune cells significantly contribute to GR expression of bulk BC. GR-high BC has a favorable TME with higher CYT with favorable outcomes.
Collapse
Affiliation(s)
- Shipra Gandhi
- Department of Medical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Ahmed Elkhanany
- Department of Medical Oncology, University of Alabama, Birmingham, AL 35294, USA;
| | - Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (K.T.)
- Departments of Surgery, Yokohama City University, Yokohama 236-0004, Japan
| | - Tao Dai
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.D.); (H.M.); (E.A.R.)
| | - Mateusz Opyrchal
- Division of Medical Oncology, Washington University, St. Louis, MO 63130, USA;
| | - Hemn Mohammadpour
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.D.); (H.M.); (E.A.R.)
| | - Elizabeth A. Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (T.D.); (H.M.); (E.A.R.)
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (K.T.)
- Departments of Surgery, Yokohama City University, Yokohama 236-0004, Japan
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Breast Surgery, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
37
|
Mohammadpour H, Sarow JL, MacDonald CR, Chen GL, Qiu J, Sharma UC, Cao X, Herr MM, Hahn TE, Blazar BR, Repasky EA, McCarthy PL. β2-Adrenergic receptor activation on donor cells ameliorates acute GvHD. JCI Insight 2020; 5:137788. [PMID: 32437333 DOI: 10.1172/jci.insight.137788] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Acute graft versus host disease (aGvHD) remains a major impediment to successful allogeneic hematopoietic cell transplantation (allo-HCT). To solve this problem, a greater knowledge of factors that regulate the differentiation of donor T cells toward cytotoxic cells or Tregs is necessary. We report that the β2-adrenergic receptor (β2-AR) is critical for regulating this differentiation and that its manipulation can control aGvHD without impairing the graft-versus-tumor (GvT) effect. Donor T cell β2-AR expression and signaling is associated with decreased aGvHD when compared with recipients of β2-AR-/- donor T cells. We determined that β2-AR activation skewed CD4+ T cell differentiation in vitro and in vivo toward Tregs rather than the T helper 1 (Th1) phenotype. Treatment of allo-HCT recipients with a selective β2-agonist (bambuterol) ameliorated aGvHD severity. This was associated with increased Tregs, decreased cytotoxic T cells, and increased donor BM-derived myeloid-derived suppressor cells (MDSCs) in allogeneic and humanized xenogeneic aGvHD models. β2-AR signaling resulted in increased Treg generation through glycogen synthase kinase-3 activation. Bambuterol preserved the GvT effect by inducing NKG2D+ effector cells and central memory T cells. These data reveal how β-AR signaling can be targeted to ameliorate GvHD severity while preserving GvT effect.
Collapse
Affiliation(s)
| | | | | | - George L Chen
- Medicine, Transplant and Cellular Therapy Program, and
| | - Jingxin Qiu
- Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Umesh C Sharma
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, Buffalo, New York, USA
| | - Xuefang Cao
- Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Megan M Herr
- Medicine, Transplant and Cellular Therapy Program, and
| | | | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
38
|
Shen HX, Lu XJ, Lu JF, Chen J. Beta-adrenergic receptor stimulation influences the function of monocytes/macrophages in ayu (Plecoglossus altivelis). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103513. [PMID: 31585194 DOI: 10.1016/j.dci.2019.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Adrenergic receptors (ARs) are members of the G-protein-coupled receptor superfamily that can be categorized into αARs and βARs. The specific function of ARs in teleost monocytes/macrophages (MO/MФ) remains unknown. We determined the cDNA sequence of ARs from ayu (Plecoglossus altivelis; PaαAR and PaβAR). Sequence comparisons showed that PaαAR was most closely related to the αAR of the Japanese flounder and Nile tilapia, while PaβAR was most closely related to the βAR of Atlantic salmon. The AR transcripts were mainly expressed in the spleen, and their expression was altered in various tissues upon infection with Vibrio anguillarum. PaαAR and PaβAR proteins were upregulated in MO/MФ after infection, and PaβAR knockdown resulted in a pro-inflammatory status in ayu MO/MФ upon V. anguillarum infection and lowered the phagocytic activity of MO/MФ. Our results indicate that PaβAR plays the role of an anti-inflammatory mediator in the immune response of ayu against bacterial infection.
Collapse
Affiliation(s)
- Hong-Xia Shen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| | - Jian-Fei Lu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
39
|
Renal denervation restrains the inflammatory response in myocardial ischemia-reperfusion injury. Basic Res Cardiol 2020; 115:15. [PMID: 31932910 DOI: 10.1007/s00395-020-0776-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/02/2020] [Indexed: 12/19/2022]
Abstract
Myocardial ischemia-reperfusion (I/R) injury leads to intensive sympathetic nervous system (SNS) activation and inflammatory reactions. Whether renal sympathetic denervation (RDN) could be a new therapeutic strategy to modulate I/R inflammation and reduce infarct size after myocardial I/R injury needs to be explored. First, we investigated the correlation between plasma norepinephrine concentrations and circulating myeloid cell numbers in patients with acute myocardial infarction. And then, C57BL/6 mice underwent a "two-hit" operation, with 10% phenol applied to bilateral renal nerves to abrogate sympathoexcitation, and a 45-min ligation of the left coronary artery to induce myocardial I/R injury. The effects of RDN on the mobilization of immune cells in mice following myocardial I/R injury were explored. We observed a strong association between SNS overactivation and myeloid cell excessive accumulation in patients. In animal experiments, there was a significant reduction in infarct size per area at risk in the denervated-I/R group when compared to that of the innervated-I/R group (39.2% versus 49.8%; p < 0.005), and RDN also improved the left ventricular ejection fraction by 20% after 1 week. Furthermore, the denervated-I/R group showed a decrease in the number of neutrophils and macrophages in the blood and the myocardium as reflected by immunohistochemical staining and flow cytometry analysis (p < 0.05); the decrease was associated with a significant reduction in the circulating production of IL-1, IL-6 and TNF-α (p < 0.05). In summary, our study reveals a novel link between the SNS activity and inflammatory response undergoing myocardium I/R injury and identifies RDN as a potential therapeutic strategy against myocardium I/R injury via preserving the spleen immune cells mobilization.
Collapse
|
40
|
Hylander BL, Gordon CJ, Repasky EA. Manipulation of Ambient Housing Temperature To Study the Impact of Chronic Stress on Immunity and Cancer in Mice. THE JOURNAL OF IMMUNOLOGY 2019; 202:631-636. [PMID: 30670578 DOI: 10.4049/jimmunol.1800621] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022]
Abstract
Mice are the preeminent research organism in which to model human diseases and study the involvement of the immune response. Rapidly accumulating evidence indicates a significant involvement of stress hormones in cancer progression, resistance to therapies, and suppression of immune responses. As a result, there has been a concerted effort to model human stress in mice. In this article, we discuss recent literature showing how mice in research facilities are chronically stressed at baseline because of environmental factors. Focusing on housing temperature, we suggest that the stress of cool housing temperatures contributes to the impact of other imposed experimental stressors and therefore has a confounding effect on mouse stress models. Furthermore, we propose that manipulation of housing temperature is a useful approach for studying the impact of chronic stress on disease and the immune response and for testing therapeutic methods of reducing the negative effects of chronic stress.
Collapse
Affiliation(s)
- Bonnie L Hylander
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - Christopher J Gordon
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| |
Collapse
|
41
|
Abstract
Childhood exposure to traumatic events, termed early life stress (ELS), is now widely recognized for causing long-term negative health effects that may not manifest until adulthood. Allostatic load (AL) describes the cumulative "wear-and-tear" effects of chronic stress on the body that may adversely affect human health by accelerating other disease processes. Recent epidemiological studies have reported higher stress levels in industrialized countries and trends of increasing prevalence in autoimmune diseases during recent decades. To elucidate mechanisms of stress-related immune dysregulation, most animal studies up to now have focused on AL and stress-triggered events occurring in adults but have not explored ELS in the context of autoimmune disorders. We have identified a current gap in understanding the impact of ELS on immune system ontogeny and its potential for priming genetically susceptible individuals who are at increased risk for autoimmune diseases later in life, through mechanisms involving neuroendocrine-immune cross talk. In this review, we highlight the intersection between stress and immune function, with a focus on ELS as consequential for increased autoimmune disorder risks later in life.
Collapse
Affiliation(s)
- Jamie Y. Choe
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Maya Nair
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Riyaz Basha
- Department of Pediatrics and Women’s Health, Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Byung-Jin Kim
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Harlan P. Jones
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107
| |
Collapse
|
42
|
Ağaç D, Estrada LD, Maples R, Hooper LV, Farrar JD. The β2-adrenergic receptor controls inflammation by driving rapid IL-10 secretion. Brain Behav Immun 2018; 74:176-185. [PMID: 30195028 PMCID: PMC6289674 DOI: 10.1016/j.bbi.2018.09.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/01/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022] Open
Abstract
The mammalian nervous system communicates important information about the environment to the immune system, but the underlying mechanisms are largely unknown. Secondary lymphoid organs are highly innervated by sympathetic neurons that secrete norepinephrine (NE) as the primary neurotransmitter. Immune cells express adrenergic receptors, enabling the sympathetic nervous system to directly control immune function. NE is a potent immunosuppressive factor and markedly inhibits TNF-α secretion from innate cells in response to lipopolysaccharide (LPS). In this study, we demonstrate that NE blocks the secretion of a variety of proinflammatory cytokines by rapidly inducing IL-10 secretion from innate cells in response to multiple Toll-like receptor (TLR) signals. NE mediated these effects exclusively through the β2-adrenergic receptor (ADRB2). Consequently, Adrb2-/- animals were more susceptible to L. monocytogenes infection and to intestinal inflammation in a dextran sodium sulfate (DSS) model of colitis. Further, Adrb2-/- animals rapidly succumbed to endotoxemia in response to a sub-lethal LPS challenge and exhibited elevated serum levels of TNF-α and reduced IL-10. LPS-mediated lethality in WT animals was rescued by administering a β 2-specific agonist and in Adrb2-/- animals by exogenous IL-10. These findings reveal a critical role for ADRB2 signaling in controlling inflammation through the rapid induction of IL-10. Our findings provide a fundamental insight into how the sympathetic nervous system controls a critical facet of immune function through ADRB2 signaling.
Collapse
Affiliation(s)
- Didem Ağaç
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX
| | | | - Robert Maples
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX
| | - Lora V. Hooper
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX,Howard Hughes Medical Institute
| | - J. David Farrar
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
43
|
Butkovich LM, Houser MC, Tansey MG. α-Synuclein and Noradrenergic Modulation of Immune Cells in Parkinson's Disease Pathogenesis. Front Neurosci 2018; 12:626. [PMID: 30258347 PMCID: PMC6143806 DOI: 10.3389/fnins.2018.00626] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022] Open
Abstract
α-synuclein (α-syn) pathology and loss of noradrenergic neurons in the locus coeruleus (LC) are among the most ubiquitous features of Parkinson's disease (PD). While noradrenergic dysfunction is associated with non-motor symptoms of PD, preclinical research suggests that the loss of LC norepinephrine (NE), and subsequently its immune modulatory and neuroprotective actions, may exacerbate or even accelerate disease progression. In this review, we discuss the mechanisms by which α-syn pathology and loss of central NE may directly impact brain health by interrupting neurotrophic factor signaling, exacerbating neuroinflammation, and altering regulation of innate and adaptive immune cells.
Collapse
Affiliation(s)
| | | | - Malú G. Tansey
- Tansey Laboratory, Department of Physiology, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
44
|
Qiao G, Chen M, Bucsek MJ, Repasky EA, Hylander BL. Adrenergic Signaling: A Targetable Checkpoint Limiting Development of the Antitumor Immune Response. Front Immunol 2018; 9:164. [PMID: 29479349 PMCID: PMC5812031 DOI: 10.3389/fimmu.2018.00164] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/18/2018] [Indexed: 12/15/2022] Open
Abstract
An immune response must be tightly controlled so that it will be commensurate with the level of response needed to protect the organism without damaging normal tissue. The roles of cytokines and chemokines in orchestrating these processes are well known, but although stress has long been thought to also affect immune responses, the underlying mechanisms were not as well understood. Recently, the role of nerves and, specifically, the sympathetic nervous system, in regulating immune responses is being revealed. Generally, an acute stress response is beneficial but chronic stress is detrimental because it suppresses the activities of effector immune cells while increasing the activities of immunosuppressive cells. In this review, we first discuss the underlying biology of adrenergic signaling in cells of both the innate and adaptive immune system. We then focus on the effects of chronic adrenergic stress in promoting tumor growth, giving examples of effects on tumor cells and immune cells, explaining the methods commonly used to induce stress in preclinical mouse models. We highlight how this relates to our observations that mandated housing conditions impose baseline chronic stress on mouse models, which is sufficient to cause chronic immunosuppression. This problem is not commonly recognized, but it has been shown to impact conclusions of several studies of mouse physiology and mouse models of disease. Moreover, the fact that preclinical mouse models are chronically immunosuppressed has critical ramifications for analysis of any experiments with an immune component. Our group has found that reducing adrenergic stress by housing mice at thermoneutrality or treating mice housed at cooler temperatures with β-blockers reverses immunosuppression and significantly improves responses to checkpoint inhibitor immunotherapy. These observations are clinically relevant because there are numerous retrospective epidemiological studies concluding that cancer patients who were taking β-blockers have better outcomes. Clinical trials testing whether β-blockers can be repurposed to improve the efficacy of traditional and immunotherapies in patients are on the horizon.
Collapse
Affiliation(s)
- Guanxi Qiao
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Minhui Chen
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Mark J. Bucsek
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Elizabeth A. Repasky
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Bonnie L. Hylander
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|