1
|
Levintov L, Vashisth H. Structural and computational studies of HIV-1 RNA. RNA Biol 2024; 21:1-32. [PMID: 38100535 PMCID: PMC10730233 DOI: 10.1080/15476286.2023.2289709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Viruses remain a global threat to animals, plants, and humans. The type 1 human immunodeficiency virus (HIV-1) is a member of the retrovirus family and carries an RNA genome, which is reverse transcribed into viral DNA and further integrated into the host-cell DNA for viral replication and proliferation. The RNA structures from the HIV-1 genome provide valuable insights into the mechanisms underlying the viral replication cycle. Moreover, these structures serve as models for designing novel therapeutic approaches. Here, we review structural data on RNA from the HIV-1 genome as well as computational studies based on these structural data. The review is organized according to the type of structured RNA element which contributes to different steps in the viral replication cycle. This is followed by an overview of the HIV-1 transactivation response element (TAR) RNA as a model system for understanding dynamics and interactions in the viral RNA systems. The review concludes with a description of computational studies, highlighting the impact of biomolecular simulations in elucidating the mechanistic details of various steps in the HIV-1's replication cycle.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, USA
| | - Harish Vashisth
- Department of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, USA
| |
Collapse
|
2
|
Blakemore RJ, Burnett C, Swanson C, Kharytonchyk S, Telesnitsky A, Munro JB. Stability and conformation of the dimeric HIV-1 genomic RNA 5'UTR. Biophys J 2021; 120:4874-4890. [PMID: 34529947 PMCID: PMC8595565 DOI: 10.1016/j.bpj.2021.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/13/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
During HIV-1 assembly, the viral Gag polyprotein specifically selects the dimeric RNA genome for packaging into new virions. The 5' untranslated region (5'UTR) of the dimeric genome may adopt a conformation that is optimal for recognition by Gag. Further conformational rearrangement of the 5'UTR, promoted by the nucleocapsid (NC) domain of Gag, is predicted during virus maturation. Two 5'UTR dimer conformations, the kissing dimer (KD) and the extended dimer (ED), have been identified in vitro, which differ in the extent of intermolecular basepairing. Whether 5'UTRs from different HIV-1 strains with distinct sequences have access to the same dimer conformations has not been determined. Here, we applied fluorescence cross-correlation spectroscopy and single-molecule Förster resonance energy transfer imaging to demonstrate that 5'UTRs from two different HIV-1 subtypes form (KDs) with divergent stabilities. We further show that both 5'UTRs convert to a stable dimer in the presence of the viral NC protein, adopting a conformation consistent with extensive intermolecular contacts. These results support a unified model in which the genomes of diverse HIV-1 strains adopt an ED conformation.
Collapse
Affiliation(s)
- Robert J Blakemore
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and School of Graduate Biomedical Sciences, Boston, Massachusetts; Graduate Program in Molecular Microbiology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts
| | - Cleo Burnett
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Canessa Swanson
- Department of Chemistry and Biochemistry, University of Maryland Baltimore Country, Baltimore, Maryland
| | - Siarhei Kharytonchyk
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - James B Munro
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and School of Graduate Biomedical Sciences, Boston, Massachusetts; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
3
|
Boyd PS, Brown JB, Brown JD, Catazaro J, Chaudry I, Ding P, Dong X, Marchant J, O’Hern CT, Singh K, Swanson C, Summers MF, Yasin S. NMR Studies of Retroviral Genome Packaging. Viruses 2020; 12:v12101115. [PMID: 33008123 PMCID: PMC7599994 DOI: 10.3390/v12101115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/03/2022] Open
Abstract
Nearly all retroviruses selectively package two copies of their unspliced RNA genomes from a cellular milieu that contains a substantial excess of non-viral and spliced viral RNAs. Over the past four decades, combinations of genetic experiments, phylogenetic analyses, nucleotide accessibility mapping, in silico RNA structure predictions, and biophysical experiments were employed to understand how retroviral genomes are selected for packaging. Genetic studies provided early clues regarding the protein and RNA elements required for packaging, and nucleotide accessibility mapping experiments provided insights into the secondary structures of functionally important elements in the genome. Three-dimensional structural determinants of packaging were primarily derived by nuclear magnetic resonance (NMR) spectroscopy. A key advantage of NMR, relative to other methods for determining biomolecular structure (such as X-ray crystallography), is that it is well suited for studies of conformationally dynamic and heterogeneous systems—a hallmark of the retrovirus packaging machinery. Here, we review advances in understanding of the structures, dynamics, and interactions of the proteins and RNA elements involved in retroviral genome selection and packaging that are facilitated by NMR.
Collapse
|
4
|
Structural Insights into RNA Dimerization: Motifs, Interfaces and Functions. Molecules 2020; 25:molecules25122881. [PMID: 32585844 PMCID: PMC7357161 DOI: 10.3390/molecules25122881] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022] Open
Abstract
In comparison with the pervasive use of protein dimers and multimers in all domains of life, functional RNA oligomers have so far rarely been observed in nature. Their diminished occurrence contrasts starkly with the robust intrinsic potential of RNA to multimerize through long-range base-pairing ("kissing") interactions, self-annealing of palindromic or complementary sequences, and stable tertiary contact motifs, such as the GNRA tetraloop-receptors. To explore the general mechanics of RNA dimerization, we performed a meta-analysis of a collection of exemplary RNA homodimer structures consisting of viral genomic elements, ribozymes, riboswitches, etc., encompassing both functional and fortuitous dimers. Globally, we found that domain-swapped dimers and antiparallel, head-to-tail arrangements are predominant architectural themes. Locally, we observed that the same structural motifs, interfaces and forces that enable tertiary RNA folding also drive their higher-order assemblies. These feature prominently long-range kissing loops, pseudoknots, reciprocal base intercalations and A-minor interactions. We postulate that the scarcity of functional RNA multimers and limited diversity in multimerization motifs may reflect evolutionary constraints imposed by host antiviral immune surveillance and stress sensing. A deepening mechanistic understanding of RNA multimerization is expected to facilitate investigations into RNA and RNP assemblies, condensates, and granules and enable their potential therapeutical targeting.
Collapse
|
5
|
Zhang K, Keane SC, Su Z, Irobalieva RN, Chen M, Van V, Sciandra CA, Marchant J, Heng X, Schmid MF, Case DA, Ludtke SJ, Summers MF, Chiu W. Structure of the 30 kDa HIV-1 RNA Dimerization Signal by a Hybrid Cryo-EM, NMR, and Molecular Dynamics Approach. Structure 2018; 26:490-498.e3. [PMID: 29398526 PMCID: PMC5842133 DOI: 10.1016/j.str.2018.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/12/2017] [Accepted: 01/03/2018] [Indexed: 02/01/2023]
Abstract
Cryoelectron microscopy (cryo-EM) and nuclear magnetic resonance (NMR) spectroscopy are routinely used to determine structures of macromolecules with molecular weights over 65 and under 25 kDa, respectively. We combined these techniques to study a 30 kDa HIV-1 dimer initiation site RNA ([DIS]2; 47 nt/strand). A 9 Å cryo-EM map clearly shows major groove features of the double helix and a right-handed superhelical twist. Simulated cryo-EM maps generated from time-averaged molecular dynamics trajectories (10 ns) exhibited levels of detail similar to those in the experimental maps, suggesting internal structural flexibility limits the cryo-EM resolution. Simultaneous inclusion of the cryo-EM map and 2H-edited NMR-derived distance restraints during structure refinement generates a structure consistent with both datasets and supporting a flipped-out base within a conserved purine-rich bulge. Our findings demonstrate the power of combining global and local structural information from these techniques for structure determination of modest-sized RNAs.
Collapse
Affiliation(s)
- Kaiming Zhang
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah C Keane
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA
| | - Zhaoming Su
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rossitza N Irobalieva
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muyuan Chen
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Verna Van
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA
| | - Carly A Sciandra
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA
| | - Jan Marchant
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA
| | - Xiao Heng
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Michael F Schmid
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David A Case
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Steven J Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Michael F Summers
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA.
| | - Wah Chiu
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Smith LG, Zhao J, Mathews DH, Turner DH. Physics-based all-atom modeling of RNA energetics and structure. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 8. [PMID: 28815951 DOI: 10.1002/wrna.1422] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/03/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022]
Abstract
The database of RNA sequences is exploding, but knowledge of energetics, structures, and dynamics lags behind. All-atom computational methods, such as molecular dynamics, hold promise for closing this gap. New algorithms and faster computers have accelerated progress in improving the reliability and accuracy of predictions. Currently, the methods can facilitate refinement of experimentally determined nuclear magnetic resonance and x-ray structures, but are 'unreliable' for predictions based only on sequence. Much remains to be discovered, however, about the many molecular interactions driving RNA folding and the best way to approximate them quantitatively. The large number of parameters required means that a wide variety of experimental results will be required to benchmark force fields and different approaches. As computational methods become more reliable and accessible, they will be used by an increasing number of biologists, much as x-ray crystallography has expanded. Thus, many fundamental physical principles underlying the computational methods are described. This review presents a summary of the current state of molecular dynamics as applied to RNA. It is designed to be helpful to students, postdoctoral fellows, and faculty who are considering or starting computational studies of RNA. WIREs RNA 2017, 8:e1422. doi: 10.1002/wrna.1422.
Collapse
Affiliation(s)
- Louis G Smith
- Department of Biochemistry and Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Jianbo Zhao
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - David H Mathews
- Department of Biochemistry and Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Douglas H Turner
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
7
|
Ruan M, Seydou M, Noel V, Piro B, Maurel F, Barbault F. Molecular Dynamics Simulation of a RNA Aptasensor. J Phys Chem B 2017; 121:4071-4080. [PMID: 28363022 DOI: 10.1021/acs.jpcb.6b12544] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single-stranded RNA aptamers have emerged as novel biosensor tools. However, the immobilization procedure of the aptamer onto a surface generally induces a loss of affinity. To understand this molecular process, we conducted a complete simulation study for the Flavin mononucleotide aptamer for which experimental data are available. Several molecular dynamics simulations (MD) of the Flavin in complex with its RNA aptamer were conducted in solution, linked with six thymidines (T6) and, finally, immobilized on an hexanol-thiol-functionalized gold surface. First, we demonstrated that our MD computations were able to reproduce the experimental solution structure and to provide a meaningful estimation of the Flavin free energy of binding. We also demonstrated that the T6 linkage, by itself, does not generate a perturbation of the Flavin recognition process. From the simulation of the complete biosensor system, we observed that the aptamer stays oriented parallel to the surface at a distance around 36 Å avoiding, this way, interaction with the surface. We evidenced a structural reorganization of the Flavin aptamer binding mode related to the loss of affinity and induced by an anisotropic distribution of sodium cationic densities. This means that ionic diffusion is different between the surface and the aptamer than above this last one. We suggest that these findings might be extrapolated to other nucleic acids systems for the future design of biosensors with higher efficiency and selectivity.
Collapse
Affiliation(s)
- Min Ruan
- Université Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, 15 rue J-A de Baïf, 75013 Paris, France.,School of Materials and Metallurgy, Hubei Polytechnic University , Huangshi, Hubei, China
| | - Mahamadou Seydou
- Université Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, 15 rue J-A de Baïf, 75013 Paris, France
| | - Vincent Noel
- Université Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, 15 rue J-A de Baïf, 75013 Paris, France
| | - Benoit Piro
- Université Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, 15 rue J-A de Baïf, 75013 Paris, France
| | - François Maurel
- Université Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, 15 rue J-A de Baïf, 75013 Paris, France
| | - Florent Barbault
- Université Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR 7086, CNRS, 15 rue J-A de Baïf, 75013 Paris, France
| |
Collapse
|
8
|
Havrila M, Zgarbová M, Jurečka P, Banáš P, Krepl M, Otyepka M, Šponer J. Microsecond-Scale MD Simulations of HIV-1 DIS Kissing-Loop Complexes Predict Bulged-In Conformation of the Bulged Bases and Reveal Interesting Differences between Available Variants of the AMBER RNA Force Fields. J Phys Chem B 2015; 119:15176-90. [DOI: 10.1021/acs.jpcb.5b08876] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marek Havrila
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Marie Zgarbová
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University, tř.
17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petr Jurečka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University, tř.
17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Pavel Banáš
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University, tř.
17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Miroslav Krepl
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University, tř.
17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
- CEITEC
- Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
9
|
Kim T, Shapiro BA. The role of salt concentration and magnesium binding in HIV-1 subtype-A and subtype-B kissing loop monomer structures. J Biomol Struct Dyn 2012; 31:495-510. [PMID: 22881341 DOI: 10.1080/07391102.2012.706072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The subtype-B monomers of the human immunodeficiency virus type-1 (HIV-1) have experimentally been shown to dimerize at high salt concentration or in the presence of magnesium, while the dimerization of the subtype-A monomers requires magnesium binding at the G273 or G274 phosphate groups regardless of salt concentration. We used explicit solvent molecular dynamics (MD) simulations to investigate the conformational changes in subtype-A and -B monomers in different salt concentrations, and we found that our MD simulation results are consistent with those of experiments. At low salt concentration, hairpin loop structures of both subtypes were deformed and bases in the hairpin loop were turned inside. At high salt concentrations, the subtype-B monomer maintained the hairpin loop shape and most bases in the hairpin loop pointed out, while the subtype-A monomer showed a severe deformation. We also found that the flanking bases in the subtype-B stabilize the hairpin loop, while the flanking base G273 in the subtype-A caused a significant deformation. However, a bound magnesium ion at the G273 or G274 phosphate groups controlled the behavior of the G273 base and prevented the subtype-A monomer from deformation. We also applied restraints to both subtypes to examine the role of high salt concentration or magnesium binding. While restraints were applied, both subtypes at 0 M salt concentration maintained their shapes. However, when restraints were removed, they deformed significantly. Therefore, we suggest that the dimerization of both subtypes requires the proper conformation of the monomers which is induced by the appropriate salt strength and magnesium ion binding.
Collapse
Affiliation(s)
- Taejin Kim
- Center for Cancer Research Nanobiology Program, Frederick National Laboratory for Cancer Research, Frederick , MD 20872, USA
| | | |
Collapse
|
10
|
Thermodynamic and kinetic analysis of an RNA kissing interaction and its resolution into an extended duplex. Biophys J 2012; 102:1097-107. [PMID: 22404932 DOI: 10.1016/j.bpj.2011.12.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 12/22/2011] [Accepted: 12/30/2011] [Indexed: 11/22/2022] Open
Abstract
Kissing hairpin interactions form when the loop residues of two hairpins have Watson-Crick complementarity. In a unimolecular context, kissing interactions are important for tertiary folding and pseudoknot formation, whereas in a bimolecular context, they provide a basis for molecular recognition. In some cases, kissing complexes can be a prelude to strand displacement reactions where the two hairpins resolve to form a stable extended intermolecular duplex. The kinetics and thermodynamics of kissing-complex formation and their subsequent strand-displacement reactions are poorly understood. Here, biophysical techniques including isothermal titration calorimetry, surface plasmon resonance, and single-molecule fluorescence have been employed to probe the factors that govern the stability of kissing complexes and their subsequent structural rearrangements. We show that the general understanding of RNA duplex formation can be extended to kissing complexes but that kissing complexes display an unusual level of stability relative to simple duplexes of the same sequence. These interactions form and break many times at room temperature before becoming committed to a slow, irreversible forward transition to the strand-displaced form. Furthermore, using smFRET we show that the primary difference between stable and labile kissing complexes is based almost completely on their off rates. Both stable and labile complexes form at the same rate within error, but less stable species dissociate rapidly, allowing us to understand how these complexes can help generate specificity along a folding pathway or during a gene regulation event.
Collapse
|
11
|
Lu K, Heng X, Summers MF. Structural determinants and mechanism of HIV-1 genome packaging. J Mol Biol 2011; 410:609-33. [PMID: 21762803 DOI: 10.1016/j.jmb.2011.04.029] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 11/30/2022]
Abstract
Like all retroviruses, the human immunodeficiency virus selectively packages two copies of its unspliced RNA genome, both of which are utilized for strand-transfer-mediated recombination during reverse transcription-a process that enables rapid evolution under environmental and chemotherapeutic pressures. The viral RNA appears to be selected for packaging as a dimer, and there is evidence that dimerization and packaging are mechanistically coupled. Both processes are mediated by interactions between the nucleocapsid domains of a small number of assembling viral Gag polyproteins and RNA elements within the 5'-untranslated region of the genome. A number of secondary structures have been predicted for regions of the genome that are responsible for packaging, and high-resolution structures have been determined for a few small RNA fragments and protein-RNA complexes. However, major questions regarding the RNA structures (and potentially the structural changes) that are responsible for dimeric genome selection remain unanswered. Here, we review efforts that have been made to identify the molecular determinants and mechanism of human immunodeficiency virus type 1 genome packaging.
Collapse
Affiliation(s)
- Kun Lu
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
12
|
Turner KB, Kohlway AS, Hagan NA, Fabris D. Noncovalent probes for the investigation of structure and dynamics of protein-nucleic acid assemblies: the case of NC-mediated dimerization of genomic RNA in HIV-1. Biopolymers 2009; 91:283-96. [PMID: 18946871 DOI: 10.1002/bip.21107] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The nature of specific RNA-RNA and protein-RNA interactions involved in the process of genome dimerization and isomerization in HIV-1, which is mediated in vitro by stemloop 1 (SL1) of the packaging signal and by the nucleocapsid (NC) domain of the viral Gag polyprotein, was investigated by using archetypical nucleic acid ligands as noncovalent probes. Small-molecule ligands make contact with their target substrates through complex combinations of H-bonds, salt bridges, and hydrophobic interactions. Therefore, their binding patterns assessed by electrospray ionization mass spectrometry can provide valuable insights into the factors determining specific recognition between species involved in biopolymer assemblies. In the case of SL1, dimerization and isomerization create unique structural features capable of sustaining stable interactions with classic nucleic acid ligands. The binding modes exhibited by intercalators and minor groove binders were adversely affected by the significant distortion of the duplex formed by palindrome annealing in the kissing-loop (KL) dimer, whereas the modes observed for the corresponding extended duplex (ED) confirmed a more regular helical structure. Consistent with the ability to establish electrostatic interactions with highly negative pockets typical of helix anomalies, polycationic aminoglycosides bound to the stem-bulge motif conserved in all SL1 conformers, to the unpaired nucleotides located at the hinge between kissing hairpins in KL, and to the exposed bases flanking the palindrome duplex in ED. The patterns afforded by intercalators and minor groove binders did not display detectable variations when the corresponding NC-SL1 complexes were submitted to probing. In contrast, aminoglycosides displayed the ability to compete with the protein for overlapping sites, producing opposite effects on the isomerization process. Indeed, displacing NC from the stem-bulges of the KL dimer induced inhibition of stem melting and decreased the efficiency of isomerization. Competition for the hinge region, instead, eliminated the NC stabilization of a grip motif formed by nucleobases of opposite strands, thus facilitating the strand-exchange required for isomerization. These noncovalent probes provided further evidence that the structural context of the actual binding sites has significant influence on the chaperone activities of NC, which should be taken in account when developing potential drug candidates aimed at disrupting genome dimerization and isomerization in HIV-1.
Collapse
Affiliation(s)
- Kevin B Turner
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, USA
| | | | | | | |
Collapse
|
13
|
Mazier S, Genest D. Insight into the intrinsic flexibility of the SL1 stem-loop from genomic RNA of HIV-1 as probed by molecular dynamics simulation. Biopolymers 2008; 89:187-96. [PMID: 18008323 DOI: 10.1002/bip.20888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The SL1 stem-loop is the dimerization initiation site for linking the two copies of the RNA forming the HIV-1 genome. The 26 nucleotides stem contains a defect consisting on a highly conserved G-rich 1-3 asymmetrical internal loop, which is a major site for nucleocapsid protein binding. Several NMR attempts were undertaken to determine the internal loop structure in the SL1 monomer. However, the RNA constructs used in the different studies were largely mutated, in particular with replacement of the nine nucleotides apical loop by a tetraloop, and divergent results were obtained ranging from a rigid structure to a particularly large flexibility. To investigate the reasons for such discrepancies, we used molecular dynamics simulation of the SL1 monomer to probe the effect of mutations on the conformational stability of the internal loop and of the whole stem. It is found that in the wild-type sequence, the internal loop displays conformational variability originating mainly from the nine nucleotides apical loop flexibility that causes large conformational fluctuations (without changing the average structure) in the 7 bp duplex linking the apical and internal loops. The large amplitude atomic motions in the duplex are transmitted to the internal loop in which they induce conformational changes characterized by a labile hydrogen bond network such as G5 successively H-bonded to A29 and G30. On the contrary, with a four nucleotides apical loop, conformational fluctuations in the duplex are reduced by a factor of 2 and are not sufficiently energizing for promoting changes in the internal loop structure at the time scale of the simulations.
Collapse
Affiliation(s)
- Sonia Mazier
- Centre de Biophysique Moléculaire du CNRS-UPR 4301-affiliated to the University of Orleans and to INSERM, Rue Charles Sadron, 45071 Orleans cedex 02, France
| | | |
Collapse
|
14
|
Yu H, Li T, Qiao W, Chen Q, Geng Y. Guanine tetrad and palindromic sequence play critical roles in the RNA dimerization of bovine foamy virus. Arch Virol 2007; 152:2159-67. [PMID: 17712597 DOI: 10.1007/s00705-007-1047-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 07/18/2007] [Indexed: 10/22/2022]
Abstract
Retroviruses are unique in having a diploid genome. However, the RNA sequences and structures that link the two RNA molecules are different. To identify the dimer linkage site of bovine foamy virus (BFV), complementary DNAs were used to interfere with RNA dimerization of BFV. We found that two sites, designated SI and SII, within a 53-base RNA fragment, were essential for BFV dimerization in vitro. SI consists of a potential guanine tetrad (GGGGC), which overlaps the primer binding site, while SII contains 15 nucleotides including a palindromic sequence, UCCCUAGGGA. Masking either of the sites completely abolished RNA dimer formation. Furthermore, a deletion of SII was introduced into a BFV infectious DNA clone; we found that deletion of SII significantly increased expression of BFV transactivator Borf-1. Interestingly, we also found that this deletion abolished viral infectivity. These results suggest that dimerization might play a unique role in the BFV life cycle.
Collapse
Affiliation(s)
- H Yu
- College of Life Sciences, Nankai University, Tianjin, PR China
| | | | | | | | | |
Collapse
|
15
|
Mazier S, Genest D. Molecular dynamics simulation for probing the flexibility of the 35 nucleotide SL1 sequence kissing complex from HIV-1Lai genomic RNA. J Biomol Struct Dyn 2007; 24:471-9. [PMID: 17313192 DOI: 10.1080/07391102.2007.10507135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The SL1 stem-loop located in the encapsidation domain is responsible for initiating the dimerisation of HIV-1 genomic RNA by means of a loop-loop interaction known as Kissing Complex (KC). The SL1 secondary structure has been predicted as a 35 nucleotides [K. G. Murti, M. Bondurant, and A. Tereba. J Virol 37, 411-419 (1981)] stem-loop composed of a 4 base pairs (bp) terminal duplex, a 4 nt asymmetrical internal loop, a 7 bp internal duplex, and a 9 nt apical loop. Several high resolution structures of the monomer and of KC of a 23 nt sequence containing only the internal duplex and the apical loop of SL1 are available in the literature. No experimental high resolution structure of the complete native SL1 sequence has been reported so far, either for the monomer or for KC. The asymmetrical internal loop has been described from NMR studies of different monomeric hairpin sequences, leading to divergent results, which suggests its high flexibility. In this work, we built a SL1(35) KC model which was submitted to a 31 ns molecular dynamics simulation (MD). Our results allows to describe the internal dynamics of SL1(35) KC and the differences of behavior of the different parts of the dimer. Thus, we could show the stability of the interactions between the two apical loops and of the terminal duplexes, the destabilization of the internal duplexes and the high flexibility of the asymmetrical internal loops.
Collapse
Affiliation(s)
- S Mazier
- Centre de Biophysique Moleculaire, UPR no 4301 du CNRS, affiliated to the University of Orleans and to INSERM, CNRS - Rue Charles Sadron, 45071 Orleans cedex 2, France
| | | |
Collapse
|
16
|
Turner KB, Hagan NA, Fabris D. Understanding the isomerization of the HIV-1 dimerization initiation domain by the nucleocapsid protein. J Mol Biol 2007; 369:812-28. [PMID: 17466332 PMCID: PMC2475603 DOI: 10.1016/j.jmb.2007.03.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 03/20/2007] [Accepted: 03/23/2007] [Indexed: 10/23/2022]
Abstract
The specific binding of HIV-1 nucleocapsid (NC) to the hinge region of the kissing-loop (KL) dimer formed by stemloop 1 (SL1) can have significant consequences on its ability to isomerize into the corresponding extended duplex (ED) form. The binding determinants and the effects on the isomerization process were investigated in vitro by a concerted strategy involving ad hoc RNA mutants and electrospray ionization-Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry, which enabled us to characterize the stoichiometry and conformational state of all possible protein-RNA and RNA-RNA assemblies present simultaneously in solution. For the first time, NC-hinge interactions were observed in constructs including at least one unpaired guanine at the 5'-end of the loop-loop duplex, whereas no interactions were detected when the unpaired guanine was placed at its 3'-end. This binding mode is supported by the presence of a grip-like motif described by recent crystal structures, which is formed by the 5'-purines of both hairpins held together by mutual stacking interactions. Using tandem mass spectrometry, hinge interactions were clearly shown to reduce the efficiency of KL/ED isomerization without inducing its complete block. This outcome is consistent with the partial stabilization of the extra-helical grip by the bound protein, which can hamper the purine components from parting ways and initiate the strand exchange process. These findings confirm that the broad binding and chaperone activities of NC induce unique effects that are clearly dependent on the structural context of the cognate nucleic acid substrate. For this reason, the presence of multiple binding sites on the different forms assumed by SL1 can produce seemingly contrasting effects that contribute to a fine modulation of the two-step process of RNA dimerization and isomerization.
Collapse
Affiliation(s)
- Kevin B. Turner
- University of Maryland Baltimore County, Department of Chemistry and Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21228 USA, Tel. (410) 455-3053, Fax. (410) 455-2608,
| | - Nathan A. Hagan
- University of Maryland Baltimore County, Department of Chemistry and Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21228 USA, Tel. (410) 455-3053, Fax. (410) 455-2608,
| | - Daniele Fabris
- University of Maryland Baltimore County, Department of Chemistry and Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21228 USA, Tel. (410) 455-3053, Fax. (410) 455-2608,
| |
Collapse
|
17
|
Affiliation(s)
- Andrew M L Lever
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
18
|
Hagan NA, Fabris D. Dissecting the protein-RNA and RNA-RNA interactions in the nucleocapsid-mediated dimerization and isomerization of HIV-1 stemloop 1. J Mol Biol 2006; 365:396-410. [PMID: 17070549 PMCID: PMC1847390 DOI: 10.1016/j.jmb.2006.09.081] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/21/2006] [Accepted: 09/27/2006] [Indexed: 10/24/2022]
Abstract
The specific binding of HIV-1 nucleocapsid protein (NC) to the different forms assumed in vitro by the stemloop 1 (Lai variant) of the genome's packaging signal has been investigated using electrospray ionization-Fourier transform mass spectrometry (ESI-FTMS). The simultaneous observation of protein-RNA and RNA-RNA interactions in solution has provided direct information about the role of NC in the two-step model of RNA dimerization and isomerization. In particular, two distinct binding sites have been identified on the monomeric stemloop structure, corresponding to the apical loop and stem-bulge motifs. These sites share similar binding affinities that are intermediate between those of stemloop 3 (SL3) and the putative stemloop 4 (SL4) of the packaging signal. Binding to the apical loop, which contains the dimerization initiation site (DIS), competes directly with the annealing of self-complementary sequences to form a metastable kissing-loop (KL) dimer. In contrast, binding to the stem-bulge affects indirectly the monomer-dimer equilibrium by promoting the rearrangement of KL into the more stable extended duplex (ED) conformer. This process is mediated by the duplex-melting activity of NC, which destabilizes the intramolecular base-pairs surrounding the KL stem-bulges and enables their exchange to form the inter-strand pairs that define the ED structure. In this conformer, high-affinity binding takes place at stem-bulge sites that are identical to those present in the monomeric and KL forms. In this case, however, the NC-induced "breathing" does not result in dissociation of the double-stranded structure because of the large number of intermolecular base-pairs. The different binding modes manifested by conformer-specific mutants have shown that NC can also provide low affinity interactions with the bulged-out adenine bases flanking the DIS region of the ED conformer, thus supporting the hypothesis that these exposed nucleotides may constitute "base-grips" for protein contacts during the late stages of the viral lifecycle.
Collapse
Affiliation(s)
- Nathan A. Hagan
- University of Maryland Baltimore County, Department of Chemistry and Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21228 USA, Tel. (410) 455-3053, Fax (410) 455-2608,
| | - Daniele Fabris
- University of Maryland Baltimore County, Department of Chemistry and Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21228 USA, Tel. (410) 455-3053, Fax (410) 455-2608,
| |
Collapse
|
19
|
Ulyanov NB, Mujeeb A, Du Z, Tonelli M, Parslow TG, James TL. NMR structure of the full-length linear dimer of stem-loop-1 RNA in the HIV-1 dimer initiation site. J Biol Chem 2006; 281:16168-77. [PMID: 16603544 DOI: 10.1074/jbc.m601711200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The packaging signal of HIV-1 RNA contains a stem-loop structure, SL1, which serves as the dimerization initiation site for two identical copies of the genome and is important for packaging of the RNA genome into the budding virion and for overall infectivity. SL1 spontaneously dimerizes via a palindromic hexanucleotide sequence in its apical loop, forming a metastable kissing dimer form. Incubation with nucleocapsid protein causes this form to refold to a thermodynamically stable mature linear dimer. Here, we present an NMR structure of the latter form of the full-length SL1 sequence of the Lai HIV-1 isolate. The structure was refined using nuclear Overhauser effect and residual dipolar coupling data. The structure presents a symmetric homodimer of two RNA strands of 35 nucleotides each; it includes five stems separated by four internal loops. The central palindromic stem is surrounded by two symmetric adenine-rich 1-2 internal loops, A-bulges. All three adenines in each A-bulge are stacked inside the helix, consistent with the solution structures of shorter SL1 constructs determined previously. The outer 4-base pair stems and, proximal to them, purine-rich 1-3 internal loops, or G-bulges, are the least stable parts of the molecule. The G-bulges display high conformational variability in the refined ensemble of structures, despite the availability of many structural restraints for this region. Nevertheless, most conformations share a similar structural motif: a guanine and an adenine from opposite strands form a GA mismatch stacked on the top of the neighboring stem. The two remaining guanines are exposed, one in the minor groove and another in the major groove side of the helix, consistent with secondary structure probing data for SL1. These guanines may be recognized by the nucleocapsid protein, which binds tightly to the G-bulge in vitro.
Collapse
Affiliation(s)
- Nikolai B Ulyanov
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | |
Collapse
|
20
|
Baba S, Takahashi KI, Noguchi S, Takaku H, Koyanagi Y, Yamamoto N, Kawai G. Solution RNA structures of the HIV-1 dimerization initiation site in the kissing-loop and extended-duplex dimers. J Biochem 2006; 138:583-92. [PMID: 16272570 DOI: 10.1093/jb/mvi158] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dimer formation of HIV-1 genomic RNA through its dimerization initiation site (DIS) is crucial to maintaining infectivity. Two types of dimers, the initially generated kissing-loop dimer and the subsequent product of the extended-duplex dimer, are formed in the stem-bulge-stem region with a loop including a self-complementary sequence. NMR chemical shift analysis of a 39mer RNA corresponding to DIS, DIS39, in the kissing-loop and extended-duplex dimers revealed that the three dimensional structures of the stem-bulge-stem region are extremely similar between the two types of dimers. Therefore, we designed two shorter RNA molecules, loop25 and bulge34, corresponding to the loop-stem region and the stem-bulge-stem region of DIS39, respectively. Based upon the chemical shift analysis, the conformation of the loop region of loop25 is identical to that of DIS39 for each of the two types of dimers. The conformation of bulge34 was also found to be the same as that of the corresponding region of DIS39. Thus, we determined the solution structures of loop25 in each of the two types of dimers as well as that of bulge34. Finally, the solution structures of DIS39 in the kissing-loop and extended-duplex dimers were determined by combining the parts of the structures. The solution structures of the two types of dimers were similar to each other in general with a difference found only in the A16 residue. The elucidation of the structures of DIS39 is important to understanding the molecular mechanism of the conformational dynamics of viral RNA molecules.
Collapse
Affiliation(s)
- Seiki Baba
- Department of Life and Environmental Sciences, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016
| | | | | | | | | | | | | |
Collapse
|
21
|
Kieken F, Paquet F, Brulé F, Paoletti J, Lancelot G. A new NMR solution structure of the SL1 HIV-1Lai loop-loop dimer. Nucleic Acids Res 2006; 34:343-52. [PMID: 16410614 PMCID: PMC1331991 DOI: 10.1093/nar/gkj427] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Dimerization of genomic RNA is directly related with the event of encapsidation and maturation of the virion. The initiating sequence of the dimerization is a short autocomplementary region in the hairpin loop SL1. We describe here a new solution structure of the RNA dimerization initiation site (DIS) of HIV-1Lai. NMR pulsed field-gradient spin-echo techniques and multidimensional heteronuclear NMR spectroscopy indicate that this structure is formed by two hairpins linked by six Watson–Crick GC base pairs. Hinges between the stems and the loops are stabilized by intra and intermolecular interactions involving the A8, A9 and A16 adenines. The coaxial alignment of the three A-type helices present in the structure is supported by previous crystallography analysis but the A8 and A9 adenines are found in a bulged in position. These data suggest the existence of an equilibrium between bulged in and bulged out conformations in solution.
Collapse
Affiliation(s)
| | | | | | | | - Gérard Lancelot
- To whom correspondence should be addressed. Tel: +33 2 38 25 55 71;
| |
Collapse
|
22
|
Aci S, Mazier S, Genest D. Conformational pathway for the kissing complex-->extended dimer transition of the SL1 stem-loop from genomic HIV-1 RNA as monitored by targeted molecular dynamics techniques. J Mol Biol 2005; 351:520-30. [PMID: 16023135 DOI: 10.1016/j.jmb.2005.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/30/2005] [Accepted: 06/07/2005] [Indexed: 11/28/2022]
Abstract
HIV-1 retroviral genomic RNA dimerization is initiated by loop-loop interactions between the SL1 stem-loops of two identical RNA molecules. The SL1-SL1 unstable resulting kissing complex (KC) then refolds irreversibly into a more stable complex called extended dimer (ED). Although the structures of both types of complex have been determined, very little is known about the conformational pathway corresponding to the transition, owing to the difficulty of observing experimentally intermediate conformations. In this study, we applied targeted molecular dynamics simulation techniques (TMD) to the phosphorus atoms for monitoring this pathway for the backbone, and a two-step strategy was adopted. In a first step, called TMD(-1), the dimer structure was constrained to progressively move away from KC without indicating the direction, until the RMSD from KC reaches 36A. A total of 20 TMD(-1) simulations were performed under different initial conditions and different simulation parameters. For RMSD ranging between 0 and 22A, the whole set of TMD(-1) simulations follows a similar pathway, then divergences are observed. None of the simulations leads to the ED structure. At RMSD=22A, the dimers look like two parallel Us, still linked by the initial loop-loop interaction, but the strands of the stems (the arms of the Us) are positioned in such a manner that they can form intramolecular as well as intermolecular Watson-Crick base-pairs. This family of structure is called UU. In a second step (TMD simulations), 18 structures were picked up along the pathways generated with TMD(-1) and were constrained to move toward ED by decreasing progressively their RMSD from ED. We found that only structures from the UU family are able to easily reach ED-like conformations of the backbones without exhibiting a large constraint energy.
Collapse
Affiliation(s)
- S Aci
- Centre de Biophysique Moléculaire, UPR no 4301 du CNRS, affiliated to the University of Orléans and to INSERM, Rue Charles Sadron, 45071 Orléans cedex 02, France
| | | | | |
Collapse
|
23
|
Paillart JC, Shehu-Xhilaga M, Marquet R, Mak J. Dimerization of retroviral RNA genomes: an inseparable pair. Nat Rev Microbiol 2004; 2:461-72. [PMID: 15152202 DOI: 10.1038/nrmicro903] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jean-Christophe Paillart
- UPR 9002 du CNRS affiliée à l'Université Louis Pasteur, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
24
|
Mihailescu MR, Marino JP. A proton-coupled dynamic conformational switch in the HIV-1 dimerization initiation site kissing complex. Proc Natl Acad Sci U S A 2004; 101:1189-94. [PMID: 14734802 PMCID: PMC337028 DOI: 10.1073/pnas.0307966100] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In HIV type 1 (HIV-1), the dimerization initiation site (DIS) is the sequence primarily responsible for initiating the noncovalent linkage of two homologous strands of genomic RNA during viral assembly. The DIS loop contains an autocomplementary hexanucleotide sequence and forms a symmetric homodimer through a loop-loop kissing interaction. In a structural rearrangement catalyzed by the HIV-1 nucleocapsid protein (NCp7) and suggested to be associated with maturation of the budded viral particle, the DIS converts from a metastable kissing dimer to an extended duplex. Here, we demonstrate that the DIS kissing dimer displays localized conformational dynamics that result from the specific protonation of the N1 base nitrogen of the DIS loop residue A272 at near-physiological pH. The rate of NCp7-catalyzed maturation of the DIS kissing dimer is also shown to directly correlate with the observed proton-coupled conformational dynamics, where NCp7 is found to convert the dynamic A272 protonated state with a faster rate. Taken together, these results reveal a previously undescribed role for base protonation in modulating local RNA structure and demonstrate a mechanism for promoting the chaperone-mediated structural rearrangement of a kinetically trapped RNA conformational state.
Collapse
Affiliation(s)
- Mihaela-Rita Mihailescu
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute and National Institute for Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | | |
Collapse
|
25
|
Russell RS, Roldan A, Detorio M, Hu J, Wainberg MA, Liang C. Effects of a single amino acid substitution within the p2 region of human immunodeficiency virus type 1 on packaging of spliced viral RNA. J Virol 2004; 77:12986-95. [PMID: 14645555 PMCID: PMC296066 DOI: 10.1128/jvi.77.24.12986-12995.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 encapsidates two copies of viral genomic RNA in the form of a dimer. The dimerization process initiates via a 6-nucleotide palindrome that constitutes the loop of a viral RNA stem-loop structure (i.e., stem loop 1 [SL1], also termed the dimerization initiation site [DIS]) located within the 5' untranslated region of the viral genome. We have now shown that deletion of the entire DIS sequence virtually eliminated viral replication but that this impairment was overcome by four second-site mutations located within the matrix (MA), capsid (CA), p2, and nucleocapsid (NC) regions of Gag. Interestingly, defective viral RNA dimerization caused by the DeltaDIS deletion was not significantly corrected by these compensatory mutations, which did, however, allow the mutated viruses to package wild-type levels of this DIS-deleted viral RNA while excluding spliced viral RNA from encapsidation. Further studies demonstrated that the compensatory mutation T12I located within p2, termed MP2, sufficed to prevent spliced viral RNA from being packaged into the DeltaDIS virus. Consistently, the DeltaDIS-MP2 virus displayed significantly higher levels of infectiousness than did the DeltaDIS virus. The importance of position T12 in p2 was further demonstrated by the identification of four point mutations,T12D, T12E, T12G, and T12P, that resulted in encapsidation of spliced viral RNA at significant levels. Taken together, our data demonstrate that selective packaging of viral genomic RNA is influenced by the MP2 mutation and that this represents a major mechanism for rescue of viruses containing the DeltaDIS deletion.
Collapse
Affiliation(s)
- Rodney S Russell
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | |
Collapse
|
26
|
Aci S, Gangneux L, Paoletti J, Genest D. On the stability of different experimental dimeric structures of the SL1 sequence from the genomic RNA of HIV-1 in solution: A molecular dynamics simulation and electrophoresis study. Biopolymers 2004; 74:177-88. [PMID: 15150793 DOI: 10.1002/bip.20032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
SL1 is a stem-loop RNA sequence from the genome of HIV-1 thought to be the initiation site for the dimerization of the retroviral genomic RNA. The aim of this study is to check the stability in solution of different experimental dimeric structures available in the literature. Two kinds of dimer have been evidenced: an extended duplex looking like a double helix with two internal bulges and a kissing complex in which the monomers with a stem/loop conformation are linked by intermolecular loop-loop interactions. Two divergent experimental structures of the kissing complex from the Lai isolate are reported in the literature, one obtained from NMR (Mujeeb et al., Nature Structural Biology, 1998, Vol. 5, pp. 432-436) and the other one from x-ray crystallography (Ennifar et al., Nature Structural Biology, 2001, Vol. 8, pp. 1064-1068). A crystallographic structure of the Mal isolate was also reported (Ennifar et al., Nature Structure Biology, 2001, Vol. 8, pp. 1064-1068). Concerning the extended duplex, a NMR structure is available for Lai (Girard et al., Journal of Biomolecular Structure and Dynamics, 1999, Vol. 16, pp. 1145-1157) and a crystallographic structure for Mal (Ennifar et al., Structure, 1999, Vol. 7, pp. 1439-1449). Using a molecular dynamics technique, all these experimental structures have been simulated in solution with explicit water and counterions. We show that both extended duplex structures are stable. On the contrary, the crystallographic structures of the Lai and Mal kissing complexes are rapidly destabilized in aqueous environment. Finally, the NMR structure of the Lai loop-loop kissing complex remains globally stable over a 20 ns MD simulation, although large rearrangements occur at the level of the stem/loop junctions that are flexible, as shown from free energy calculations. These results are compared to electrophoresis experiments on dimer formation.
Collapse
Affiliation(s)
- S Aci
- Centre de Biophysique Moléculaire, University of Orléans, CNRS, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | | | | | | |
Collapse
|
27
|
Yuan Y, Kerwood DJ, Paoletti AC, Shubsda MF, Borer PN. Stem of SL1 RNA in HIV-1: structure and nucleocapsid protein binding for a 1 x 3 internal loop. Biochemistry 2003; 42:5259-69. [PMID: 12731867 DOI: 10.1021/bi034084a] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 5'-leader of HIV-1 RNA controls many viral functions. Nucleocapsid (NC) domains of gag-precursor proteins select genomic RNA for packaging by binding several sites in the leader. One is likely to be a stem defect in SL1 that can adopt either a 1 x 3 internal loop, SL1i (including G247, A271, G272, G273) or a 1 x 1 internal loop (G247 x G273) near a two-base bulge (A269-G270). It is likely that these two conformations are both present and exchange readily. A 23mer RNA construct described here models SL1i and cannot slip into the alternate form. It forms a 1:1 complex with NCp7, which interacts most strongly at G247 and G272 (K(d) = 140 nM). This demonstrates that a linear G-X-G sequence is unnecessary for high-affinity binding. The NMR-based structure shows an easily broken G247:A271 base pair. G247 stacks on both of its immediate neighbors and A271 on its 5'-neighbor; G272 and G273 are partially ordered. A bend in the helix axis between the SL1 stems on either side of the internal loop is probable. An important step in maturation of the virus is the transition from an apical loop-loop interaction to a dimer involving intermolecular interactions along the full length of SL1. A bend in the stem may be important in relieving strain and ensuring that the strands do not become entangled during the transition. A stem defect with special affinity for NCp7 may accelerate the rate of the dimer transformation. This complex could become an important target for anti-HIV drug development, where a drug could exert its action near a high-energy intermediate on the pathway for maturation of the dimer.
Collapse
MESH Headings
- Base Sequence
- Capsid/chemistry
- Capsid/metabolism
- Capsid Proteins
- DNA, Viral/metabolism
- Dimerization
- Gene Products, gag/chemistry
- Gene Products, gag/metabolism
- Genome, Viral
- HIV Infections/virology
- HIV-1/genetics
- Humans
- Models, Structural
- Molecular Sequence Data
- Nuclear Magnetic Resonance, Biomolecular
- Nucleic Acid Conformation
- RNA, Spliced Leader/chemistry
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- Viral Proteins
- Virus Assembly
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- YiQiong Yuan
- Department of Chemistry, Graduate Program in Structural Biology, Biochemistry, and Biophysics, Syracuse University, Syracuse, New York 13244-4100, USA
| | | | | | | | | |
Collapse
|
28
|
Ennifar E, Paillart JC, Marquet R, Ehresmann B, Ehresmann C, Dumas P, Walter P. HIV-1 RNA dimerization initiation site is structurally similar to the ribosomal A site and binds aminoglycoside antibiotics. J Biol Chem 2003; 278:2723-30. [PMID: 12435744 DOI: 10.1074/jbc.m205726200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus (HIV) genomic RNA is packaged into virions as a dimer. The first step of dimerization is the formation of a kissing-loop complex at the so-called dimerization initiation site (DIS). We found an unexpected and fortuitous resemblance between the HIV-1 DIS kissing-loop complex and the eubacterial 16 S ribosomal aminoacyl-tRNA site (A site), which is the target of aminoglycoside antibiotics. Similarities exist not only at the primary and secondary structure level but also at the tertiary structure level, as revealed by comparison of the respective DIS and A site crystal structures. Gel shift, inhibition of lead-induced cleavage, and footprinting experiments showed that paromomycin and neomycin specifically bind to the kissing-loop complex formed by the DIS, with an affinity and a geometry similar to that observed for the A site. Modeling of the aminoglycoside-DIS complex allowed us to identify antibiotic modifications likely to increase the affinity and/or the specificity for the DIS. This could be a starting point for designing antiviral drugs against HIV-1 RNA dimerization.
Collapse
Affiliation(s)
- Eric Ennifar
- UPR9002-Institut de Biologie Moléculaire et Cellulaire du CNRS, 15, rue René Descartes, F-67084 Strasbourg cedex, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Rist MJ, Marino JP. Mechanism of nucleocapsid protein catalyzed structural isomerization of the dimerization initiation site of HIV-1. Biochemistry 2002; 41:14762-70. [PMID: 12475224 DOI: 10.1021/bi0267240] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dimerization of two homologous strands of genomic RNA is an essential feature of retroviral replication. In the human immunodeficiency virus type 1 (HIV-1), a conserved stem-loop sequence, the dimerization initiation site (DIS), has been identified as the domain primarily responsible for initiation of this aspect of viral assembly. The DIS loop contains an autocomplementary hexanucleotide sequence flanked by highly conserved 5' and 3' purines and can form a homodimer through a loop-loop kissing interaction. In a structural rearrangement activated by the HIV-1 nucleocapsid protein (NCp7) and considered to be associated with viral particle maturation, the DIS dimer converts from an intermediate kissing to an extended duplex isoform. Using 2-aminopurine (2-AP) labeled sequences derived from the DIS(Mal) variant and fluorescence methods, the two DIS dimer isoforms have been unambiguously distinguished, allowing a detailed examination of the kinetics of this RNA structural isomerization and a characterization of the role of NCp7 in the reaction. In the presence of divalent cations, the DIS kissing dimer is found to be kinetically trapped and converts to the extended duplex isoform only upon addition of NCp7. NCp7 is demonstrated to act catalytically in inducing the structural isomerization by accelerating the rate of strand exchange between the two hairpin stem helices, without disruption of the loop-loop helix. Observation of an apparent maximum conversion rate for NCp7-activated DIS isomerization, however, requires protein concentrations in excess of the 2:1 stoichiometry estimated for high-affinity NCp7 binding to the DIS kissing dimer, indicating that transient interactions with additional NCp7(s) may be required for catalysis.
Collapse
Affiliation(s)
- Manuela J Rist
- Center for Advanced Research in Biotechnology of the University of Maryland, Rockville 20850, USA
| | | |
Collapse
|
30
|
Dirac AMG, Huthoff H, Kjems J, Berkhout B. Requirements for RNA heterodimerization of the human immunodeficiency virus type 1 (HIV-1) and HIV-2 genomes. J Gen Virol 2002; 83:2533-2542. [PMID: 12237437 DOI: 10.1099/0022-1317-83-10-2533] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Retroviruses are prone to recombination because they package two copies of the RNA genome. Whereas recombination is a frequent event within the human immunodeficiency virus type 1 (HIV-1) and HIV-2 groups, no HIV-1/HIV-2 recombinants have been reported thus far. The possibility of forming HIV-1/HIV-2 RNA heterodimers was studied in vitro. In both viruses, the dimer initiation site (DIS) hairpin is used to form dimers, but these motifs appear too dissimilar to allow RNA heterodimer formation. Multiple mutations were introduced into the HIV-2 DIS element to gradually mimic the HIV-1 hairpin. First, the loop-exposed palindrome of HIV-1 was inserted. This self-complementary sequence motif forms the base pair interactions of the kissing-loop (KL) dimer complex, but such a modification is not sufficient to permit RNA heterodimer formation. Next, the HIV-2 DIS loop size was shortened from 11 to 9 nucleotides, as in the HIV-1 DIS motif. This modification also results in the presentation of the palindromes in the same position within the hairpin loop. The change yielded a modest level of RNA heterodimers, which was not significantly improved by additional sequence changes in the loop and top base pair. No isomerization of the KL dimer to the extended duplex dimer form was observed for the heterodimers. These combined results indicate that recombination between HIV-1 and HIV-2 is severely restricted at the level of RNA dimerization.
Collapse
Affiliation(s)
- Annette M G Dirac
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, PO Box 22700, 1100 DE Amsterdam, The Netherlands2
- Department of Molecular and Structural Biology, Aarhus University, , Denmark1
| | - Hendrik Huthoff
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, PO Box 22700, 1100 DE Amsterdam, The Netherlands2
| | - Jørgen Kjems
- Department of Molecular and Structural Biology, Aarhus University, , Denmark1
| | - Ben Berkhout
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, PO Box 22700, 1100 DE Amsterdam, The Netherlands2
| |
Collapse
|
31
|
Greatorex J, Gallego J, Varani G, Lever A. Structure and stability of wild-type and mutant RNA internal loops from the SL-1 domain of the HIV-1 packaging signal. J Mol Biol 2002; 322:543-57. [PMID: 12225748 DOI: 10.1016/s0022-2836(02)00776-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The packaging signal (Psi) of the human immunodeficiency virus type 1 (HIV-1) enables encapsidation of the full-length genomic RNA against a background of a vast excess of cellular mRNAs. The core HIV-1 Psi is approximately 109 nucleotides and contains sequences critical for viral genomic dimerisation and splicing, in addition to the packaging signal. It consists of a series of stem-loops (termed SL-1 to SL-4), which can be arranged in a cloverleaf secondary structure. Using a combination of NMR spectroscopy, UV melting experiments, molecular modeling and phylogenetic analyses, we have explored the structure of two conserved internal loops proximal to the palindromic sequence of SL-1. Internal loop A, composed of six purines, forms a flexible structure that is strikingly similar to the Rev responsive element motif when bound to Rev protein. This result suggests that it may function as a protein-binding site. The absolutely conserved four-purine internal loop B is instead conformationally and thermodynamically unstable, and exhibits multiple conformations in solution. By introducing a double AGG to GGA mutation within this loop, its conformation is stabilised to form a new intra-molecular G:A:G base-triplet. The structure of the GGA mutant explains the relative instability of the wild-type loop. In a manner analogous to SL-3, we propose that conformational flexibility at this site may facilitate melting of the structure during Gag protein capture or genomic RNA dimerisation.
Collapse
Affiliation(s)
- Jane Greatorex
- Department of Medicine, University of Cambridge, Level 5, Addenbrookes Hospital, Hills Road, CB2 2QQ, Cambridge, UK
| | | | | | | |
Collapse
|
32
|
Abstract
RNA loop-loop interactions are frequently used to trigger initial recognition between two RNA molecules. In this review, we present selected well-documented cases that illustrate the diversity of biological processes using RNA loop-loop recognition properties. The first one is related to natural antisense RNAs that play a variety of regulatory functions in bacteria and their extra-chromosomal elements. The second one concerns the dimerization of HIV-1 genomic RNA, which is responsible for the encapsidation of a diploid RNA genome. The third one concerns RNA interactions involving double-loop interactions. These are used by the bicoid mRNA to form dimers, a property that appears to be important for mRNA localization in drosophila embryo, and by bacteriophage phi29 pRNA which forms hexamers that participate in the translocation of the DNA genome through the portal vertex of the capsid. Despite the high diversity of systems and mechanisms, some common features can be highlighted. (1) Efficient recognition requires rapid bi-molecular binding rates, regardless of the RNA pairing scheme. (2) The initial recognition is favored by particular conformations of the loops enabling a proper presentation of nucleotides (generally a restricted number) that initiate the recognition process. (3) The fate of the initial reversible loop-loop complex is dictated by both functional and structural constraints. RNA structures have evolved either to "freeze" the initial complex, or to convert it into a more stable one, which involves propagation of intermolecular interactions along topologically feasible pathways. Stabilization of the initial complex may also be assisted by proteins and/or formation of additional contacts.
Collapse
Affiliation(s)
- Christine Brunel
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | |
Collapse
|
33
|
Huthoff H, Berkhout B. Multiple secondary structure rearrangements during HIV-1 RNA dimerization. Biochemistry 2002; 41:10439-45. [PMID: 12173930 DOI: 10.1021/bi025993n] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV-1 RNA dimerization is a complex process that involves a series of RNA refolding events. The monomeric RNA can adopt two alternative conformations that largely determine the efficiency of dimerization. The dimeric RNA also exists in two different conformations, an initial kissing-loop complex and a stable dimer with extended intermolecular base pairing. We describe an ordered RNA folding pathway that incorporates this multitude of HIV-1 RNA conformers. Analysis of mutant transcripts designed to block distinct steps of the refolding cascade supports this model. The folding properties of the wild-type RNA and the defects caused by the mutations can be fully understood in terms of the free energy changes associated with secondary structure rearrangements.
Collapse
Affiliation(s)
- Hendrik Huthoff
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
34
|
Shubsda MF, Paoletti AC, Hudson BS, Borer PN. Affinities of packaging domain loops in HIV-1 RNA for the nucleocapsid protein. Biochemistry 2002; 41:5276-82. [PMID: 11955077 DOI: 10.1021/bi016045+] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To design anti-nucleocapsid drugs, it is useful to know the affinities the protein has for its natural substrates under physiological conditions. Dissociation equilibrium constants are reported for seven RNA stem-loops bound to the mature HIV-1 nucleocapsid protein, NCp7. The loops include SL1, SL2, SL3, and SL4 from the major packaging domain of genomic RNA. The binding assay is based on quenching the fluorescence of tryptophan-37 in the protein by G residues in the single-stranded loops. Tightly bound RNA molecules quench nearly all the fluorescence of freshly purified NCp7 in 0.2 M NaCl. In contrast, when the GGAG-tetraloop of tight-binding SL3 is replaced with UUCG or GAUA, quenching is almost nil, indicating very low affinity. Interpreting fluorescence titrations in terms of a rapidly equilibrating 1:1 complex explains nearly all of the experimental variance for the loops. Analyzed in this way, the highest affinities are for 20mer SL3 and 19mer SL2 hairpin constructs (K(d) = 28 +/- 3 and 23 +/- 2 nM, respectively). The 20mer stem-UUCG-loop and GAUA-loop constructs have <0.5% of the affinity for NCp7 relative to SL3. Affinities relative to SL3 for the other stem-loops are the following: 10% for a 16mer construct to model SL4, 30% for a 27mer model of the 9-residue apical loop of SL1, and 20% for a 23mer model of a 1 x 3 asymmetric internal loop in SL1. A 154mer construct that includes all four stem-loops binds tightly to NCp7, with the equivalent of three NCp7 molecules bound with high affinity per RNA; it is also possible that two strong sites and several weaker ones combine to give the appearance of three strong sites.
Collapse
Affiliation(s)
- Michael F Shubsda
- Department of Chemistry, Syracuse University, Syracuse, New York 13244-4100, USA
| | | | | | | |
Collapse
|
35
|
Barbault F, Huynh-Dinh T, Paoletti J, Lanceloti G. A new peculiar DNA structure: NMR solution structure of a DNA kissing complex. J Biomol Struct Dyn 2002; 19:649-58. [PMID: 11843626 DOI: 10.1080/07391102.2002.10506771] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The deoxyoligoribonucleotide d(CTTGCTGAAGCGCGCACGGCAAG) (dSL1) corresponding to the reverse transcripted sequence of the dimerization initiation site SL1 of HIV- 1(Lai) RNA was synthesized using phosphoramidite chemistry. Like its oligoribonucleotide counterpart, dSL1 dimerized spontaneously in solution. Here we report the first NMR solution structure of a kissing complex formed with two DNA strands. The melting point of the DNA dimer (35 degrees C) was found slightly higher than the one of the corresponding RNA dimer (32 degrees C). Despite this only slight difference in melting point, several structural differences were observed between the ribo- and the deoxyribo- dimers. The solution structure of the deoxy- dimer was a symmetric homodimer with a loop-loop interaction stabilized by four central G-C base-pairs, a head to tail A-A base-pair arrangement between the A8 residues of the two strands and a stacking of A9 with C15. As a consequence, G10 was not paired and occupied a position outside the stem and the loop. Each stem was formed by seven base-pairs whose axis made an angle of about 100 degree with the plane of the loops. The distortion of the helix at the junction of the stem and of the loop induced a fold up of the A8pA9 step with a phosphate-phosphate distance lowered to 4.5 A. The plane of the non-canonical A-A base-pair was oriented perpendicularly to the axis of the stems. The four central base-pairs formed an open fan-shaped motif with an angle of 20 degrees between the bases and each of them was oriented perpendicularly to the A8-A8 plane. The deviation of the computed chemical shifts and the experimental ones for the aromatic proton was always less than 0.25ppm for each of the 16 converged solution structures and their average less than 0.1ppm.
Collapse
Affiliation(s)
- Florent Barbault
- Centre de Biophysique Moléculaire, Rue Charles Sadron, 45071 Orléans Cedex 02, France
| | | | | | | |
Collapse
|
36
|
Abstract
The NMR-based structure is described for an RNA model of stem-loop 4 (SL4) from the HIV-1 major packaging domain. The GAGA tetraloop adopts a conformation similar to the classic GNRA form, although there are differences in the details. The type II tandem G.U pairs have a combination of wobble and bifurcated hydrogen bonds where the uracil 2-carbonyl oxygen is hydrogen-bonded to both G,H1 and G,H2. There is the likelihood of a Na(+) ion coordinated to the four carbonyl oxygens in the major groove for these G.U pairs and perhaps to the N7 lone pairs of the G bases as well. A continuous stack of five bases extends over nearly the whole length of the stem to the base of the loop in the RNA 16mer: C15/U14/G13/G5/C6. There is no evidence for a terminal G.A pair; instead, G1 appears quite unrestrained, and A16 stacks on both C15 and G2. Residues G2 through G5 exhibit broadened resonances, especially G3 and U4, suggesting enhanced mobility for the 5'-side of the stem. The structure shows G2/G3/U4 stacking along the same strand, nearly isolated from interaction with the other bases. This is probably an important factor in the signal broadening and apparent mobility of these residues and the low stability of the 16mer hairpin against thermal denaturation.
Collapse
Affiliation(s)
- D J Kerwood
- Department of Chemistry, Graduate Program in Structural Biology, Biochemistry, and Biophysics, Syracuse University, Syracuse, New York 13244-4100, USA
| | | | | |
Collapse
|
37
|
Monie T, Greatorex J, Lever AM. Oligonucleotide mapping of the core genomic RNA dimer linkage in human T-cell leukaemia virus type-1. Virus Res 2001; 78:45-56. [PMID: 11520579 DOI: 10.1016/s0168-1702(01)00283-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have previously mapped the sequences required for dimerisation of the 5' leader of the human T-cell leukaemia virus type-1 (HTLV-1) genome. The smallest sequence necessary and sufficient for dimer formation, in vitro, was ascertained to be a 37 nucleotide (nt) region downstream of the splice donor and just upstream of the primer binding site. Deletion of a 32 base-pair sequence encompassing this region within the provirus was associated with a minor decrease in infectivity of the virus in an in vitro system. To further map and help elucidate the nature of the dimer linkage, we used RNA and DNA oligonucleotide competition assays to define the nucleotides involved. These experiments revealed that a 14 nt sequence containing a potential stem loop structure, formed from a palindromic sequence, is important for dimer formation. This was confirmed by the ability of this RNA sequence to form heterodimers with larger RNA transcripts from the same region, while sequences lacking this motif could not. RNA transcripts containing the reverse sequence, the same nucleotides in a random arrangement, and complementary DNA oligos, all failed to form heterodimers with the 14 nt sequence. The primary dimer initiation site of HTLV-1 has thus been located to a 14 nt palindrome containing sequence, and dimerisation is shown to be dependent on specific sense-sense RNA interactions.
Collapse
Affiliation(s)
- T Monie
- Department of Medicine, University of Cambridge, Level 5, Addenbrooke's Hospital, Hills Road, CB2 2QQ, Cambridge, UK
| | | | | |
Collapse
|
38
|
Takahashi K, Baba S, Koyanagi Y, Yamamoto N, Takaku H, Kawai G. Two basic regions of NCp7 are sufficient for conformational conversion of HIV-1 dimerization initiation site from kissing-loop dimer to extended-duplex dimer. J Biol Chem 2001; 276:31274-8. [PMID: 11418609 DOI: 10.1074/jbc.m104577200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleocapsid (NC) protein possesses nucleotide-annealing activities, which are used in various processes in retroviral life cycle. As conserved characters, the NC proteins have one or two zinc fingers of CX(2)CX(4)HX(4)C motif surrounded by basic amino acid sequences. Requirement of the zinc fingers for the annealing activities of NC protein remains controversial. In this study, we focused the requirement in the process of maturation of dimeric viral RNA. Discrimination between immature and mature dimers of synthetic RNA corresponding to the dimerization initiation site of human immunodeficiency virus type 1 (HIV-1) genomic RNA was performed based on their Mg(2+)-dependent stability in gel electrophoreses and on their distinct signal pattern from NMR analysis of imino protons. Chaperoning activity of the HIV-1 NC protein, NCp7, and its fragments for maturation of dimeric RNA was investigated using these experimental systems. We found that the two basic regions flanking the N-terminal zinc finger of NCp7, which are connected by two glycine residues instead of the zinc finger, were sufficient, although about 10 times the amounts of peptide were needed in comparison with intact NCp7. Further, it was found that the amount of basic residues rather than the amino acid sequence itself is important for the activity. The zinc fingers may involve the binding affinity and/or such a possible specific binding of NCp7 to dimerization initiation site dimer that leads to the maturation reaction.
Collapse
Affiliation(s)
- K Takahashi
- Department of Industrial Chemistry, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-8588, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
The yeast retrotransposon Ty1 resembles retroviruses in a number of important respects but also shows several fundamental differences from them. We now report that, as in retroviruses, the genomic RNA in Ty1 virus-like particles is dimeric. The Ty1 dimers also resemble retroviral dimers in that they are stabilized during the proteolytic maturation of the particle. The stabilization of the dimer suggests that one of the cleavage products of TyA1 possesses nucleic acid chaperone activity.
Collapse
Affiliation(s)
- Y X Feng
- HIV Drug Resistance Program, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201, USA
| | | | | | | |
Collapse
|
40
|
Polge E, Darlix JL, Paoletti J, Fossé P. Characterization of loose and tight dimer forms of avian leukosis virus RNA. J Mol Biol 2000; 300:41-56. [PMID: 10864497 DOI: 10.1006/jmbi.2000.3832] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retroviral genomes consist of two identical RNA molecules joined non-covalently near their 5'-ends. Recently, we showed that an imperfect autocomplementary sequence, located in the L3 domain, plays an essential role in avian sarcoma-leukosis virus (ASLV) RNA dimerization in vitro. This sequence can adopt a stem-loop structure and is involved in ASLV replication. Here, we found that in the absence of nucleocapsid protein, RNA transcripts of avian leukosis virus (ALV) were able to form two types of dimers in vitro that differ in their stability: a loose dimer, formed at a physiological temperature, and a tight dimer, formed at a high temperature. A mutational analysis was performed to define the features of these dimers. The results of this analysis unambiguously confirm that the two L3 stem-loops interact directly in both types of dimers. A loop-loop interaction is the main linkage in the loose dimer. In contrast, in the tight dimer, the stem and the loop of the L3 hairpin form an extended duplex. Surprisingly, we also found that the dimerization properties defined for our ALV strain (type SR-A) differ from those found in other ASLV strains.
Collapse
Affiliation(s)
- E Polge
- LBPA-Alembert, Ecole Normale Supérieure de Cachan, Unité Mixte de Recherche 8532 du CNRS, Cachan cedex, 94235, France
| | | | | | | |
Collapse
|
41
|
Theilleux-Delalande V, Girard F, Huynh-Dinh T, Lancelot G, Paoletti J. The HIV-1(Lai) RNA dimerization. Thermodynamic parameters associated with the transition from the kissing complex to the extended dimer. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2711-9. [PMID: 10785394 DOI: 10.1046/j.1432-1327.2000.01292.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Retroviruses contain dimeric RNA consisting of two identical copies of the genomic RNA. The interaction between these two RNA molecules occurs near their 5' ends. A region upstream from the splice donor comprising an auto-complementary sequence has been identified as being responsible for the initiation of the formation of dimeric HIV-1(Lai) RNA. This region (SL1), part of the PSI encapsidation domain, can adopt a stem-loop structure. It has already been shown that this stem-loop structure can initiate the formation of two distinct dimers differing in their thermostability: a loop-loop dimer or 'kissing complex' and an extended dimer. We report here a study using UV and 1D NMR spectroscopy of the dimerization of a short oligoribonucleotide (23 nucleotides) spanning nucleotides 248-270 of the HIV-1(Lai) SL1 sequence, in order to derive the thermodynamic parameters associated with the transition from the loop-loop complex to the extended dimer. The temperature dependence of the UV absorbency shows an hypochromicity for this transition with a small enthalpy change equal to - 29.4 +/- 5 kcal x mol-1, together with a concentration independent transition which implies a monomolecular reaction. On the other hand, our NMR results don't indicate a dissociation of the GCGCGC sequence engaged in the loop-loop interaction during the rearrangement of the loop-loop complex into the extended dimer. Our data suggest that the loop-loop interaction is maintained during the temperature dependent conformational change while the intramolecular base-pairing of the stems is disrupted and then reconstituted to form an intermolecular base-pairing leading to an extended dimer.
Collapse
Affiliation(s)
- V Theilleux-Delalande
- Centre de Biophysique Moléculaire, UPR 4301 CNRS conventionnée avec l'Université d'Orléans, Orléans, France
| | | | | | | | | |
Collapse
|
42
|
James TL, Lind KE, Filikov AV, Mujeeb A. Three-Dimensional RNA Structure-Based Drug Discovery. J Biomol Struct Dyn 2000; 17 Suppl 1:201-5. [DOI: 10.1080/07391102.2000.10506622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Ennifar E, Yusupov M, Walter P, Marquet R, Ehresmann B, Ehresmann C, Dumas P. The crystal structure of the dimerization initiation site of genomic HIV-1 RNA reveals an extended duplex with two adenine bulges. Structure 1999; 7:1439-49. [PMID: 10574792 DOI: 10.1016/s0969-2126(00)80033-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND An important step in retroviral replication is dimerization of the genomic RNA prior to encapsidation. Dimerization is initiated by the formation of a transient 'kissing-loop complex' that is thought to be subsequently matured into an extended duplex by the nucleocapsid protein (NCp). Although chemical probing and nuclear magnetic resonance spectroscopy have provided insight into the structure of the kissing-loop structure, no structural information concerning the extended-duplex state is available so far. RESULTS The structure of a minimal HIV-1 RNA dimerization initiation site has been solved at 2.3 A resolution in two different space groups. It reveals a 22 base pair extended duplex with two noncanonical Watson-Crick-like G-A mismatches, each adjacent to a bulged-out adenine. The structure shows significant asymmetry in deep groove width and G-A base-pair conformations. A network of eight magnesium cations was clearly identified, one being unusually chelated by the 3' phosphate of each bulge across an extremely narrowed deep major groove. CONCLUSIONS These crystal structures represent the putative matured form of the initial kissing-loop complex. They show the ability of this self-complementary RNA hairpin loop to acquire a more stable extended duplex structure. Both bulged adenines form a striking 'base grip' that could be a recognition signal, either in cis for another viral RNA sequence, or in trans for a protein, possibly the NCp. Magnesium binding might be important to promote and stabilize the observed extrahelical conformation of these bulges.
Collapse
Affiliation(s)
- E Ennifar
- UPR9002 - Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg cedex, F-67084, France
| | | | | | | | | | | | | |
Collapse
|