1
|
Zafar NUA, Qureshi R, Siddiqa A, Mustafa Naqvi SA, Waheed F, Mashwani ZUR, Ali A, Hernández Ramírez KA, Medina-Pérez G, Pelaez-Acero A, Ahmad A. From root to Recovery: The role of herbs in polycystic ovary syndrome management. Steroids 2025; 218:109606. [PMID: 40210106 DOI: 10.1016/j.steroids.2025.109606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/11/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Polycystic ovarian syndrome (PCOS) is a prevalent complicated endocrine condition affecting women, caused by both hereditary and environmental factors. It often emerges during the reproductive years (15-35 years) and now affects 1 out of 10 women worldwide. PCOS is distinguished by high androgen levels, particularly testosterone, as well as the appearance of many ovarian cysts (more than 10), which result in anovulation, infertility, and irregular menstrual periods. Furthermore, PCOS is associated with a variety of endocrine and metabolic abnormalities, including obesity, hirsutism, acne, diabetes, insulin resistance, and poor glucose tolerance. PCOS treatment includes allopathic, Ayurvedic, and natural therapies, as well as lifestyle changes. In comparison to allopathic treatments, herbal medicines are recognized for their cost-effectiveness, efficacy, and favourable role in PCOS management/treatment. This literature review briefly examines PCOS diagnosis, symptoms, hormonal imbalance, causes, related risk factors, and management, with a particular emphasis on the role of herbal remedies in PCOS treatment. This review highlights several medicinal plants with potential therapeutic benefits for various health conditions. These herbs have demonstrated efficacy in managing ailments such as hypothyroidism, hyperplasia, obesity, diabetes, menorrhagia, sleep disturbances, cardiovascular disorders, hyperlipidemia, hirsutism, infertility, and irregular menstrual cycles. The information was sourced from PubMed and multiple review articles. Various herbs, whether used individually, in combination, or as extracts, may help reduce risk factors associated with polycystic ovary syndrome (PCOS).
Collapse
Affiliation(s)
- Noor-Ul-Ain Zafar
- Department of Botany, Pir Mehr Ali Shah-Arid Agriculture University Rawalpindi, 46000, Pakistan
| | - Rahmatullah Qureshi
- Department of Botany, Pir Mehr Ali Shah-Arid Agriculture University Rawalpindi, 46000, Pakistan.
| | - Ayesha Siddiqa
- Department of Botany, Pir Mehr Ali Shah-Arid Agriculture University Rawalpindi, 46000, Pakistan
| | - Syed Azaz Mustafa Naqvi
- Department of Botany, Pir Mehr Ali Shah-Arid Agriculture University Rawalpindi, 46000, Pakistan
| | - Fareeha Waheed
- Department of Botany, Pir Mehr Ali Shah-Arid Agriculture University Rawalpindi, 46000, Pakistan
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, Pir Mehr Ali Shah-Arid Agriculture University Rawalpindi, 46000, Pakistan
| | - Amir Ali
- Department of Botany, Pir Mehr Ali Shah-Arid Agriculture University Rawalpindi, 46000, Pakistan; Nanoscience and Nanotechnology Ph.D. Program, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico.
| | | | - Gabriela Medina-Pérez
- Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Hidalgo 3600, Mexico
| | - Armando Pelaez-Acero
- Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Hidalgo 3600, Mexico
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Jiang Y, Hu W, Zhu H, Liu C, Qu F, Zhou J. Flavonoid Supplementation Is Beneficial for Polycystic Ovary Syndrome: A Systematic Review and Meta-analysis. Nutr Rev 2025; 83:e829-e837. [PMID: 39038225 DOI: 10.1093/nutrit/nuae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is a prevalent hormonal imbalance that predominantly affects women in their reproductive years. Previous studies have yielded conflicting conclusions. OBJECTIVE This is an updated meta-analysis aiming to explore the connection between flavonoid supplementation and PCOS. DATA SOURCES Seven databases were searched: Cochrane Library, PubMed, Web of Science, Embase, Wanfang, China Science and Technology Journal, and China National Knowledge Infrastructure, spanning from their inception to April 15, 2024. DATA EXTRACTION Two authors independently searched the databases using the search terms. DATA ANALYSIS Following strict inclusion criteria, 8 papers were ultimately included. This updated meta-analysis suggests that flavonoid supplementation could enhance follicular development, promote the proliferation and differentiation of follicular granulosa cells, elevate estradiol levels, and mitigate testosterone, C-reactive protein, and ovarian index levels. CONCLUSION This analysis suggests that dietary flavonoids could potentially alleviate symptoms associated with PCOS. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42022382912.
Collapse
Affiliation(s)
- Yiting Jiang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weihuan Hu
- School of Medicine, Women's Hospital, Zhejiang University, Hangzhou 310006, China
| | - Hanyue Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Chang Liu
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Fan Qu
- School of Medicine, Women's Hospital, Zhejiang University, Hangzhou 310006, China
| | - Jue Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
3
|
Samani SL, Yadi M, Aflatoonian B, Zarehmehrjerdi F, Hafizibarjin Z, Rezvani ME, Izadi M. Beneficial effects of apigenin on ovarian histological changes and angiogenesis gene expression in rat model of polycystic ovary syndrome. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2641-2649. [PMID: 39240354 DOI: 10.1007/s00210-024-03414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Polycystic ovary syndrome (PCOS) is the most common heterogeneous reproductive disorder and can affect approximately 10% of women of reproductive age. Abnormal vasculogenesis is a common event in polycystic ovary syndrome. This study planned to evaluate the antiangiogenic role of apigenin in ovarian histology, gene expression, and vascular density and stability in an experimental model of PCOS. Twenty-eight rats weighing 180-250 g were divided into 4 groups. Seven rats in the control group remain intact and without treatment. In 21 rats, an ovary polycystic model with a single injection of estradiol valerate was established. The PCOS rats were treated with vehicle, apigenin 10, or apigenin 20 mg/kg in three different PCOS groups for 14 days. At the end, a histological assessment of the ovaries was performed to determine collagen density and follicle counting. The endothelial or periendothelial cells were determined by immunohistochemical assay, and angiogenesis gene expression was determined using molecular assessments. Apigenin treatment partially restored follicular development, decreased the number of cysts, and increased corpora lutea in PCOS rats. Also, apigenin decreased the collagen density in the polycystic ovaries. However, apigenin administration mitigated ovarian angiogenesis by a reduction in endothelial and periendothelial cell numbers. A decrease in VEGF and VEGF R2 (kinase insert domain receptor, KDR) expressions was found after the treatment of rats with apigenin. Conclusively, our data revealed that apigenin improves ovarian histological alterations and follicular dynamics in polycystic ovary rats. The effect is partially mediated by suppression of the VEGF signaling system and reduction in endothelial and periendothelial cell proliferation.
Collapse
Affiliation(s)
- Sanaz Lotfi Samani
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mahsa Yadi
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Behrouz Aflatoonian
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Zarehmehrjerdi
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Zeynab Hafizibarjin
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Ebrahim Rezvani
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
| | - Mahin Izadi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
4
|
Shahbaz S, Sharif A, Akhtar B, Mobashar A, Shazly GA, Metouekel A, Bourhia M. Therapeutic potential of 3-acetyl coumarin against polycystic ovarian syndrome induced by letrozole using female rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03720-5. [PMID: 39715882 DOI: 10.1007/s00210-024-03720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/08/2024] [Indexed: 12/25/2024]
Abstract
Polycystic ovarian syndrome is a heterogeneous endocrine disorder characterized by ovarian cysts, anovulation, endocrine variations, which includes oligo-amenorrhea along with associated subfertility and hyperandrogenism manifested as acne, hirsutism, and male-pattern alopecia. Coumarins are fused benzene and pyrone ring systems that exhibit a wide spectrum of bioactivities. This study aimed to investigate the effects of 3-acetyl coumarin (3-AC) on polycystic ovarian syndrome in female rats. Acute oral toxicity conducted according to OECD guidelines 425 (a test conducted in scenarios where there is information indicating that the test material is non-toxic) exhibited no mortality. In vitro DPPH assay demonstrated anti-oxidant potential of 3-AC. Letrozole, a nonsteroidal aromatase inhibitor was used to induce PCOS (1 mg/kg-21 days). Normal and PCOS control rats were administered a vehicle solution (0.5% CMC), whereas 3-AC (10, 20, and 30 mg/kg) and metformin (300 mg/kg) was administered to treatment groups for 15 days. Vaginal smears were taken to assess estrous cycle. Rats were euthanized at day 37. In vivo analysis included measurement of fasting blood glucose, total-cholesterol, triglycerides, FSH, LH, and testosterone levels. ELISA was used for measurement of inflammatory markers (IL-1β, IL-6, and TNF-α). Oxidative stress markers (SOD, CAT, GSH, MDA, NO) were also evaluated. Expression levels of NF-κB and LHCGR were detected by RT-qPCR. Molecular docking was also performed. One-way analysis of variance was employed followed by Tukey's test for statistical analysis. Treatment with 3-AC led to favorable effects in PCOS rats. Specifically, inflammatory levels, antioxidant status, lipid profile, and glucose concentrations were all improved. These findings suggest that 3-acetyl coumarin (3-AC) may serve as a promising therapeutic agent for alleviating symptoms of PCOS in this animal model.
Collapse
Affiliation(s)
- Saliha Shahbaz
- Department of Pharmacology, Faculty of Pharmaceutical and Allied Health Sciences, Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | - Ali Sharif
- Department of Pharmacology, Faculty of Pharmaceutical and Allied Health Sciences, Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan.
| | - Bushra Akhtar
- Department of Pharmacy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Aisha Mobashar
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
- Faculty of Health Sciences, Equator University of Science and Technology, Masaka, Uganda
| | - Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Amira Metouekel
- University of Technology of Compiègne, EA 4297 TIMR, 60205, Compiègne Cedex, France
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, 80060, Agadir, Morocco.
| |
Collapse
|
5
|
Lin S, Yincang W, Jiazhe D, Xilin X, Zhang X. Pharmacology and mechanisms of apigenin in preventing osteoporosis. Front Pharmacol 2024; 15:1486646. [PMID: 39726788 PMCID: PMC11669520 DOI: 10.3389/fphar.2024.1486646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
Osteoporosis (OP) stands as the most prevalent systemic skeletal condition associated with aging. The current clinical management of OP predominantly depends on anti-resorptive and anabolic agents. Nevertheless, prolonged use of some of these medications has been observed to reduce efficacy and elevate adverse effects. Given the necessity for sustained or even lifelong treatment of OP, the identification of drugs that are not only effective but also safe and cost-efficient is of utmost significance. As disease treatment paradigms continue to evolve and recent advancements in OP research come to light, certain plant-derived compounds have emerged, presenting notable benefits in the management of OP. This review primarily explores the pharmacological properties of apigenin and elucidates its therapeutic mechanisms in the context of OP. The insights provided herein aspire to offer a foundation for the judicious use of apigenin in forthcoming research, particularly within the scope of OP.
Collapse
Affiliation(s)
- Sun Lin
- Second Affiliated Hospital of Heilongjiang, University Of Chinese Medicine, Harbin, China
| | - Wang Yincang
- Second Affiliated Hospital of Heilongjiang, University Of Chinese Medicine, Harbin, China
| | - Du Jiazhe
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xu Xilin
- The Third Affiliated Hospital of Heilongjiang, University of Chinese Medicine, Harbin, China
| | - Xiaofeng Zhang
- Second Affiliated Hospital of Heilongjiang, University Of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Sirotkin AV, Harrath AH. Apigenin as a Promising Agent for Enhancing Female Reproductive Function and Treating Associated Disorders. Biomedicines 2024; 12:2405. [PMID: 39457717 PMCID: PMC11504338 DOI: 10.3390/biomedicines12102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Apigenin is an organic flavonoid abundant in some plants such as parsley, chamomile, or celery. Recently, it has been investigated for several of its pharmacological characteristics, such as its ability to act as an antioxidant, reduce inflammation, and inhibit the growth of cancer cells. The purpose of this review is to provide a summary of the existing knowledge regarding the effects of apigenin on female reproductive systems and its dysfunctions. Apigenin can influence reproductive processes by regulating multiple biological events, including oxidative processes, cell proliferation, apoptosis, cell renewal and viability, ovarian blood supply, and the release of reproductive hormones. It could stimulate ovarian folliculogenesis, as well as ovarian and embryonal cell proliferation and viability, which can lead to an increase in fertility and influence the release of reproductive hormones, which may exert its effects on female reproductive health. Furthermore, apigenin could inhibit the activities of ovarian cancer cells and alleviate the pathological changes in the female reproductive system caused by environmental pollutants, harmful medications, cancer, polycystic ovarian syndrome, ischemia, as well as endometriosis. Therefore, apigenin may have potential as a biostimulator for female reproductive processes and as a therapeutic agent for certain reproductive diseases.
Collapse
Affiliation(s)
- Alexander V. Sirotkin
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia;
| | - Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Ali G, Zeb A, Usman M, Al‐Babili S. Walnut extract protects against hepatic inflammation and toxicity induced by a high-fat diet. Food Sci Nutr 2024; 12:8340-8352. [PMID: 39479714 PMCID: PMC11521631 DOI: 10.1002/fsn3.4405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 11/02/2024] Open
Abstract
A high-fat diet (HFD) is one of the main causes of obesity and metabolic diseases. The liver is particularly affected by HFD causing metabolic dysfunction associated with fatty liver disease. Therefore, different strategies are used to mitigate the negative effects of HFD. This study aimed to assess the protective effects of walnut extract against HFD-induced toxicity in mice. The mice were fed HFD and walnut extract alone or in combination. The walnut extract was analyzed for composition using high-performance liquid chromatography with a diode array detector (HPLC-DAD) and ultra-high-performance liquid chromatography with mass spectrometry (UHPLC-MS/MS). Serum lipid profile; liver histology; hepatic antioxidants such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), lipid peroxidation (TBARS), and reduced glutathione (GSH); inflammatory markers like IL-6 and TNF-α; and phospholipids were determined. Results showed that phenolic acids, epicatechin, catechin, benzaldehyde, and juglone were the main constituents in the extract. The HFD group showed increased hepatic fat accumulation as evidenced by biochemical and histopathological examinations compared to the control animals. The HFD group mice also showed increased body and cardiac weights, modified lipid profiles, decreased antioxidant status, and increased levels of hepatic inflammatory markers. The weights of the body and heart, lipid profiles, antioxidant contents (CAT, SOD, GSH-Px, TBARS, and GSH), and pro-inflammatory cytokines (IL-6 and TNF-α) were all normalized by consuming walnut extract. Similarly, the HFD group had significantly high amounts of hepatic lipase, phospholipid, and lysophospholipid levels, which were improved by walnut extract. In conclusion, walnut extract has been shown to play a unique role in promoting the recovery of liver damage caused by a high-fat diet.
Collapse
Affiliation(s)
- Gauhar Ali
- Department of BiotechnologyUniversity of MalakandChakdaraPakistan
| | - Alam Zeb
- Bioactive Lab, Centre of Excellence for Sustainable Food SecurityKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
- Department of BiochemistryUniversity of MalakandChakdaraPakistan
| | - Muhammad Usman
- Department of Basic SciencesUniversity of Veterinary and Animals SciencesNarowalPakistan
| | - Salim Al‐Babili
- Bioactive Lab, Centre of Excellence for Sustainable Food SecurityKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
| |
Collapse
|
8
|
Irmak E, Tunca Sanlier N, Sanlier N. Could polyphenols be an effective treatment in the management of polycystic ovary syndrome? INT J VITAM NUTR RES 2024; 94:422-433. [PMID: 38229476 DOI: 10.1024/0300-9831/a000802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Polycystic ovary syndrome (PCOS), is a health problem observed in women of reproductive age. Different diets, physical activity recommendations and lifestyle changes can be effective in dealing with the symptoms of PCOS. Nutrition is indeed an essential part of the treatment of the disease as it directly affects body weight loss, insulin resistance, lipid profile, hormones, and dermatological complaints such as acne. Polyphenols, simply classified as flavonoids and non-flavonoids, are bioactive components found in plant-based foods. The most common polyphenols in the diet are flavanols, flavonols, flavanone, anthocyanins. In particular, polyphenols which are compounds naturally found in foods, have antioxidant, anticancer, anti-inflammatory, antimutagenic benefits along with many other ones. In the treatment of PCOS, polyphenols may help reduce the symptoms, improve insulin resistance and poor lipid profile, and cure hormonal disorders. It has been reported that polyphenols are influential in menstrual cycle disorders and enable a decrease in body weight, hyperandrogenism, estrogen, testosterone, luteinizing hormone (LH)/follicle stimulating hormone (FSH) ratios and LH. For adequate daily intake of polyphenols, which are found in high amounts in fruits and vegetables, at least 5 portions of fruits and vegetables should be consumed in addition to a healthy nutrition pattern. In this review, the effects of various polyphenols on polycystic ovary syndrome are discussed.
Collapse
Affiliation(s)
- Esra Irmak
- School of Health Sciences, Nutrition and Dietetics Department, Ankara Medipol University, Turkey
| | - Nazli Tunca Sanlier
- Department of Obstetrics and Gynecology, Ankara Bilkent City Hospital, Turkey
| | - Nevin Sanlier
- School of Health Sciences, Nutrition and Dietetics Department, Ankara Medipol University, Turkey
| |
Collapse
|
9
|
Neelab, Zeb A, Jamil M. Milk thistle protects against non-alcoholic fatty liver disease induced by dietary thermally oxidized tallow. Heliyon 2024; 10:e31445. [PMID: 38818175 PMCID: PMC11137523 DOI: 10.1016/j.heliyon.2024.e31445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic condition caused by several factors including thermally oxidized tallow. Various strategies have been considered to ameliorate NAFLD. However, the role of milk thistle (MT) in ameliorating NAFLD caused by thermally oxidized tallow has not been reported. The purpose of this study was to evaluate the ability of milk thistle to protect rabbits from the toxicity of oxidized tallow (OT). The rabbits were given OT and an extract of MT. The composition of MT was analyzed using HPLC-DAD, and tallow samples were studied using GC-MS. The study also examined liver histology, antioxidant levels, liver-related inflammatory markers, and serum lipid profile. The results showed that the major components of the MT extract were silybin B, formononetin-glucuronic acid, proanthocyanidin B1, silychristin B, silydianin, and isosilybin A. The group given OT showed elevated lipid profiles, lower antioxidant status, higher levels of hepatic inflammatory markers, and lower levels of anti-inflammatory markers. This group also had higher fat storage in the liver compared to the control or treatment groups. However, when MT was supplemented, the pro-inflammatory cytokines (IL-1, IL-4, IL-6, and TNF-α) and antioxidant status (CAT, SOD, GSH-Px, GSH, and TBARS) of the liver returned to normal. This suggests that MT extract is an excellent source of hepatoprotective compounds. It protects the liver by increasing antioxidant enzymes, decreasing pro-inflammatory cytokines, and increasing anti-inflammatory markers.
Collapse
Affiliation(s)
- Neelab
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Alam Zeb
- The Bioactive Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- Department of Biochemistry, University of Malakand, Chakdara, Pakistan
| | - Muhammad Jamil
- Department of Surgery, Timergara Teaching Hospital, Timergara, Pakistan
| |
Collapse
|
10
|
Rudrapal M, Rakshit G, Singh RP, Garse S, Khan J, Chakraborty S. Dietary Polyphenols: Review on Chemistry/Sources, Bioavailability/Metabolism, Antioxidant Effects, and Their Role in Disease Management. Antioxidants (Basel) 2024; 13:429. [PMID: 38671877 PMCID: PMC11047380 DOI: 10.3390/antiox13040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Polyphenols, as secondary metabolites ubiquitous in plant sources, have emerged as pivotal bioactive compounds with far-reaching implications for human health. Plant polyphenols exhibit direct or indirect associations with biomolecules capable of modulating diverse physiological pathways. Due to their inherent abundance and structural diversity, polyphenols have garnered substantial attention from both the scientific and clinical communities. The review begins by providing an in-depth analysis of the chemical intricacies of polyphenols, shedding light on their structural diversity and the implications of such diversity on their biological activities. Subsequently, an exploration of the dietary origins of polyphenols elucidates the natural plant-based sources that contribute to their global availability. The discussion extends to the bioavailability and metabolism of polyphenols within the human body, unraveling the complex journey from ingestion to systemic effects. A central focus of the review is dedicated to unravelling the antioxidant effects of polyphenols, highlighting their role in combating oxidative stress and associated health conditions. The comprehensive analysis encompasses their impact on diverse health concerns such as hypertension, allergies, aging, and chronic diseases like heart stroke and diabetes. Insights into the global beneficial effects of polyphenols further underscore their potential as preventive and therapeutic agents. This review article critically examines the multifaceted aspects of dietary polyphenols, encompassing their chemistry, dietary origins, bioavailability/metabolism dynamics, and profound antioxidant effects. The synthesis of information presented herein aims to provide a valuable resource for researchers, clinicians, and health enthusiasts, fostering a deeper understanding of the intricate relationship between polyphenols and human health.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur 522213, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| | - Ravi Pratap Singh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| | - Samiksha Garse
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai 400614, India;
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia;
| | - Soumi Chakraborty
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| |
Collapse
|
11
|
Nehru S, Guru A, Pachaiappan R, Hatamleh AA, Al-Dosary MA, Arokiyaraj S, Sundaramurthy A, Arockiaraj J. Co-encapsulation and release of apigenin and ascorbic acid in polyelectrolyte multilayer capsules for targeted polycystic ovary syndrome. Int J Pharm 2024; 651:123749. [PMID: 38159587 DOI: 10.1016/j.ijpharm.2023.123749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Polycystic ovary syndrome (PCOS), a prevalent endocrine disorder in women of reproductive age, is linked to hormonal imbalances and oxidative stress. Our study investigates the regenerative potential of apigenin (AP, hydrophobic) and ascorbic acid (AC, hydrophilic) encapsulated within poly (allylamine hydrochloride) and dextran sulfate (PAH/DS) hollow microcapsules for PCOS. These microcapsules, constructed using a layer-by-layer (LbL) assembly, are found to be 4 ± 0.5 μm in size. Our research successfully demonstrates the co-encapsulation of AP and AC in a single PAH/DS system with high encapsulation efficiency followed by successful release at physiological conditions by CLSM investigations. In vitro tests with testosterone-treated CHO cells reveal that the dual-drug-loaded PAH/DS capsules effectively reduce intracellular ROS levels and apoptosis and offering protection. In an in-vivo zebrafish model, these capsules demonstrate active biodistribution to targeted ovaries and reduce testosterone levels through radical scavenging. Histopathological examinations show that the injected dual-drug-loaded PAH/DS microcapsules assist in the development of ovarian follicles in testosterone-treated zebrafish. Hence, this dual-drug-loaded system, capable of co-encapsulating two natural compounds, effectively interacts with ovarian cells, reducing cellular damage and normalizing PCOS conditions.
Collapse
Affiliation(s)
- Sangamithra Nehru
- Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Munirah Abdullah Al-Dosary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Korea
| | - Anandhakumar Sundaramurthy
- Biomaterials Research Laboratory (BMRL), Department of Chemical Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
12
|
Wahid S, Ramli MDC, Fazleen NE, Naim RM, Mokhtar MH. Exploring the Therapeutic Potential of Natural Products in Polycystic Ovarian Syndrome (PCOS): A Mini-Review of Lipid Profile, Blood Glucose, and Ovarian Histological Improvements. Life (Basel) 2024; 14:150. [PMID: 38276279 PMCID: PMC10817691 DOI: 10.3390/life14010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 01/27/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women that is characterized by fluid-filled sacs in the ovaries and various symptoms, including high androgen levels, endometrial irregularities, and cysts. Although the main cause of PCOS remains unknown, it has been linked to genetic, endocrine, and metabolic factors, and there are several treatment options, including lifestyle modifications, medications, and surgery. Natural products such as medicinal plants and fruits are being explored as potential treatments for PCOS because of their bioactive compounds with pharmacological effects related to antioxidant, antimicrobial, anticancer, and antidiabetic properties. Some of these compounds improve insulin sensitivity, reduce inflammation, and enhance glucose metabolism, thereby benefiting patients with PCOS. This mini-review examined the effects of natural products on PCOS, including their effects on ovarian histological changes, blood glucose, sex hormones, and lipid profiles, based on animal and human studies. This study suggests that the use of natural products as complementary medicines can be a promising resource for the development of effective therapeutics for PCOS; however, further research is needed to fully understand their benefits.
Collapse
Affiliation(s)
- Syawany Wahid
- School of Graduate Studies, Management and Science University, Shah Alam 40100, Malaysia; (S.W.)
| | | | - Nur Ezza Fazleen
- International Medical School, Management and Science University, Shah Alam 40100, Malaysia
| | - Rosli Muhammad Naim
- School of Graduate Studies, Management and Science University, Shah Alam 40100, Malaysia; (S.W.)
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
13
|
Ajibare AJ, Akintoye OO, Famurewa AC, Folawiyo MA, Bamisi OD, Asuku AO, Oyegbola OE, Akintayo CO, Olofinbiyi BA, Omotuyi OI. Synergistic Action of Virgin Coconut Oil and Clomiphene in Reversing Endocrine Dysregulation in Letrozole-Model of Polycystic Ovarian Syndrome in Rats: Role of Nrf2/HMOX-1 Pathway. J Med Food 2023; 26:683-691. [PMID: 38084993 DOI: 10.1089/jmf.2023.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is an endocrine disorder in women's reproductive age. Currently, the pathophysiology of PCOS is unclear, and the limited treatment options are unsatisfactory. Virgin coconut oil (VCO) is functional food oil associated with pharmacological effects in reproductive disorders. Therefore, we aimed to evaluate whether VCO could enhance clomiphene (CLO) therapy against PCOS in female rats. Rats were randomly divided: (1) Control, (2) PCOS model, (3) PCOS + CLO, (4) PCOS + VCO, and (5) PCOS + CLO + VCO. The PCOS was induced via daily letrozole (1 mg/kg, orally) administration for 21 days. After the PCOS induction, CLO, VCO, and CLO + VCO were administered from days 22 to 36. Serum levels of gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone, estrogen, progesterone, and prolactin were estimated. Polymerase chain reaction gene expression for nuclear factor-erythroid-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), catalase (CAT), glutathione reductase (GSR), LH receptor (LHr), androgen receptor (AR), tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and caspase-3 were analyzed. The letrozole-induced PCOS caused considerable increases in GnRH, LH, prolactin, estrogen, and testosterone, whereas FSH decreased significantly compared to the control. The gene expression of Nrf2, HO-1, CAT, and GSR were markedly diminished, while IL-1β, TNF-α, caspase-3, AR, and LHr prominently increased compared to control. Interestingly, the CLO and VCO separately exerted anti-inflammatory and endocrine balance effects. However, VCO-enhanced CLO effect in LH, prolactin and testosterone, Nrf2, HO-1, CAT, GSR, and AR. VCO may synergize with CLO to depress hyperandrogenism and oxidative inflammation in PCOS.
Collapse
Affiliation(s)
- Ayodeji J Ajibare
- Department of Physiology, College of Medicine, Lead City University, Ibadan, Oyo-State, Nigeria
| | - Olabode O Akintoye
- Department of Physiology, College of Medicine, Ekiti State University, Ekiti-State, Nigeria
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, India
| | - Moshood A Folawiyo
- Department of Physiology, College of Medicine, Ekiti State University, Ekiti-State, Nigeria
| | - Olawande D Bamisi
- Department of Anatomy, College of Medicine, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria
| | - Abraham Olufemi Asuku
- Department of Medical Biotechnology, Bioresources Development Centre, National Biotechnology Development Agency, Ogbomoso, Nigeria
| | | | - Christopher O Akintayo
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Babatunde A Olofinbiyi
- Department of Obstetrics and Gynaecology, College of Medicine, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria
| | - Olaposi I Omotuyi
- Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
14
|
Ulug E, Pinar AA. A New Approach to Polycystic Ovary Syndrome and Related Cardio-metabolic Risk Factors: Dietary Polyphenols. Curr Nutr Rep 2023; 12:508-526. [PMID: 37530952 DOI: 10.1007/s13668-023-00488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE OF REVIEW Polycystic ovarian syndrome (PCOS) is a common endocrine disease characterized by ovulatory dysfunction, hyperandrogenism, and polycystic ovarian morphology and causing various reproductive, metabolic, cardiovascular, oncological, and psychological complications. Recent meta-analyses and systemic reviews showed that PCOS increases the risk factor for various cardio-metabolic complications like insulin resistance, type II diabetes mellitus, dyslipidemia, metabolic syndrome, hypertension, and endothelial dysfunction. In addition to these, it was suggested that chronic low-grade inflammation and oxidative stress are the underlying mechanisms of PCOS-mediated metabolic consequences and might trigger cardio-metabolic risk in women with PCOS. At this point, there is substantial evidence to suggest that various non-nutrient food components modulate cardio-metabolic health together with inflammation and oxidative stress. RECENT FINDINGS Increasing the intake of dietary polyphenols might reduce oxidative stress and inflammation and thus alleviate the risk of metabolic, endothelial, and cardiovascular disorders. Nowadays, there are an increasing number of studies related to the effects of dietary polyphenols on PCOS and its accompanying cardio-metabolic disturbances. Currently, there is a cumulative number of studies connected to the effects of dietary polyphenols on PCOS and accompanying cardio-metabolic disturbances. However, there is a lack of knowledge in combining the probable mechanisms of dietary polyphenols on PCOS and related cardio-metabolic consequences. Thus, the effects of dietary polyphenols on PCOS and accompanying cardio-metabolic disturbances need to be discussed and evaluated with underlying mechanisms. Consequently, this review was written to reveal the potential effects of dietary polyphenols on PCOS and related metabolic and cardiovascular risk factors in all their aspects.
Collapse
Affiliation(s)
- Elif Ulug
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100, Ankara, Turkey
| | - Aylin Acikgoz Pinar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100, Ankara, Turkey.
| |
Collapse
|
15
|
Rashid R, Tripathi R, Singh A, Sarkar S, Kawale A, Bader GN, Gupta S, Gupta RK, Jha RK. Naringenin improves ovarian health by reducing the serum androgen and eliminating follicular cysts in letrozole-induced polycystic ovary syndrome in the Sprague Dawley rats. Phytother Res 2023; 37:4018-4041. [PMID: 37165686 DOI: 10.1002/ptr.7860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
Polycystic ovary syndrome (PCOS) is most common in women of reproductive age, giving rise to androgen excess and anovulation, leading to infertility and non-reproductive complications. We explored the ameliorating effect of naringenin in PCOS using the Sprague Dawley (SD) rat model and human granulosa cells. Letrozole-induced PCOS rats were given either naringenin (50 mg/kg/day) alone or in combination with metformin (300 mg/kg/day), followed by the estrous cycle, hormonal analysis, and glucose sensitivity test. To evaluate the effect of naringenin on granulosa cell (hGC) steroidogenesis, we treated cells with naringenin (2.5 μM) alone or in combination with metformin (1 mM) in the presence of forskolin (10 μM). To determine the steroidogenesis of CYP-17A1, -19A1, and 3βHSD2, the protein expression levels were examined. Treatment with naringenin in the PCOS animal groups increased ovulation potential and decreased cystic follicles and levels of androgens. The expression levels of CYP-17A1, -19A1, and 3βHSD2, were seen restored in the ovary of PCOS SD rats' model and in the human ovarian cells in response to the naringenin. We found an increased expression level of phosphorylated-AKT in the ovary and hGCs by naringenin. Naringenin improves ovulation and suppress androgens and cystic follicles, involving AKT activation.
Collapse
Affiliation(s)
- Rumaisa Rashid
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Department of Pharmaceutical Sciences, University of Kashmir, Jammu and Kashmir, India
| | - Rupal Tripathi
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Akanksha Singh
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sudarsan Sarkar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ajaykumar Kawale
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - G N Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Jammu and Kashmir, India
| | - Satish Gupta
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakesh Kumar Gupta
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rajesh Kumar Jha
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
16
|
Shoaib M, Saleem A, Zeb A, Khan MI, Akhtar MF. Chemical Characterization and Ameliorating Effect of Centratherum anthelminticum Extract against Polycystic Ovary Syndrome in Wistar Rats. Int J Endocrinol 2023; 2023:4978562. [PMID: 37483646 PMCID: PMC10359138 DOI: 10.1155/2023/4978562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/25/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) in females is an endocrine pathological condition of reproductive age which is usually caused by insulin resistance, hyperlipidemia, and oxidative stress. This research was aimed at evaluating the therapeutic effect of the Centratherum anthelminticum seed extract (CA) against PCOS in rodents as it is traditionally used to treat diabetes, inflammation, and gynecological problems. The CA was chemically characterized by high-performance liquid chromatography-diode array detection (HPLC-DAD). For the induction of PCOS, a high-fat diet (HFD) was given to all female Wistar rats for nine weeks except the normal control group, which was given a normal chow diet. Estradiol valerate was given to all rats except normal control. After the induction of PCOS, oral metformin (300 mg/kg) was given to the standard group, while CA was orally administered to diseased rats at 250, 500, and 750 mg/kg/day for 28 days. HPLC-DAD analysis revealed that kaempferol-3-pcoumaroylglucoside was present in the highest amount (146.8 ± 1.8 mg/g) of the extract followed by ferulic acid and malvidin-3-(6-caffeoyl)-glucoside. The in vivo results revealed a marked reduction in cholesterol and triglyceride levels in CA treatment groups. A significant rise was observed in progesterone and follicle stimulating hormone with a decrease in luteinizing hormone in the treatment groups as compared to disease control, which indicated normalization of the estrus cycle. The decrease in insulin resistance was characterized by low serum insulin levels in treatment groups. Treatment with CA also reduced inflammatory markers, such as IL-6 and NF-κB in PCOS rats. NrF2 and oxidative stress markers such as catalase, superoxide dismutase, malondialdehyde, and reduced glutathione were also improved by CA in the ovary of diseased rats. Histopathological examination showed the different developmental stages of normal follicles in CA-treated diseased rats which were indicative of a normal fertile estrous cycle. Overall, the results confirmed the efficacy of CA against PCOS in treating estradiol-HFD-induced PCOS due to its antidiabetic, anti-inflammatory, antihyperlipidemic, and antioxidant properties.
Collapse
Affiliation(s)
- Moonis Shoaib
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, GC University Faisalabad, Faisalabad, Pakistan
| | - Alam Zeb
- Department of Biochemistry, University of Malakand, Lower Dir, Khyber Pakhtunkhwa 18800, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, Lahore, Pakistan
| |
Collapse
|
17
|
Bee Pollen as Functional Food: Insights into Its Composition and Therapeutic Properties. Antioxidants (Basel) 2023; 12:antiox12030557. [PMID: 36978805 PMCID: PMC10045447 DOI: 10.3390/antiox12030557] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Bee pollen is a hive product made up of flower pollen grains, nectar, and bee salivary secretions that beekeepers can collect without damaging the hive. Bee pollen, also called bee-collected pollen, contains a wide range of nutritious elements, including proteins, carbs, lipids, and dietary fibers, as well as bioactive micronutrients including vitamins, minerals, phenolic, and volatile compounds. Because of this composition of high quality, this product has been gaining prominence as a functional food, and studies have been conducted to show and establish its therapeutic potential for medical and food applications. In this context, this work aimed to provide a meticulous summary of the most relevant data about bee pollen, its composition—especially the phenolic compounds—and its biological and/or therapeutic properties as well as the involved molecular pathways.
Collapse
|
18
|
Luo ED, Jiang HM, Chen W, Wang Y, Tang M, Guo WM, Diao HY, Cai NY, Yang X, Bian Y, Xing SS. Advancements in lead therapeutic phytochemicals polycystic ovary syndrome: A review. Front Pharmacol 2023; 13:1065243. [PMID: 36699064 PMCID: PMC9868606 DOI: 10.3389/fphar.2022.1065243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine diseases in women of reproductive age and features complex pathological symptoms and mechanisms. Existing medical treatments have, to some extent, alleviated the deterioration of PCOS. However, these strategies only temporarily control symptoms, with a few side effects and no preventive effect. Phytochemicals extracted from medicinal herbs and plants are vital for discovering novel drugs. In recent years, many kinds of research have proven that phytochemicals isolated from traditional Chinese medicine (TCM) and medicinal plants show significant potential in preventing, alleviating, and treating PCOS. Nevertheless, compared to the abundance of experimental literature and minimal specific-topic reviews related to PCOS, there is a lack of systematic reviews to summarize these advancements in this promising field. Under this background, we systematically document the progress of bioactive phytochemicals from TCM and medicinal plants in treating PCOS, including flavonoids, polyphenols, and alkaloids. According to the literature, these valuable phytochemicals demonstrated therapeutic effects on PCOS supported by in vivo and in vitro experiments, mainly depending on anti-inflammatory, antioxidation, improvement of hormone disorder and insulin resistance (IR), and alleviation of hyperinsulinemia. Based on the current progress, future research directions should emphasize 1) exploring bioactive phytochemicals that potentially mediate bone metabolism for the treatment of PCOS; 2) improving unsatisfactory bioavailability by using advanced drug delivery systems such as nanoparticles and antibody-conjugated drugs, as well as a chemical modification; 3) conducting in-depth research on the pathogenesis of PCOS to potentially impact the gut microbiota and its metabolites in the evolution of PCOS; 4) revealing the pharmacological effects of these bioactive phytochemicals on PCOS at the genetic level; and 5) exploring the hypothetical and unprecedented functions in regulating PCOS by serving as proteolysis-targeting chimeras and molecular glues compared with traditional small molecule drugs. In brief, this review aims to provide detailed mechanisms of these bioactive phytochemicals and hopefully practical and reliable insight into clinical applications concerning PCOS.
Collapse
Affiliation(s)
- Er-Dan Luo
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hai-Mei Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Chen
- Traditional Chinese Medicine Department, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Chengdu, China
| | - Mi Tang
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wen-Mei Guo
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao-Yang Diao
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ning-Yuan Cai
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Yang
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Chengdu, China
| | - Sha-Sha Xing
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
19
|
Corrie L, Kaur J, Awasthi A, Vishwas S, Gulati M, Saini S, Kumar B, Pandey NK, Gupta G, Dureja H, Chellapan DK, Dua K, Tewari D, Singh SK. Multivariate Data Analysis and Central Composite Design-Oriented Optimization of Solid Carriers for Formulation of Curcumin-Loaded Solid SNEDDS: Dissolution and Bioavailability Assessment. Pharmaceutics 2022; 14:2395. [PMID: 36365213 PMCID: PMC9697677 DOI: 10.3390/pharmaceutics14112395] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 10/29/2023] Open
Abstract
The study was initiated with two major purposes: investigating the role of isomalt (GIQ9) as a pharmaceutical carrier for solid self-nanoemulsifying drug delivery systems (S-SNEDDSs) and improving the oral bioavailability of lipophilic curcumin (CUN). GIQ9 has never been explored for solidification of liquid lipid-based nanoparticles such as a liquid isotropic mixture of a SNEDDS containing oil, surfactant and co-surfactant. The suitability of GIQ9 as a carrier was assessed by calculating the loading factor, flow and micromeritic properties. The S-SNEDDSs were prepared by surface adsorption technique. The formulation variables were optimized using central composite design (CCD). The optimized S-SNEDDS was evaluated for differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), microscopy, dissolution and pharmacokinetic studies. The S-SNEDDS showed a particle size, zeta potential and PDI of 97 nm, -26.8 mV and 0.354, respectively. The results of DSC, XRD, FTIR and microscopic studies revealed that the isotropic mixture was adsorbed onto the solid carrier. The L-SNEDDS and S-SNEDDS showed no significant difference in drug release, indicating no change upon solidification. The optimized S-SNEDDS showed 5.1-fold and 61.7-fold enhancement in dissolution rate and oral bioavailability as compared to the naïve curcumin. The overall outcomes of the study indicated the suitability of GIQ9 as a solid carrier for SNEDDSs.
Collapse
Affiliation(s)
- Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sumant Saini
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Narendra Kumar Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Dinesh Kumar Chellapan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Descipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
20
|
Zhang J, Zhang H, Xin X, Zhu Y, Ye Y, Li D. Efficacy of Flavonoids on Animal Models of Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:nu14194128. [PMID: 36235780 PMCID: PMC9571610 DOI: 10.3390/nu14194128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 12/09/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common gynecological endocrinopathies. Evidence suggest that flavonoids have beneficial effects on endocrine and metabolic diseases, including PCOS. However, high-quality clinical trials are lacking. We aimed to conduct a systematic review and meta-analysis of experimental studies to determine the flavonoids' effects in animal models of PCOS. Three electronic databases including PubMed, Scopus, and Web of Science were systematically searched from their inception to March 2022. The Systematic Review Center for Laboratory Animal Experimentation's risk of bias tool was used to assess methodological quality. The standardized mean difference was calculated with 95% confidence intervals as the overall effects. R was used for all statistical analyses. This study was registered in PROSPERO (registration number: CRD42022328355). A total of eighteen studies, including 300 animals, met the inclusion criteria. Our analyses demonstrated that, compared to control groups, flavonoid groups showed a significantly lower count of atretic follicles and cystic follicles and the count of corpus luteum was higher. A significant reduction in the luteinizing hormone (LH), LH/follicle-stimulating hormone (FSH), and free testosterone were observed in intervention groups. Nevertheless, there was no significant difference in the effects of flavonoids on the level of FSH, estradiol, and progesterone. Subgroup analyses indicated that the type of flavonoid, dose, duration of administration, and PCOS induction drug were relevant factors that influenced the effects of intervention. Current evidence supports the positive properties of flavonoids on ovarian histomorphology and hormonal status in animal models of PCOS. These data call for more randomized controlled trials and further experimental studies investigating the mechanism in more depth.
Collapse
Affiliation(s)
| | | | | | | | - Yang Ye
- Correspondence: (Y.Y.); (D.L.)
| | - Dong Li
- Correspondence: (Y.Y.); (D.L.)
| |
Collapse
|
21
|
Xie L, Yu D, Li Y, Ju H, Chen J, Hu L, Yu L. Characterization, Hypoglycemic Activity, and Antioxidant Activity of Methanol Extracts From Amomum tsao-ko: in vitro and in vivo Studies. Front Nutr 2022; 9:869749. [PMID: 35903449 PMCID: PMC9315379 DOI: 10.3389/fnut.2022.869749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/13/2022] [Indexed: 12/23/2022] Open
Abstract
The dried fruit of Amomum tsao-ko is well-known as a spice as well as a Chinese traditional herb. This study aimed to identify the bioactive constituents in the powder of methanol extract from Amomum tsao-ko (PMEAT) and to evaluate the hypoglycemic and antioxidant effects of PMEAT, in vitro and in vivo. We identified 36 phytochemicals in PMEAT by employing HPLC-MS/MS. PMEAT solution was found to have potent α-glucosidase-inhibiting activity (IC50, 0.145 mg/mL) in vitro, twice as strong as that of acarbose (IC50, 0.273 mg/mL). To investigate the hypoglycemic activity of PMEAT in vivo, we studied the impact of low-dose PMEAT (the addition of 100 mg/kg PMEAT to the mice diet) and high-dose PMEAT (200 mg/kg PMEAT addition) treatments in STZ-induced diabetic mice. After 6 weeks of intervention, significantly decreased fasting blood glucose (FBG) (p < 0.05), significantly decreased area under the curve (AUC) of the oral glucose tolerance test (p < 0.05), significantly decreased HOMA-IR (p < 0.05), and significantly increased HOMA-β (p < 0.05) were observed in the high-dose PMEAT group. Moreover, we performed an antioxidant activity experiment in vitro. The results showed that PMEAT had a strong ability to scavenge DPPH (IC50, 0.044 mg/mL) as well as ABTS free radicals (IC50, 0.040 mg/mL). In an animal experiment conducted on oxidative damage mice model which was induced by D-glucose and a high-fat diet, we observed significantly increased dismutase (SOD) (p < 0.01), glutathione (GSH) (p < 0.01), and glutathione peroxidase (GSH-Px) (p < 0.01) and significantly reduced malondialdehyde (MDA) and 8-ISO-prostaglandin-PGF2α (8-ISO-PGF2α), after treatment with PMEAT for 90 days. In conclusion, this study reveals the therapeutic potential of Amomum tsao-ko for the treatment of diabetes and helps us discover new antioxidant candidates from natural sources.
Collapse
Affiliation(s)
- Libin Xie
- Shijiazhuang Food Engineering Technology Research Center, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Dan Yu
- Department of Nutrition, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanan Li
- Shijiazhuang Food Engineering Technology Research Center, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Huidong Ju
- Shijiazhuang Food Engineering Technology Research Center, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Jia Chen
- Shijiazhuang Food Engineering Technology Research Center, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Lianxia Hu
- Shijiazhuang Food Engineering Technology Research Center, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Longquan Yu
- Shijiazhuang Food Engineering Technology Research Center, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
- *Correspondence: Longquan Yu
| |
Collapse
|
22
|
Brandi ML. Are sex hormones promising candidates to explain sex disparities in the COVID-19 pandemic? Rev Endocr Metab Disord 2022; 23:171-183. [PMID: 34761329 PMCID: PMC8580578 DOI: 10.1007/s11154-021-09692-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Emerging evidence suggests that the novel Coronavirus disease-2019 (COVID-19) is deadlier for men than women both in China and in Europe. Male sex is a risk factor for COVID-19 mortality. The meccanisms underlying the reduced morbidity and lethality in women are currently unclear, even though hypotheses have been posed (Brandi and Giustina in Trends Endocrinol Metab. 31:918-27, 2020). This article aims to describe the role of sex hormones in sex- and gender-related fatality of COVID-19. We discuss the possibility that potential sex-specific mechanisms modulating the course of the disease include both the androgen- and the estrogen-response cascade. Sex hormones regulate the respiratory function, the innate and adaptive immune responses, the immunoaging, the cardiovascular system, and the entrance of the virus in the cells. Recommendations for the future government policies and for the management of COVID-19 patients should include a dimorphic approach for males and females. As the estrogen receptor signaling appears critical for protection in women, more studies are needed to translate the basic knowledge into clinical actions. Understanding the etiological bases of sexual dimorphism in COVID-19 could help develop more effective strategies in individual patients in both sexes, including designing a good vaccine.
Collapse
Affiliation(s)
- Maria Luisa Brandi
- Fondazione Italiana Per La Ricerca Sulle Malattie Dell'Osso, Florence, Italy.
| |
Collapse
|
23
|
Sun T, Yu S, Song X, Zhang J, Bao Q, Mei Q, Shen Q, Wang D, Ni G. Cold Plasma Irradiation Regulates Inflammation and Oxidative Stress in Human Bronchial Epithelial Cells and Human Non-Small Cell Lung Carcinoma. Radiat Res 2022; 197:166-174. [PMID: 34700340 DOI: 10.1667/rade-20-00178.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/23/2021] [Indexed: 11/03/2022]
Abstract
Atmospheric pressure cold plasma has shown multiple biological effects of anti-bacteria and anti-cancer. In this study, the effect of atmospheric pressure cold plasma on respiratory inflammation and oxidant stress is explored. Tunicamycin was used to stimulate human bronchial epithelial cells (HBECs) and A549 cells for inflammatory response and oxidative stress, followed by atmospheric pressure cold plasma treatment. For HBECs and A549 cells, atmospheric pressure cold plasma was able to alleviate tunicamycin-induced cell proliferation inhibition, inflammation and oxidant stress, and enhance nuclear factor-erythroid-2-related factor 2 (NRF2) pathway activation. Moreover, NRF2/ARE (anti-oxidant response elements) pathway was involved in the regulation of atmospheric pressure cold plasma on tunicamycin-induced oxidative stress. These results suggest the positive effect of atmospheric pressure cold plasma on inflammation and oxidant stress of respiratory system, indicating the therapeutic potential of atmospheric pressure cold plasma for respiratory diseases.
Collapse
Affiliation(s)
- Tao Sun
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei 230031, Anhui, China
| | - Shujun Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Xuegang Song
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Jin Zhang
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230031, Anhui, China
| | - Qin Bao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Qiong Mei
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Qiying Shen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Dong Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Guohua Ni
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei 230031, Anhui, China
| |
Collapse
|
24
|
Moshfegh F, Balanejad SZ, Shahrokhabady K, Attaranzadeh A. Crocus sativus (saffron) petals extract and its active ingredient, anthocyanin improves ovarian dysfunction, regulation of inflammatory genes and antioxidant factors in testosterone-induced PCOS mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114594. [PMID: 34480994 DOI: 10.1016/j.jep.2021.114594] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/30/2021] [Accepted: 08/31/2021] [Indexed: 05/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saffron petal has traditionally been used to treat a variety of diseases, such as gynecological disease such as primary dysmenorrhea and premenstrual tension. Polycystic Ovary Syndrome (PCOS) is a form of gynecological disease that causes amenorrhea, infertility, menopausal and urogenital disorders. This disease may be treated with saffron petals. AIM OF THE STUDY In this study, the effects of saffron petal extract (SPE) and saffron petal anthocyanins (SPA) on ovarian hormones, steroidogenic enzymes, ovarian dysfunction, regulation of anti-inflammatory genes, and antioxidant factors in female PCOS mice were studied. METHODS AND RESULTS The PCOS mouse model was induced by testosterone enanthate (TE), and an in vivo evaluation of whether the dietary consumption of SPE and SPA improved the PCOS-like symptoms was conducted. The luteinizing hormone (LH), testosterone, and estrogen levels increased in PCOS mice, but decreased following SPE and SPA treatment. In the PCOS mice, the reduced follicular-stimulating hormone (FSH) progesterone levels were restored to that of normal controls with SPE and SPA treatment in serum. The transcription level(s) of gonadotropin receptors (Fshr and Lhr), steroid receptors (Pgr, and Esr1), inflammatory markers (TNFα, IL1ß, IL6 and IL18), inflammatory-related factors (NF-κB, NF-κB p65, IκB) and antioxidant enzymes (GPx, SOD, CAT, GST, and GSH) changed under the PCOS condition. Moreover, they were regulated by SPE and SPA treatment in PCOS mice ovaries. The reproductive tissues of TE induced PCOS mice were restored into estrogenic conditions from androgen environments. The study of antioxidant activity of SPE and SPA using FRAP and DPPH tests showed high antioxidant activity. CONCLUSION These results suggest that SPE and SPA ameliorates symptoms of PCOS by improving dysregulation of ovarian steroids, steroidogenic, antioxidant enzymes and inflammatory markers in PCOS mice.
Collapse
Affiliation(s)
- Fazeleh Moshfegh
- Department of Biology, Faculty of Basic Science, Mashhad Branch, Islamic Azad University, Mashhad, Iran..
| | - Saeedeh Zafar Balanejad
- Department of Biology, Faculty of Basic Science, Mashhad Branch, Islamic Azad University, Mashhad, Iran..
| | - Khadige Shahrokhabady
- Department of Biology, Faculty of Basic Science, Mashhad Branch, Islamic Azad University, Mashhad, Iran..
| | | |
Collapse
|
25
|
Gao HL, Yu XJ, Hu HB, Yang QW, Liu KL, Chen YM, Zhang Y, Zhang DD, Tian H, Zhu GQ, Qi J, Kang YM. Apigenin Improves Hypertension and Cardiac Hypertrophy Through Modulating NADPH Oxidase-Dependent ROS Generation and Cytokines in Hypothalamic Paraventricular Nucleus. Cardiovasc Toxicol 2021; 21:721-736. [PMID: 34076830 DOI: 10.1007/s12012-021-09662-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022]
Abstract
Apigenin, identified as 4', 5, 7-trihydroxyflavone, is a natural flavonoid compound that has many interesting pharmacological activities and nutraceutical potential including anti-inflammatory and antioxidant functions. Chronic, low-grade inflammation and oxidative stress are involved in both the initiation and progression of hypertension and hypertension-induced cardiac hypertrophy. However, whether or not apigenin improves hypertension and cardiac hypertrophy through modulating NADPH oxidase-dependent reactive oxygen species (ROS) generation and inflammation in hypothalamic paraventricular nucleus (PVN) has not been reported. This study aimed to investigate the effects of apigenin on hypertension in spontaneously hypertensive rats (SHRs) and its possible central mechanism of action. SHRs and Wistar-Kyoto (WKY) rats were randomly assigned and treated with bilateral PVN infusion of apigenin or vehicle (artificial cerebrospinal fluid) via osmotic minipumps (20 μg/h) for 4 weeks. The results showed that after PVN infusion of apigenin, the mean arterial pressure (MAP), heart rate, plasma norepinephrine (NE), Beta 1 receptor in kidneys, level of phosphorylation of PKA in the ventricular tissue and cardiac hypertrophy, perivascular fibrosis, heart level of oxidative stress, PVN levels of oxidative stress, interleukin 1β (IL-1β), interleukin 6 (IL-6), iNOS, monocyte chemotactic protein 1 (MCP-1), tyrosine hydroxylase (TH), NOX2 and NOX4 were attenuated and PVN levels of interleukin 10 (IL-10), superoxide dismutase 1 (Cu/Zn-SOD) and the 67-kDa isoform of glutamate decarboxylase (GAD67) were increased. These results revealed that apigenin improves hypertension and cardiac hypertrophy in SHRs which are associated with the down-regulation of NADPH oxidase-dependent ROS generation and inflammation in the PVN.
Collapse
Affiliation(s)
- Hong-Li Gao
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Xi'an, 710061, China
| | - Xiao-Jing Yu
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Xi'an, 710061, China
| | - Han-Bo Hu
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Xi'an, 710061, China
| | - Qian-Wen Yang
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Xi'an, 710061, China
| | - Kai-Li Liu
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Xi'an, 710061, China
| | - Yan-Mei Chen
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Xi'an, 710061, China
| | - Yan Zhang
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Xi'an, 710061, China
| | - Dong-Dong Zhang
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Xi'an, 710061, China
| | - Hua Tian
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Xi'an, 710061, China
| | - Guo-Qing Zhu
- Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Jie Qi
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Xi'an, 710061, China.
| | - Yu-Ming Kang
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Xi'an, 710061, China.
| |
Collapse
|
26
|
Corrie L, Gulati M, Singh SK, Kapoor B, Khursheed R, Awasthi A, Vishwas S, Chellappan DK, Gupta G, Jha NK, Anand K, Dua K. Recent updates on animal models for understanding the etiopathogenesis of polycystic ovarian syndrome. Life Sci 2021; 280:119753. [PMID: 34171379 DOI: 10.1016/j.lfs.2021.119753] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is the primary cause of female infertility affecting several women worldwide. Changes in hormonal functions such as hyperandrogenism are considered a significant factor in developing PCOS in women. In addition, many molecular pathways are involved in the pathogenesis of PCOS in women. To have better insights about PCOS, it is data from clinical studies carried on women suffering from PCOS should be collected. However, this approach has several implications, including ethical considerations, cost involved and availability of subject. Moreover, during the early drug development process, it is always advisable to use non-human models mimicking human physiology as they are less expensive, readily available, have a shorter gestation period and less risk involved. Many animal models have been reported that resemble the PCOS pathways in human subjects. However, the models developed on rats and mice are more preferred over other rodent/non-rodent models due to their closer resemblance with human PCOS development mechanism. The most extensively reported PCOS models for rats and mice include those induced by using testosterone, letrozole and estradiol valerate. As the pathophysiology of PCOS is complex, none of the explored models completely surrogates the PCOS related conditions occurring in women. Hence, there is a need to develop an animal model that can resemble the pathophysiology of PCOS in women. The review focuses on various animal models explored to understand the pathophysiology of PCOS. The article also highlights some environmental and food-related models that have been used to induce PCOS.
Collapse
Affiliation(s)
- Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia
| |
Collapse
|
27
|
Zhang N, Zhuang L, Gai S, Shan Y, Wang S, Li F, Chen L, Zhao D, Liu X. Beneficial phytoestrogenic effects of resveratrol on polycystic ovary syndromein rat model. Gynecol Endocrinol 2021; 37:337-341. [PMID: 32851887 DOI: 10.1080/09513590.2020.1812569] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIMS The effective treatment of polycystic ovary syndrome (PCOS)-related hormonal disorders necessitates the development of novel treatment strategies. Resveratrol is found in certain food products, and is known to exhibit phytoestrogen properties. The present study was to assess whether resveratrol exhibits beneficial phytoestrogenic effects and associated hormonal modulation in a rat model of PCOS. MATERIALS AND METHODS This model was established by administering oral letrozole to female Sprague-Dawley (SD) rats prior to randomizing them into control, model and resveratrol treatment groups (40, 80, or 160 mg/kg). Animals were treated for 30 days, after which time ovarian tissues were collected and evaluated via hematoxylin and eosin staining. In addition, serum levels of estradiol and adiponectin were assessed via ELISA, and ovarian expression of nesfatin-1 and aromatase was assessed through RT-PCR and western blotting. RESULTS We found that resveratrol administration was associated with increased levels of plasma adiponectin and estradiol levels and restoration of normal ovarian morphology in PCOS model animals. In addition, this treatment was linked to the increased ovarian expression of nesfatin-1 and aromatase at the RNA and protein levels. CONCLUSIONS Together things findings suggest that resveratrol may represent an effective tool for treating PCOS owing to its phytoestrogenic properties.
Collapse
Affiliation(s)
- Ning Zhang
- Reproductive Medicine Center, Yantai Yuhuangding Hospital, Yantai, China
| | - Lili Zhuang
- Reproductive Medicine Center, Yantai Yuhuangding Hospital, Yantai, China
| | - Shukun Gai
- Reproductive Medicine Center, Yantai Yuhuangding Hospital, Yantai, China
| | - Yinghua Shan
- Reproductive Medicine Center, Yantai Yuhuangding Hospital, Yantai, China
| | - Shuang Wang
- Reproductive Medicine Center, Yantai Yuhuangding Hospital, Yantai, China
| | - Fenghua Li
- Reproductive Medicine Center, Yantai Yuhuangding Hospital, Yantai, China
| | - Lili Chen
- Reproductive Medicine Center, Yantai Yuhuangding Hospital, Yantai, China
| | - Dongmei Zhao
- Reproductive Medicine Center, Yantai Yuhuangding Hospital, Yantai, China
| | - Xiaoyan Liu
- Reproductive Medicine Center, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
28
|
Zafar A, Alruwaili NK, Imam SS, Hadal Alotaibi N, Alharbi KS, Afzal M, Ali R, Alshehri S, Alzarea SI, Elmowafy M, Alhakamy NA, Ibrahim MF. Bioactive Apigenin loaded oral nano bilosomes: Formulation optimization to preclinical assessment. Saudi Pharm J 2021; 29:269-279. [PMID: 33981176 PMCID: PMC8085606 DOI: 10.1016/j.jsps.2021.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/06/2021] [Indexed: 12/16/2022] Open
Abstract
AIM Diabetic (type-2) is a metabolic disease characterized by increased blood glucose level from the normal level. In the present study, apigenin (AG) loaded lipid vesicles (bilosomes: BIL) was prepared, optimized and evaluated for the oral therapeutic efficacy. EXPERIMENTAL AG-BIL was prepared by a thin-film evaporation method using cholesterol, span 60 and sodium deoxycholate. The prepared formulation was optimized by 3-factor and 3-level Box-Behnken design using particle size, entrapment efficiency and drug release as a response. The selected formulation further evaluated for ex-vivo permeation, in vivo pharmacokinetic and pharmacodynamics study. RESULTS The optimized AG bilosomes (AG-BILopt) has shown the vesicle size 183.25 ± 2.43 nm, entrapment efficiency 81.67 ± 4.87%. TEM image showed a spherical shape vesicle with sharp boundaries. The drug release study revealed a significant enhancement in AG release (79.45 ± 4.18%) from AG-BILopt as compared to free AG-dispersion (25.47 ± 3.64%). The permeation and pharmacokinetic studies result revealed 4.49 times higher flux and 4.67 folds higher AUC0-t than free AG-dispersion. The antidiabetic activity results showed significant (P < 0.05) enhancement in therapeutic efficacy than free AG-dispersion. The results also showed marked improvement in biochemical parameters. CONCLUSION Our findings suggested, the prepared apigenin loaded bilosomes was found to be an efficient delivery in the therapeutic efficacy in diabetes.
Collapse
Affiliation(s)
- Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nasser Hadal Alotaibi
- Department of clinical pharmacy, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia
| | - Raisuddin Ali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Central Lab, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Riyadh 11597, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
- Department of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed F. Ibrahim
- Department of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
29
|
Yan F, Zhao Q, Gao H, Wang X, Xu K, Wang Y, Han F, Liu Q, Shi Y. Exploring the mechanism of (-)-Epicatechin on premature ovarian insufficiency based on network pharmacology and experimental evaluation. Biosci Rep 2021; 41:BSR20203955. [PMID: 33521822 PMCID: PMC7881164 DOI: 10.1042/bsr20203955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/11/2021] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
METHODS Relevant potential targets for EC were obtained based on Traditional Chinese Medicine System Pharmacology Database (TCMSP), a bioinformatics analysis tool for molecular mechanism of Traditional Chinese Medicine (BATMAN-TCM) and STITCH databases. The Online Mendelian Inheritance in Man (OMIM) and GeneCards databases were utilized to screen the known POI-related targets, while Cytoscape software was used for network construction and visualization. Then, the Gene Ontology (GO) and pathway enrichment analysis were carried out by the Database for Annotation, Visualization and Integrated Discovery (DAVID) database. Furthermore, KGN cells were performed to validate the predicted results in oxidative stress (OS) model, and antioxidant effect was examined. RESULTS A total of 70 potential common targets for EC in the treatment of POI were obtained through network pharmacology. Metabolic process, response to stimulus and antioxidant activity occupied a leading position of Gene Ontology (GO) enrichment. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that PI3K/protein kinase B (AKT), TNF, estrogen, VEGF and MAPK signaling pathways were significantly enriched. In addition, cell experiments showed that EC exhibited antioxidant effects in an H2O2-mediated OS model in ovarian granulosa cells by regulating the expression of PI3K/AKT/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and multiple downstream antioxidant enzymes. CONCLUSION EC could regulate multiple signaling pathways and several biological processes (BPs). EC had the ability to down-regulate elevated OS level through the PI3K/AKT/Nrf2 signaling pathway and represented a potential novel treatment for POI.
Collapse
Affiliation(s)
- Fei Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Huanpeng Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomei Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ke Xu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yishu Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fuguo Han
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Qingfei Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yun Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
30
|
Determination of Chemical Constituents and Antioxidant Activities of Leaves and Stems from Jatropha cinerea (Ortega) Müll. Arg and Jatropha cordata (Ortega) Müll. Arg. PLANTS 2021; 10:plants10020212. [PMID: 33499190 PMCID: PMC7911936 DOI: 10.3390/plants10020212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/06/2023]
Abstract
Jatropha species have been shown to be an important source of secondary metabolites with different biological effects. Jatropha cinerea (Ortega) Müll. Arg and Jatropha cordata (Ortega) Müll. Arg are distributed in the Northwestern region of Mexico, are adapted to extreme weather conditions and are widely used (stems, leaves, and sap) in traditional medicine. The aim of the present study was to carry out the phytochemical characterization and the evaluation of the antioxidant activity in methanolic extracts of stems and leaves from J. cinerea and J. cordata. The compounds present in the extracts of both species were characterized by ESI-IT-MS/MS and quantified by HPLC-DAD. The results showed that the stem extracts of both species are rich in phenolic acids, while the leaf extracts are rich in flavonoids. Some of the main compounds found were gallic acid, gentisic acid, 3,4-Dihydroxybenzoic acid, vitexin, isovitexin, and catechol. Both species showed high concentrations of phenols and total flavonoids and antioxidant activity. J. cordata showed the highest antioxidant capacity and the highest concentration of phenolic compounds. Overall, both Jatropha species are a natural source of antioxidant compounds with potential biotechnological uses.
Collapse
|
31
|
Brandi ML, Giustina A. Sexual Dimorphism of Coronavirus 19 Morbidity and Lethality. Trends Endocrinol Metab 2020; 31:918-927. [PMID: 33082024 PMCID: PMC7513816 DOI: 10.1016/j.tem.2020.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
The recent coronavirus disease 2019 (COVID-19) pandemic showed a different severity in the disease between males and females. Men have been becoming severely ill at a higher rate than women. These data along with an age-dependent disease susceptibility and mortality in the elderly suggest that sex hormones are the main factors in determining the clinical course of the infection. The differences in aging males versus females and the role of sex hormones in key phenotypes of COVID-19 infection are described in this review. Recommendations based on a dimorphic approach for males and females suggest a sex-specific management the disease.
Collapse
Affiliation(s)
- Maria Luisa Brandi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy.
| | - Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, San Raffaele Vita-Salute University and Division of Endocrinology IRCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
32
|
Sirotkin AV, Radosová M, Tarko A, Fabova Z, Martín-García I, Alonso F. Abatement of the Stimulatory Effect of Copper Nanoparticles Supported on Titania on Ovarian Cell Functions by Some Plants and Phytochemicals. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1859. [PMID: 32957511 PMCID: PMC7558118 DOI: 10.3390/nano10091859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022]
Abstract
The application of nanoparticles has experienced a vertiginous growth, but their interaction with food and medicinal plants in organisms, especially in the control of reproduction, remains unresolved. We examined the influence of copper nanoparticles supported on titania (CuNPs/TiO2), plant extracts (buckwheat (Fagopyrum esculentum) and vitex (Vitex agnus-castus)), phytochemicals (rutin and apigenin), and their combination with CuNPs/TiO2 on ovarian cell functions, using cultured porcine ovarian granulosa cells. Cell viability, proliferation (PCNA accumulation), apoptosis (accumulation of bax), and hormones release (progesterone, testosterone, and 17β-estradiol) were analyzed by the Trypan blue test, quantitative immunocytochemistry, and ELISA, respectively. CuNPs/TiO2 increased cell viability, proliferation, apoptosis, and testosterone but not progesterone release, and reduced the 17β-estradiol output. Plant extracts and components have similar stimulatory action on ovarian cell functions as CuNPs/TiO2, but abated the majority of the CuNPs/TiO2 effects. This study concludes that (1) CuNPs/TiO2 can directly stimulate ovarian cell functions, promoting ovarian cell proliferation, apoptosis, turnover, viability, and steroid hormones release; (2) the plants buckwheat and vitex, as well as rutin and apigenin, can promote some of these ovarian functions too; and (3) these plant additives mitigate the CuNPs/TiO2's activity, something that must be considered when applied together.
Collapse
Affiliation(s)
- Alexander V. Sirotkin
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A Hlinku 1, 949 74 Nitra, Slovakia; (M.R.); (A.T.); (Z.F.)
| | - Monika Radosová
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A Hlinku 1, 949 74 Nitra, Slovakia; (M.R.); (A.T.); (Z.F.)
| | - Adam Tarko
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A Hlinku 1, 949 74 Nitra, Slovakia; (M.R.); (A.T.); (Z.F.)
| | - Zuzana Fabova
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A Hlinku 1, 949 74 Nitra, Slovakia; (M.R.); (A.T.); (Z.F.)
| | - Iris Martín-García
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo., 99, 03080 Alicante, Spain;
| | - Francisco Alonso
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo., 99, 03080 Alicante, Spain;
| |
Collapse
|
33
|
Sirotkin A, Záhoranska Z, Tarko A, Popovska-Percinic F, Alwasel S, Harrath AH. Plant isoflavones can prevent adverse effects of benzene on porcine ovarian activity: an in vitro study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29589-29598. [PMID: 32445151 DOI: 10.1007/s11356-020-09260-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
We evaluated the influence of the oil-related environmental contaminant benzene (0, 10, 100, or 1000 ng/mL) alone and in combination with apigenin, daidzein, or rutin (10 μg/mL each) on viability; proliferation (accumulation of proliferating cell nuclear antigen); apoptosis (accumulation of Bax); and release of progesterone (P), testosterone (T), and estradiol (E) in cultured porcine ovarian granulosa cells. Cell viability; proliferation; apoptosis; and release of P, T, and E have been analyzed by the trypan blue test, quantitative immunocytochemistry, and ELISA, respectively. Benzene did not affect apoptosis, but reduced ovarian cell viability and P and E release, and promoted proliferation and T output. Apigenin did not affect cell viability, but stimulated proliferation and T and E release, and inhibited apoptosis and P secretion. It prevented and reversed the action of benzene on proliferation and P and T release, and induced the inhibitory action of benzene on apoptosis. Daidzein promoted cell viability, proliferation, P release, but not apoptosis and T or E release. Daidzein induced the stimulatory effect of benzene on T, without modifying other effects. Rutin administered alone reduced cell viability and apoptosis, and promoted cell proliferation. Furthermore, rutin prevented and reversed the effect of benzene on proliferation and P and E release. These observations suggest the direct action of benzene and plant polyphenols on basic ovarian cell functions, and the ability of apigenin and rutin, but not of daidzein, to prevent benzene effects on the ovary.
Collapse
Affiliation(s)
- Alexander Sirotkin
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A. Hlinku, 949 74, Nitra, Slovak Republic.
| | - Zuzana Záhoranska
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A. Hlinku, 949 74, Nitra, Slovak Republic
| | - Adam Tarko
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A. Hlinku, 949 74, Nitra, Slovak Republic
| | | | - Saleh Alwasel
- King Saud University, Department of Zoology, College of Science, Riyadh, 11451, Saudi Arabia
| | - Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Science, Riyadh, 11451, Saudi Arabia
- Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| |
Collapse
|
34
|
Wu G, Hu X, Ding J, Yang J. The effect of glutamine on Dehydroepiandrosterone-induced polycystic ovary syndrome rats. J Ovarian Res 2020; 13:57. [PMID: 32386521 PMCID: PMC7211337 DOI: 10.1186/s13048-020-00650-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/15/2020] [Indexed: 11/10/2022] Open
Abstract
Background Previous studies have shown that chronic inflammation and oxidative stress may play an important role in the pathophysiology of polycystic ovary syndrome (PCOS), and glutamine (Gln) have showed the anti-inflammatory and antioxidant properties. So the aim of this study is to investigate the effect of glutamine supplementation on PCOS rats. Methods Female Sprague–Dawley rats were randomly assigned into four groups (n = 10 /group), control group, PCOS group, PCOS+ 0.5 g/kg Gln group and PCOS+ 1.0 g/kg Gln group. All the PCOS rats were administrated with 6 mg/100 g dehydroepiandrosterone (DHEA) for 20 consecutive days, all the PCOS+Gln groups were intraperitoneal injected glutamine twice in the next morning after the last DHEA injection. All the samples were collected 12 h after the last administration. Ovarian histological examinations were analyzed and the concentration of serum hormone, inflammatory and oxidative stress factors were measured. Results There was no obvious ovarian histological change among the PCOS group and PCOS+Gln groups. All the detected inflammation factors [C-reactive protein, interleukin (IL)-6, IL-18, tumor necrosis factor] showed significantly higher in all the PCOS groups compared to the control group (P < 0.01), and were significantly decreased with the supplementation of 0.5 g/kg glutamine (P < 0.01). Concentrations of superoxide dismutase were significantly lower in all the PCOS groups (P < 0.01) compared to the control group, and increased significantly with the supplementation of 0.5 g/kg glutamine (P < 0.01). Serum concentrations of malondialdehyde, nitric oxide synthase and nitric oxide were significantly higher in PCOS group (P < 0.01) compared with the control group, and significantly decreased to the comparative levels of control group with supplementation of 0.5 g/kg glutamine (P < 0.01). Conclusion There is low-grade inflammation and oxidative stress in DHEA-induced PCOS rats. The supplementation of 0.5 g/kg glutamine could effectively ameliorate the inflammation and oxidative stress conditions of PCOS.
Collapse
Affiliation(s)
- Gengxiang Wu
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China. .,Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, People's Republic of China.
| | - Xue Hu
- Reproductive Medical Centre, Taihe Hospital, Shiyan, 442000, Hubei Province, People's Republic of China
| | - Jinli Ding
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.,Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, People's Republic of China
| | - Jing Yang
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.,Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, People's Republic of China
| |
Collapse
|