1
|
Fang Y, Meng H, Wang J. Mechanisms of LPS-induced toxicity in endothelial cells and the protective role of geniposidic acid. Food Chem Toxicol 2025; 201:115488. [PMID: 40288513 DOI: 10.1016/j.fct.2025.115488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/19/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025]
Abstract
Vascular inflammation and oxidative stress are critical pathogenic factors in cardiovascular diseases. Lipopolysaccharide (LPS)-induced endothelial cytotoxicity, driven by oxidative stress and inflammation, remains incompletely understood. This study highlights the molecular mechanisms underlying LPS toxicity, focusing on the ROS/JNK/NLRP3 signaling axis. LPS disrupts mitochondrial function, increases ROS accumulation, activates JNK phosphorylation, and induces NLRP3 inflammasome activation, culminating in pyroptosis through caspase-1-mediated GSDMD cleavage. Mechanistic studies with the JNK inhibitor SP600125 confirmed the critical role of the ROS/JNK/NLRP3 pathway in LPS-induced endothelial damage. Additionally, PGC-1α, a key regulator of mitochondrial homeostasis, was identified as a protective factor suppressed by LPS, exacerbating ROS overproduction and inflammasome activation. To validate these findings, geniposidic acid (GPA), a natural antioxidant and anti-inflammatory compound, was employed. GPA effectively reduced ROS levels, inhibited JNK activation, and suppressed pyroptosis, supporting its utility as a chemical tool to confirm the pivotal role of ROS/JNK/NLRP3 signaling. This study elucidates the intricate interplay between oxidative stress, mitochondrial dysfunction, and pyroptosis, providing a comprehensive framework for addressing inflammation-driven vascular damage.
Collapse
Affiliation(s)
- Yan Fang
- University of Science and Technology of China, Hefei, 230026, China; Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - He Meng
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jun Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
2
|
Wang J, Wang H, Kang X, Wang X, Li X, Guo J, Jing X, Chu X, Han X. Integrated network pharmacology, molecular docking, and animal experiments to reveal the potential mechanism of hesperetin on COPD. Sci Rep 2025; 15:11024. [PMID: 40164657 PMCID: PMC11958725 DOI: 10.1038/s41598-025-95810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
Hesperetin (HE), a natural flavonoid exhibiting anti-inflammatory and antioxidant properties, holds significant potential in treating chronic obstructive pulmonary disease (COPD). Nonetheless, the precise mechanisms underlying its effects are yet to be fully elucidated. In this study, we aim to explore the role and potential mechanism of HE in treating COPD using network pharmacology, molecular docking and experimental validation. We screened for HE and COPD-related targets from public databases, and then imported potential targets into a STRING database to establish a protein-protein interaction network. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes enrichment analysis were performed to obtain key signaling pathways. We then predicted the binding interactions between HE and core targets using molecular docking. The animal model of COPD was established through lipopolysaccharide and cigarette smoke induction in mice to observe lung function, inflammatory factors, pathology, and the expression of related proteins. Network pharmacology findings unveiled that HE and COPD shared 105 common targets. MAPKs and NF-κB signaling pathways were selected for further validation. In animal experiment, HE enhanced lung function and histopathological morphology, while reducing inflammation levels. The results of Western blot tests indicated that HE treatment considerably inhibited the expression of MAPKs and NF-κB. HE effectively reduced lung inflammation and improved lung function in mice. This mechanism may be achieved by inhibition of MAPKs and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Jingxi Wang
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Industrial Technology Institute for Traditional Chinese Medicine Preparation, Shijiazhuang, China
| | - Hongyang Wang
- Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xin Kang
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaotian Wang
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xi Li
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jie Guo
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xuan Jing
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China.
- Hebei Industrial Technology Institute for Traditional Chinese Medicine Preparation, Shijiazhuang, China.
| | - Xi Chu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China.
| |
Collapse
|
3
|
Ali AY, Zahran SA, Eissa M, Kashef MT, Ali AE. Gut microbiota dysbiosis and associated immune response in systemic lupus erythematosus: impact of disease and treatment. Gut Pathog 2025; 17:10. [PMID: 39966979 PMCID: PMC11834511 DOI: 10.1186/s13099-025-00683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Gut microbial dysbiosis and leaky gut play a role in systemic lupus erythematosus (SLE). Geographical location and dietary habits affect the microbiome composition in diverse populations. This study explored the gut microbiome dysbiosis, leaky gut, and systemic immune response to gut bacterial consortium in patients with SLE exhibiting mild/moderate and severe disease activity. METHODS Fecal and blood samples were collected from patients with SLE and healthy volunteers. Genomic DNA was extracted from the stool samples and subjected to 16S rRNA amplicon sequencing and microbiome profiling. Additionally, enzyme-linked immunosorbent assays were employed to determine the serum lipopolysaccharide level, as an assessment of gut permeability, and the systemic immune response against gut bacteria. RESULTS Patients with SLE showed significantly lower gut bacterial richness and diversity, indicated by observed OTUs (56.6 vs. 74.44; p = 0.0289), Shannon (3.05 vs. 3.45; p = 0.017) and Simpson indices (0.91 vs. 0.94; p = 0.033). A lower Firmicutes-to-Bacteroidetes ratio (1.07 vs. 1.69; p = 0.01) was observed, with reduced genera such as Ruminococcus 2 (0.003 vs. 0.026; p = 0.0009) and Agathobacter (0.003 vs. 0.012; p < 0.0001) and elevated Escherichia-Shigella (0.04 vs. 0.006; p < 0.0001) and Bacteroides (0.206 vs. 0.094; p = 0.033). Disease severity was associated with a higher relative abundance of Prevotella (0.001 vs. 0.0001; p = 0.04). Medication effects included lower Romboutsia (0.0009 vs. 0.011; p = 0.005) with azathioprine and higher Prevotella (0.003 vs. 0.0002; p = 0.038) with cyclophosphamide. Furthermore, categorization by prednisolone dosage revealed significantly higher relative abundances of Slackia (0.0007 vs. 0.00002; p = 0.0088), Romboutsia (0.009 vs. 0.002; p = 0.0366), and Comamonas (0.002 vs. 0.00007; p = 0.0249) in patients receiving high-dose prednisolone (> 10 mg/day). No differences in serum lipopolysaccharide levels were found, but SLE patients exhibited elevated serum gut bacterial antibody levels, suggesting a systemic immune response. CONCLUSION This study confirms the gut microbiome dysbiosis in patients with SLE, influenced by disease severity and specific medication usage.
Collapse
Affiliation(s)
- Aya Y Ali
- Microbiology & Immunology Department, Faculty of Pharmacy, Future University in Egypt, Cairo, 12311, Egypt
| | - Sara A Zahran
- Microbiology & Immunology Department, Faculty of Pharmacy, Future University in Egypt, Cairo, 12311, Egypt.
| | - Mervat Eissa
- Rheumatology & Rehabilitation Department, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Amal Emad Ali
- Microbiology & Immunology Department, Faculty of Pharmacy, Future University in Egypt, Cairo, 12311, Egypt
| |
Collapse
|
4
|
Wang S, Yan Z, Shen F, Du L, Li G, Yang Q, Hu Q. Novel aptasensor based on polyaniline functionalized carboxylated dobby carbon nanotubes and molybdenum disulfide for endotoxin detection. Talanta 2024; 276:126256. [PMID: 38762977 DOI: 10.1016/j.talanta.2024.126256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
Endotoxins, also known as lipopolysaccharides (LPS), are present within the cell walls of Gram-negative bacteria and are released upon cellular death, which can pose a significant risk to human and animal health. Due to the minimal amount of endotoxin required to trigger an inflammatory response in human body, the demand for sensitive methods with low endotoxin detection limits is essential necessary. This paper presents a straightforward aptamer sensor which can enhance the conductivity and specific surface area of molybdenum disulfide (MoS2) by incorporating carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) and polyaniline (PANI). Doping with gold nanoparticles (AuNPs) improves biocompatibility and sensitivity while providing binding sites for thiolated endotoxin-binding aptamers (LBA). This biosensor achieved a remarkable detection limit as low as 0.5 fg mL-1, enabling trace-level identification of LPS. It also exhibits excellent repeatability, selectivity, and stability, facilitating rapid and accurate LPS detection. Moreover, this method demonstrates high recovery rates and specificity for LPS analysis in food samples, showcasing its promising application prospects in trace-level LPS detection within the food industry.
Collapse
Affiliation(s)
- Sen Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| | - Zhongjun Yan
- Zhejiang Branch of China Grain Reserves Group Ltd. Company, China
| | - Fei Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China.
| | - Lihui Du
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| | - Guanglei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| | - Qian Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, China
| |
Collapse
|
5
|
Xu A, Han F, Zhang Y, Chen S, Bian L, Gao T. Transcriptomic profiling reveals the immune response mechanism of the Thamnaconus modestus induced by the poly (I:C) and LPS. Gene 2024; 897:148065. [PMID: 38070789 DOI: 10.1016/j.gene.2023.148065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/19/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Aquatic animals immune response to pathogenic is a hotspot and related to high-quality development of aquaculture industry and the conservation of fisheries resources. Thamnaconus modestus is an important commercial and economical species which is suffering from various pathogens but by now lack relevant research about revealing the immune response mechanism to the pathogens invasion. In the study, the polyriboinosinic polyribocytidylic acid [poly (I:C)] and Lipopolysaccharides (LPS), respective mimics of viral and bacterial infections, were used to demonstrate the immune response of the species via transcriptome analysis. The results showed that T. modestus had sensitive responses to the viral analog infection at 6 h and 48 h, and at 6 h, the first five major functional genes were NFKBIA, IL1B, JUN, IGH, FOS, and at 48 h, the genes were NFKBIA, IL1B, JUN, IGH, FOS. The genes IL1B, IRF3, PTGS2, THBS1 could helping the fish to fight against the bacterial infection in both the times. Similarly for the bacterial infection, the species had a sensitive response at 6 h, and the first five major functional genes were NFKBIA, JUN, FOS, L1B, GRIN2C. Our study provided an insight about the immune response mechanism of this species and demonstrated that if need for treatment of the virus and bacteria by the biotechnology, the artificial interferential time would be suggested before 6 h since the pathological features occur and the genes NFKBIA, JUN, IL1B, FOS, TRAF2, IL8, SOCS3, PTGS2 should be payed more attention.
Collapse
Affiliation(s)
- Anle Xu
- Fisheries College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| | - Fei Han
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yuan Zhang
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Siqing Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China.
| | - Li Bian
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China.
| | - Tianxiang Gao
- Fisheries College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
6
|
Fux AC, Casonato Melo C, Schlahsa L, Burzan NB, Felsberger A, Gessner I, Fauerbach JA, Horejs-Hoeck J, Droste M, Siewert C. Generation of Endotoxin-Specific Monoclonal Antibodies by Phage and Yeast Display for Capturing Endotoxin. Int J Mol Sci 2024; 25:2297. [PMID: 38396974 PMCID: PMC10889169 DOI: 10.3390/ijms25042297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Endotoxin, a synonym for lipopolysaccharide (LPS), is anchored in the outer membranes of Gram-negative bacteria. Even minute amounts of LPS entering the circulatory system can have a lethal immunoactivating effect. Since LPS is omnipresent in the environment, it poses a great risk of contaminating any surface or solution, including research products and pharmaceuticals. Therefore, monitoring LPS contamination and taking preventive or decontamination measures to ensure human safety is of the utmost importance. Nevertheless, molecules used for endotoxin detection or inhibition often suffer from interferences, low specificity, and low affinity. For this reason, the selection of new binders that are biocompatible, easy to produce, and that can be used for biopharmaceutical applications, such as endotoxin removal, is of high interest. Powerful techniques for selecting LPS-binding molecules in vitro are display technologies. In this study, we established and compared the selection and production of LPS-specific, monoclonal, human single-chain variable fragments (scFvs) through two display methods: yeast and phage display. After selection, scFvs were fused to a human constant fragment crystallizable (Fc). To evaluate the applicability of the constructs, they were conjugated to polystyrene microbeads. Here, we focused on comparing the functionalized beads and their LPS removal capacity to a polyclonal anti-lipid A bead. Summarized, five different scFvs were selected through phage and yeast display, with binding properties comparable to a commercial polyclonal antibody. Two of the conjugated scFv-Fcs outperformed the polyclonal antibody in terms of the removal of LPS in aqueous solution, resulting in 265 times less residual LPS in solution, demonstrating the potential of display methods to generate LPS-specific binding molecules.
Collapse
Affiliation(s)
- Alexandra C. Fux
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Cristiane Casonato Melo
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Laura Schlahsa
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Nico B. Burzan
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - André Felsberger
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Isabel Gessner
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Jonathan A. Fauerbach
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Miriam Droste
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Christiane Siewert
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| |
Collapse
|
7
|
Pelinsari SM, Sarandy MM, Vilela EF, Novaes RD, Schlamb J, Gonçalves RV. Ozone Exposure Controls Oxidative Stress and the Inflammatory Process of Hepatocytes in Murine Models. Antioxidants (Basel) 2024; 13:212. [PMID: 38397810 PMCID: PMC10886373 DOI: 10.3390/antiox13020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Background: Ozone exposure is a promising tool for treating liver damage since it is known to control the release of free radicals and increase the expression of antioxidant enzymes. The objective is to investigate the main intracellular pathways activated after exposure to ozone, considering the dosage of antioxidant enzymes and markers of oxidative stress. (2) Methods: This systematic review was performed based on the PRISMA guidelines and using a structured search in MEDLINE (PubMed), Scopus, and Web of Science. Bias analysis and methodological quality assessments were examined using the SYRCLE Risk of Bias tool. (3) Results: Nineteen studies were selected. The results showed that the exposure to ozone has a protective effect on liver tissue, promoting a decrease in inflammatory markers and a reduction in oxidative stress in liver tissue. In addition, ozone exposure also promoted an increase in antioxidant enzymes. The morphological consequences of controlling these intracellular pathways were reducing the tissue inflammatory process and reducing areas of degeneration and necrosis. (4) Conclusions: Ozone exposure has a beneficial effect on models of liver injury through the decrease in oxidative stress in tissue and inflammatory markers. In addition, it regulates the Nrf2/ARE antioxidant pathway and blocks the NF-κB inflammatory pathway.
Collapse
Affiliation(s)
- Silvania Mol Pelinsari
- Departament of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (S.M.P.)
| | - Mariáurea Matias Sarandy
- Departament of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (S.M.P.)
- Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC 28081, USA
| | - Emerson Ferreira Vilela
- Agriculture and Livestock Research Enterprise of Minas Gerais (EPAMIG-Sudeste), Viçosa 36570-000, MG, Brazil
| | - Rômulo Dias Novaes
- Departament of Structural Biology, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil;
- Departament of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | - Jade Schlamb
- Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC 28081, USA
| | - Reggiani Vilela Gonçalves
- Departament of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (S.M.P.)
- Departament of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| |
Collapse
|
8
|
Krivoruchko AA, Zdorovenko EL, Ivanova MF, Kostina EE, Fedonenko YP, Shashkov AS, Dmitrenok AS, Ul’chenko EA, Tkachenko OV, Astankova AS, Burygin GL. Structure, Physicochemical Properties and Biological Activity of Lipopolysaccharide from the Rhizospheric Bacterium Ochrobactrum quorumnocens T1Kr02, Containing d-Fucose Residues. Int J Mol Sci 2024; 25:1970. [PMID: 38396650 PMCID: PMC10888714 DOI: 10.3390/ijms25041970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Lipopolysaccharides (LPSs) are major components of the outer membranes of Gram-negative bacteria. In this work, the structure of the O-polysaccharide of Ochrobactrum quorumnocens T1Kr02 was identified by nuclear magnetic resonance (NMR), and the physical-chemical properties and biological activity of LPS were also investigated. The NMR analysis showed that the O-polysaccharide has the following structure: →2)-β-d-Fucf-(1→3)-β-d-Fucp-(1→. The structure of the periplasmic glucan coextracted with LPS was established by NMR spectroscopy and chemical methods: →2)-β-d-Glcp-(1→. Non-stoichiometric modifications were identified in both polysaccharides: 50% of d-fucofuranose residues at position 3 were O-acetylated, and 15% of d-Glcp residues at position 6 were linked with succinate. This is the first report of a polysaccharide containing both d-fucopyranose and d-fucofuranose residues. The fatty acid analysis of the LPS showed the prevalence of 3-hydroxytetradecanoic, hexadecenoic, octadecenoic, lactobacillic, and 27-hydroxyoctacosanoic acids. The dynamic light scattering demonstrated that LPS (in an aqueous solution) formed supramolecular particles with a size of 72.2 nm and a zeta-potential of -21.5 mV. The LPS solution (10 mkg/mL) promoted the growth of potato microplants under in vitro conditions. Thus, LPS of O. quorumnocens T1Kr02 can be recommended as a promoter for plants and as a source of biotechnological production of d-fucose.
Collapse
Affiliation(s)
- Aleksandra A. Krivoruchko
- Department of Organic and Bioorganic Chemistry, Institute of Chemistry, Saratov State University, 410012 Saratov, Russia
| | - Evelina L. Zdorovenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.L.Z.)
| | - Maria F. Ivanova
- Department of Plant Breeding, Selection, and Genetics, Faculty of Agronomy, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 410012 Saratov, Russia (O.V.T.)
| | - Ekaterina E. Kostina
- Department of Plant Breeding, Selection, and Genetics, Faculty of Agronomy, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 410012 Saratov, Russia (O.V.T.)
| | - Yulia P. Fedonenko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, 410049 Saratov, Russia
- Department of Biochemistry and Biophysics, Faculty of Biology, Saratov State University, 410012 Saratov, Russia
| | - Alexander S. Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.L.Z.)
| | - Andrey S. Dmitrenok
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.L.Z.)
| | - Elizaveta A. Ul’chenko
- Department of Biomedical Products, Faculty of Chemical Pharmaceutical Technologies, D.I. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Oksana V. Tkachenko
- Department of Plant Breeding, Selection, and Genetics, Faculty of Agronomy, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 410012 Saratov, Russia (O.V.T.)
| | - Anastasia S. Astankova
- Department of Organic and Bioorganic Chemistry, Institute of Chemistry, Saratov State University, 410012 Saratov, Russia
| | - Gennady L. Burygin
- Department of Organic and Bioorganic Chemistry, Institute of Chemistry, Saratov State University, 410012 Saratov, Russia
- Department of Plant Breeding, Selection, and Genetics, Faculty of Agronomy, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 410012 Saratov, Russia (O.V.T.)
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, 410049 Saratov, Russia
| |
Collapse
|
9
|
Lu TC, Yang YJ, Zhong Y, Qiu QZ, Chen ZH, Chen YZ, Lei Y, Liu AL. Simultaneous detection of C-reactive protein and lipopolysaccharide based on a dual-channel electrochemical biosensor for rapid Gram-typing of bacterial sepsis. Biosens Bioelectron 2024; 243:115772. [PMID: 37879271 DOI: 10.1016/j.bios.2023.115772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/15/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Sepsis is a life-threatening multi-organ failure syndrome, with bacterial infections being the most common cause. Rapid Gram-typing is imperative to assist in antibiotic intervention. C-reactive protein (CRP) and lipopolysaccharide (LPS) are effective biomarkers for discerning the Gram type of bacteria but differ by several orders of magnitude in clinical detection, thereby impeding their simultaneous detection. And two independent methods are time-consuming and laborious. In this study, a dual-channel electrochemical biosensor was developed for simultaneous detection of LPS and CRP. Under optimal conditions, linear ranges of LPS (0.5-1000 pg/mL) and CRP (0.1-20 μg/mL) were obtained in line with the clinical evaluation scopes. In simulated sample tests, Gram-positive, Gram-negative, and healthy plasma samples were clearly distinguished by the developed biosensors, and these results were consistent with that of enzyme-linked immunosorbent assay (ELISA). In addition, the results of the plasma samples tested by the electrochemical biosensor matched those derived from blood cultures in the laboratory. Collectively, the electrochemical biosensor was expected to provide the scientific basis for the rapid Gram-typing and point-of-care detection of bacterial sepsis.
Collapse
Affiliation(s)
- Tai-Cheng Lu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yuan-Jie Yang
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yu Zhong
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Qing-Zhen Qiu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zhen-Hua Chen
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yuan-Zhong Chen
- Fujian Institute of Hematology, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, 350000, China.
| | - Yun Lei
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Ai-Lin Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
10
|
Zhu R, Qin F, Zheng X, Fang S, Ding J, Wang D, Liang L. Single-molecule lipopolysaccharides identification and the interplay with biomolecules via nanopore readout. Biosens Bioelectron 2023; 240:115641. [PMID: 37657310 DOI: 10.1016/j.bios.2023.115641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Lipopolysaccharides (LPS) are the major constituent on the cell envelope of all gram-negative bacteria. They are ubiquitous in air, and are toxic inflammatory stimulators for urinary disorders and sepsis. The reported optical, thermal, and electrochemical sensors via the intermolecular interplay of LPS with proteins and aptamers are generally complicated methods. We demonstrate the single-molecule nanopore approach for LPS identification in distinct bacteria as well as the serotypes discrimination. With a 4 nm nanopore, we achieve a detection limit of 10 ng/mL. Both the antibiotic polymyxin B (PMB) and DNA aptamer display specific binding to LPS. The identification of LPS in both human serum and tap water show good performance with nanopore platforms. Our work shows a highly-sensitive and easy-to-handle scheme for clinical and environmental biomarkers determination and provides a promising screening tool for early warning of contamination in water and medical supplies.
Collapse
Affiliation(s)
- Rui Zhu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China; Chongqing Jiaotong University, Chongqing, 400014, PR China
| | - Fupeng Qin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China
| | - Xinchuan Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China
| | - Shaoxi Fang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China
| | - Jianjun Ding
- Southwest University, Chongqing, 400715, PR China
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China.
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China.
| |
Collapse
|
11
|
Ziylan ZS, de Putter GJ, Roelofs M, van Dijl JM, Scheffers DJ, Walvoort MTC. Evaluation of Kdo-8-N 3 incorporation into lipopolysaccharides of various Escherichia coli strains. RSC Chem Biol 2023; 4:884-893. [PMID: 37920390 PMCID: PMC10619137 DOI: 10.1039/d3cb00110e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023] Open
Abstract
8-Azido-3,8-dideoxy-α/β-d-manno-oct-2-ulosonic acid (Kdo-8-N3) is a Kdo derivative used in metabolic labeling of lipopolysaccharide (LPS) structures found on the cell membrane of Gram-negative bacteria. Several studies have reported successful labeling of LPS using Kdo-8-N3 and visualization of LPS by a fluorescent reagent through click chemistry on a selection of Gram-negative bacteria such as Escherichia coli strains, Salmonella typhimurium, and Myxococcus xanthus. Motivated by the promise of Kdo-8-N3 to be useful in the investigation of LPS biosynthesis and cell surface labeling across different strains, we set out to explore the variability in nature and efficiency of LPS labeling using Kdo-8-N3 in a variety of E. coli strains and serotypes. We optimized the chemical synthesis of Kdo-8-N3 and subsequently used Kdo-8-N3 to metabolically label pathogenic E. coli strains from commercial and clinical origin. Interestingly, different extents of labeling were observed in different E. coli strains, which seemed to be dependent also on growth media, and the majority of labeled LPS appears to be of the 'rough' LPS variant, as visualized using SDS-PAGE and fluorescence microscopy. This knowledge is important for future application of Kdo-8-N3 in the study of LPS biosynthesis and dynamics, especially when working with clinical isolates.
Collapse
Affiliation(s)
- Zeynep Su Ziylan
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Geert-Jan de Putter
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Meike Roelofs
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 9700 RB Groningen The Netherlands
| | - Dirk-Jan Scheffers
- Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Marthe T C Walvoort
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7 9747 AG Groningen The Netherlands
| |
Collapse
|
12
|
Meng WS, Sun J, Lu Y, Cao TT, Chi MY, Gong ZP, Li YT, Zheng L, Liu T, Huang Y. Biancaea decapetala (Roth) O.Deg. extract exerts an anti-inflammatory effect by regulating the TNF/Akt/NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154983. [PMID: 37586161 DOI: 10.1016/j.phymed.2023.154983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/13/2023] [Accepted: 07/15/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Biancaea decapetala (Roth) O.Deg. (Fabaceae) is used to treat colds, fever, and rheumatic pain caused by inflammation. However, the mechanism underlying its anti-inflammatory properties remains unclear. PURPOSE This study aimed to evaluate the anti-inflammatory activity of Biancaea decapetala extract (BDE) in vitro and in vivo and explore the possible underlying mechanism and potential targets. METHODS The release of nitric oxide (NO) and inflammatory cytokines in LPS-stimulated RAW264.7 cells and rats were measured using Griess reagent and enzyme-linked immunosorbent assay (ELISA). Hematoxylin and eosin (H&E) staining was employed to examine the pathology of animal tissues. Transcriptome analysis was performed to screen the pathways related to BDE-mediated inhibition of inflammation, and the expression of related proteins was measured using real-time quantitative polymerase chain reaction (RT-qPCR), western blotting, ELISA, and immunofluorescence methods. Surface Plasmon Resonance (SPR) and the Drug Affinity Reaction Target Stability (DARTS) method were used to verify whether BDE binds to TNF-α target protein, while a L929 cell model and NF-κB gene reporter systematic method were used to investigate the inhibitory effect of BDE on the activity of TNF-α protein. RESULTS BDE inhibited the expression of TNF-α, IL-1β, IL-6, and NO in RAW264.7 cells and rats, and improved the pathological changes in lung tissue. RNA-seq showed that BDE may regulate the TNF/Akt/NF-κB pathway to inhibit inflammation onset. BDE significantly downregulated the mRNA expression of TNF-α, IL-6, IL-1β, and that of relevant proteins, including TNF-α, p-p65, p-Akt, p-IκBα. Furthermore, BDE inhibited the nuclear translocation of NF-κB (p65) and the activation of the Akt pathway by SC79. The L929 cell model, luciferase reporter gene analysis, DARTS, and SPR experiments showed that BDE may bind to TNF-α and inhibit the TNF-α-NF-κB pathway. CONCLUSION BDE may target TNF-α to inhibit the TNF/Akt/NF-κB pathway, thereby attenuating inflammation. These findings reveal the anti-inflammatory effects and mechanisms of BDE and provide a theoretical basis for the further development and utilization of BDE.
Collapse
Affiliation(s)
- Wen-Sha Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Beijing Road 9, Guiyang 550004, PR China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, PR China
| | - Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Beijing Road 9, Guiyang 550004, PR China
| | - Yuan Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Beijing Road 9, Guiyang 550004, PR China
| | - Tao-Tao Cao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Beijing Road 9, Guiyang 550004, PR China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, PR China
| | - Ming-Yan Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Beijing Road 9, Guiyang 550004, PR China
| | - Zi-Peng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Beijing Road 9, Guiyang 550004, PR China
| | - Yue-Ting Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Beijing Road 9, Guiyang 550004, PR China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Beijing Road 9, Guiyang 550004, PR China.
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Beijing Road 9, Guiyang 550004, PR China.
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Beijing Road 9, Guiyang 550004, PR China.
| |
Collapse
|
13
|
Rakić M, Lunić T, Bekić M, Tomić S, Mitić K, Graovac S, Božić B, Božić Nedeljković B. Vitamin B complex suppresses neuroinflammation in activated microglia: in vitro and in silico approach combined with dynamical modeling. Int Immunopharmacol 2023; 121:110525. [PMID: 37356121 DOI: 10.1016/j.intimp.2023.110525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/22/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
Activated microglia is critically involved in the regulation of neuroinflammation/neurodegradation. Hereby, the anti-inflammatory effects of the vitamin B complex (VBC - B1, B2, B3, B5, B6, and B12) on the function and phenotype of lipopolysaccharide (LPS)-stimulated BV2 microglial cells were examined in vitro. Additionally, VBC-treated microglia supernatants were evaluated on SH-SY5Y cells to investigate the effects on neurons' viability. Further, anti-inflammatory mechanisms of VBC were examined by molecular dockingstudies to determine the binding affinity of each VBC component to Toll-like receptor 4 (TLR4) signalling pathway proteins and inducible nitric oxide synthase. In addition, the dynamical model which simulates VBC inhibition of TLR4 signalling pathway proteins activated by LPS has been constructed and excellent agreement with experimental data has been observed (adjR2 = 0.9715 and 0.9909 for TNF-α and IL-6, respectively). The obtained data demonstrated that VBC treatment reduced the inflammatory mediators secreted by LPS-stimulated microglia, diminished their neurotoxic effects against neurons, and induced changes in phenotype profile toward M2 microglia type. Finally, the constructed dynamical model provides deeper insight into the involvement of each VBC component on the VBC inhibitory potential toward the TLR4 signalling pathway and enables optimization of novel VBC formulations as well as inhibitory potential of new putative inhibitors.
Collapse
Affiliation(s)
- Marija Rakić
- University of Belgrade, Faculty of Biology, 11000 Belgrade, Serbia.
| | - Tanja Lunić
- University of Belgrade, Faculty of Biology, 11000 Belgrade, Serbia.
| | - Marina Bekić
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, 11080 Belgrade, Serbia.
| | - Sergej Tomić
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, 11080 Belgrade, Serbia.
| | - Katarina Mitić
- University of Belgrade, Faculty of Biology, 11000 Belgrade, Serbia.
| | - Stefan Graovac
- University of Belgrade, Faculty of Physics, 11000 Belgrade, Serbia.
| | - Bojan Božić
- University of Belgrade, Faculty of Biology, 11000 Belgrade, Serbia.
| | | |
Collapse
|
14
|
Mączka W, Twardawska M, Grabarczyk M, Wińska K. Carvacrol-A Natural Phenolic Compound with Antimicrobial Properties. Antibiotics (Basel) 2023; 12:antibiotics12050824. [PMID: 37237727 DOI: 10.3390/antibiotics12050824] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The main purpose of this article is to present the latest research related to selected biological properties of carvacrol, such as antimicrobial, anti-inflammatory, and antioxidant activity. As a monoterpenoid phenol, carvacrol is a component of many essential oils and is usually found in plants together with its isomer, thymol. Carvacrol, either alone or in combination with other compounds, has a strong antimicrobial effect on many different strains of bacteria and fungi that are dangerous to humans or can cause significant losses in the economy. Carvacrol also exerts strong anti-inflammatory properties by preventing the peroxidation of polyunsaturated fatty acids by inducing SOD, GPx, GR, and CAT, as well as reducing the level of pro-inflammatory cytokines in the body. It also affects the body's immune response generated by LPS. Carvacrol is considered a safe compound despite the limited amount of data on its metabolism in humans. This review also discusses the biotransformations of carvacrol, because the knowledge of the possible degradation pathways of this compound may help to minimize the risk of environmental contamination with phenolic compounds.
Collapse
Affiliation(s)
- Wanda Mączka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Martyna Twardawska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Małgorzata Grabarczyk
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Katarzyna Wińska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
15
|
Hatlem D, Christensen M, Broeker NK, Kristiansen PE, Lund R, Barbirz S, Linke D. A trimeric coiled-coil motif binds bacterial lipopolysaccharides with picomolar affinity. Front Cell Infect Microbiol 2023; 13:1125482. [PMID: 36875521 PMCID: PMC9978483 DOI: 10.3389/fcimb.2023.1125482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
α-helical coiled-coils are ubiquitous protein structures in all living organisms. For decades, modified coiled-coils sequences have been used in biotechnology, vaccine development, and biochemical research to induce protein oligomerization, and form self-assembled protein scaffolds. A prominent model for the versatility of coiled-coil sequences is a peptide derived from the yeast transcription factor, GCN4. In this work, we show that its trimeric variant, GCN4-pII, binds bacterial lipopolysaccharides (LPS) from different bacterial species with picomolar affinity. LPS molecules are highly immunogenic, toxic glycolipids that comprise the outer leaflet of the outer membrane of Gram-negative bacteria. Using scattering techniques and electron microscopy, we show how GCN4-pII breaks down LPS micelles in solution. Our findings suggest that the GCN4-pII peptide and derivatives thereof could be used for novel LPS detection and removal solutions with high relevance to the production and quality control of biopharmaceuticals and other biomedical products, where even minuscule amounts of residual LPS can be lethal.
Collapse
Affiliation(s)
- Daniel Hatlem
- Institutt for Biovitenskap, Universitetet i Oslo, Oslo, Norway
| | | | - Nina K. Broeker
- Department Humanmedizin, HMU Health and Medical University, Potsdam, Germany
| | | | - Reidar Lund
- Kjemisk Institutt, Universitetet i Oslo, Oslo, Norway
| | - Stefanie Barbirz
- Department Humanmedizin, HMU Health and Medical University, Potsdam, Germany
| | - Dirk Linke
- Institutt for Biovitenskap, Universitetet i Oslo, Oslo, Norway
| |
Collapse
|
16
|
HSF1 Attenuates the Release of Inflammatory Cytokines Induced by Lipopolysaccharide through Transcriptional Regulation of Atg10. Microbiol Spectr 2023; 11:e0305922. [PMID: 36598250 PMCID: PMC9927406 DOI: 10.1128/spectrum.03059-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Autophagy plays an important role in endotoxemic mice, and heat shock factor 1 (HSF1) plays a crucial protective role in endotoxemic mice. However, the protective mechanisms of HSF1 are poorly understood. In this text, bioinformatics analysis, chromatin immunoprecipitation, and electrophoresis mobility shift assay were employed to investigate the underlying mechanisms. The results showed that the release of inflammatory cytokines increased and autophagy decreased significantly in Hsf1-/- endotoxemic mice compared with those in Hsf1+/+ endotoxemic mice. HSF1 could directly bind to the noncoding promoter region of the autophagy-related gene 10 (Atg10). The expression of ATG10 and the ratio of LC3-II/LC3-I were obviously decreased in LPS-treated Hsf1-/- peritoneal macrophages (PM) versus those in LPS-treated Hsf1+/+ PM. Overexpression of HSF1 increased the level of the ATG10 protein and enhanced the ratio of LC3-II/LC3-I in RAW264.7 cells. In contrast, silencing of HSF1 decreased the expression of ATG10 and markedly lowered the ratio of LC3-II/LC3-I. In a cotransfected cell experiment, the upregulation of autophagy by overexpression HSF1 was reversed by small interfering RNA (siRNA)-ATG10. Compared with the overexpression HSF1, the release of inflammatory cytokines induced by lipopolysaccharide (LPS) was decreased in pcDNA3.1-HSF1 with siRNA-ATG10 cotransfected RAW264.7 cells. On the other hand, the decrease of autophagy by siRNA-HSF1 was compensated by overexpression of ATG10. Compared with siRNA-HSF1, the release of inflammatory cytokines induced by LPS was increased in siRNA-HSF1 with pcDNA3.1-ATG10 cotransfected RAW264.7 cells. These results presented a novel mechanism that HSF1 attenuated the release of inflammatory cytokines induced by LPS through transcriptional regulation of Atg10. Targeting of HSF1-Atg10-autophagy might be an attractive strategy in endotoxemia therapeutics. IMPORTANCE HSF1 plays an important protective role in endotoxemic mice. However, the protective mechanisms of HSF1 are poorly understood. In the present study, we demonstrated that HSF1 upregulated ATG10 through specifically binding Atg10 promoter's noncoding region in LPS-treated PM and RAW264.7 cells. By depletion of HSF1, the expression of ATG10 was significantly decreased, leading to aggravate releasing of inflammatory cytokines in LPS-treated RAW264.7 cells. These findings provided a new mechanism of HSF1 in endotoxemic mice.
Collapse
|
17
|
Yang X, Li J, Tan X, Yang X, Song P, Ming D, Yang Y. Ratiometric fluorescence probe integrated with smartphone for visually detecting lipopolysaccharide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121961. [PMID: 36265302 DOI: 10.1016/j.saa.2022.121961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
A portable instrument-free detection method for lipopolysaccharide (LPS) analysis was developed based on dual-emission ratiometric fluorescence sensing system. Herein, red-emitting Au nanoclusters (Au NCs) were as reference probe, while blue-emitting fluorescent silica quantum dots (Si QDs) were as response probe. Additionally, the aptamer of LPS was covalently grafted to the surface of Si QDs in order to specific recognize the LPS. According to the changes of fluorescence intensityratio (FL ratio, I461 nm/I643 nm) with the concentrations of LPS, the linear equation was fitted with the range of 50-3000 ng/mL, and the limit of detection (LOD) was 29.3 ng/mL. As a practical application, this method was employed to analyze LPS in normal saline with the recovery rate of 97.7-103.8 %. The color picker platform in the smartphone was used to transform the detection picture to the process of Red, Green and Blue (RGB) for visual detection of LPS. The low-cost and easy-carry method reported here presents broad merits for the visually quantitative detection of LPS.
Collapse
Affiliation(s)
- Xinyu Yang
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Jiayi Li
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Xinhui Tan
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Xuejiao Yang
- College of Pharmacy, Nanjing Tech University, Nanjing 211816, PR China
| | - Ping Song
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - Dengming Ming
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Yaqiong Yang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
18
|
Yang H, Wang L, Yuan L, Du H, Pan B, Lu K. Antimicrobial Peptides with Rigid Linkers against Gram-Negative Bacteria by Targeting Lipopolysaccharide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15903-15916. [PMID: 36511360 DOI: 10.1021/acs.jafc.2c05921] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A series of hybrid peptides were designed by connecting an antimicrobial peptide Ce(1-8) with a lipopolysaccharide (LPS)-targeting peptide Lf(28-34) via different linkers. Antimicrobial experimental results indicated that linkers play an essential role in the anti-Gram-negative bacterial activity of the hybrid peptides. Among these hybrid peptides, peptide CL5 with dipeptide rigid linker LP exhibited excellent activity and selectivity against Gram-negative bacteria. The minimum inhibitory concentrations of CL5 against the tested Gram-negative bacteria were 4-32 μM, while the toxicity toward HEK-293 cells was relatively low. It was found that the interactions of the peptides with LPS were crucial for peptide activity against Gram-negative bacteria. Antimicrobial mechanistic studies showed that peptide CL5 contributed to the death of Gram-negative bacterial cells by disrupting the integrity of the bacterial membranes. This study revealed the importance of linker selection in the design of hybrid peptides and provides the basis for the further development of antimicrobial peptides.
Collapse
Affiliation(s)
- Hongyan Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lan Wang
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou 450044, China
| | - Libo Yuan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Heng Du
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Boyuan Pan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Kui Lu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou 450044, China
| |
Collapse
|
19
|
Kavianpour A, Ashjari M, Hosseini SN, Khatami M. Quantitative assessment of LPS-HBsAg interaction by introducing a novel application of immunoaffinity chromatography. Prep Biochem Biotechnol 2022; 53:672-682. [PMID: 36244016 DOI: 10.1080/10826068.2022.2132512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Lipopolysaccharide (LPS), as a stubborn contamination, should be monitored and kept in an acceptable level during the pharmaceutical production process. Recombinant hepatitis B surface antigen (r-HBsAg) is one of the recombinant biological products, which is probable to suffer from extrinsic endotoxin due to its long and complex production process. This research aims to assess the potential interaction between LPS and r-HBsAg by recruiting immunoaffinity chromatography (IAC) as a novel tool to quantify the interaction. Molecular modeling was performed on the HBsAg molecule to theoretically predict its potential binding and interaction sites. Then dynamic light scattering (DLS) analysis was implemented on HBsAg, LPS, and mixtures of them to reveal the interaction. The virus-like particle (VLP) structure of HBsAg and the ribbon-like structure of LPS were visualized by transmission electron microscopy (TEM). Finally, the interaction was quantified by applying various LPS/HBsAg ratios ranging from 1.67 to 120 EU/dose in the IAC. Consequently, the LPS/HBsAg ratios in the eluate were measured from 1.67 to a maximum of 92.5 EU/dose. The results indicated that 77 to 100% of total LPS interacted with HBsAg by an inverse relationship to the incubated LPS concentration. The findings implied that the introduced procedure is remarkably practical in the quantification of LPS interaction with a target recombinant protein.
Collapse
Affiliation(s)
- Alireza Kavianpour
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran
| | - Mohsen Ashjari
- Nanostructures and Bioresearch Lab, Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran
| | - Seyed Nezamedin Hosseini
- Department of Hepatitis B Vaccine Production, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Khatami
- Department of Hepatitis B Vaccine Production, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
20
|
Li Y, Meng W, Yuan L, Jiang L, Zhou Z, Chi M, Gong Z, Ma X, Huang Y, Zheng L. Identification of Protosappanoside D from Caesalpinia decapetala and Evaluation of Its Pharmacokinetic, Metabolism and Pharmacological Activity. Molecules 2022; 27:molecules27186090. [PMID: 36144821 PMCID: PMC9506044 DOI: 10.3390/molecules27186090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
Protosappanoside D (PTD) is a new component isolated from the extract of Caesalpinia decapetala for the first time. Its structure was identified as protosappanin B-3-O-β-D-glucoside by 1H-NMR, 13C-NMR, 2D-NMR and MS techniques. To date, the pharmacological activities, metabolism or pharmacokinetics of PTD has not been reported. Therefore, this research to study the anti-inflammatory activity of PTD was investigated via the LPS-induced RAW264.7 cells model. At the same time, we also used the UHPLC/Q Exactive Plus MS and UPLC-MS/MS methods to study the metabolites and pharmacokinetics of PTD, to calculate its bioavailability for the first time. The results showed that PTD could downregulate secretion of the pro-inflammatory cytokines. In the metabolic study, four metabolites were identified, and the primary degradative pathways in vivo involved the desaturation, oxidation, methylation, alkylation, dehydration, degradation and desugarization. In the pharmacokinetic study, PTD and its main metabolite protosappanin B (PTB) were measured after oral and intravenous administration. After oral administration of PTD, its Tmax was 0.49 h, t1/2z and MRT(0–t) were 3.47 ± 0.78 h and 3.06 ± 0.63 h, respectively. It shows that PTD was quickly absorbed into plasma and it may be eliminated quickly in the body, and its bioavailability is about 0.65%.
Collapse
Affiliation(s)
- Yueting Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Wensha Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Li Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Li Jiang
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Zuying Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Mingyan Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Xue Ma
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
- Correspondence: (Y.H.); (L.Z.)
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
- Correspondence: (Y.H.); (L.Z.)
| |
Collapse
|
21
|
Self-assembly of four-antennary oligoglycines in aqueous media: fine-tuning and applications. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Salah ASM, Hassan LA, Fathallaa F, Al-Ghobashy MA, Nebsen M. Preparation and characterization of polymyxin B- and histidine-coupled magnetic nanoparticles for purification of biologics from acquired endotoxin contamination. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00253-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Abstract
Background
Endotoxin is a major process-related impurity that can act as a strong immunostimulant leading to fever and hypotensive shock. Thus, the US FDA and international quality standards strictly direct the biologics manufacturers to control the endotoxin contamination during the purification process. In this work, a developed method for biologics purification from acquired endotoxin contamination is introduced. This is accomplished by the preparation of dextran-coated magnetic nanoparticles using a facile rapid co-precipitation method.
Results
The resulting magnetic nanoparticles (MNPs) are characterized by dynamic light scattering, transmission electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, and vibrating sample magnetometry. The dextran-coated magnetic nanoparticles are further coupled to either polymyxin B or histidine to provide a positively charged ligand which enhances the affinity to the negatively charged endotoxin. Both ligands-coupled MNPs are tested for purification efficiency using the chromogenic kinetic assay. The method conditions are optimized using a two-level factorial design to achieve best purification conditions of the contaminated biologics and indicated endotoxin removal percentage 85.12% and maximum adsorption capacity of 38.5 mg/g, for histidine-coupled MNPs.
Conclusions
This developed method is introduced to serve biologics manufacturers to improve their manufacturing processes through providing a simple purifying tool for biologics from acquired endotoxin contamination.
Graphical Abstract
Collapse
|
23
|
Young P, Rauch C, Russo I, Gaskell S, Davidson Z, Costa RJ. Plasma endogenous endotoxin core antibody response to exercise in endurance athletes. Int J Sports Med 2022; 43:1023-1032. [PMID: 35426092 PMCID: PMC9622302 DOI: 10.1055/a-1827-3124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The study aimed to investigate the impact of laboratory-controlled exertional and
exertional-heat stress on concentrations of plasma endogenous endotoxin core
antibody (EndoCAb). Forty-four (males
n=
26 and females
n=
18) endurance trained (
V̇ O2max
56.8min/kg/min) participants completed either: P1–2h
high intensity interval running in 23°C ambient temperature
(T
amb
), P2–2h running at 60% V̇
O
2max
in 35°C T
amb
, or P3–3h running
at 60% V̇ O
2max
in 23°C T
amb
.
Blood samples were collected pre- and post-exercise to determine plasma IgM,
IgA, and IgG concentrations. Overall resting pre-exercise levels for plasma Ig
were 173MMU/ml, 37AMU/ml, and 79GMU/ml, respectively.
Plasma IgM concentration did not substantially change pre- to post-exercise in
all protocols, and the magnitude of pre- to post-exercise change for IgM was not
different between protocols (p=0.135). Plasma IgA and IgG increased pre-
to post-exercise in P2 only (p=0.017 and p=0.016, respectively),
but remained within normative range (35–250MU/ml). P2 resulted
in greater disturbances to plasma IgA (p=0.058) and IgG
(p=0.037), compared with P1 and P3. No substantial differences in
pre-exercise and exercise-associated change was observed for EndoCAb between
biological sexes. Exertional and exertional-heat stress resulted in modest
disturbances to systemic EndoCAb responses, suggesting EndoCAb biomarkers
presents a low sensitivity response to controlled-laboratory experimental
designs within exercise gastroenterology.
Collapse
Affiliation(s)
- Pascale Young
- Nutrition Dietetics & Food, Monash University Faculty of Medicine Nursing and Health Sciences, Clayton, Australia
| | - Christopher Rauch
- Nutrition Dietetics & Food, Monash University Faculty of Medicine Nursing and Health Sciences, Clayton, Australia
| | - Isabella Russo
- Nutrition Dietetics & Food, Monash University Faculty of Medicine Nursing and Health Sciences, Clayton, Australia
| | - Stephanie Gaskell
- Nutrition Dietetics & Food, Monash University Faculty of Medicine Nursing and Health Sciences, Clayton, Australia
| | - Zoe Davidson
- Nutrition Dietetics & Food, Monash University Faculty of Medicine Nursing and Health Sciences, Clayton, Australia
| | - Ricardo J.S. Costa
- Nutrition Dietetics & Food, Monash University Faculty of Medicine Nursing and Health Sciences, Clayton, Australia
| |
Collapse
|
24
|
Li Y, Yang X, Hou F, Chen D, Liu Y, Yu D, Ming D, Yang Y, Huang H. Near-Infrared-Fluorescent Probe for Turn-On Lipopolysaccharide Analysis Based on PEG-Modified Gold Nanorods with Plasmon-Enhanced Fluorescence. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57058-57066. [PMID: 34784169 DOI: 10.1021/acsami.1c19746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipopolysaccharide (LPS), as the major component of the outer membrane of Gram-negative bacteria, can trigger a variety of biological effects such as sepsis, septic shock, and even multiorgan failure. Herein, we developed a near-infrared-fluorescent probe for fluorescent turn-on analysis of LPS based on plasmon-enhanced fluorescence (PEF). Gold nanorods (Au NRs) modified polyethylene glycol (PEG) was used as PEF materials. Au NRs were prepared with different longitudinal surface plasmon resonance (LSPR), and their fluorescence enhancement was investigated. Three kinds of molecular weights (1000, 5000, and 10000) of polyethylene glycol (PEG) were employed to control the distance between the Au NRs and the fluorescence substances of cyanine 7 (Cy7). Experimental analysis showed that the enhancement was related to the spectral overlap between the plasmon resonance of Au NRs and the extinction/emission of fluorophore. The three-dimensional finite-difference time-domain (3D-FDTD) simulation further revealed that the enhancement was caused by local electric field enhancement. Furthermore, the probe was used for the ultrasensitive analysis of LPS with a detection limit of 3.85 ng/mL and could quickly distinguish the Gram-negative bacterium-Escherichia coli (E. coli) (with LPS in the membrane) from Gram-positive bacterium-Staphylococcus aureus (S. aureus) (without LPS), as well as quantitative determination of E. coli with a detection limit of 1.0 × 106 cfu/mL. These results suggested that the prepared probe has great potential for biomedical diagnosis and selective detection of LPS from different bacterial strains.
Collapse
Affiliation(s)
- Yiting Li
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xinyu Yang
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Fan Hou
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Dong Chen
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yifan Liu
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Dinghua Yu
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Dengming Ming
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yaqiong Yang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| | - He Huang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
25
|
Dendritic cells maturation facilitated by group-adjustable lipopolysaccharide analogues synthesized via RAFT polymerization. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
González-Fernández C, Basauri A, Fallanza M, Bringas E, Oostenbrink C, Ortiz I. Fighting Against Bacterial Lipopolysaccharide-Caused Infections through Molecular Dynamics Simulations: A Review. J Chem Inf Model 2021; 61:4839-4851. [PMID: 34559524 PMCID: PMC8549069 DOI: 10.1021/acs.jcim.1c00613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Lipopolysaccharide
(LPS) is the primary component of the outer
leaflet of Gram-negative bacterial outer membranes. LPS elicits an
overwhelming immune response during infection, which can lead to life-threatening
sepsis or septic shock for which no suitable treatment is available
so far. As a result of the worldwide expanding multidrug-resistant
bacteria, the occurrence and frequency of sepsis are expected to increase;
thus, there is an urge to develop novel strategies for treating bacterial
infections. In this regard, gaining an in-depth understanding about
the ability of LPS to both stimulate the host immune system and interact
with several molecules is crucial for fighting against LPS-caused
infections and allowing for the rational design of novel antisepsis
drugs, vaccines and LPS sequestration and detection methods. Molecular
dynamics (MD) simulations, which are understood as being a computational
microscope, have proven to be of significant value to understand LPS-related
phenomena, driving and optimizing experimental research studies. In
this work, a comprehensive review on the methods that can be combined
with MD simulations, recently applied in LPS research, is provided.
We focus especially on both enhanced sampling methods, which enable
the exploration of more complex systems and access to larger time
scales, and free energy calculation approaches. Thereby, apart from
outlining several strategies for surmounting LPS-caused infections,
this work reports the current state-of-the-art of the methods applied
with MD simulations for moving a step forward in the development of
such strategies.
Collapse
Affiliation(s)
- Cristina González-Fernández
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Arantza Basauri
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Marcos Fallanza
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Eugenio Bringas
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Inmaculada Ortiz
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| |
Collapse
|
27
|
Calvo JI, Casado-Coterillo C, Hernández A. Past, Present and Future of Membrane Technology in Spain. MEMBRANES 2021; 11:membranes11110808. [PMID: 34832037 PMCID: PMC8625950 DOI: 10.3390/membranes11110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022]
Abstract
The following review aims at analyzing the contribution of Spanish researchers to membrane science and technology, with a historical compilation of the main milestones. We used a bibliometric analysis based on the Scopus database (1960–2020) dealing with 8707 documents covering the different disciplines and subject areas where membranes are involved. Furthermore, the information has been updated to the present moment of writing this manuscript in order to include the latest research lines and the different research groups currently active in Spain, which may lead the way to the development of the field in the coming years.
Collapse
Affiliation(s)
- José I. Calvo
- Surfaces and Porous Materials (SMAP) Group, Associated Research Unit to CSIC, UVa-innova Bldg, P. Belén, 11 and Institute of Sustainable Processes (ISP), Dr. Mergelina, s/n, University of Valladolid, 47071 Valladolid, Spain;
- Correspondence: (J.I.C.); (C.C.-C.)
| | - Clara Casado-Coterillo
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. Los Castros s/n, 39005 Santander, Spain
- Correspondence: (J.I.C.); (C.C.-C.)
| | - Antonio Hernández
- Surfaces and Porous Materials (SMAP) Group, Associated Research Unit to CSIC, UVa-innova Bldg, P. Belén, 11 and Institute of Sustainable Processes (ISP), Dr. Mergelina, s/n, University of Valladolid, 47071 Valladolid, Spain;
| |
Collapse
|
28
|
Nourbakhsh F, Lotfalizadeh M, Badpeyma M, Shakeri A, Soheili V. From plants to antimicrobials: Natural products against bacterial membranes. Phytother Res 2021; 36:33-52. [PMID: 34532918 DOI: 10.1002/ptr.7275] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/16/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022]
Abstract
Bacterial membrane barrier provides a cytoplasmic environment for organelles of bacteria. The membrane is composed of lipid compounds containing phosphatide protein and a minimal amount of sugars, and is responsible for intercellular transfers of chemicals. Several antimicrobials have been found that affect bacterial cytoplasmic membranes. These compounds generally disrupt the organization of the membrane or perforate it. By destroying the membrane, the drugs can permeate and replace the effective macromolecules necessary for cell life. Furthermore, they can disrupt electrical gradients of the cells through impairment of the membrane integrity. In recent years, considering the spread of microbial resistance and the side effects of antibiotics, natural antimicrobial compounds have been studied by researchers extensively. These molecules are the best alternative for controlling bacterial infections and reducing drug resistance due to the lack of severe side effects, low cost of production, and biocompatibility. Better understanding of the natural compounds' mechanisms against bacteria provides improved strategies for antimicrobial therapies. In this review, natural products with antibacterial activities focusing on membrane damaging mechanisms were described. However, further high-quality research studies are needed to confirm the clinical efficacy of these natural products.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Lotfalizadeh
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Badpeyma
- Student Research Committee, Department of Clinical Nutrition, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Yang Q, Li Y, Tuohuti P, Qin Z, Zhang Z, Zhao W, Su B. Advances in the Development of Biomaterials for Endotoxin Adsorption in Sepsis. Front Bioeng Biotechnol 2021; 9:699418. [PMID: 34395405 PMCID: PMC8361450 DOI: 10.3389/fbioe.2021.699418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/29/2021] [Indexed: 02/05/2023] Open
Abstract
Sepsis, a life-threatening and intractable disease without any specific treatment, is activated by endotoxin. Some attempts at removing endotoxin to treat sepsis from the blood circulation using different hemoperfusion cartridges have been proposed recently, but they have failed to reduce the mortality of severe septic patients. This review summarizes the latest advances in the development of endotoxin adsorbents. In particular, we highlight two critical parameters for endotoxin adsorbents when they are applied in blood purification: the dissociation constant and the maximum adsorption capacity. We also discuss potential challenges and research directions for the future development of endotoxin adsorbents.
Collapse
Affiliation(s)
- Qinbo Yang
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yupei Li
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Disaster Medicine Center, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, China
| | | | - Zheng Qin
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuyun Zhang
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Weifeng Zhao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Baihai Su
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Disaster Medicine Center, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China.,The First People's Hospital of Shuangliu District, Chengdu, China
| |
Collapse
|
30
|
Xia P, Wu Y, Lian S, Yan L, Meng X, Duan Q, Zhu G. Research progress on Toll-like receptor signal transduction and its roles in antimicrobial immune responses. Appl Microbiol Biotechnol 2021; 105:5341-5355. [PMID: 34180006 PMCID: PMC8236385 DOI: 10.1007/s00253-021-11406-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022]
Abstract
When microorganisms invade a host, the innate immune system first recognizes the pathogen-associated molecular patterns of these microorganisms through pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are known transmembrane PRRs existing in both invertebrates and vertebrates. Upon ligand recognition, TLRs initiate a cascade of signaling events; promote the pro-inflammatory cytokine, type I interferon, and chemokine expression; and play an essential role in the modulation of the host's innate and adaptive immunity. Therefore, it is of great significance to improve our understanding of antimicrobial immune responses by studying the role of TLRs and their signal molecules in the host's defense against invading microbes. This paper aims to summarize the specificity of TLRs in recognition of conserved microbial components, such as lipoprotein, lipopolysaccharide, flagella, endosomal nucleic acids, and other bioactive metabolites derived from microbes. This set of interactions helps to elucidate the immunomodulatory effect of TLRs and the signal transduction changes involved in the infectious process and provide a novel therapeutic strategy to combat microbial infections.
Collapse
Affiliation(s)
- Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Yunping Wu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Li Yan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Xia Meng
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Qiangde Duan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
31
|
Rachsee A, Chiranthanut N, Kunnaja P, Sireeratawong S, Khonsung P, Chansakaow S, Panthong A. Mucuna pruriens (L.) DC. seed extract inhibits lipopolysaccharide-induced inflammatory responses in BV2 microglial cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113518. [PMID: 33122120 DOI: 10.1016/j.jep.2020.113518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/07/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammation caused by activated microglia is known to be associated with neurodegenerative diseases, e.g., Parkinson's disease (PD) and Alzheimer's disease (AD). Inhibiting the inflammatory process can be considered a potential strategy for the treatment of inflammation-associated diseases. Mucuna pruriens (L.) DC. (Leguminosae) has long been used in Thailand, India, China and other tropical countries to treat several diseases including PD. M. pruriens seeds have been found to possess a variety of pharmacological properties including antioxidant and anti-Parkinsonism effects. However, the anti-inflammatory effects of M. pruriens seeds during microglial activation have yet to be reported. AIM OF THE STUDY The present study was performed to evaluate the anti-inflammatory effects of M. pruriens seed extract and elucidate its underlying mechanism using lipopolysaccharide (LPS)-stimulated BV2 microglial cells. MATERIALS AND METHODS BV2 microglial cells were pretreated with various concentrations of M. pruriens seed extract before being stimulated with LPS. The levels of inflammatory mediators were analyzed by Griess assay and enzyme-linked immunoassay (ELISA). The protein expression levels of inflammatory cytokines were determined by Western blot analysis. The translocation of nuclear factor-kappa B (NF-κB) was assessed by immunofluorescence microscopy. RESULTS M. pruriens seed extract significantly inhibited the release of inflammatory mediators including nitric oxide (NO), IL-1β, IL-6, and TNF-α in LPS-stimulated BV2 microglial cells. The extract also decreased the protein expression of IL-1β, IL-6, and TNF-α. Moreover, M. pruriens seed extract inhibited the translocation of NF-κB. CONCLUSIONS M. pruriens seed extract could suppress inflammatory responses in LPS-activated BV2 microglial cells by inhibiting the NF-κB signaling pathway. These findings support the use of M. pruriens seeds in traditional and alternative medicine for the treatment of PD and other inflammation-associated diseases.
Collapse
Affiliation(s)
- Aungkana Rachsee
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Pharmacology and Center of Excellence for Innovation in Chemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Natthakarn Chiranthanut
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Phraepakaporn Kunnaja
- Division of Clinical Chemistry, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Seewaboon Sireeratawong
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Parirat Khonsung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sunee Chansakaow
- Department of Pharmaceutical Sciences and Medicinal Plant Innovation Center, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ampai Panthong
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
32
|
Integrated strategy for the separation of endotoxins from biofluids. LPS capture on newly synthesized protein. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Wen B, Zhang C, Zhou J, Zhang Z, Che Q, Cao H, Bai Y, Guo J, Su Z. Targeted treatment of alcoholic liver disease based on inflammatory signalling pathways. Pharmacol Ther 2020; 222:107752. [PMID: 33253739 DOI: 10.1016/j.pharmthera.2020.107752] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Targeted therapy is an emerging treatment strategy for alcoholic liver disease (ALD). Inflammation plays an important role in the occurrence and development of ALD, and is a key choice for its targeted treatment, and anti-inflammatory treatment has been considered beneficial for liver disease. Surprisingly, immune checkpoint inhibitors have become important therapeutic agents for hepatocellular carcinoma (HCC). Moreover, studies have shown that the combination of inflammatory molecule inhibitors and immune checkpoint inhibitors can exert better effects than either alone in mouse models of HCC. This review discusses the mechanism of hepatic ethanol metabolism and the conditions under which inflammation occurs. In addition, we focus on the potential molecular targets in inflammatory signalling pathways and summarize the potential targeted inhibitors and immune checkpoint inhibitors, providing a theoretical basis for the targeted treatment of ALD and the development of new combination therapy strategies for HCC.
Collapse
Affiliation(s)
- Bingjian Wen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chengcheng Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengyan Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Guangzhou 510663, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|