1
|
López-Astorga M, Leon-Bejarano M, Gámez-Meza N, Del Toro-Sánchez CL, Simsek S, Ovando-Martínez M. Microencapsulated grape pomace extract as an antioxidant ingredient added to Greek-style yogurt: Storage stability an in vitro bioaccessibility. Food Chem 2025; 477:143550. [PMID: 40037046 DOI: 10.1016/j.foodchem.2025.143550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 03/06/2025]
Abstract
This study investigated the microencapsulation of phenolic compounds from grape pomace extract (GPE) obtained from Sonora, Mexico, with maltodextrin and gum arabic through spray-drying for application in Greek-style yogurt. The microencapsulated GPE (MGPE) showed high encapsulation efficiency 97.82 % and average particle size (3.48 μm) below of sensory perception. The main identified phenolic compounds were gallic acid, quercetin, malvidin 3-O-glucoside, catechin, epicatechin, and proanthocyanidins. During a 90-day shelf-life assay, the MGPE was stable, while GPE decreased in total phenolic content (TPC), monomeric anthocyanins, and antioxidant activity. Incorporation of MGPE into the Greek-style yogurt significantly improved the antioxidant activity determined by ABTS, DPPH, and FRAP assays. After in vitro gastrointestinal digestion, MGPE added in yogurt preserved phenolic compounds stability and increased its bioaccessibility at the intestinal phase. These suggest maltodextrin and gum arabic are an effective vehicle to deliver the antioxidant compounds from grape pomace through Greek-style yogurt and improve health.
Collapse
Affiliation(s)
- Madelina López-Astorga
- Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora, Blvd. Luis Donaldo Colosio s/n, entre Reforma y Sahuaripa, Edificio 7G, Col. Centro. C.P., Hermosillo 83000, Sonora, Mexico
| | - Marcos Leon-Bejarano
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas s/n, C.P., Hermosillo 83000, Sonora, Mexico
| | - Nohemí Gámez-Meza
- Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora, Blvd. Luis Donaldo Colosio s/n, entre Reforma y Sahuaripa, Edificio 7G, Col. Centro. C.P., Hermosillo 83000, Sonora, Mexico
| | - Carmen Lizette Del Toro-Sánchez
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas s/n, C.P., Hermosillo 83000, Sonora, Mexico
| | - Senay Simsek
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Maribel Ovando-Martínez
- Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora, Blvd. Luis Donaldo Colosio s/n, entre Reforma y Sahuaripa, Edificio 7G, Col. Centro. C.P., Hermosillo 83000, Sonora, Mexico..
| |
Collapse
|
2
|
van Wyk N, Borgmeier C, Kleber A, Gabor EM. Sustainable Approaches in Viticulture: From Wastes and Side Streams to High-Value Products. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2025. [PMID: 40251458 DOI: 10.1007/10_2025_281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
In the context of climate change, resource scarcity, and a growing global population, sustainable processes and the efficient use of raw materials are imperative. Developing best practices to guide the transition toward a circular economy with minimized waste is essential. Agricultural processes offer inspiration, as they traditionally emphasize the utilization of all parts of cultivated plants. Today, however, there is a pressing need to go beyond basic utilization and focus on the upcycling and valorization of agricultural side streams into high-value products. This chapter examines the wine and grape industry, which generates substantial volumes of side streams, including grape pomace, seeds, stems, and wine lees. In recent years, these material streams have attracted attention for their potential as raw materials rich in bioactive compounds - such as diverse polyphenols, dietary fibers, and organic acids - that can be applied across various sectors, including food, cosmetics, pharmaceuticals, and bioenergy. Key methodologies such as extraction, fermentation, and bioconversion are discussed as pathways to recover and enhance these compounds. Case studies of successful valorization initiatives are presented, demonstrating practical applications of side streams for high-value product creation. An example is the BMBF-funded project "Sustainable Beverages" focusing on the development of fermented drinks made from vine leaves that can be offered as a non-alcoholic alternative to wine. By providing an overview of the current research and technologies in wine waste valorization, this chapter serves as a valuable resource for academics, industry professionals, and policymakers seeking to advance sustainable practices within the wine sector. Ultimately, the upcycling of wine industry residues not only reduces environmental impact but also creates new revenue opportunities, driving innovation and sustainability in the industry.
Collapse
|
3
|
Murariu OC, Caruso G, Frunză G, Lipșa FD, Ulea E, Tallarita AV, Calistru A, Jităreanu G. Effect of Wheat Flour Integration with Blueberry Fruits on Rheological, Quality, Antioxidant, and Sensory Attributes of 'French' Bread. Foods 2025; 14:1189. [PMID: 40238381 PMCID: PMC11988953 DOI: 10.3390/foods14071189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/28/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Increasing interest is being devoted to innovative food products enriched with fruits and vegetables to enhance the nutritional and bioactive properties from the perspective of sustainable management. The addition (10, 15, and 20%) of blueberry fruits derived from two spontaneous flora varieties from the Rarău (G) and Ciocănești (C) mountains (Romania) into 'French' bread resulted in increased maximum breaking strength and mechanical work in spherical dough up to 10 and 15% in variety G, and deformation strength up to 20% integration; the untreated control displayed the highest values in the strips of dough. The 20% incorporation of both blueberry varieties in bread enhanced total, open, and closed porosity, maximum strength, gummosity, and chewiness, as well as titratable acidity, total soluble solids, vitamin C, flavonoids, anthocyanins, and antioxidant activity. Resilience and pH showed the highest levels in the untreated bread, which also exhibited the highest values of the color components 'L', 'a', and 'b' in both the bread crust and crumb. The untreated control showed the highest scores for some sensory features, and in most cases, an increasing trend with the fruit integration rising from 10 to 20% was recorded. The addition of blueberries represents an interesting strategy for creating bread as an innovative functional food under sustainable supply chain management.
Collapse
Affiliation(s)
- Otilia Cristina Murariu
- Food Technologies, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 M. Sadoveanu Alley, 700490 Iasi, Romania; (O.C.M.); (G.F.); (F.D.L.)
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Portici, Italy; (G.C.); (A.V.T.)
| | - Gabriela Frunză
- Food Technologies, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 M. Sadoveanu Alley, 700490 Iasi, Romania; (O.C.M.); (G.F.); (F.D.L.)
| | - Florin Daniel Lipșa
- Food Technologies, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 M. Sadoveanu Alley, 700490 Iasi, Romania; (O.C.M.); (G.F.); (F.D.L.)
| | - Eugen Ulea
- Department of Plant Science, ‘Ion Ionescu de la Brad’ Iasi University of Life Sciences, 700490 Iasi, Romania
| | - Alessio Vincenzo Tallarita
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Portici, Italy; (G.C.); (A.V.T.)
| | - Anca Calistru
- Department of Pedotechnics, ‘Ion Ionescu de la Brad’ Iasi University of Life Sciences, 700490 Iasi, Romania;
| | - Gerard Jităreanu
- Department of Pedotechnics, ‘Ion Ionescu de la Brad’ Iasi University of Life Sciences, 700490 Iasi, Romania;
| |
Collapse
|
4
|
Rossi TS, Francescato L, Gupte AP, Favaro L, Treu L, Campanaro S. Harnessing the potential of Cupriavidus necator for CO 2 capture from alcoholic fermentation and its bioconversion into poly(3-hydroxybutyrate). BIORESOURCE TECHNOLOGY 2025; 419:132060. [PMID: 39805476 DOI: 10.1016/j.biortech.2025.132060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
The fermentation process in alcoholic beverage production converts sugars into ethanol and CO2, releasing significant amounts of greenhouse gases. Here, Cupriavidus necator DSM 545 was grown autotrophically using gas derived from alcoholic fermentation, using a fed-batch bottle system. Nutrient starvation was applied to induce intracellular accumulation of poly(3-hydroxybutyrate) (PHB), a bioplastic polymer, for bioconversion of CO2-rich waste gas into PHB. Grape marc, another by-product of wine production, was evaluated as a low-cost carbon source for the heterotrophic growth of C. necator, which was subsequently used as an inoculum for autotrophic cultures. The effect of agitation, CO2 headspace composition, and nitrogen concentration was tested, obtaining a maximum PHB concentration of 0.69 g/L, with an average CO2 uptake rate of 1.14 ± 0.41 mmol CO2 L-1h-1 and 65 % efficiency of CO2 consumption. These findings lay the groundwork for developing carbon mitigation strategies in alcoholic fermentation processes coupled with sustainable biopolymer production.
Collapse
Affiliation(s)
| | - Luca Francescato
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Ameya Pankaj Gupte
- Waste to Bioproducts Lab, Department of Agronomy Food Natural Resources Animals and Environment, University of Padova - Agripolis, 35020 Legnaro, PD, Italy.
| | - Lorenzo Favaro
- Waste to Bioproducts Lab, Department of Agronomy Food Natural Resources Animals and Environment, University of Padova - Agripolis, 35020 Legnaro, PD, Italy; Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Laura Treu
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | | |
Collapse
|
5
|
Ferrara A, D'Auria G, Barile D, Baller MI, Nitride C, Mamone G, Ferranti P. The valorization of grape pomace from Montepulciano winemaking: A new source of functional ingredients for sustainable food industry. Food Res Int 2025; 200:115443. [PMID: 39779098 DOI: 10.1016/j.foodres.2024.115443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/19/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
The winemaking process generates huge amounts of waste every year. Fermented grape pomace, the major by-waste product, holds significant value due to its chemical composition and technological properties. In this study a multi-omics approach was employed for the detailed molecular characterization of fermented grape pomace from Montepulciano grape, a widely used Italian red grape variety. Grape pomace samples, including both seeds and skins, were analyzed after 0, 6 and 9 days fermentation time. Anthocyanins and flavonols were the predominant polyphenols in the skin fraction, which resulted stable to the pomace drying process. In vitro gastrointestinal digestion analysis using the validated Infogest protocol showed a 60 % increased bioaccessibility of these compounds. Proteomics and lipidomics of the seed fraction underscored its richness in protein/peptides and lipid suggesting potential technological and functional bioactivity. Although no significant difference was observed in the seed protein fraction between intermediate (6 days) and final (9 days) fermentation time, this latter exhibited a higher number of potentially bioactive peptides compared to the former. Additionally, glycomic analysis of grape pomace uncovered novel oligosaccharides which may represent high-value ingredients for the food industry. This multi-analytical approach indicated that incorporating grape pomace and/or its fractions into food production could support the dietary transition towards sustainable and healthy nutrition.
Collapse
Affiliation(s)
- Alessandra Ferrara
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici (Naples), Italy
| | - Giovanni D'Auria
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici (Naples), Italy
| | - Daniela Barile
- Department of Food Science and Technology, University of California Davis, 1 Shields Ave., Davis, CA, 95616, USA
| | - Mara I Baller
- Department of Food Science and Technology, University of California Davis, 1 Shields Ave., Davis, CA, 95616, USA
| | - Chiara Nitride
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici (Naples), Italy
| | - Gianfranco Mamone
- Institute of Food Science & Technology, National Research Council, Via Roma 52, 83100, Avellino, Italy
| | - Pasquale Ferranti
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici (Naples), Italy; Institute of Food Science & Technology, National Research Council, Via Roma 52, 83100, Avellino, Italy.
| |
Collapse
|
6
|
Piccoli RC, Simões WS, Custódio SV, Goularte KCM, Luduvico KP, de Mello JE, de Souza AA, Teixeira AC, da Costa DA, Barschak AG, Deniz BF, de Almeida W, Pereira P, Nicolai M, Spanevello RM, Stefanello FM, Tavares RG, Palma ML. Sustainable Intervention: Grape Pomace Flour Ameliorates Fasting Glucose and Mitigates Streptozotocin-Induced Pancreatic Damage in a Type 2 Diabetes Animal Model. Pharmaceuticals (Basel) 2024; 17:1530. [PMID: 39598440 PMCID: PMC11597639 DOI: 10.3390/ph17111530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/03/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Type 2 Diabetes Mellitus (T2DM) is characterized by hyperglycemia, increased risk of cardiovascular diseases, and oxidative imbalances. This study aimed to investigate the impact of dietary supplementations with 'Arinto' grape pomace flour (GPF) (WGPF) and 'Touriga Nacional' GPF (RGPF) in an animal model of T2DM. Methods: T2DM was induced by a high-fat diet (HFD) for 28 days and a single dose of streptozotocin (STZ) (35 mg/kg) on the 21st day. Forty adult male Wistar rats were divided into five groups: Control (CT), T2DM, T2DM + Metformin (250 mg/kg), T2DM + 10% 'Arinto' GPF (WGPF), and T2DM + 10% 'Touriga Nacional' GPF (RGPF). On the 21st day of the experimental protocol, animals were submitted to an oral glucose tolerance test. An oral glucose tolerance test, oxidative stress parameters, biochemical analysis, and pancreas histological analyses were performed. Results: T2DM impaired glucose tolerance, elevated serum triglycerides and cholesterol, increased oxidative damage in the liver, and induced pancreatic histological abnormalities. However, supplementation with WGPF and RGPF demonstrated positive effects, mitigating glycemic and lipid disruptions, ameliorating oxidative stress, and protecting pancreatic Islets β-cells. Conclusions: Our findings highlight the protective effects of WGPF and RGPF in the adverse impacts of T2DM. Additionally, our study emphasizes the innovative use of grape pomace, a winemaking by-product, promoting sustainability by transforming waste into functional foods with significant health benefits.
Collapse
Affiliation(s)
- Raphaela Cassol Piccoli
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - William Sanabria Simões
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Solange Vega Custódio
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Kelen Cristiane Machado Goularte
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Karina Pereira Luduvico
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Julia Eisenhardt de Mello
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Anita Avila de Souza
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Ana Carolina Teixeira
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Diego Araujo da Costa
- Postgraduation Program in Nutrition and Foods, Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96010-610, RS, Brazil;
| | - Alethéa Gatto Barschak
- Clinical Analysis Laboratory, Federal University of Health Sciences of Porto Alegre, Department of Basic Health Sciences, Porto Alegre 90050-170, RS, Brazil;
| | - Bruna Ferrary Deniz
- Department of Physiology and Pharmacology, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (B.F.D.); (W.d.A.)
| | - Wellington de Almeida
- Department of Physiology and Pharmacology, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (B.F.D.); (W.d.A.)
| | - Paula Pereira
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona, 1749-024 Lisboa, Portugal; (P.P.); (M.N.); (M.L.P.)
- Center for Natural Resources and Environment (CERENA), Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- EPCV, School of Phycology and Life Science, Department of Live Sciences, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Marisa Nicolai
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona, 1749-024 Lisboa, Portugal; (P.P.); (M.N.); (M.L.P.)
| | - Roselia Maria Spanevello
- Center for Chemical, Pharmaceutical and Food Science (CCQFA), Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96160-000, RS, Brazil; (R.M.S.); (F.M.S.)
| | - Francieli Moro Stefanello
- Center for Chemical, Pharmaceutical and Food Science (CCQFA), Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96160-000, RS, Brazil; (R.M.S.); (F.M.S.)
| | - Rejane Giacomelli Tavares
- Postgraduation Program in Nutrition and Foods, Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96010-610, RS, Brazil;
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona, 1749-024 Lisboa, Portugal; (P.P.); (M.N.); (M.L.P.)
- Center for Chemical, Pharmaceutical and Food Science (CCQFA), Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96160-000, RS, Brazil; (R.M.S.); (F.M.S.)
| | - Maria Lídia Palma
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona, 1749-024 Lisboa, Portugal; (P.P.); (M.N.); (M.L.P.)
| |
Collapse
|
7
|
Radeka S, Orbanić F, Rossi S, Bestulić E, Horvat I, Ilak Peršurić AS, Lukić I, Plavša T, Bubola M, Jeromel A. Evaluating the Impact of Pre-Fermentative and Post-Fermentative Vinification Technologies on Bioactive Compounds and Antioxidant Activity of Teran Red Wine By-Products. Foods 2024; 13:3493. [PMID: 39517279 PMCID: PMC11545498 DOI: 10.3390/foods13213493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
This study aimed to evaluate bioactive properties of Teran red wine by-products (grape skins, seeds, and wine lees) from six vinification treatments, including a control (7-day standard maceration). Pre-fermentative cryomaceration (8 °C; 48 h) and hot maceration (50 °C; 48 h), followed by the 13-day (CS15; C15; H15) and 28-day (C30; H30) period, considering fermentation/maceration and extended post-fermentative maceration, were conducted. In CS15, the saignée procedure was applied before fermentation/maceration. After maceration, the separation of by-products was performed, followed by lyophilization and solid-liquid extraction. Then, individual phenols were analyzed using high-performance liquid chromatography (HPLC), and total phenolic content (TPC) and antioxidant activity (FRAP) were analyzed using UV/Vis spectrophotometry. The results showed grape skins and wine lees in all treatments had significantly increased TPC and FRAP values compared to the control. The highest concentration of total phenols (HPLC) in grape skins was found in CS15, at 978.54 mg/100 g DW. In wine lees, the highest concentration of total phenols was detected in the 30-day maceration treatments, at 582.04 mg/100 g DW in C30, and 595.83 mg/100 g DW in H30, despite the pre-fermentative procedure. In grape seeds, the highest concentration of total phenols was found in the control (K7), at 432.42 mg/100 g DW. Pre-fermentative heating together with extended 30-day maceration (H30) strongly reduced the total levels of phenols (HPLC and TPC) in grape seed samples. The findings implied an evident impact of pre- and post-fermentative technologies on phenols and antioxidant activity in wine by-products of cv. Teran (Vitis vinifera L.).
Collapse
Affiliation(s)
- Sanja Radeka
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (S.R.); (S.R.); (E.B.); (I.H.); (A.S.I.P.); (I.L.); (T.P.); (M.B.)
| | - Fumica Orbanić
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (S.R.); (S.R.); (E.B.); (I.H.); (A.S.I.P.); (I.L.); (T.P.); (M.B.)
| | - Sara Rossi
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (S.R.); (S.R.); (E.B.); (I.H.); (A.S.I.P.); (I.L.); (T.P.); (M.B.)
| | - Ena Bestulić
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (S.R.); (S.R.); (E.B.); (I.H.); (A.S.I.P.); (I.L.); (T.P.); (M.B.)
| | - Ivana Horvat
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (S.R.); (S.R.); (E.B.); (I.H.); (A.S.I.P.); (I.L.); (T.P.); (M.B.)
| | - Anita Silvana Ilak Peršurić
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (S.R.); (S.R.); (E.B.); (I.H.); (A.S.I.P.); (I.L.); (T.P.); (M.B.)
| | - Igor Lukić
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (S.R.); (S.R.); (E.B.); (I.H.); (A.S.I.P.); (I.L.); (T.P.); (M.B.)
| | - Tomislav Plavša
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (S.R.); (S.R.); (E.B.); (I.H.); (A.S.I.P.); (I.L.); (T.P.); (M.B.)
| | - Marijan Bubola
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (S.R.); (S.R.); (E.B.); (I.H.); (A.S.I.P.); (I.L.); (T.P.); (M.B.)
| | - Ana Jeromel
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia;
| |
Collapse
|
8
|
Thomas L, Mago P. Unearthing the therapeutic benefits of culinary-medicinal mushrooms for humans: Emerging sustainable bioresources of 21st century. J Basic Microbiol 2024; 64:e2400127. [PMID: 38774954 DOI: 10.1002/jobm.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 08/06/2024]
Abstract
Global interest in mushroom farming techniques has grown in the last few years. Despite not making up a large amount of the human diet at the moment, the nutritional worth of mushrooms has prompted their usage. The three main segments of the global mushroom industry are wild, culinary (edible), and medicinal mushrooms. The quality food that mushrooms provide can be utilized to build agricultural ecosystems that are more sustainable for increasing productivity and enhancing the effectiveness of resource usage. This is mostly because mushrooms can be utilized for the recycling of biomass and remains from crop production. Culinary-medicinal mushrooms are becoming more and more important because of their nutrient density, dietary value, and health advantages. Given its many bioactive components, which include polysaccharides, proteins, vitamins, minerals, dietary fiber, and secondary metabolites, mushrooms have been utilized extensively as health foods. These mushrooms exhibit pharmacological activities and possess prebiotic and antibacterial capabilities. This review provides information on the latest advancements in the sustainable cultivation of mushrooms, particularly with nontraditional substrates, and their potential therapeutic uses. Furthermore, some of the newest developments and difficulties in the production of mushrooms are explored.
Collapse
Affiliation(s)
- Lebin Thomas
- Department of Botany, University of Delhi, New Delhi, Delhi, India
| | - Payal Mago
- Department of Botany, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, Delhi, India
- Campus of Open Learning, University of Delhi, New Delhi, Delhi, India
| |
Collapse
|
9
|
Parra-Pacheco B, Cruz-Moreno BA, Aguirre-Becerra H, García-Trejo JF, Feregrino-Pérez AA. Bioactive Compounds from Organic Waste. Molecules 2024; 29:2243. [PMID: 38792105 PMCID: PMC11123749 DOI: 10.3390/molecules29102243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The reuse and reincorporation of waste are the principles of circular economies. Compost, biofuels, animal feed, dyes, and bioactive compounds can be obtained from the revaluation of organic waste. Research on this subject is scarce and limited to specific sectors, such as agriculture and agroindustry, leaving aside others that generate large quantities of organic waste, such as floriculture. The remains of these sectors have a low decomposition rate compared to other organic wastes. They are a source of bioactive compounds (e.g., essential oils, pigments, phenols) that can be reincorporated into the production chain of various industries. This review describes the composition of waste from agroindustry, agriculture, and floriculture, analyzing their potential revalorization as a source of bioactive compounds and an alternative supply source.
Collapse
Affiliation(s)
| | | | | | - Juan Fernando García-Trejo
- Research and Postgraduate Division, School of Engineering, Universidad Autónoma de Querétaro, Campus Amazcala, Carretera a Chichimequillas Km 1 s/n, Amazcala, El Marqués 76265, Querétaro, Mexico; (B.P.-P.); (B.A.C.-M.); (H.A.-B.)
| | - Ana Angélica Feregrino-Pérez
- Research and Postgraduate Division, School of Engineering, Universidad Autónoma de Querétaro, Campus Amazcala, Carretera a Chichimequillas Km 1 s/n, Amazcala, El Marqués 76265, Querétaro, Mexico; (B.P.-P.); (B.A.C.-M.); (H.A.-B.)
| |
Collapse
|
10
|
Duarah P, Haldar D, Singhania RR, Dong CD, Patel AK, Purkait MK. Sustainable management of tea wastes: resource recovery and conversion techniques. Crit Rev Biotechnol 2024; 44:255-274. [PMID: 36658718 DOI: 10.1080/07388551.2022.2157701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/30/2022] [Accepted: 11/26/2022] [Indexed: 01/21/2023]
Abstract
As the demand for tea (Camellia sinensis) has grown across the world, the amount of biomass waste that has been produced during the harvesting process has also increased. Tea consumption was estimated at about 6.3 million tonnes in 2020 and is anticipated to reach 7.4 million tonnes by 2025. The generation of tea waste (TW) after use has also increased concurrently with rising tea consumption. TW includes clipped stems, wasted tea leaves, and buds. Many TW-derived products have proven benefits in various applications, including energy generation, energy storage, wastewater treatment, and pharmaceuticals. TW is widely used in environmental and energy-related applications. Energy recovery from low- and medium-calorific value fuels may be accomplished in a highly efficient manner using pyrolysis, anaerobic digestion, and gasification. TW-made biochar and activated carbon are also promising adsorbents for use in environmental applications. Another area where TW shows promise is in the synthesis of phytochemicals. This review offers an overview of the conversion procedures for TW into value-added products. Further, the improvements in their applications for energy generation, energy storage, removal of different contaminants, and extraction of phytochemicals have been reviewed. A comprehensive assessment of the sustainable use of TWs as environmentally acceptable renewable resources is compiled in this review.
Collapse
Affiliation(s)
- Prangan Duarah
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, India
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, India
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, India
| |
Collapse
|
11
|
Antoniolli A, Becerra L, Piccoli P, Fontana A. Phenolic, Nutritional and Sensory Characteristics of Bakery Foods Formulated with Grape Pomace. PLANTS (BASEL, SWITZERLAND) 2024; 13:590. [PMID: 38475437 DOI: 10.3390/plants13050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
The potentiality of cv. Malbec grape pomace (GP) as a functional ingredient in the formulation of bakery foods (muffins, biscuits and cereal bars) was studied. The effect of GP addition on the phenolic compounds (PCs) composition, nutritional and sensory properties were evaluated. The addition of GP increased the content of dietary fiber, proteins, ash, total phenolic content (TPC), antiradical capacity (AC), anthocyanins and non-anthocyanin PCs while decreasing the carbohydrates content. The main PCs given by the GP to supplemented foods were quercetin-3-O-glucoside, rutin, caffeic acid, syringic acid and (+)-catechin. For anthocyanins, the acylated derivatives were more stable to heat treatment (baking) in food processing which was evidenced by a higher proportion of these PCs compounds when compared to the same derivatives quantified in GP. In general, when the TPC or individual concentrations of PCs were analyzed in a nutritional or functional context, one portion of the supplemented foods showed levels high enough to satisfy the recommended dose per day of these bioactive compounds. Additionally, the foods were well received by consumers during the sensory evaluation and supplemented biscuits received the highest acceptability. This study demonstrated that GP could be a viable functional ingredient in bakery foods to incorporate components like PCs and dietary fiber into traditional consumers' diets.
Collapse
Affiliation(s)
- Andrea Antoniolli
- Cátedra de Química Orgánica y Biológica, Departamento de Biomatemática y Fisicoquímica, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo (UNCuyo), Chacras de Coria M5528AHB, Argentina
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza (IBAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Almirante Brown 500, Chacras de Coria M5528AHB, Argentina
| | - Lucía Becerra
- Cátedra de Química Orgánica y Biológica, Departamento de Biomatemática y Fisicoquímica, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo (UNCuyo), Chacras de Coria M5528AHB, Argentina
| | - Patricia Piccoli
- Cátedra de Química Orgánica y Biológica, Departamento de Biomatemática y Fisicoquímica, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo (UNCuyo), Chacras de Coria M5528AHB, Argentina
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza (IBAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Almirante Brown 500, Chacras de Coria M5528AHB, Argentina
| | - Ariel Fontana
- Cátedra de Química Orgánica y Biológica, Departamento de Biomatemática y Fisicoquímica, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo (UNCuyo), Chacras de Coria M5528AHB, Argentina
| |
Collapse
|
12
|
Constantin OE, Stoica F, Rațu RN, Stănciuc N, Bahrim GE, Râpeanu G. Bioactive Components, Applications, Extractions, and Health Benefits of Winery By-Products from a Circular Bioeconomy Perspective: A Review. Antioxidants (Basel) 2024; 13:100. [PMID: 38247524 PMCID: PMC10812587 DOI: 10.3390/antiox13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Significant waste streams produced during winemaking include winery by-products such as pomace, skins, leaves, stems, lees, and seeds. These waste by-products were frequently disposed of in the past, causing resource waste and environmental issues. However, interest has risen in valorizing vineyard by-products to tap into their latent potential and turn them into high-value products. Wine industry by-products serve as a potential economic interest, given that they are typically significant natural bioactive sources that may exhibit significant biological properties related to human wellness and health. This review emphasizes the significance of winery by-product valorization as a sustainable management resource and waste management method. The novelty of this review lies in its comprehensive analysis of the potential of winery by-products as a source of bioactive compounds, extraction techniques, health benefits, and applications in various sectors. Chemical components in winery by-products include bioactive substances, antioxidants, dietary fibers, organic acids, and proteins, all of which have important industrial and therapeutic applications. The bioactives from winery by-products act as antioxidant, antidiabetic, and anticancer agents that have proven potential health-promoting effects. Wineries can switch from a linear waste management pattern to a more sustainable and practical method by adopting a circular bioeconomy strategy. Consequently, the recovery of bioactive compounds that function as antioxidants and health-promoting agents could promote various industries concomitant within the circular economy.
Collapse
Affiliation(s)
- Oana Emilia Constantin
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (R.N.R.); (N.S.); (G.E.B.)
| | - Florina Stoica
- Faculty of Agriculture, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania;
| | - Roxana Nicoleta Rațu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (R.N.R.); (N.S.); (G.E.B.)
- Faculty of Agriculture, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania;
| | - Nicoleta Stănciuc
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (R.N.R.); (N.S.); (G.E.B.)
| | - Gabriela Elena Bahrim
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (R.N.R.); (N.S.); (G.E.B.)
| | - Gabriela Râpeanu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (R.N.R.); (N.S.); (G.E.B.)
| |
Collapse
|
13
|
Pérez K, Cassano A, Ruby-Figueroa R. The Optimization of Operating Conditions in the Cross-Flow Microfiltration of Grape Marc Extract by Response Surface Methodology. Foods 2023; 13:20. [PMID: 38201048 PMCID: PMC10778125 DOI: 10.3390/foods13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The recovery of valuable compounds like phenolic compounds and sugars from grape marc extracts implies different steps, including clarification. In this study, a response surface methodology (RSM) was used as a statistical tool to study the effects of operating conditions such as transmembrane pressure (TMP), temperature and feed flow rate on the performance of a microfiltration (MF) monotubular ceramic membrane with a pore size of 0.14 μm in the clarification of grape marc extract from the Carménère variety, as well to optimize the process conditions by implementing the Box-Behnken statistical design. The desirability function approach was applied to analyze the regression model equations in order to maximize the permeate flux and concentration of malvidin-3-O-glucoside, glucose and fructose in the clarified extract. The optimal operating conditions were found to be 1 bar, 29.01 °C and 5.64 L/min. Under these conditions, the permeate flux and concentration of malvidin-3-O-glucoside, glucose and fructose resulted in 65.78 L/m2h, 43.73 mg/L, 305.89 mg/L, and 274.85 mg/L, respectively.
Collapse
Affiliation(s)
- Karla Pérez
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile;
| | - Alfredo Cassano
- Institute on Membrane Technology, ITM-CNR, University of Calabria, via P. Bucci, 17/C, 87036 Rende, Italy
| | - René Ruby-Figueroa
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile;
| |
Collapse
|
14
|
Ferreira C, Moreira MM, Delerue-Matos C, Sarraguça M. Subcritical Water Extraction to Valorize Grape Biomass-A Step Closer to Circular Economy. Molecules 2023; 28:7538. [PMID: 38005259 PMCID: PMC10673199 DOI: 10.3390/molecules28227538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
With the increase in the world population, the overexploitation of the planet's natural resources is becoming a worldwide concern. Changes in the way humankind thinks about production and consumption must be undertaken to protect our planet and our way of living. For this change to occur, sustainable development together with a circular economic approach and responsible consumption are key points. Agriculture activities are responsible for more than 10% of the greenhouse gas emissions; moreover, by 2050, it is expected that food production will increase by 60%. The valorization of food waste is therefore of high importance to decrease the environmental footprint of agricultural activities. Fruits and vegetables are wildly consumed worldwide, and grapes are one of the main producers of greenhouse gases. Grape biomass is rich in bioactive compounds that can be used for the food, pharmaceutical and cosmetic industries, and their extraction from this food residue has been the target of several studies. Among the extraction techniques used for the recovery of bioactive compounds from food waste, subcritical water extraction (SWE) has been the least explored. SWE has several advantages over other extraction techniques such as microwave and ultrasound extraction, allowing high yields with the use of only water as the solvent. Therefore, it can be considered a green extraction method following two of the principles of green chemistry: the use of less hazardous synthesis (principle number 3) and the use of safer solvents and auxiliaries (principle number 5). In addition, two of the green extraction principles for natural products are also followed: the use of alternative solvents or water (principle number 2) and the use of a reduced, robust, controlled and safe unit operation (principle number 5). This review is an overview of the extraction process using the SWE of grape biomass in a perspective of the circular economy through valorization of the bioactive compounds extracted. Future perspectives applied to the SWE are also discussed, as well as its ability to be a green extraction technique.
Collapse
Affiliation(s)
- Cátia Ferreira
- LAQV/REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Manuela M. Moreira
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.M.M.); (C.D.-M.)
| | - Cristina Delerue-Matos
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.M.M.); (C.D.-M.)
| | - Mafalda Sarraguça
- LAQV/REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| |
Collapse
|
15
|
Poiana MA, Alexa E, Radulov I, Raba DN, Cocan I, Negrea M, Misca CD, Dragomir C, Dossa S, Suster G. Strategies to Formulate Value-Added Pastry Products from Composite Flours Based on Spelt Flour and Grape Pomace Powder. Foods 2023; 12:3239. [PMID: 37685172 PMCID: PMC10487000 DOI: 10.3390/foods12173239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
In recent years, sustainability has promoted new research to develop reformulation strategies for value-added food products by exploiting grape pomace. Grape pomace powder (GP) was used to substitute spelt flour (SF) at 0, 5, 10, 15, 20 and 25% to obtain three types of fortified pastry products: biscuits and cakes involving a chemical leavening agent, and rolls leavened by yeast. Proximate composition, total phenolic content (TPC), total flavonoids content (TFC), 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and ferric-reducing antioxidant power (FRAP) along with physical characteristics and sensory analysis of the enriched products were considered. The retention rate of the functional attributes of formulations in response to baking was also evaluated. Significant improvements in TPC, TFC and both antioxidant tests were achieved in the fortified products by the incremental incorporation of GP. With a substitution of 25% SF by GP, the following increases were recorded in biscuits, cakes and rolls over the control samples: 7.198-, 7.733- and 8.117-fold for TPC; 8.414-, 7.000- and 8.661-fold for TFC; 16.334-, 17.915- and 18.659-fold for FRAP and 16.384-, 17.908- and 18.775-fold for DPPH. The retention rates of TPC, TFC, FRAP and DPPH relative to the corresponding dough were 41-63%, 37-65%, 48-70% and 45-70%. The formulas leavened by yeast revealed higher functionality than those produced with a chemical raising agent. With the increase in GP, the elasticity and porosity gradually decreased for cakes and rolls, while the spread ratio of biscuits increased. Regarding sensory evaluation, all formulations with incorporated GP up to 10% were rated at an extremely pleasant acceptability level. The solutions derived from this study have great practical applicability for the development of new pastry formulations with improved functionality from GP valorisation.
Collapse
Affiliation(s)
- Mariana-Atena Poiana
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania; (M.-A.P.); (I.C.); (M.N.); (C.D.M.); (C.D.); (S.D.)
| | - Ersilia Alexa
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania; (M.-A.P.); (I.C.); (M.N.); (C.D.M.); (C.D.); (S.D.)
| | - Isidora Radulov
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania;
| | - Diana-Nicoleta Raba
- Faculty of Tourism and Rural Management, University of Life Sciences “King Michael I” from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania; (D.-N.R.); (G.S.)
| | - Ileana Cocan
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania; (M.-A.P.); (I.C.); (M.N.); (C.D.M.); (C.D.); (S.D.)
| | - Monica Negrea
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania; (M.-A.P.); (I.C.); (M.N.); (C.D.M.); (C.D.); (S.D.)
| | - Corina Dana Misca
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania; (M.-A.P.); (I.C.); (M.N.); (C.D.M.); (C.D.); (S.D.)
| | - Christine Dragomir
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania; (M.-A.P.); (I.C.); (M.N.); (C.D.M.); (C.D.); (S.D.)
| | - Sylvestre Dossa
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania; (M.-A.P.); (I.C.); (M.N.); (C.D.M.); (C.D.); (S.D.)
| | - Gabriel Suster
- Faculty of Tourism and Rural Management, University of Life Sciences “King Michael I” from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania; (D.-N.R.); (G.S.)
| |
Collapse
|
16
|
Li X, Wang SC. Upcycling flavanol-rich Chardonnay and Pinot noir grape thinned clusters as potentially functional food ingredients in cocoa-based products. Food Sci Nutr 2023; 11:3497-3505. [PMID: 37324846 PMCID: PMC10261795 DOI: 10.1002/fsn3.3338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/04/2023] [Accepted: 03/12/2023] [Indexed: 06/17/2023] Open
Abstract
In California, over 3.4 million tons of wine grapes were crushed in 2020 while every year roughly 20% of the grape mass goes unused. Grape cluster thinning at veraison, a common agricultural practice to ensure color homogeneity in wine grapes, adds to the production costs and generates substantial on-farm loss during grapevine cultivation in which the health-promoting values of thinned clusters (unripe grapes) are usually overlooked. In particular, the health-promoting properties of flavanol monomers, specifically (+)-catechin and (-)-epicatechin, and their oligomeric procyanidins, have been extensively studied in cocoa and chocolate but not so much in grape thinned clusters in recent epidemiology studies. As part of the important agricultural by-products upcycling effort, the current study compared thinned clusters from Chardonnay and Pinot noir, two premium wine grape varieties cultivated in California, to a traditionally Dutch (alkalized) cocoa powder that has been widely used in food applications. Thinned cluster fractions from Chardonnay and Pinot noir grapes grown in the North Coast of California showed much higher concentrations of flavanol monomers and procyanidins, with 208.8-763.5 times more (+)-catechin, 3.4-19.4 times more (-)-epicatechin, and 3.8-12.3 times more procyanidins (by degree of polymerization DP 1-7) than those in the traditionally Dutch cocoa powder. These flavanol-rich thinned clusters that are also considered as plant-based natural products suggested great potential to be functional ingredients in cocoa-based products-which have been ubiquitously perceived as flavanol-rich products by consumers-to enhance their overall dietary flavanol content.
Collapse
Affiliation(s)
- Xueqi Li
- Department of Food Science and TechnologyUniversity of California‐DavisDavisCalifornia95616USA
| | - Selina C. Wang
- Department of Food Science and TechnologyUniversity of California‐DavisDavisCalifornia95616USA
| |
Collapse
|
17
|
de Andrade Arruda Fernandes I, Ribeiro IS, Maciel GM, Pedro AC, Bortolini DG, Ribeiro VR, Barros L, Haminiuk CWI. Biosorption of bioactive compounds in bacterial nanocellulose: Mechanisms and physical-chemical properties. Int J Biol Macromol 2023; 240:124349. [PMID: 37054855 DOI: 10.1016/j.ijbiomac.2023.124349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/14/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Bacterial cellulose (BC) is a biomaterial produced by Gluconacetobacter xylinus, with wide applicability in different areas, such as biomedical, pharmaceutical, and food. BC production is usually carried out in a medium containing phenolic compounds (PC), such as teas, however, the purification process leads to the loss of such bioactive. Thus, the innovation of this research consists of the reincorporation of PC after the purification of the BC matrices through the biosorption process. In this context, the effects of the biosorption process in BC were evaluated to maximize the incorporation of phenolic compounds from a ternary mixture of hibiscus (Hibiscus sabdariffa), white tea (Camellia sinensis), and grape pomace (Vitis labrusca). The biosorbed membrane (BC-Bio) showed a great concentration of total phenolic compounds (TPC = 64.89 mg L-1) and high antioxidant capacity through different assays (FRAP: 130.7 mg L-1, DPPH: 83.4 mg L-1, ABTS: 158.6 mg L-1, TBARS: 234.2 mg L-1). The physical tests also indicated that the biosorbed membrane presented high water absorption capacity, thermal stability, low permeability to water vapor and improved mechanical properties compared to BC-control. These results index that the biosorption of phenolic compounds in BC efficiently increases bioactive content and improves physical membrane characteristics. Also, PC release in a buffered solution suggests that BC-Bio can be used as a polyphenol delivery system. Therefore, BC-Bio is a polymer with wide application in different industrial segments.
Collapse
Affiliation(s)
| | - Isabela Sampaio Ribeiro
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), 81531-980 Curitiba, Paraná, Brazil
| | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), 81280-340 Curitiba, Paraná, Brazil
| | - Alessandra Cristina Pedro
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), 81531-980 Curitiba, Paraná, Brazil
| | - Débora Gonçalves Bortolini
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), 81531-980 Curitiba, Paraná, Brazil
| | - Valéria Rampazzo Ribeiro
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), 81531-980 Curitiba, Paraná, Brazil
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal.
| | | |
Collapse
|
18
|
Rodrigues RP, Sousa AM, Gando-Ferreira LM, Quina MJ. Grape Pomace as a Natural Source of Phenolic Compounds: Solvent Screening and Extraction Optimization. Molecules 2023; 28:molecules28062715. [PMID: 36985687 PMCID: PMC10054490 DOI: 10.3390/molecules28062715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
The optimization of extraction by using solvents of phenolic compounds (TPh) of grape pomace (GP) based on a central composite design was investigated. The GP was characterized, and preliminary assays were conducted with five different solvents (water, ethanol, acetone, methanol, and butanol) and the aqueous mixtures thereof. Ethanol and acetone were revealed to be the best solvents for TPh extraction. The main extraction parameters (temperature—T, time—t, solvent concentration, and liquid–solid ratio—L/S) were optimized by using a central composite design. The optimized conditions for the ethanol extraction (T = 60 °C, t = 1.5 h, L/S = 25 mL/gdryGP) and for acetone (T = 50 °C, t = 1.5 h, L/S = 25 mL/gdryGP) were determined. Single-stage extraction revealed a TPh of 45.18 ± 9.51 mgGAE/gdryGP for acetone and a TPh of 38.70 ± 3.64 mgGAE/gdryGP for ethanol. The characterization of the extracts revealed the presence of gallic acid, caffeic acid, syringic acid, vanillic acid, chlorogenic acid, and p-coumaric acid, where the concentration of the first three compounds stands out in all extracts. A three-stage extraction increased the yield of ethanol to 63.3 mg GAE/gdryGP and the yield of acetone to 59.2 mg GAE/gdryGP. Overall, both solvents allow the extraction of phenolic compounds of grape pomace, but ethanol is commonly considered a greener solvent for this purpose.
Collapse
|
19
|
Tian X, Li D, Zhao X, Xiao Z, Sun J, Yuan T, Wang Y, Zuo X, Yang G, Yu T. Dietary grape pomace extract supplementation improved meat quality, antioxidant capacity, and immune performance in finishing pigs. Front Microbiol 2023; 14:1116022. [PMID: 36937296 PMCID: PMC10017996 DOI: 10.3389/fmicb.2023.1116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
In pig production, reducing production costs and improving immunity are important. Grape pomace, a good agricultural by-product, has been thrown away as food waste for a long time. Recently, we found that it could be used as a new source of pig feed. We investigated the effect of grape pomace on inflammation, gut barrier function, meat quality, and growth performance in finishing pigs. Our results indicated that treatment samples showed a significant decrease in water loss, IL-1β, DAO, ROS, and MDA content (p < 0.05). IgA, IgG, IgM, CAT, T-AOC, SOD, and IFN-γ significantly increased compared with those in control samples (p < 0.05). Meanwhile, the relative mRNA expression of the tight junction protein occludin showed a significant difference (p < 0.05). Analysis of metagenomic sequencing indicated that grape pomace significantly decreased the relative abundance of Treponema and Streptococcus (p < 0.05). In summary, our results demonstrated that grape pomace could improve meat quality, alleviate inflammation, and decrease oxidative stress.
Collapse
Affiliation(s)
- Xuekai Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Dong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zitong Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingchun Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tiantian Yuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongcheng Wang
- Qinghai Yufu Animal Husbandry Development Co., Ltd, Qinghai, China
| | - Xinhui Zuo
- Ningxia Lilan Winery Co., Ltd, Yinchuan, Ningxia, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Taiyong Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
20
|
Use of red grape pulp, marc and must in the production of beer. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-022-04195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AbstractThe aim of the paper was to determine the potential of using grape pulp, marc and must in the beer production process. Samples were fermented using non-Saccharomyces yeasts (Dekkera bruxellensis 3429, Metschnikowia pulcherrima MG970690), while Saccharomyces cerevisiae Safale US-05 was used as a control. Grape marc was obtained by pressing grape must. The grape marc, must and pulp were pasteurized and, together with wort, volumetrically introduced into fermentation flasks for fermentation. Mass changes taking place during the process were analyzed. Real extract, alcohol content, free amino nitrogen (FAN) content, titratable acidity, pH, color, organic acid profile and content of sugars were determined in obtained beers. The addition of grape marc, must and pulp increased the value of most of the tested parameters. It did not adversely affect the fermentation process. This offers the possibility of using grape marc, must and pulp in the brewing industry, even with the use of non-Saccharomyces yeast monocultures.
Collapse
|
21
|
Castillo A, Celeiro M, Rubio L, Bañobre A, Otero-Otero M, Garcia-Jares C, Lores M. Optimization of bioactives extraction from grape marc via a medium scale ambient temperature system and stability study. Front Nutr 2022; 9:1008457. [PMID: 36386901 PMCID: PMC9650278 DOI: 10.3389/fnut.2022.1008457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/13/2022] [Indexed: 07/30/2023] Open
Abstract
A scalable procedure with minimum energy requirements, MSAT (Medium Scale Ambient Temperature), in combination with solvents generally recognized as safe (GRAS), has been optimized to obtain polyphenolic extracts from white grape (Vitis vinifera) marc. The solvents considered were propylene glycol (Pg), ethanol (Et), and ethyl lactate (Lc), as well as their respective hydro-organic mixtures. In a first approach, the operating parameters were optimized through a response surface matrix: extraction solvent volume (range 10-150 mL), marc mass (range 20-200 g) and marc/dispersant mass ratio (range 0.5-2 g⋅g-1), using the total polyphenol content (TPC) and the antioxidant activity (AA) of the extracts as response parameters. The highest TPC (5,918 mgGAE⋅L-1) and AA (44 mmolTE⋅L-1) values were obtained using 200 g marc and 100 mL solvent. Regarding the type of solvent, a better response was reached with Lc > Et > Pg > H2O obtaining a polyphenol concentration of 252 mg⋅L-1 for the hydro-organic isovolumetric ratio of ethyl lactate. In addition, the stability of the extracts was studied for 62 days. The effect of factors such as temperature, light exposure, and oxidative reactivity was evaluated. The bioactivity indices showed no changes with the storage conditions of the extracts in the first month of analysis, after which 75% of the antioxidant activity as the concentration of the polyphenolic profile (204 mg⋅L-1) remains. The absence of reactive oxygen and the cooling of the extract (4°C) were the most determining factors (p < 0.05) in modulating the stability of the total polyphenolic profile.
Collapse
Affiliation(s)
- Aly Castillo
- Laboratorio de Investigación y Desarrollo de Soluciones Analíticas (LIDSA), Department of Analytical Chemistry, Nutrition, and Food Science, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- CRETUS, Department of Analytical Chemistry, Nutrition, and Food Science, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Celeiro
- Laboratorio de Investigación y Desarrollo de Soluciones Analíticas (LIDSA), Department of Analytical Chemistry, Nutrition, and Food Science, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- CRETUS, Department of Analytical Chemistry, Nutrition, and Food Science, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura Rubio
- Laboratorio de Investigación y Desarrollo de Soluciones Analíticas (LIDSA), Department of Analytical Chemistry, Nutrition, and Food Science, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- CRETUS, Department of Analytical Chemistry, Nutrition, and Food Science, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Andrea Bañobre
- Laboratorio de Investigación y Desarrollo de Soluciones Analíticas (LIDSA), Department of Analytical Chemistry, Nutrition, and Food Science, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Otero-Otero
- Laboratorio de Investigación y Desarrollo de Soluciones Analíticas (LIDSA), Department of Analytical Chemistry, Nutrition, and Food Science, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carmen Garcia-Jares
- Laboratorio de Investigación y Desarrollo de Soluciones Analíticas (LIDSA), Department of Analytical Chemistry, Nutrition, and Food Science, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- CRETUS, Department of Analytical Chemistry, Nutrition, and Food Science, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marta Lores
- Laboratorio de Investigación y Desarrollo de Soluciones Analíticas (LIDSA), Department of Analytical Chemistry, Nutrition, and Food Science, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
22
|
NAUREEN ZAKIRA, DHULI KRISTJANA, DONATO KEVIN, AQUILANTI BARBARA, VELLUTI VALERIA, MATERA GIUSEPPINA, IACONELLI AMERIGO, BERTELLI MATTEO. Foods of the Mediterranean diet: citrus, cucumber and grape. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E21-E27. [PMID: 36479487 PMCID: PMC9710412 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fruit and vegetables are excellent sources of health-promoting bioactive compounds and nutraceuticals. Regular consumption of fruit and vegetables helps prevent the onset and progression of many non-communicable diseases. The Mediterranean diet envisages consumption of healthy vegetables and fruit on a daily basis for maximum health benefits. Traditional use envisages vegetable-based and fruit-based diets, and many studies scientifically proved the beneficial effects of Mediterranean vegetables and fruits. Rich in bioactive phytochemicals, citrus, cucumbers and grapes have antioxidant, anti-inflammatory, antimicrobial, cardioprotective, anti-ageing and anti-cancer properties. Studies indicate that intake of citrus, cucumbers and grapes reduces hypertension, hyperlipidemia, skin problems and infections and improves the health of the cardiovascular and nervous systems. These beneficial effects are mediated by several bioactive molecules present in Mediterranean diet vegetables and fruits, such as citrus, cucumbers and grapes. Indeed, they contains flavones, isoflavones, tannins, polyphenols and many beneficial natural molecules. This review focuses on the bioactive ingredients in citrus fruit, cucumbers and grapes, all components of the Mediterranean diet, and their health effects. A deep understanding of Mediterranean diet's components, as well as clinical trials to test natural molecules beneficial effects, will permit to further explore the therapeutic potential of the Mediterranean diet in several pathological conditions.
Collapse
Affiliation(s)
| | - KRISTJANA DHULI
- MAGI’s Lab, Rovereto (TN), Italy
- Correspondence: Kristjana Dhuli, MAGI’s Lab, Rovereto (TN), 38068, Italy. E-mail:
| | | | - BARBARA AQUILANTI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - VALERIA VELLUTI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - GIUSEPPINA MATERA
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - AMERIGO IACONELLI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - MATTEO BERTELLI
- MAGI Euregio, Bolzano, Italy
- MAGI’s Lab, Rovereto (TN), Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
23
|
Gómez-Brandón M, Fornasier F, de Andrade N, Domínguez J. Influence of earthworms on the microbial properties and extracellular enzyme activities during vermicomposting of raw and distilled grape marc. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115654. [PMID: 35792389 DOI: 10.1016/j.jenvman.2022.115654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The treatment of winery wastes by using appropriate management technologies is of utmost need in order to reduce to a minimum their disposal and avoid negative environmental impacts. This is of particular interest for grape marc, the main solid by-product of the winery industry. However, comparative studies on a pilot-scale dealing with the impact of earthworms on marc derived from both red and white grape varieties during vermicomposting are still scarce. The present study sought to evaluate the changes in the biochemical and microbiological properties of red and white raw marc in the presence and the absence of the earthworm species Eisenia andrei. The distilled marc obtained through distillation of the red grape marc was also considered under this scenario. Samples were taken after 14, 28, 42, and 63 days of vermicomposting. On day 14 earthworms led to a pronounced increase in most of the enzymatic activities, but only in those vermireactors fed with raw marc from the red grape variety. Alfa- and beta-glucosidase as well as chitinase and leucine-aminopeptidase activities were between 3 to 5-times higher relative to the control, while alkaline phosphomonoesterase was even up to 14-fold higher with earthworm presence. From day 28 onwards the magnitude of earthworms' effect on the studied enzymes was also dependent on the type of grape marc. Reduced values of basal respiration, ranging between 200 and 350 mg CO2 kg OM h-1 and indicative of stabilized materials were found in the resulting vermicomposts. Moreover, the content of macro- and micronutrients in the end products matched with those considered to have the quality criteria of a good vermicompost. Altogether, these findings reinforce the effectiveness of vermicomposting for the biological stabilization of grape marc with the dual purpose of fertilizer production and environmental protection.
Collapse
Affiliation(s)
| | - Flavio Fornasier
- CREA Research Centre for Viticulture and Enology, Gorizia, Italy; SOLIomics s.r.l., Via del Cotonificio, 129/B, 33100, Udine, Italy
| | - Nariane de Andrade
- Departamento de Ciencia do Solo, Universidade Federal de Santa María, Río Grande do Sul, 97105-900, Brazil
| | - Jorge Domínguez
- Grupo de Ecoloxía Animal (GEA), Universidad de Vigo, Vigo, 36310, Spain
| |
Collapse
|
24
|
The technological potential of agro-industrial residue from grape pulping (Vitis spp.) for application in meat products: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
25
|
Novel Zero Headspace Solid-Liquid Extraction for the Recovery of Polyphenolic Fractions from Grape Pomace. Processes (Basel) 2022. [DOI: 10.3390/pr10061112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Grape pomace (GP) is a good source of high-value compounds as up to 60% of grape polyphenols remain in it after wine-making. To overcome traditional membrane technologies’ d rawbacks, such as fouling, a novel Zero Head Space extraction (ZHE) procedure was developed. The reaction vessel comprised a filtration device with a nitrocellulose membrane. The separation was performed at 50 lb/in2 and 23 °C, with no headspace during the process. Water and methanol (both acidifie d) were evaluated as solvents during two extraction stages for the recovery and fractionation of polyphenols. Aqueous extract (AE) was mainly constituted by monomeric polyphenols while Methanol extract (ME) presented less soluble compounds, as well as a higher concentration of total anthocyanin content than AE. Additional methanolic (CE) and acetone (CAE) extractions of residual GP showed CE presented a similar profile to ME (at a lower concentration), indicating ZHE efficiency at extracting polyphenols in GP. CAE presented a non-resolved hump, characteristic of high proanthocyanidins’ polydispersity. ZHE rendered a monomeric fraction in ME (mean Degree of Polymerization, mDP of 1.38). Residual GP (cake) extractions demonstrated oligomeric polyphenol retention; mDP up to 3.05 when acetone was used. Fractionation of GP polyphenols was successfully established using a Zero Head space extractor.
Collapse
|
26
|
Current Options in the Valorisation of Vine Pruning Residue for the Production of Biofuels, Biopolymers, Antioxidants, and Bio-Composites following the Concept of Biorefinery: A Review. Polymers (Basel) 2022; 14:polym14091640. [PMID: 35566809 PMCID: PMC9101343 DOI: 10.3390/polym14091640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/16/2023] Open
Abstract
Europe is considered the largest producer of wine worldwide, showing a high market potential. Several wastes are generated at the different stages of the wine production process, namely, vine pruning, stalks, and grape marc. Typically, these residues are not used and are commonly discarded. Portugal generates annually approximately 178 thousand metric tons of wine production waste. In this context, the interest in redirecting the use of these residues has increased due to overproduction, great availability, and low costs. The utilization of these lignocellulosic biomasses derived from the wine industry would economically benefit the producers, while mitigating impacts on the environment. These by-products can be submitted to pre-treatments (physical, chemical, and biological) for the separation of different compounds with high industrial interest, reducing the waste of agro-industrial activities and increasing industrial profitability. Particularly, vine-pruning residue, besides being a source of sugar, has high nutritional value and may serve as a source of phenolic compounds. These compounds can be obtained by bioconversion, following a concept of biorefinery. In this framework, the current routes of the valorisation of the pruning residues will be addressed and put into a circular economy context.
Collapse
|
27
|
Carra JB, Matos RLND, Novelli AP, Couto ROD, Yamashita F, Ribeiro MADS, Meurer EC, Verri WA, Casagrande R, Georgetti SR, Arakawa NS, Baracat MM. Spray-drying of casein/pectin bioconjugate microcapsules containing grape (Vitis labrusca) by-product extract. Food Chem 2022; 368:130817. [PMID: 34411863 DOI: 10.1016/j.foodchem.2021.130817] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/25/2021] [Accepted: 08/06/2021] [Indexed: 01/25/2023]
Abstract
Novel microcapsules containing grape peel by-product extract were obtained. In this pursuit, complex coacervation of casein/pectin bioconjugate and spray-drying were combined. We have investigated the role of the dispersion feed rate (FR), drying air inlet temperature (IT) and drying air flow rate (AR) in the drying yield, microencapsulation efficiency, total polyphenols and anthocyanins contents, antioxidant activity, and morphology of the products. Also, the first-order degradation kinetics of the phytochemicals for both the extract and dried microcapsules was assessed and compared. The loss on the phytochemicals during spray-drying was attenuated in up to 88%, and the IT was the main factor affecting the particle properties. The polyphenols on the extract interacted with the polymers, influencing the assemble of the bioconjugate and the particle's features. Such microencapsulation strategy enhanced the thermal stability of the phytochemicals and rendered biocompatible and biodegradable products of which the nutraceutical and cosmeceutical application may have potential.
Collapse
Affiliation(s)
| | | | - Ana Paula Novelli
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Renê Oliveira do Couto
- Universidade Federal de São João del-Rei, Campus Centro-Oeste (Dona Lindu), Divinópolis, MG, Brazil
| | - Fabio Yamashita
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | - Eduardo César Meurer
- Universidade Federal do Paraná, Campus Jandaia do Sul, Rua Doutor João Maximiano, 426, Vila Operária, 86900-000 Jandaia do Sul, PR, Brazil
| | | | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Sandra Regina Georgetti
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Nilton Syogo Arakawa
- Departamento de Química, Universidade Estadual de Londrina, Londrina, PR, Brazil; Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Marcela Maria Baracat
- Departamento de Química, Universidade Estadual de Londrina, Londrina, PR, Brazil; Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Londrina, PR, Brazil.
| |
Collapse
|
28
|
|
29
|
Gómez-Brandón M, Martínez-Cordeiro H, Domínguez J. Changes in the nutrient dynamics and microbiological properties of grape marc in a continuous-feeding vermicomposting system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 135:1-10. [PMID: 34455333 DOI: 10.1016/j.wasman.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/15/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Finding strategies to reuse and treat organic wastes is of utmost need. Biological processes offer the possibility to transform them into safer end products with benefits for both agriculture and the environment. Moreover, it represents an ecologically-sound and economically attractive alternative to landfill disposal and incineration. In this work, we evaluated the feasibility of vermicomposting to treat and process grape marc, the main solid by-product of the wine industry. The long-term changes in grape marc derived from both white and red winemaking processes were assessed throughout the process of vermicomposting from a physico-chemical and microbiological perspective. New layers of fresh marc were added sequentially in the presence and absence of earthworms (Eisenia andrei) forming an age gradient during a 42-week period. An optimal moisture level of 70% was maintained over the course of the process. The pH fell within weak-alkaline levels through the layerś profile and the electrical conductivity was between 200 and 300 µS cm-1, providing optimum conditions for earthworm growth. The mass loss caused by earthworm activity led to an increased content of macro- and micronutrients at the end of the trial. An overall decrease in microbial biomass and its activity, indicative of a stabilised material, was also recorded with depth of layer. Altogether, this points to vermicomposting as a suitable management system for processing grape marc with a dual purpose, that is fertilizer production and environment protection. This is especially relevant in the current attempts to reach a fully circular economy.
Collapse
Affiliation(s)
| | | | - Jorge Domínguez
- Grupo de Ecoloxía Animal (GEA), Universidad de Vigo, Vigo 36310, Spain
| |
Collapse
|
30
|
Exhausted Grape Marc Derived Biochars: Effect of Pyrolysis Temperature on the Yield and Quality of Biochar for Soil Amendment. SUSTAINABILITY 2021. [DOI: 10.3390/su132011187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study focuses on the valorisation of winery industry wastes through slow pyrolysis of exhausted grape marc (EGM). The optimal pyrolysis parameters were firstly identified by small scale experiments carried out using thermogravimetric analysis. Nine pyrolysis temperatures were tested and their influence on the decomposition of the EGM residue and biochar yield was evaluated. Then, biochar production was conducted in a pilot plant at three chosen temperatures (450, 500 and 550 °C) at which the biochar was shown to be stable. The effects of biochar application to soil with respect to plant (ryegrass) growth was also evaluated. Pyrolysis of EGM at the 450–550 °C temperature range has been shown to generate thermally stable and nutrient-rich biochars, but only the biochar produced at 450 °C showed a marked benefit effect of ryegrass growth.
Collapse
|
31
|
Integrated Green Process for the Extraction of Red Grape Pomace Antioxidant Polyphenols Using Ultrasound-Assisted Pretreatment and β-Cyclodextrin. BEVERAGES 2021. [DOI: 10.3390/beverages7030059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Winemaking is a process that generates a large volume of solid waste biomass, which is currently under extensive investigation as a bioresource of precious polyphenolic compounds. These substances are retrieved from vinification side streams principally by deploying solid–liquid extraction methods. In this frame, the present investigation had as objective the development of an alternative, green extraction process for polyphenols, through integration of ultrasonication as a pretreatment stage, and subsequent extraction with aqueous β-cyclodextrin. Polyphenol recovery from red grape pomace (RGP) was shown to be significantly enhanced by ultrasonication pretreatment, and the use of β-cyclodextrin effectively boosted the aqueous extraction. Under optimized conditions, established by response surface methodology, the maximum yield in total polyphenols was 57.47 mg GAE g−1 dm, at 80 °C, requiring a barrier of 10.95 kJ mol−1. The extract produced was significantly enriched in catechin and quercetin, compared to the aqueous extract, exhibiting also increased antiradical activity. These findings highlighted the value of the process developed for targeted recovery of certain polyphenols and the preparation of task-specific extracts.
Collapse
|
32
|
Ncube A, Fiorentino G, Colella M, Ulgiati S. Upgrading wineries to biorefineries within a Circular Economy perspective: An Italian case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145809. [PMID: 33631583 DOI: 10.1016/j.scitotenv.2021.145809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 05/21/2023]
Abstract
In the challenge of transforming waste into useful products that can be re-used in a circular perspective, Italian wine industry can represent a suitable model for the application of the bioeconomy principles, including the valorisation of the agricultural and food waste. In the present study, a comprehensive environmental assessment of the traditional production of wine was performed and the potentiality of a biorefinery system, based on winery waste and aimed at recovering useful bio-based products, such as grapeseed oil and calcium tartrate, was examined through Life Cycle Assessment (LCA). The wine company "I Borboni", producing Asprinio wine in the Campania Region (Italy), was proposed as a case study. The hotspots of the linear production system were identified and the bottling phase, in particular the production of packaging glass, resulted to contribute to the generation of impacts at 63%, on average, versus 14.3% of the agricultural phase and 22.7% of the vinification phase. The LCA results indicated human carcinogenic toxicity, freshwater eutrophication and fossil resource scarcity impact categories as the most affected ones, with normalized impacts amounting to 9.22E-03, 3.89E-04 and 2.64E-04, respectively. Two side production chains (grapeseed oil and tartrate production) were included and circular patterns were designed and introduced in the traditional production chain with the aim of valorising the winery residues and improving the overall environmental performance. By implementing the circular approach, environmental impacts in the global warming, freshwater eutrophication and mineral resource scarcity impact categories, in particular, resulted three times lower than in the linear system. The results achieved demonstrated that closing the loops in the wine industry, through the reuse of bio-based residues alternatively to fossil-based inputs within the production process, and integrating the traditional production system with new side production chains led to an upgrade of the wineries to biorefineries, towards more sustainable production patterns.
Collapse
Affiliation(s)
- A Ncube
- International PhD Programme "Environment, Resources and Sustainable Development, Department of Science and Technology, Parthenope University of Naples, Centro Direzionale - Isola C4, 80143 Naples, Italy
| | - G Fiorentino
- ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Department for Sustainability, Division Resource Efficiency, Research Centre of Portici, P.le E. Fermi 1, Portici, 80055, Naples, Italy.
| | - M Colella
- Parthenope University of Naples, Department of Science and Technology, Centro Direzionale - Isola C4, 80143 Naples, Italy
| | - S Ulgiati
- Parthenope University of Naples, Department of Science and Technology, Centro Direzionale - Isola C4, 80143 Naples, Italy; Beijing Normal University, School of Environment, 19 Xinjiekouwai St., Haidian District, 100875 Beijing, China
| |
Collapse
|
33
|
Qi H, Zhao Y, Wang X, Wei Z, Zhang X, Wu J, Xie X, Kang K, Yang H, Shi M, Su X, Zhang C, Wu Z. Manganese dioxide driven the carbon and nitrogen transformation by activating the complementary effects of core bacteria in composting. BIORESOURCE TECHNOLOGY 2021; 330:124960. [PMID: 33744737 DOI: 10.1016/j.biortech.2021.124960] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
This study revealed core bacterial metabolic mechanisms involved in carbon (C) and nitrogen (N) in composting with adding MnO2. Two tests (control group (CK), adding MnO2 (M)) were performed. The results indicated that the MnO2 accelerated the transformation of carbon and nitrogen in composting. Core bacteria involved in the C and N conversion were identified, the complementarity effects of core bacteria were stimulated in M composting. Additionally, the influence of core bacteria on the C and N conversion could be divided into two pathways in M composting. One was that core bacteria promoted C and N conversion by accelerating the flow of amino acids into the tricarboxylic acid cycle. Another was that the complementarity effects of core bacteria increased the overall bacterial diversity, which contributed to C and N conversion. These findings showed that the addition of MnO2 to composting was a promising application to treat agricultural organic waste.
Collapse
Affiliation(s)
- Haishi Qi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xue Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xu Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Xie
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Kejia Kang
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, China
| | - Hongyan Yang
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, China
| | - Mingzi Shi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinya Su
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chunhao Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhanhai Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
34
|
Studying Microbial Communities through Co-Occurrence Network Analyses during Processes of Waste Treatment and in Organically Amended Soils: A Review. Microorganisms 2021; 9:microorganisms9061165. [PMID: 34071426 PMCID: PMC8227910 DOI: 10.3390/microorganisms9061165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Organic wastes have the potential to be used as soil organic amendments after undergoing a process of stabilization such as composting or as a resource of renewable energy by anaerobic digestion (AD). Both composting and AD are well-known, eco-friendly approaches to eliminate and recycle massive amounts of wastes. Likewise, the application of compost amendments and digestate (the by-product resulting from AD) has been proposed as an effective way of improving soil fertility. The study of microbial communities involved in these waste treatment processes, as well as in organically amended soils, is key in promoting waste resource efficiency and deciphering the features that characterize microbial communities under improved soil fertility conditions. To move beyond the classical analyses of metataxonomic data, the application of co-occurrence network approaches has shown to be useful to gain insights into the interactions among the members of a microbial community, to identify its keystone members and modelling the environmental factors that drive microbial network patterns. Here, we provide an overview of essential concepts for the interpretation and construction of co-occurrence networks and review the features of microbial co-occurrence networks during the processes of composting and AD and following the application of the respective end products (compost and digestate) into soil.
Collapse
|
35
|
Silva A, Silva V, Igrejas G, Gaivão I, Aires A, Klibi N, Enes Dapkevicius MDL, Valentão P, Falco V, Poeta P. Valorization of Winemaking By-Products as a Novel Source of Antibacterial Properties: New Strategies to Fight Antibiotic Resistance. Molecules 2021; 26:molecules26082331. [PMID: 33923843 PMCID: PMC8073494 DOI: 10.3390/molecules26082331] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence of antibiotic-resistance in bacteria has limited the ability to treat bacterial infections, besides increasing their morbidity and mortality at the global scale. The need for alternative solutions to deal with this problem is urgent and has brought about a renewed interest in natural products as sources of potential antimicrobials. The wine industry is responsible for the production of vast amounts of waste and by-products, with associated environmental problems. These residues are rich in bioactive secondary metabolites, especially phenolic compounds. Some phenolics are bacteriostatic/bactericidal against several pathogenic bacteria and may have a synergistic action towards antibiotics, mitigating or reverting bacterial resistance to these drugs. Complex phenolic mixtures, such as those present in winemaking residues (pomace, skins, stalks, leaves, and especially seeds), are even more effective as antimicrobials and could be used in combined therapy, thereby contributing to management of the antibiotic resistance crisis. This review focuses on the potentialities of winemaking by-products, their extracts, and constituents as chemotherapeutic antibacterial agents.
Collapse
Affiliation(s)
- Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.S.); (V.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (G.I.); (I.G.)
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Caparica, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.S.); (V.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (G.I.); (I.G.)
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Caparica, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (G.I.); (I.G.)
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Caparica, Portugal
| | - Isabel Gaivão
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (G.I.); (I.G.)
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
| | - Alfredo Aires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Naouel Klibi
- Laboratory of Microorganisms and Active Biomolecules, Department of Biology, Faculty of Sciences of Tunis, University of Tunis, Tunis 1008, Tunisia;
| | - Maria de Lurdes Enes Dapkevicius
- Faculty of Agricultural and Environmental Sciences, University of the Azores, 9700-042 Angra do Heroísmo, Portugal
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal
- Correspondence: (M.d.L.E.D.); (P.P.)
| | - Patrícia Valentão
- Chemistry Research Centre (CQ-VR), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Virgílio Falco
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.S.); (V.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Caparica, Portugal
- Correspondence: (M.d.L.E.D.); (P.P.)
| |
Collapse
|
36
|
Soceanu A, Dobrinas S, Sirbu A, Manea N, Popescu V. Economic aspects of waste recovery in the wine industry. A multidisciplinary approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143543. [PMID: 33199012 DOI: 10.1016/j.scitotenv.2020.143543] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
The complex composition of grapes as well as the quite large variations of each component affect the processing thereof differently and at the same time influence the yield in must, its quality and the wine product; they also influence production losses, along with the quality and quantity of by-products. Vinification wastes cause ecological problems because the neutralization and use of fermentative wastes mixed with different compounds present a danger to the environment and to the health of the population. The ecological measures of protection of the environmental factors are very important, especially the economic efficiency obtained through the recovery of the by-products. This paper focuses on the possibilities of using the by-products obtained from the wine making process, based on the fact that this drink is the most widely known in the world, with the highest percentage in terms of beverage production and implicitly with the largest quantity of by-products obtained. The valorization of these by-products leads to obtaining very valuable products both from a nutritional and industrial point of view. Experimentally, the aim was to determine the physical and chemical characteristics of different types of grape pomace and must sampled from a winery in Romania. Thus, the determination of total acidity, conductivity, pH, total content of phenolic compounds, total nitrogen and total content of pectic substances was aimed. The experimental values obtained have shown that grape pomace is a valuable by-product of the wine industry and its valorization demonstrates an important economic efficiency.
Collapse
Affiliation(s)
- Alina Soceanu
- "Ovidius" University of Constanta, Chemistry and Chemical Engineering Department, 900527 Constanta, Romania.
| | - Simona Dobrinas
- "Ovidius" University of Constanta, Chemistry and Chemical Engineering Department, 900527 Constanta, Romania.
| | - Anca Sirbu
- Constanta Maritime University, Department of Fundamental Sciences and Humanities, 900663 Constanta, Romania.
| | - Natalia Manea
- University POLITEHNICA of Bucharest, Economic Engineering Department, 060042 Bucharest, Romania.
| | - Viorica Popescu
- "Ovidius" University of Constanta, Chemistry and Chemical Engineering Department, 900527 Constanta, Romania.
| |
Collapse
|
37
|
Monitoring Commercial Starter Culture Development in Presence of Red Grape Pomace Powder to Produce Polyphenol-Enriched Fresh Ovine Cheeses at Industrial Scale Level. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7010035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Red grape Nero d’Avola cultivar grape pomace powder (GPP) was applied during fresh ovine cheese production in order to increase polyphenol content. Before cheeses were produced, the bacteria of a freeze-dried commercial starter culture were isolated and tested in vitro against GPP. Two dominant strains, both resistant to GPP, were identified. Thestarter culture was inoculated in pasteurized ewe’s milk and the curd was divided into two bulks, one added with 1% (w/w) GPP and another one GPP-free. GPP did not influence the starter culture development, since lactic acid bacteria (LAB) counts were 109 CFU/g in both cheeses at 30 d. To exclude the interference of indigenous LAB, the pasteurized milk was analyzed, and several colonies of presumptive LAB were isolated, purified and typed. Four strains were allotted into Enterococcus and Lacticaseibacillus genera. The direct comparison of the polymorphic profiles of cheese bacteria evidenced the dominance of the starter culture over milk LAB. The addition of GPP increased cheese total phenolic compounds by 0.42 g GAE/kg. Sensory evaluation indicated that GPP-enriched cheese was well appreciated by the judges, providing evidence that GPP is a suitable substrate to increase the availability of total phenolic content in fresh ovine cheese.
Collapse
|
38
|
Rivero FJ, Ciaccheri L, González-Miret ML, Rodríguez-Pulido FJ, Mencaglia AA, Heredia FJ, Mignani AG, Gordillo B. A Study of Overripe Seed Byproducts from Sun-Dried Grapes by Dispersive Raman Spectroscopy. Foods 2021; 10:foods10030483. [PMID: 33668279 PMCID: PMC7996281 DOI: 10.3390/foods10030483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 11/29/2022] Open
Abstract
Overripe seeds from sun-dried grapes submitted to postharvest dehydration constitute a scarcely investigated class of vinification byproduct with limited reports on their phenolic composition and industrial applications. In this study, Raman spectroscopy was applied to characterize a selection of overripe seed byproducts from different white grapes (cv. Moscatel, cv. Pedro Ximénez and cv. Zalema) submitted to postharvest sun drying. The Raman measurements were taken using a 1064 nm excitation laser in order to mitigate the fluorescent effect and the dispersive detection scheme allowed a compactness of the optical system. Spectroscopic data were processed by a principal component analysis to reduce the dimensionality and partner recognition. The evolution of the Raman spectrum during the overripening process was compared with the phenolic composition of grape seeds, which was determined by rapid resolution liquid chromatography/mass spectrometry (RRLC/MS). A multivariate processing of the spectroscopic data allowed the classification of overripe seeds according to the grape variety and the monitoring of stages of the postharvest sun drying process.
Collapse
Affiliation(s)
- Francisco J. Rivero
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (F.J.R.); (F.J.R.-P.); (F.J.H.); (B.G.)
| | - Leonardo Ciaccheri
- Institute of Applied Physics “Nello Carrara” (IFAC), Area di Ricerca di Firenze, Via Madonna del Piano, 10-50019 Sesto Fiorentino, Italy; (L.C.); (A.A.M.); (A.G.M.)
| | - M. Lourdes González-Miret
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (F.J.R.); (F.J.R.-P.); (F.J.H.); (B.G.)
- Correspondence: ; Tel.: +34-955420938
| | - Francisco J. Rodríguez-Pulido
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (F.J.R.); (F.J.R.-P.); (F.J.H.); (B.G.)
| | - Andrea A. Mencaglia
- Institute of Applied Physics “Nello Carrara” (IFAC), Area di Ricerca di Firenze, Via Madonna del Piano, 10-50019 Sesto Fiorentino, Italy; (L.C.); (A.A.M.); (A.G.M.)
| | - Francisco J. Heredia
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (F.J.R.); (F.J.R.-P.); (F.J.H.); (B.G.)
| | - Anna G. Mignani
- Institute of Applied Physics “Nello Carrara” (IFAC), Area di Ricerca di Firenze, Via Madonna del Piano, 10-50019 Sesto Fiorentino, Italy; (L.C.); (A.A.M.); (A.G.M.)
| | - Belén Gordillo
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (F.J.R.); (F.J.R.-P.); (F.J.H.); (B.G.)
| |
Collapse
|
39
|
Kalefetoğlu Macar T, Macar O, Yalçın E, Çavuşoğlu K. Protective roles of grape seed (Vitis vinifera L.) extract against cobalt(II) nitrate stress in Allium cepa L. root tip cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:270-279. [PMID: 32809124 DOI: 10.1007/s11356-020-10532-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Excessive doses of toxic metals such as cobalt may cause detrimental hazards to exposed organisms. Six groups of onion bulbs were formed to investigate the therapeutic effects of grape seed extract (GSE) against cobalt(II) nitrate (Co(NO3)2) exposure in Allium cepa L. root tips. Control group was irrigated with tap water, while the latter groups were exposed to 150 mg/L GSE, 300 mg/L GSE, 5.5 ppm Co(NO3)2, 5.5 ppm Co(NO3)2 + 150 mg/L GSE and 5.5 ppm Co(NO3)2 + 300 mg/L GSE, respectively. Co(NO3)2 treatment seriously inhibited the root growth, germination and weight gain of the bulbs. Mitotic index was significantly decreased, whereas the chromosomal aberrations and micronuclei incidence exhibited a remarkable increase. In addition, Co(NO3)2 induced a variety of anatomical disorders in onion roots. Lipid peroxidation levels of the cellular membranes were assessed measuring the malondialdehyde content (MDA). MDA amount in Co(NO3)2-treated group reached the highest level among all groups. Co(NO3)2 treatment enhanced the activity of superoxide dismutase and catalase. The addition of GSE to Co(NO3)2 solution substantially suppressed the negative effects of Co(NO3)2 in a dose-dependent manner by strengthening the antioxidant defence system and reducing the cytotoxicity. Moreover, there was a significant recovery in growth parameters following the grape seed addition to Co(NO3)2. GSE had a remarkable reduction in genotoxicity when treated as a mixture with Co(NO3)2. Overall data obtained from this investigation proved that GSE, as a promising functional by-product, had a protective effect on Allium cepa L. against the toxic effects of Co(NO3)2.
Collapse
Affiliation(s)
- Tuğçe Kalefetoğlu Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, 28400, Giresun, Turkey
| | - Oksal Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, 28400, Giresun, Turkey.
| | - Emine Yalçın
- Faculty of Science and Art, Department of Biology, Giresun University, 28049, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Faculty of Science and Art, Department of Biology, Giresun University, 28049, Giresun, Turkey
| |
Collapse
|
40
|
Muñoz-Bernal ÓA, Coria-Oliveros AJ, de la Rosa LA, Rodrigo-García J, Del Rocío Martínez-Ruiz N, Sayago-Ayerdi SG, Alvarez-Parrilla E. Cardioprotective effect of red wine and grape pomace. Food Res Int 2020; 140:110069. [PMID: 33648292 DOI: 10.1016/j.foodres.2020.110069] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/03/2020] [Accepted: 12/20/2020] [Indexed: 02/02/2023]
Abstract
Several studies have related moderate consumption of red wine with prevention of cardiovascular diseases (CVD). According to epidemiological studies, those regions with high consumption of red wine and a Mediterranean diet show a low prevalence of CVD. Such an effect has been attributed to phenolic compounds present in red wines. On the other hand, by-products obtained during winemaking are also a significant source of phenolic compounds but have been otherwise overlooked. The cardioprotective effect of red wine and its byproducts is related to their ability to prevent platelet aggregation, modify the lipid profile, and promote vasorelaxation. Phenolic content and profile seem to play an important role in these beneficial effects. Inhibition of platelet aggregation is dose-dependent and more efficient against ADP. The antioxidant capacity of phenolic compounds from red wine and its by-products, is involved in preventing the generation of ROS and the modification of the lipid profile, to prevent LDL oxidation. Phenolic compounds can also, modulate the activity of specific enzymes to promote NO production and vasorelaxation. Specific phenolic compounds like resveratrol are related to promote NO, and quercetin to inhibit platelet aggregation. Nevertheless, concentration that causes those effects is far from that in red wines. Synergic and additive effects of a mix of phenolic compounds could explain the cardioprotective effects of red wine and its byproducts.
Collapse
Affiliation(s)
- Óscar A Muñoz-Bernal
- Department of Chemical Biological Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Alma J Coria-Oliveros
- Department of Chemical Biological Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Laura A de la Rosa
- Department of Chemical Biological Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Joaquín Rodrigo-García
- Department of Health Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Nina Del Rocío Martínez-Ruiz
- Department of Chemical Biological Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Sonia G Sayago-Ayerdi
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico No 2595, Col. Lagos del Country, CP 63175, Tepic, Nayarit, Mexico
| | - Emilio Alvarez-Parrilla
- Department of Chemical Biological Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico.
| |
Collapse
|
41
|
Pereira P, Palma C, Ferreira-Pêgo C, Amaral O, Amaral A, Rijo P, Gregório J, Palma L, Nicolai M. Grape Pomace: A Potential Ingredient for the Human Diet. Foods 2020; 9:E1772. [PMID: 33260373 PMCID: PMC7760011 DOI: 10.3390/foods9121772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 11/30/2022] Open
Abstract
The industrial production of wine generates annually tons of waste that can and must be properly reused to reduce its polluting load ad increase the availability of passive ingredients to be used in human nutrition. Grape pomace, a by-product of winemaking, beyond being of nutritional value is a bioactive source with high potential value and benefits for human health. Having as main goal the preliminary perception of the potential use of this by-product, the aim of this study was the characterization of eight different grape pomaces. In this sense, ash content, relative ash, moisture, pH, microorganisms, metals (Al, Cd, Cr, Cu, Fe, Hg, Li, Mn, Ni, Pb, and Zn), and semi-metal (As) were reported. The parameter that limits the daily amount ingested of this product is its arsenic content, a non-essential element that belongs to the group of semi-metal. Considering the obtained results and in the light of the restrictions imposed through the legislation in regulations set by the European Commission, the inclusion of grape pomace in the industrial production of foodstuffs could be a step towards the future of human nutrition and health.
Collapse
Affiliation(s)
- Paula Pereira
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (P.P.); (C.F.-P.); (P.R.); (J.G.); (L.P.)
- CERENA—Instituto Superior Técnico (IST Center for Natural Resources and Environment), Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Carla Palma
- Instituto Hidrográfico, R. Trinas 49, 1249-093 Lisboa, Portugal;
| | - Cíntia Ferreira-Pêgo
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (P.P.); (C.F.-P.); (P.R.); (J.G.); (L.P.)
| | - Olga Amaral
- Departamento de Tecnologias e Ciências Aplicadas, Instituto Politécnico de Beja, Campus do IPBeja, Apartado 6155, 7800-295 Beja, Portugal; (O.A.); (A.A.)
| | - Anabela Amaral
- Departamento de Tecnologias e Ciências Aplicadas, Instituto Politécnico de Beja, Campus do IPBeja, Apartado 6155, 7800-295 Beja, Portugal; (O.A.); (A.A.)
| | - Patrícia Rijo
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (P.P.); (C.F.-P.); (P.R.); (J.G.); (L.P.)
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - João Gregório
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (P.P.); (C.F.-P.); (P.R.); (J.G.); (L.P.)
| | - Lídia Palma
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (P.P.); (C.F.-P.); (P.R.); (J.G.); (L.P.)
| | - Marisa Nicolai
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (P.P.); (C.F.-P.); (P.R.); (J.G.); (L.P.)
| |
Collapse
|
42
|
Cortés A, Moreira MT, Domínguez J, Lores M, Feijoo G. Unraveling the environmental impacts of bioactive compounds and organic amendment from grape marc. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 272:111066. [PMID: 32669260 DOI: 10.1016/j.jenvman.2020.111066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/08/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
In a society that produces large amounts of solid waste, the search for new methods of valorisation has led to the development of techniques that make it possible to obtain new products from waste. In the case of bio-waste, biological treatment such as anaerobic digestion or composting appear to be suitable options for producing bio-energy or bio-fertilizers respectively. Vermicomposting is a method of converting solid organic waste into resources through bio-oxidation and stabilization of the organic waste by earthworms. The purpose of this study is to establish the environmental impacts of a complete route for the valorisation of grape pomace in order to identify environmental hotspots. In this valorisation route, different value-added products are produced with potential application in the cosmetic, food and pharmaceutical sectors. Priority was given to the use of primary data in the elaboration of the data inventories needed to perform the life cycle assessment (LCA). The main findings from this study reported that the energy requirement of the distillation process is an important hot spot of the process. Although the valorisation route has some poor results in terms of the two environmental indicators (carbon footprint and normalised impact index), when economic revenues were included in this analysis, its environmental performance was better than that of other alternatives for bio-waste recovery.
Collapse
Affiliation(s)
- Antonio Cortés
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Maria Teresa Moreira
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Jorge Domínguez
- Grupo de Ecoloxía Animal (GEA), Universidade de Vigo, 36310, Vigo, Spain
| | - Marta Lores
- CRETUS Institute, Department of Analytical Chemistry, Nutrition and Food Sciences, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Gumersindo Feijoo
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
43
|
Fernandes IDAA, Maciel GM, Oliveira ALMS, Miorim AJF, Fontana JD, Ribeiro VR, Haminiuk CWI. Hybrid bacterial cellulose‐collagen membranes production in culture media enriched with antioxidant compounds from plant extracts. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Giselle Maria Maciel
- Laboratório de Biotecnologia Universidade Tecnológica Federal do Paraná (UTFPR) Curitiba Brazil
| | | | - Avany Judith Ferraro Miorim
- Departamento Acadêmico de Química e Biologia (DAQBi) Universidade Tecnológica Federal do Paraná Curitiba Brazil
| | | | - Valéria Rampazzo Ribeiro
- Programa de Pós‐Graduação em Engenharia de Alimentos (PPGEAL) Universidade Federal do Paraná (UFPR) Curitiba Brazil
| | | |
Collapse
|
44
|
Brezoiu AM, Bajenaru L, Berger D, Mitran RA, Deaconu M, Lincu D, Stoica Guzun A, Matei C, Moisescu MG, Negreanu-Pirjol T. Effect of Nanoconfinement of Polyphenolic Extract from Grape Pomace into Functionalized Mesoporous Silica on Its Biocompatibility and Radical Scavenging Activity. Antioxidants (Basel) 2020; 9:E696. [PMID: 32756379 PMCID: PMC7465047 DOI: 10.3390/antiox9080696] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
The aim of this paper is to assess the properties of Mamaia (MM) grape pomace polyphenolic extract loaded onto pristine and functionalized MCM-41 mesoporous silica as potential ingredients for nutraceuticals or cosmetics. The chemical profile of hydroalcoholic polyphenolic extracts, prepared either by conventional extraction or microwave-assisted method, was analyzed by reverse-phase high-performance liquid chromatography with photodiode array detector (HPLC-PDA) analysis, while their radical scavenger activity (RSA) was evaluated using DPPH (2,2-diphenyl-1-picrylhydrazyl radical) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) assays. The extract-loaded materials were characterized by Fourier transform infrared (FTIR) spectroscopy, N2 adsorption-desorption isotherms, thermogravimetric analysis, as well as RSA (DPPH and ABTS assays). The polyphenols release profiles from pristine and functionalized (with mercaptopropyl, propyl sulfonic acid, cyanoethyl and propionic acid moieties) MCM-41-type supports were determined in phosphate buffer solution (PBS) pH 5.7. For selected materials containing embedded phytochemicals, cellular viability, and oxidative stress level on immortalized mouse embryonic fibroblast cell line (NIH3T3) were evaluated. A more acidic functional groups linked on silica pore walls determined a higher amount of phytochemicals released in PBS. The extract-loaded materials showed a good cytocompatibility on tested concentrations. The embedded extract preserved better the RSA over time than the free extract. The polyphenols-loaded MCM-41-type silica materials, especially MM@MCM-COOH material, demonstrated a good in vitro antioxidant effect on NIH3T3 cells, being potential candidates for nutraceutical or cosmetic formulations.
Collapse
Affiliation(s)
- Ana-Maria Brezoiu
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (L.B.); (M.D.); (D.L.); (C.M.)
| | - Laura Bajenaru
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (L.B.); (M.D.); (D.L.); (C.M.)
| | - Daniela Berger
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (L.B.); (M.D.); (D.L.); (C.M.)
| | - Raul-Augustin Mitran
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei Street, 060021 Bucharest, Romania;
| | - Mihaela Deaconu
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (L.B.); (M.D.); (D.L.); (C.M.)
| | - Daniel Lincu
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (L.B.); (M.D.); (D.L.); (C.M.)
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei Street, 060021 Bucharest, Romania;
| | - Anicuta Stoica Guzun
- Department of Chemical and Biochemical Engineering, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania;
| | - Cristian Matei
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (L.B.); (M.D.); (D.L.); (C.M.)
| | - Mihaela Georgeta Moisescu
- Department of Biophysics and Cellular Biotechnology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania;
- Biophysics and Cellular Biotechnology Research Excellence Center, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, “Ovidius” University of Constanta, Aleea Universitatii No. 1, 900470 Constanta, Romania;
| |
Collapse
|
45
|
Iuga M, Mironeasa S. Potential of grape byproducts as functional ingredients in baked goods and pasta. Compr Rev Food Sci Food Saf 2020; 19:2473-2505. [PMID: 33336974 DOI: 10.1111/1541-4337.12597] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/14/2020] [Accepted: 06/10/2020] [Indexed: 12/23/2022]
Abstract
Wine making industry generates high quantities of valuable byproducts that can be used to enhance foods in order to diminish the environmental impact and to obtain more economic benefits. Grape byproducts are rich in phenolic compounds and dietary fiber, which make them suitable to improve the nutritional value of bakery, pastry, and pasta products. The viscoelastic behavior of dough and the textural and the sensory characteristics of baked goods and pasta containing grape byproducts depend on the addition level and particle size. Thus, an optimal dose of a finer grape byproducts flour must be found in order to minimize the negative effects such as low loaf volume and undesirable sensory and textural characteristics they may have on the final product quality. In the same time, an enrichment of the nutritional and functional value of the product by increasing the fiber and antioxidant compounds contents is desired. The aim of this review was to summarize the effects of the chemical components of grape byproducts on the nutritional, functional, rheological, textural, physical, and sensory characteristics of the baked goods and pasta. Further researches about the impact of foods enriched with grape byproducts on the human health, about molecular interactions between components, and about the effects of grape pomace compounds on the shelf life of baked goods and pasta are recommended.
Collapse
Affiliation(s)
- Mădălina Iuga
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Suceava, Romania
| | - Silvia Mironeasa
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Suceava, Romania
| |
Collapse
|
46
|
Ahmad B, Yadav V, Yadav A, Rahman MU, Yuan WZ, Li Z, Wang X. Integrated biorefinery approach to valorize winery waste: A review from waste to energy perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137315. [PMID: 32135320 DOI: 10.1016/j.scitotenv.2020.137315] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
The ever-increasing environmental crisis, depleting natural resources, and uncertainties in fossil fuel availability have rekindled researchers' attention to develop green and environmentally friendlier strategies. In this context, a biorefinery approach with a zero-waste theme has stepped-up as the method of choice for sustainable production of an array of industrially important products to address bio-economy challenges. Grape winery results in substantial quantities of solid organic and effluent waste, which epitomizes an increasing concentration of pollution problems with direct damage to human health, economy and nature. From the perspective of integrated biorefinery and circular economy, winery waste could be exploited for multiple purpose value-added products before using the biomass for energy security. This review covers state-of-the-art biorefinery opportunities beyond traditional methods as a solution to overcome many current challenges such as waste minimization in grape leaves, stems, seeds, pomace, wine lees, vinasse etc. and the biosynthesis of various high-value bioproducts viz., phenolic compounds, hydroxybenzoic acids, hydroxycinnamic acids, flavonoids, tartaric acids, lignocellulosic substrates etc.. The critical discussion on the valorization of winery waste (solid, liquid, or gaseous) and life cycle assessment was deployed to find a sustainable solution with value added energy products in an integrated biorefinery approach, keeping the environment and circular economy in the background.
Collapse
Affiliation(s)
- Bilal Ahmad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Ashish Yadav
- ICAR-Central Institute for Sub Tropical Horticulture, Lucknow 226101, U.P., India
| | - Mati Ur Rahman
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Wang Zhong Yuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| |
Collapse
|
47
|
|
48
|
Gómez-Brandón M, Aira M, Santana N, Pérez-Losada M, Domínguez J. Temporal Dynamics of Bacterial Communities in a Pilot-Scale Vermireactor Fed with Distilled Grape Marc. Microorganisms 2020; 8:microorganisms8050642. [PMID: 32354197 PMCID: PMC7284424 DOI: 10.3390/microorganisms8050642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 01/23/2023] Open
Abstract
Vermicomposting has been found as a profitable approach to dispose of and treat large quantities of raw grape marc. However, less information is available with regard to its efficiency for treating distillery winery byproducts, even though distillation has been widely used as a way to economically valorize grape marc. As such, we sought to characterize the compositional and functional changes in bacterial communities during vermicomposting of distilled grape marc by using 16S rRNA high-throughput sequencing. Samples were collected at the initiation of vermicomposting and at days 14, 21, 28, 35 and 42. There were significant changes (p < 0.0001) in the bacterial community composition of distilled grape marc after 14 days of vermicomposting that were accompanied by twofold increases in bacterial richness and diversity from a taxonomic and phylogenetic perspective. This was followed by significant increases in functional diversity of the bacterial community, including metabolic capacity, lignin and cellulose metabolism, and salicylic acid synthesis. These findings indicate that the most striking compositional and functional bacterial community changes took place during the active phase of the process. They also pinpoint functional attributes that may be related to the potential beneficial effects of distilled grape marc vermicompost when applied on soil and plants.
Collapse
Affiliation(s)
- María Gómez-Brandón
- Grupo de Ecoloxía Animal (GEA), Universidade de Vigo, E-36310 Vigo, Spain
- Correspondence:
| | - Manuel Aira
- Grupo de Ecoloxía Animal (GEA), Universidade de Vigo, E-36310 Vigo, Spain
| | - Natielo Santana
- Department of Soil Science, Federal University of Santa Maria, 97119-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Marcos Pérez-Losada
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Jorge Domínguez
- Grupo de Ecoloxía Animal (GEA), Universidade de Vigo, E-36310 Vigo, Spain
| |
Collapse
|
49
|
Rapid Bacterial Community Changes during Vermicomposting of Grape Marc Derived from Red Winemaking. Microorganisms 2019; 7:microorganisms7100473. [PMID: 31635111 PMCID: PMC6843324 DOI: 10.3390/microorganisms7100473] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022] Open
Abstract
Previous studies dealing with changes in microbial communities during vermicomposting were mostly performed at lab-scale conditions and by using low-throughput techniques. Therefore, we sought to characterize the bacterial succession during the vermicomposting of grape marc over a period of 91 days in a pilot-scale vermireactor. Samples were taken at the initiation of vermicomposting, and days 14, 28, 42, and 91, representing both active and mature stages of vermicomposting. By using 16S rRNA high-throughput sequencing, significant changes in the bacterial community composition of grape marc were found after 14 days and throughout the process (p < 0.0001). There was also an increase in bacterial diversity, both taxonomic and phylogenetic, from day 14 until the end of the trial. We found the main core microbiome comprised of twelve bacterial taxa (~16.25% of the total sequences) known to be capable of nitrogen fixation and to confer plant-disease suppression. Accordingly, functional diversity included increases in specific genes related to nitrogen fixation and synthesis of plant hormones (salicylic acid) after 91 days. Together, the findings support the use of grape marc vermicompost for sustainable practices in the wine industry by disposing of this high-volume winery by-product and capturing its value to improve soil fertility.
Collapse
|
50
|
A Horticultural Medium Established from the Rapid Removal of Phytotoxins from Winery Grape Marc. HORTICULTURAE 2019. [DOI: 10.3390/horticulturae5040069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Grape (Vitis vinifera L.) marc has long been utilized as a compost feedstock. However, this process takes an extended period of time due to the phytotoxic chemical composition of the marc. Removal of these compounds presents an opportunity to utilize the grape marc as a growing medium. Following a water-based extraction procedure to remove polyphenolic compounds of interest, analysis of the depleted marc showed a decrease in the content of these compounds, and in nutrient and trace element levels. Carrot (Daucus carota L.) and corn (Zea mays L.) seedling emergence in the depleted marc and blends with compost were not adversely affected, demonstrating its effectiveness for growing plants at all ratios. A 50:50 blend of compost and depleted grape marc resulted in plant growth equivalent to the compost alone. This combined with the observed water holding capacity suggests that depleted grape marc, when blended with compost, can be a suitable alternative to peat or coconut coir for seedlings.
Collapse
|