1
|
Pekdemir B, Raposo A, Saraiva A, Lima MJ, Alsharari ZD, BinMowyna MN, Karav S. Mechanisms and Potential Benefits of Neuroprotective Agents in Neurological Health. Nutrients 2024; 16:4368. [PMID: 39770989 PMCID: PMC11677798 DOI: 10.3390/nu16244368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The brain contains many interconnected and complex cellular and molecular mechanisms. Injury to the brain causes permanent dysfunctions in these mechanisms. So, it continues to be an area where surgical intervention cannot be performed except for the removal of tumors and the repair of some aneurysms. Some agents that can cross the blood-brain barrier and reach neurons show neuroprotective effects in the brain due to their anti-apoptotic, anti-inflammatory and antioxidant properties. In particular, some agents act by reducing or modulating the accumulation of protein aggregates in neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and prion disease) caused by protein accumulation. Substrate accumulation causes increased oxidative stress and stimulates the brain's immune cells, microglia, and astrocytes, to secrete proinflammatory cytokines. Long-term or chronic neuroinflammatory response triggers apoptosis. Brain damage is observed with neuronal apoptosis and brain functions are impaired. This situation negatively affects processes such as motor movements, memory, perception, and learning. Neuroprotective agents prevent apoptosis by modulating molecules that play a role in apoptosis. In addition, they can improve impaired brain functions by supporting neuroplasticity and neurogenesis. Due to the important roles that these agents play in central nervous system damage or neurodegenerative diseases, it is important to elucidate many mechanisms. This review provides an overview of the mechanisms of flavonoids, which constitute a large part of the agents with neuroprotective effects, as well as vitamins, neurotransmitters, hormones, amino acids, and their derivatives. It is thought that understanding these mechanisms will enable the development of new therapeutic agents and different treatment strategies.
Collapse
Affiliation(s)
- Burcu Pekdemir
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey;
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Ariana Saraiva
- Research in Veterinary Medicine (I-MVET), Faculty of Veterinary Medicine, Lisbon University Centre, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal;
| | - Maria João Lima
- CERNAS Research Centre, Polytechnic University of Viseu, 3504-510 Viseu, Portugal;
| | - Zayed D. Alsharari
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia;
| | - Mona N. BinMowyna
- College of Education, Shaqra University, Shaqra 11911, Saudi Arabia;
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey;
| |
Collapse
|
2
|
Pereira Sol GA, Hermsdorff HHM, Pimenta AM, Bressan J, Moreira APB, Aguiar ASD. Total dietary antioxidant capacity and food groups and their relationship with the sleep time of Brazilian graduates (CUME Study). Nutr Neurosci 2024:1-15. [PMID: 39383247 DOI: 10.1080/1028415x.2024.2411556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
To investigate the association between the Dietary Total Antioxidant Capacity (dTAC) and the Total Antioxidant Capacity of food groups (fgTAC) with the sleep time of Brazilian graduates participating in the Cohort of Universities of Minas Gerais (CUME Study). This cross-sectional study analyzed 6,387 graduates (2,052 men, 4,335 women, 35.3 ± 9.3 years old) from the CUME Study. Data was collected online, and dTAC was obtained by the Ferric Reduction Antioxidant Power (FRAP) method. Daily sleep time was classified as short sleep, normal sleep, and long sleep (≤6, 7-8, and ≥9 h, respectively). Multinomial logistic regression models were used to estimate the Odds Ratio (OR) and its 95% Confidence Interval (95% CI) between short sleep and long sleep with quartiles of dTAC and the fgTAC. Lower odds of short sleep was observed for the third quartile of dTAC and for fourth quartile of fgTAC of fruits, beans, and lentils, and for the third quartile of fgTAC of vegetables and oils and fats. Higher odds of short sleep for the fourth quartile of fgTAC of teas and coffees. For long sleep, inverse associations were observed for the fourth quartile of fgTAC of oilseeds and the third quartile of fgTAC of teas and coffees. Higher odds of long sleep were observed for the third quartile of artificial juices and sodas. We cannot independently assert an association between higher dTAC and sleep time. In turn, the associations between sleep time and fgTAC show the importance of the food matrix that antioxidants are inserted, requiring longitudinal studies to observe the direction of associations.
Collapse
Affiliation(s)
- Gabriela Amorim Pereira Sol
- Faculty of Medicine. Department of Collective Health, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Helen Hermana M Hermsdorff
- Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Josefina Bressan
- Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Aline Silva de Aguiar
- Faculty of Medicine. Department of Collective Health, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Department of Nutrition and Dietetics, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
3
|
Wang L, Deng Y, Gao J, Wang B, Han H, Li Z, Zhang W, Wang Y, Fu X, Peng R, Yao Q, Tian Y, Xu J. Biosynthesis of melatonin from L-tryptophan by an engineered microbial cell factory. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:27. [PMID: 38369525 PMCID: PMC10874579 DOI: 10.1186/s13068-024-02476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND The demand for melatonin is increasing due to its health-promoting bioactivities such as antioxidant and sleep benefits. Although melatonin is present in various organisms, its low content and high extraction cost make it unsustainable. Biosynthesis is a promising alternative method for melatonin production. However, the ectopic production of melatonin in microorganisms is very difficult due to the low or insoluble expression of melatonin synthesis genes. Hence, we aim to explore the biosynthesis of melatonin using Escherichia coli as a cell factory and ways to simultaneously coordinated express genes from different melatonin synthesis pathways. RESULTS In this study, the mXcP4H gene from Xanthomonas campestris, as well as the HsAADC, HsAANAT and HIOMT genes from human melatonin synthesis pathway were optimized and introduced into E. coli via a multi-monocistronic vector. The obtained strain BL7992 successfully synthesized 1.13 mg/L melatonin by utilizing L-tryptophan (L-Trp) as a substrate in a shake flask. It was determined that the rate-limiting enzyme for melatonin synthesis is the arylalkylamine N-acetyltransferase, which is encoded by the HsAANAT gene. Targeted metabolomics analysis of L-Trp revealed that the majority of L-Trp flowed to the indole pathway in BL7992, and knockout of the tnaA gene may be beneficial for increasing melatonin production. CONCLUSIONS A metabolic engineering approach was adopted and melatonin was successfully synthesized from low-cost L-Trp in E. coli. This study provides a rapid and economical strategy for the synthesis of melatonin.
Collapse
Affiliation(s)
- Lijuan Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms Ministry of Agriculture and Rural Affairs, 2901 Beidi Road, Shanghai, China
| | - Yongdong Deng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms Ministry of Agriculture and Rural Affairs, 2901 Beidi Road, Shanghai, China
| | - Jianjie Gao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Bo Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Hongjuan Han
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Zhenjun Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Wenhui Zhang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Yu Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Xiaoyan Fu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms Ministry of Agriculture and Rural Affairs, 2901 Beidi Road, Shanghai, China
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms Ministry of Agriculture and Rural Affairs, 2901 Beidi Road, Shanghai, China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China.
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms Ministry of Agriculture and Rural Affairs, 2901 Beidi Road, Shanghai, China.
| | - Jing Xu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China.
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms Ministry of Agriculture and Rural Affairs, 2901 Beidi Road, Shanghai, China.
| |
Collapse
|
4
|
Kamfar WW, Khraiwesh HM, Ibrahim MO, Qadhi AH, Azhar WF, Ghafouri KJ, Alhussain MH, Aldairi AF, AlShahrani AM, Alghannam AF, Abdulal RH, Al-Slaihat AH, Qutob MS, Elrggal ME, Ghaith MM, Azzeh FS. Comprehensive review of melatonin as a promising nutritional and nutraceutical supplement. Heliyon 2024; 10:e24266. [PMID: 38293391 PMCID: PMC10825492 DOI: 10.1016/j.heliyon.2024.e24266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/05/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Background Melatonin is an indoleamine hormone secreted by the pineal gland at night and has an essential role in regulating human circadian rhythms (the internal 24-h clock) and sleep-wake patterns. However, it has recently gained considerable attention for its demonstrated ability in disease management. This review discusses the major biological activities of melatonin, its metabolites as nutritional supplements, and its bioavailability in food sources. Methods The information acquisition process involved conducting a comprehensive search across academic databases including PubMed, Scopus, Wiley, Embase, and Springer using relevant keywords. Only the most recent, peer-reviewed articles published in the English language were considered for inclusion. Results The molecular mechanisms by which melatonin induces its therapeutic effects have been the subject of various studies. Conclusion While melatonin was initially understood to only regulate circadian rhythms, recent studies indicate that it has a far-reaching effect on various organs and physiological systems, such as immunity, cardiovascular function, antioxidant defense, and lipid hemostasis. As a potent antioxidant, anti-cancer, anti-inflammatory, and immunoregulatory agent, multiple therapeutic applications have been proposed for melatonin.
Collapse
Affiliation(s)
- Waad W. Kamfar
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, UmmAl-Qura University, P.O. Box: 7067, Makkah, Saudi Arabia
- Medical Nutrition and Food Services Department, Almana Hospitals, Aziziah, Dammam, Saudi Arabia
| | - Husam M. Khraiwesh
- Department of Nutrition and Food Processing, Faculty of Agricultural Technology, Al-Balqa’ Applied University, Salt, Jordan
| | - Mohammed O. Ibrahim
- Department of Nutrition and Food Technology, Faculty of Agriculture, Mu'tah University, Karak, Jordan
| | - Alaa H. Qadhi
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, UmmAl-Qura University, P.O. Box: 7067, Makkah, Saudi Arabia
| | - Wedad F. Azhar
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, UmmAl-Qura University, P.O. Box: 7067, Makkah, Saudi Arabia
| | - Khloud J. Ghafouri
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, UmmAl-Qura University, P.O. Box: 7067, Makkah, Saudi Arabia
| | - Maha H. Alhussain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdullah F. Aldairi
- Faculty of Applied Medical Sciences, Department of Clinical Laboratory Sciences, Umm Al-Qura University, Al Abdeyah, Makkah, 7607, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Sciences, College of Applied Medical Sciences, Khamis Mushayt, King Khalid University, Abha, 62561, Saudi Arabia
| | - Abdullah F. Alghannam
- Lifestyle and Health Research Center, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia
| | - Rwaa H. Abdulal
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abed H. Al-Slaihat
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Maysoun S. Qutob
- Clinical Nutrition and Dietetics Department, Faculty of Allied Medical Sciences, Applied Science Private University, Amman, Jordan
| | | | - Mazen M. Ghaith
- Faculty of Applied Medical Sciences, Department of Clinical Laboratory Sciences, Umm Al-Qura University, Al Abdeyah, Makkah, 7607, Saudi Arabia
| | - Firas S. Azzeh
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, UmmAl-Qura University, P.O. Box: 7067, Makkah, Saudi Arabia
| |
Collapse
|
5
|
James A, Yao T, Ke H, Wang Y. Microbiota for production of wine with enhanced functional components. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Borisenkov MF, Popov SV, Smirnov VV, Martinson EA, Solovieva SV, Danilova LA, Gubin DG. The Association between Melatonin-Containing Foods Consumption and Students' Sleep-Wake Rhythm, Psychoemotional, and Anthropometric Characteristics: A Semi-Quantitative Analysis and Hypothetical Application. Nutrients 2023; 15:3302. [PMID: 37571240 PMCID: PMC10420797 DOI: 10.3390/nu15153302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Food is an important source of melatonin (MT), which belongs to a group known as chronobiotics, a class of substances that affect the circadian system. Currently, no studies have been conducted on how the consumption of foods containing MT (FMT) is associated with indicators characterizing the human circadian system. In this study, we tested the hypothesis that FMT consumption is associated with chronotype and social jetlag. A total of 1277 schoolchildren and university students aged M (SD) 19.9 (4.1) years (range: 16-25 years; girls: 72.8%) participated in a cross-sectional study. Each participant completed an online questionnaire with their personal data (sex, age, height, weight, waist circumference, and academic performance) and a sequence of tests to assess their sleep-wake rhythm (the Munich Chronotype Questionnaire), sleep quality (the Pittsburgh Sleep Quality Index), and depression level (the Zung Self-Rating Depression Scale). Study participants also completed a modified food frequency questionnaire that only included foods containing MT (FMT). They were asked how many foods containing MT (FMT) they had eaten for dinner, constituting their daily serving, in the past month. The consumption of foods containing MT (FMT) during the day (FMTday) and at dinner (FMTdinner) was assessed using this test. Multiple regression analyses were performed to assess the association between the studied indicators. We found that higher FMTday values were associated with early chronotype (β = -0.09) and less social jetlag (β = -0.07), better sleep quality (β = -0.06) and lower levels of depression (β = -0.11), as well as central adiposity (β = -0.08). Higher FMTdinner values were associated with a lower risk of central adiposity (β = -0.08). In conclusion, the data obtained confirm the hypothesis that the consumption of foods containing MT (FMT) is associated with chronotype and social jetlag in adolescents and young adults.
Collapse
Affiliation(s)
- Mikhail F. Borisenkov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar 167982, Russia; (S.V.P.); (V.V.S.)
| | - Sergey V. Popov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar 167982, Russia; (S.V.P.); (V.V.S.)
| | - Vasily V. Smirnov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar 167982, Russia; (S.V.P.); (V.V.S.)
| | | | - Svetlana V. Solovieva
- Department of Biology, Tyumen Medical University, Tyumen 625023, Russia; (S.V.S.); (L.A.D.)
| | - Lina A. Danilova
- Department of Biology, Tyumen Medical University, Tyumen 625023, Russia; (S.V.S.); (L.A.D.)
| | - Denis G. Gubin
- Department of Biology, Tyumen Medical University, Tyumen 625023, Russia; (S.V.S.); (L.A.D.)
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Tyumen Medical University, Tyumen 625023, Russia
- Tyumen Cardiology Research Centre, Tomsk National Research Medical Center, Russian Academy of Science, Tyumen 119991, Russia
| |
Collapse
|
7
|
de Oliveira Moura Araújo E, Gavioli EC, Holanda VAD, da Silva VC, Oliveira Nunes Messias TB, Dutra LMG, de Oliveira MC, Ramos do Egypto Queiroga RDC, Guerra GCB, Soares JKB. REPEATED DONKEY MILK CONSUMPTION REDUCES ANXIETY-LIKE BEHAVIORS AND BRAIN OXIDATIVE DAMAGE TO LIPIDS IN MICE. Behav Brain Res 2023; 449:114477. [PMID: 37150444 DOI: 10.1016/j.bbr.2023.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
Donkey milk (DM) is a source of bioactive compounds that can benefit neural functioning. In the present study, we investigated the effects of DM consumption on anxiolytic-related, despair-like, locomotion and coordination behaviors, as well as the provision of protection from oxidative damage to lipids and proteins in brain tissues and melatonin plasma levels. To achieve this, male mice orally received DM (4g.kg-1) or vehicle for 18 days. Their behavior was assessed in the following tests: elevated plus maze (EPM), open field and rotarod tests (OF, RR) and forced swimming test (FST). Acute treatments with diazepam (DZP, 1.5mg.kg-1, v.o.), fluoxetine (FLX, 20mg.kg-1, i.p.) and nortriptyline (NTP, 20mg.kg-1, i.p.) were used as positive controls. On the eighteenth day, the animals were euthanized and brain tissue and blood were collected to measure oxidative damage, and melatonin plasma levels. Similar to DZP, repeated DM consumption reduced exploration to open areas in the EPM test. Under our experimental conditions, conventional antidepressants reduced immobility time in the FST, and the benzodiazepine treatment impaired motor coordination in mice. No significant differences in locomotion, motor coordination and despair-related behaviors were observed in the mice treated with DM when assessed in the EPM, OF, RR and FST, respectively. Biochemical assays showed that repeated DM exposition protected against oxidative damage to lipids and increased plasma levels of melatonin. These findings suggest consumption of DM may be a promising food for the treatment of anxiety-related disorders, without depressant effects on the central nervous system.
Collapse
Affiliation(s)
| | - Elaine Cristina Gavioli
- Department of Biophysics and Pharmacology, Biosciences Centre, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Valéria Costa da Silva
- Department of Biophysics and Pharmacology, Biosciences Centre, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - Matheus Cardoso de Oliveira
- Department of Biophysics and Pharmacology, Biosciences Centre, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - Juliana Kessia Barbosa Soares
- Department of Food Engineering, Technology Centre, Federal University of Paraíba, Brazil; Center of Education and Health, Federal University of Campina Grande, Cuité, Brazil
| |
Collapse
|
8
|
Luqman A. The orchestra of human bacteriome by hormones. Microb Pathog 2023; 180:106125. [PMID: 37119938 DOI: 10.1016/j.micpath.2023.106125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Human microbiome interact reciprocally with the host. Recent findings showed the capability of microorganisms to response towards host signaling molecules, such as hormones. Studies confirmed the complex response of bacteria in response to hormones exposure. These hormones impact many aspects on bacteria, such as the growth, metabolism, and virulence. The effects of each hormone seem to be species-specific. The most studied hormones are cathecolamines also known as stress hormones that consists of epinephrine, norepinephrine and dopamine. These hormones affect the growth of bacteria either inhibit or enhance by acting like a siderophore. Epinephrine and norepinephrine have also been reported to activate QseBC, a quorum sensing in Gram-negative bacteria and eventually enhances the virulence of pathogens. Other hormones were also reported to play a role in shaping human microbiome composition and affect their behavior. Considering the complex response of bacteria on hormones, it highlights the necessity to take the impact of hormones on bacteria into account in studying human health in relation to human microbiome.
Collapse
Affiliation(s)
- Arif Luqman
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.
| |
Collapse
|
9
|
Yang T, Wu J, Ding X, Zhou B, Xiong Y. The association of melatonin use and hip fracture: a matched cohort study. Osteoporos Int 2023; 34:1127-1135. [PMID: 37036474 DOI: 10.1007/s00198-023-06740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
By using propensity-score matched cohorts, we compared the risk of incident hip fracture between melatonin initiators and hypnotic benzodiazepines initiators. The initiation of melatonin was not associated with an increased risk of hip fracture. INTRODUCTION Melatonin is hypothesized to suppress bone loss, but a previous study reported an increased risk of hip fracture among melatonin users compared with non-users, which was however susceptible to confounding by indication. This study aimed to compare the risk of hip fracture between melatonin initiators and initiators of its active comparators, i.e., hypnotic benzodiazepines. METHODS Among individuals aged 40 years or older without a history of hip fracture or cancer in the IQVIA Medical Research Database (IMRD) in the UK (2000-2018), a propensity score-matched cohort study was conducted to examine the association of melatonin initiation vs. hypnotic benzodiazepines initiation with the risk of hip fracture. RESULTS After propensity score matching, 9,038 patients were included (4,519 melatonin initiators and 4,519 hypnotic benzodiazepines initiators). During the entire follow-up, 41 cases of hip fracture occurred in the melatonin cohort, and 51 cases occurred in the hypnotic benzodiazepines cohort. The absolute rate difference in hip fracture between melatonin initiators and hypnotic benzodiazepines initiators was -0.8 (95% CI: -1.9 to 0.3) per 1000 person-years and the multivariable-adjusted hazard ratio (HR) of hip fracture for melatonin initiators was 0.78 (95% CI: 0.51 to 1.17). CONCLUSION In this population-based cohort study, the risk of hip fracture among melatonin initiators was not higher, if not lower, than that among hypnotic benzodiazepines initiators.
Collapse
Affiliation(s)
- Tuo Yang
- Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, 410008, Changsha, Hunan, China
| | - Jing Wu
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, Hunan, China
| | - Xiang Ding
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, 410008, Changsha, Hunan, China
| | - Bin Zhou
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, Hunan, China.
| | - Yilin Xiong
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, 410008, Changsha, Hunan, China.
- Hunan Engineering Research Center of Osteoarthritis, Changsha, Hunan, China.
| |
Collapse
|
10
|
Estaras M, Ortiz-Placin C, Castillejo-Rufo A, Fernandez-Bermejo M, Blanco G, Mateos JM, Vara D, Gonzalez-Cordero PL, Chamizo S, Lopez D, Rojas A, Jaen I, de Armas N, Salido GM, Iovanna JL, Santofimia-Castaño P, Gonzalez A. Melatonin controls cell proliferation and modulates mitochondrial physiology in pancreatic stellate cells. J Physiol Biochem 2023; 79:235-249. [PMID: 36334253 PMCID: PMC9905253 DOI: 10.1007/s13105-022-00930-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
We have investigated the effects of melatonin on major pathways related with cellular proliferation and energetic metabolism in pancreatic stellate cells. In the presence of melatonin (1 mM, 100 µM, 10 µM, or 1 µM), decreases in the phosphorylation of c-Jun N-terminal kinase and of p44/42 and an increase in the phosphorylation of p38 were observed. Cell viability dropped in the presence of melatonin. A rise in the phosphorylation of AMP-activated protein kinase was detected in the presence of 1 mM and 100 µM melatonin. Treatment with 1 mM melatonin decreased the phosphorylation of protein kinase B, whereas 100 µM and 10 µM melatonin increased its phosphorylation. An increase in the generation of mitochondrial reactive oxygen species and a decrease of mitochondrial membrane potential were noted following melatonin treatment. Basal and maximal respiration, ATP production by oxidative phosphorylation, spare capacity, and proton leak dropped in the presence of melatonin. The expression of complex I of the mitochondrial respiratory chain was augmented in the presence of melatonin. Conversely, in the presence of 1 mM melatonin, decreases in the expression of mitofusins 1 and 2 were detected. The glycolysis and the glycolytic capacity were diminished in cells treated with 1 mM or 100 µM melatonin. Increases in the expression of phosphofructokinase-1 and lactate dehydrogenase were noted in cells incubated with 100 µM, 10 µM, or 1 µM melatonin. The expression of glucose transporter 1 was increased in cells incubated with 10 µM or 1 µM melatonin. Conversely, 1 mM melatonin decreased the expression of all three proteins. Our results suggest that melatonin, at pharmacological concentrations, might modulate mitochondrial physiology and energy metabolism in addition to major pathways involved in pancreatic stellate cell proliferation.
Collapse
Affiliation(s)
- Matias Estaras
- Departamento de Fisiología, Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Avenida de Las Ciencias S/N, 10003, Cáceres, Spain
| | - Candido Ortiz-Placin
- Departamento de Fisiología, Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Avenida de Las Ciencias S/N, 10003, Cáceres, Spain
| | - Alba Castillejo-Rufo
- Departamento de Fisiología, Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Avenida de Las Ciencias S/N, 10003, Cáceres, Spain
| | | | - Gerardo Blanco
- Unidad de Cirugía Hepatobiliopancreática Y Transplante Hepático, Hospital Universitario, Badajoz, Spain
| | - Jose M Mateos
- Departamento de Gastroenterología, Hospital Universitario, Cáceres, Spain
| | - Daniel Vara
- Departamento de Gastroenterología, Hospital Universitario, Cáceres, Spain
| | | | - Sandra Chamizo
- Departamento de Gastroenterología, Hospital Universitario, Cáceres, Spain
| | - Diego Lopez
- Unidad de Cirugía Hepatobiliopancreática Y Transplante Hepático, Hospital Universitario, Badajoz, Spain
| | - Adela Rojas
- Unidad de Cirugía Hepatobiliopancreática Y Transplante Hepático, Hospital Universitario, Badajoz, Spain
| | - Isabel Jaen
- Unidad de Cirugía Hepatobiliopancreática Y Transplante Hepático, Hospital Universitario, Badajoz, Spain
| | - Noelia de Armas
- Unidad de Cirugía Hepatobiliopancreática Y Transplante Hepático, Hospital Universitario, Badajoz, Spain
| | - Gines M Salido
- Departamento de Fisiología, Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Avenida de Las Ciencias S/N, 10003, Cáceres, Spain
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique Et Technologique de Luminy, Marseille, France
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique Et Technologique de Luminy, Marseille, France
| | - Antonio Gonzalez
- Departamento de Fisiología, Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Avenida de Las Ciencias S/N, 10003, Cáceres, Spain.
| |
Collapse
|
11
|
Chrononutrition-When We Eat Is of the Essence in Tackling Obesity. Nutrients 2022; 14:nu14235080. [PMID: 36501110 PMCID: PMC9739590 DOI: 10.3390/nu14235080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity is a chronic and relapsing public health problem with an extensive list of associated comorbidities. The worldwide prevalence of obesity has nearly tripled over the last five decades and continues to pose a serious threat to wider society and the wellbeing of future generations. The pathogenesis of obesity is complex but diet plays a key role in the onset and progression of the disease. The human diet has changed drastically across the globe, with an estimate that approximately 72% of the calories consumed today come from foods that were not part of our ancestral diets and are not compatible with our metabolism. Additionally, multiple nutrient-independent factors, e.g., cost, accessibility, behaviours, culture, education, work commitments, knowledge and societal set-up, influence our food choices and eating patterns. Much research has been focused on 'what to eat' or 'how much to eat' to reduce the obesity burden, but increasingly evidence indicates that 'when to eat' is fundamental to human metabolism. Aligning feeding patterns to the 24-h circadian clock that regulates a wide range of physiological and behavioural processes has multiple health-promoting effects with anti-obesity being a major part. This article explores the current understanding of the interactions between the body clocks, bioactive dietary components and the less appreciated role of meal timings in energy homeostasis and obesity.
Collapse
|
12
|
Effect of Melatonin in Broccoli Postharvest and Possible Melatonin Ingestion Level. PLANTS 2022; 11:plants11152000. [PMID: 35956477 PMCID: PMC9370688 DOI: 10.3390/plants11152000] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/28/2023]
Abstract
The post-harvest stage of broccoli production requires cold storage to obtain enough days of shelf life. It has been proved that melatonin is useful as a post-harvest agent in fruits and vegetables, including broccoli. In this study, the broccoli heads treated with melatonin have a longer shelf life than the control samples, which was reflected in parameters such as fresh weight, hue angle (expresses color quality), and chlorophyll and carotenoid contents. Treatments with 100 μM melatonin for 15 or 30 min seem to be the most appropriate, extending the broccoli’s shelf life to almost 42 days, when it is normally around 4 weeks. In addition, a study on the possible impact that melatonin treatments in broccoli could have on melatonin intake in humans is presented. The levels of superficial melatonin, called washing or residual melatonin, are measured, showing the possible incidence in estimated blood melatonin levels. Our results suggest that post-harvest treatments with melatonin do not have to be a handicap from a nutritional point of view, but more research is needed.
Collapse
|
13
|
Medoro C, Cianciabella M, Magli M, Daniele GM, Lippi N, Gatti E, Volpe R, Longo V, Nazzaro F, Mattoni S, Tenaglia F, Predieri S. Food Involvement, Food Choices, and Bioactive Compounds Consumption Correlation during COVID-19 Pandemic: How Food Engagement Influences Consumers' Food Habits. Nutrients 2022; 14:1490. [PMID: 35406102 PMCID: PMC9003202 DOI: 10.3390/nu14071490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/13/2022] Open
Abstract
The containment measures due to the COVID-19 pandemic affected food-related activities, influencing dietary behavior, food habits, and dietary choices. This study aimed to compare the relationship between food involvement and dietary choices before and during the pandemic, investigating the role played by food in dietary habits. Responses given by 2773 Italian consumers to an online survey were studied through the Food Involvement Scale (FIS) and correlated to eating habits. FIS scores were then used to explain the importance given to food in circumstances related to well-being, health, and protection against COVID-19 and used to study the relationship between FIS and bioactive compound knowledge, use, and efficacy against COVID-19. The consumers more involved in food issues recognized the importance of food in circumstances related to well-being, health, and protection against COVID-19 and improved their diet during the pandemic. Moreover, consumers who gave more importance to food also revealed higher attention to the use of healthy substances, such as bioactive compounds, considering them effective against COVID-19. These results showed that food experiencing and involvement could be important elements to promote healthy dietary habits that are essential to maintain physical and mental health during emergency periods such as the COVID-19 pandemic.
Collapse
Affiliation(s)
- Chiara Medoro
- Institute for BioEconomy, National Research Council (CNR), Via Piero Gobetti 101, 40129 Bologna, Italy; (C.M.); (M.M.); (G.M.D.); (N.L.); (E.G.); (S.P.)
| | - Marta Cianciabella
- Institute for BioEconomy, National Research Council (CNR), Via Piero Gobetti 101, 40129 Bologna, Italy; (C.M.); (M.M.); (G.M.D.); (N.L.); (E.G.); (S.P.)
| | - Massimiliano Magli
- Institute for BioEconomy, National Research Council (CNR), Via Piero Gobetti 101, 40129 Bologna, Italy; (C.M.); (M.M.); (G.M.D.); (N.L.); (E.G.); (S.P.)
| | - Giulia Maria Daniele
- Institute for BioEconomy, National Research Council (CNR), Via Piero Gobetti 101, 40129 Bologna, Italy; (C.M.); (M.M.); (G.M.D.); (N.L.); (E.G.); (S.P.)
| | - Nico Lippi
- Institute for BioEconomy, National Research Council (CNR), Via Piero Gobetti 101, 40129 Bologna, Italy; (C.M.); (M.M.); (G.M.D.); (N.L.); (E.G.); (S.P.)
| | - Edoardo Gatti
- Institute for BioEconomy, National Research Council (CNR), Via Piero Gobetti 101, 40129 Bologna, Italy; (C.M.); (M.M.); (G.M.D.); (N.L.); (E.G.); (S.P.)
| | - Roberto Volpe
- Health and Safety Unit (SPP), National Research Council (CNR), Piazzale Aldo Moro, 7, 00185 Roma, Italy;
| | - Vincenzo Longo
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council, 56124 Pisa, Italy;
| | - Filomena Nazzaro
- Institute of Food Sciences, CNR-ISA, Via Roma 64, 83100 Avellino, Italy;
| | - Silvia Mattoni
- Public Relations Unit, National Research Council (CNR), Piazzale Aldo Moro, 7, 00185 Roma, Italy;
| | - Federica Tenaglia
- Department of Biology, Agriculture and Food Sciences-DiSBA, National Research Council (CNR), Piazzale Aldo Moro, 7, 00185 Roma, Italy;
| | - Stefano Predieri
- Institute for BioEconomy, National Research Council (CNR), Via Piero Gobetti 101, 40129 Bologna, Italy; (C.M.); (M.M.); (G.M.D.); (N.L.); (E.G.); (S.P.)
| |
Collapse
|
14
|
Wang R, Pan J, Han J, Gong M, Liu L, Zhang Y, Liu Y, Wang D, Tang Q, Wu N, Wang L, Yan J, Li H, Yuan Y. Melatonin Attenuates Dasatinib-Aggravated Hypoxic Pulmonary Hypertension via Inhibiting Pulmonary Vascular Remodeling. Front Cardiovasc Med 2022; 9:790921. [PMID: 35402542 PMCID: PMC8987569 DOI: 10.3389/fcvm.2022.790921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Dasatinib treatment is approved as first-line therapy for chronic myeloid leukemia. However, pulmonary hypertension (PH) is a highly morbid and often fatal side-effect of dasatinib, characterized by progressive pulmonary vascular remodeling. Melatonin exerts strong antioxidant capacity against the progression of cardiovascular system diseases. The present work aimed to investigate the effect of melatonin on dasatinib-aggravated hypoxic PH and explore its possible mechanisms. Dasatinib-aggravated rat experimental model of hypoxic PH was established by utilizing dasatinib under hypoxia. The results indicated that melatonin could attenuate dasatinib-aggravated pulmonary pressure and vascular remodeling in rats under hypoxia. Additionally, melatonin attenuated the activity of XO, the content of MDA, the expression of NOX4, and elevated the activity of CAT, GPx, and SOD, the expression of SOD2, which were caused by dasatinib under hypoxia. In vitro, dasatinib led to decreased LDH activity and production of NO in human pulmonary microvascular endothelial cells (HPMECs), moreover increased generation of ROS, and expression of NOX4 both in HPMECs and primary rat pulmonary arterial smooth muscle cells (PASMCs) under hypoxia. Dasatinib up-regulated the expression of cleaved caspase-3 and the ratio of apoptotic cells in HPMECs, and also elevated the percentage of S phase and the expression of Cyclin D1 in primary PASMCs under hypoxia. Melatonin ameliorated dasatinib-aggravated oxidative damage and apoptosis in HPMECs, meanwhile reduced oxidative stress level, proliferation, and repressed the stability of HIF1-α protein in PASMCs under hypoxia. In conclusion, melatonin significantly attenuates dasatinib-aggravated hypoxic PH by inhibiting pulmonary vascular remodeling in rats. The possible mechanisms involved protecting endothelial cells and inhibiting abnormal proliferation of smooth muscle cells. Our findings may suggest that melatonin has potential clinical value as a therapeutic approach to alleviate dasatinib-aggravated hypoxic PH.
Collapse
Affiliation(s)
- Rui Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Second Hospital of Dalian Medical University, Dalian, China
| | - Jinjin Pan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinzhen Han
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Miaomiao Gong
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Liang Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yunlong Zhang
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ying Liu
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Dingyou Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Qing Tang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Na Wu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Lin Wang
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinsong Yan
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Second Hospital of Dalian Medical University, Dalian, China
- Jinsong Yan,
| | - Hua Li
- College of Pharmacy, Dalian Medical University, Dalian, China
- Hua Li,
| | - Yuhui Yuan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- *Correspondence: Yuhui Yuan,
| |
Collapse
|
15
|
Pereira GA, Gomes Domingos AL, Aguiar ASD. Relationship between food consumption and improvements in circulating melatonin in humans: an integrative review. Crit Rev Food Sci Nutr 2022; 62:670-678. [DOI: 10.1080/10408398.2020.1825924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Gabriela Amorim Pereira
- Faculty of Medicine, Department of Collective Health, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | | |
Collapse
|
16
|
Sainz-Urruela C, Vera-López S, San Andrés MP, Díez-Pascual AM. Graphene-Based Sensors for the Detection of Bioactive Compounds: A Review. Int J Mol Sci 2021; 22:3316. [PMID: 33804997 PMCID: PMC8037795 DOI: 10.3390/ijms22073316] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Over the last years, different nanomaterials have been investigated to design highly selective and sensitive sensors, reaching nano/picomolar concentrations of biomolecules, which is crucial for medical sciences and the healthcare industry in order to assess physiological and metabolic parameters. The discovery of graphene (G) has unexpectedly impulsed research on developing cost-effective electrode materials owed to its unique physical and chemical properties, including high specific surface area, elevated carrier mobility, exceptional electrical and thermal conductivity, strong stiffness and strength combined with flexibility and optical transparency. G and its derivatives, including graphene oxide (GO) and reduced graphene oxide (rGO), are becoming an important class of nanomaterials in the area of optical and electrochemical sensors. The presence of oxygenated functional groups makes GO nanosheets amphiphilic, facilitating chemical functionalization. G-based nanomaterials can be easily combined with different types of inorganic nanoparticles, including metals and metal oxides, quantum dots, organic polymers, and biomolecules, to yield a wide range of nanocomposites with enhanced sensitivity for sensor applications. This review provides an overview of recent research on G-based nanocomposites for the detection of bioactive compounds, providing insights on the unique advantages offered by G and its derivatives. Their synthesis process, functionalization routes, and main properties are summarized, and the main challenges are also discussed. The antioxidants selected for this review are melatonin, gallic acid, tannic acid, resveratrol, oleuropein, hydroxytyrosol, tocopherol, ascorbic acid, and curcumin. They were chosen owed to their beneficial properties for human health, including antibiotic, antiviral, cardiovascular protector, anticancer, anti-inflammatory, cytoprotective, neuroprotective, antiageing, antidegenerative, and antiallergic capacity. The sensitivity and selectivity of G-based electrochemical and fluorescent sensors are also examined. Finally, the future outlook for the development of G-based sensors for this type of biocompounds is outlined.
Collapse
Affiliation(s)
- Carlos Sainz-Urruela
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain); (C.S.-U.); (S.V.-L.); (M.P.S.)
| | - Soledad Vera-López
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain); (C.S.-U.); (S.V.-L.); (M.P.S.)
- Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río (IQAR), Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain)
| | - María Paz San Andrés
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain); (C.S.-U.); (S.V.-L.); (M.P.S.)
- Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río (IQAR), Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain)
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain); (C.S.-U.); (S.V.-L.); (M.P.S.)
- Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río (IQAR), Ctra. Madrid‐Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, España (Spain)
| |
Collapse
|
17
|
Yu S, Zhu X, Yang H, Yu L, Zhang Y. A simple new method for aged seed utilization based on melatonin-mediated germination and antioxidant nutrient production. Sci Rep 2021; 11:5937. [PMID: 33723383 PMCID: PMC7971019 DOI: 10.1038/s41598-021-85541-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/26/2021] [Indexed: 11/15/2022] Open
Abstract
Seed deterioration, coupled with a decrease in nutrients, is unavoidable following long-term storage, and these seeds are therefore used as livestock fodder. Here, we developed a simple, rapid and efficient method of producing high amounts of antioxidants from deteriorated seeds via melatonin-induced germination. Legume seeds were subjected to high humidity at 55 °C for 12-36 h to obtain aged seeds with a 40% germination rate and severely reduced antioxidant nutrition (total phenolics content, ferric reducing power and 1,1-diphenyl-2-picryhydrazyl (DPPH) radical scavenging capacity). Aged seeds were then treated with 0.1 mM melatonin, resulting in the production of sprouts with a higher total phenolics content (fivefold), greater ferric reducing power (sevenfold) and greater DPPH radical scavenging capacity (twofold) compared to the aged seeds. These findings suggest that melatonin treatment efficiently converted aged seed reserve residues into antioxidant nutrients, providing an alternative use for deteriorated seeds in food production.
Collapse
Affiliation(s)
- Song Yu
- Heilongjiang Higher Educational Key Laboratory for Cold-Regional Crop Cultivation and Germplasm Improvement, Department of Agronomy, Heilongjiang Bayi Agricultural University, No. 2, Xinyang Road, High-Tech Development Zone of Daqing, Daqing, 163319, China
| | - Xuetian Zhu
- Heilongjiang Higher Educational Key Laboratory for Cold-Regional Crop Cultivation and Germplasm Improvement, Department of Agronomy, Heilongjiang Bayi Agricultural University, No. 2, Xinyang Road, High-Tech Development Zone of Daqing, Daqing, 163319, China
| | - Helin Yang
- Heilongjiang Higher Educational Key Laboratory for Cold-Regional Crop Cultivation and Germplasm Improvement, Department of Agronomy, Heilongjiang Bayi Agricultural University, No. 2, Xinyang Road, High-Tech Development Zone of Daqing, Daqing, 163319, China
| | - Lihe Yu
- Heilongjiang Higher Educational Key Laboratory for Cold-Regional Crop Cultivation and Germplasm Improvement, Department of Agronomy, Heilongjiang Bayi Agricultural University, No. 2, Xinyang Road, High-Tech Development Zone of Daqing, Daqing, 163319, China
| | - Yifei Zhang
- Heilongjiang Higher Educational Key Laboratory for Cold-Regional Crop Cultivation and Germplasm Improvement, Department of Agronomy, Heilongjiang Bayi Agricultural University, No. 2, Xinyang Road, High-Tech Development Zone of Daqing, Daqing, 163319, China.
| |
Collapse
|
18
|
Boutin JA, Jockers R. Melatonin controversies, an update. J Pineal Res 2021; 70:e12702. [PMID: 33108677 DOI: 10.1111/jpi.12702] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
Melatonin was discovered more than 60 years ago. Since then, several seminal discoveries have allowed us to define its function as a neuroendocrine hormone and its molecular targets in mammals and many other species. However, many fundamental issues have not yet been solved such as the subcellular localization of melatonin synthesis and the full spectrum of its molecular targets. In addition, a considerable number of controversies persist in the field, mainly concerning how many functions melatonin has. Altogether, this illustrates how "immature" the field still is. The intention of this opinion article is to note the controversies and limitations in the field, to initiate a discussion and to make proposals/guidelines to overcome them and move the field forward.
Collapse
Affiliation(s)
- Jean A Boutin
- Institut de Recherches Internationales SERVIER, Suresnes Cedex, France
| | - Ralf Jockers
- INSERM, CNRS, Institut Cochin, Université de Paris, Paris, France
| |
Collapse
|
19
|
Wang SY, Shi XC, Wang R, Wang HL, Liu F, Laborda P. Melatonin in fruit production and postharvest preservation: A review. Food Chem 2020; 320:126642. [DOI: 10.1016/j.foodchem.2020.126642] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
|
20
|
Effects of melatonin on cardiovascular risk factors and metabolic syndrome: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:521-536. [DOI: 10.1007/s00210-020-01822-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
|
21
|
Neuroactive compounds in foods: Occurrence, mechanism and potential health effects. Food Res Int 2019; 128:108744. [PMID: 31955786 DOI: 10.1016/j.foodres.2019.108744] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023]
Abstract
Neuroactive compounds are synthesized by certain plants and microorganisms by undertaking different tasks, especially as a stress response. Most common neuroactive compounds in foods are gamma-aminobutyric acid (GABA), serotonin, melatonin, kynurenine, kynurenic acid, dopamine, norepinephrine, histamine, tryptamine, tyramine and β-phenylethylamine. Fermented foods contain some of these compounds, which can affect human health and mood. Moreover, food processing such as roasting and malting alter amount and profile of neuroactive compounds in foods. In addition to plant-origin and microbially-formed neuroactive compounds in foods, these substances are also formed by gut microbiota, which is the most attractive subject to assess the interaction between gut microbiota and mental health. The discovery of microbiota-gut-brain axis calls for the investigation of the effects of diet on the formation of neuroactive compounds in the gut. Furthermore, probiotics and prebiotics are indispensable elements for the understanding of the food-mood relationship. The focus of this comprehensive review is to investigate the neuroactive compounds found naturally in foods or formed during fermentation. Their formation pathways in humans, plants and microorganisms, potential health effects, effects of diet on the formation of microbial metabolites including neuroactive compounds in the gut are discussed throughout this review. Furthermore, the importance of gut-brain axis, probiotics and prebiotics are discussed.
Collapse
|
22
|
Salehi B, Sharopov F, Fokou PVT, Kobylinska A, Jonge LD, Tadio K, Sharifi-Rad J, Posmyk MM, Martorell M, Martins N, Iriti M. Melatonin in Medicinal and Food Plants: Occurrence, Bioavailability, and Health Potential for Humans. Cells 2019; 8:cells8070681. [PMID: 31284489 PMCID: PMC6678868 DOI: 10.3390/cells8070681] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Melatonin is a widespread molecule among living organisms involved in multiple biological, hormonal, and physiological processes at cellular, tissue, and organic levels. It is well-known for its ability to cross the blood–brain barrier, and renowned antioxidant effects, acting as a free radical scavenger, up-regulating antioxidant enzymes, reducing mitochondrial electron leakage, and interfering with proinflammatory signaling pathways. Detected in various medicinal and food plants, its concentration is widely variable. Plant generative organs (e.g., flowers, fruits), and especially seeds, have been proposed as having the highest melatonin concentrations, markedly higher than those found in vertebrate tissues. In addition, seeds are also rich in other substances (lipids, sugars, and proteins), constituting the energetic reserve for a potentially growing seedling and beneficial for the human diet. Thus, given that dietary melatonin is absorbed in the gastrointestinal tract and transported into the bloodstream, the ingestion of medicinal and plant foods by mammals as a source of melatonin may be conceived as a key step in serum melatonin modulation and, consequently, health promotion.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, 73400 Dushanbe, Tajikistan
| | | | - Agnieszka Kobylinska
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Lilian de Jonge
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
| | - Kathryn Tadio
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | - Malgorzata M Posmyk
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile
| | - Natália Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, 20133 Milan, Italy.
| |
Collapse
|
23
|
Nie Q, Chen H, Hu J, Fan S, Nie S. Dietary compounds and traditional Chinese medicine ameliorate type 2 diabetes by modulating gut microbiota. Crit Rev Food Sci Nutr 2018; 59:848-863. [PMID: 30569745 DOI: 10.1080/10408398.2018.1536646] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) and its complications are major public health concerns which strongly influence the quality of humans' life. Modification of gut microbiota has been widely used for the management of diabetes. In this review, the relationship between diabetes and gut microbiota, as well as the effects of different dietary components and traditional Chinese medicine (TCM) on gut microflora are summarized. Dietary compounds and TCM possessing bioactive components (fiber and phytochemicals) first change the composition of gut microbiota (inhibiting pathogens and promoting the beneficial bacteria growth) and then influence the production of their metabolites, which would further modify the intestinal environment through inhibiting the production of detrimental compounds (such as lipopolysaccharide, hydrogen sulfide, indol, etc.). Importantly, metabolites (short chain fatty acids and other bioactive components) fermented/degraded by gut microbiota can target multiple pathways in intestine, liver, pancreas, etc., resulting in the improvement of gut health, glycemic control, lipids profile, insulin resistance and inflammation. Furthermore, understanding the interaction between different dietary components and gut microbiota, as well as underlying mechanisms would help design different diet formula for the management of diabetes. Further researches could focus on the combination of different dietary components for preventing and treating diabetes, based on the principle of "multiple components against multiple targets" from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Qixing Nie
- a State Key Laboratory of Food Science and Technology , China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University , Nanchang , China
| | - Haihong Chen
- a State Key Laboratory of Food Science and Technology , China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University , Nanchang , China
| | - Jielun Hu
- a State Key Laboratory of Food Science and Technology , China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University , Nanchang , China
| | - Songtao Fan
- a State Key Laboratory of Food Science and Technology , China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University , Nanchang , China
| | - Shaoping Nie
- a State Key Laboratory of Food Science and Technology , China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University , Nanchang , China
| |
Collapse
|
24
|
Bonomini F, Borsani E, Favero G, Rodella LF, Rezzani R. Dietary Melatonin Supplementation Could Be a Promising Preventing/Therapeutic Approach for a Variety of Liver Diseases. Nutrients 2018; 10:nu10091135. [PMID: 30134592 PMCID: PMC6164189 DOI: 10.3390/nu10091135] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023] Open
Abstract
In the therapeutic strategies, the role of diet is a well-established factor that can also have an important role in liver diseases. Melatonin, identified in animals, has many antioxidant properties and it was after discovered also in plants, named phytomelatonin. These substances have a positive effect during aging and in pathological conditions too. In particular, it is important to underline that the amount of melatonin produced by pineal gland in human decreases during lifetime and its reduction in blood could be related to pathological conditions in which mitochondria and oxidative stress play a pivotal role. Moreover, it has been indicated that melatonin/phytomelatonin containing foods may provide dietary melatonin, so their ingestion through balanced diets could be sufficient to confer health benefits. In this review, the classification of liver diseases and an overview of the most important aspects of melatonin/phytomelatonin, concerning the differences among their synthesis, their presence in foods and their role in health and diseases, are summarized. The findings suggest that melatonin/phytomelatonin supplementation with diet should be considered important in preventing different disease settings, in particular in liver. Currently, more studies are needed to strengthen the potential beneficial effects of melatonin/phytomelatonin in liver diseases and to better clarify the molecular mechanisms of action.
Collapse
Affiliation(s)
- Francesca Bonomini
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, 25123 Brescia, Italy.
| | - Elisa Borsani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, 25123 Brescia, Italy.
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Luigi F Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, 25123 Brescia, Italy.
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|