1
|
Zhang Y, Wang C, Chao C, Yu J, Yang Y, Wang S. Effect of debranching on the formation and in vitro digestibility of high amylose maize starch-C18 unsaturated fatty acid complexes. Carbohydr Polym 2025; 357:123445. [PMID: 40158982 DOI: 10.1016/j.carbpol.2025.123445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
There is a big challenge in the efficient preparation of starch-unsaturated fatty acid (FA) complexes due to the steric hindrance of unsaturated FAs. This study aimed to understand the effects of debranching of high-amylose maize starch (HAMS) on the formation, structure and in vitro enzymic digestibility of complexes prepared with C18 unsaturated FAs. Debranching treatment of HAMS generated linear glucan chains and enhanced the encapsulation efficiency and loading capacity of FAs, particularly for the treatment of 12 h. Meanwhile, debranching treatment, especially for 12 h, greatly enhanced the long- and short-range ordered structure as well as the thermal stability of complexes, and decreased the in vitro enzymic digestibility. Molecular dynamics simulations showed that the van der Waals forces between amylose (AM) and stearic acid (SA) was stronger than those between AM and three unsaturated FAs, which may account for the higher degree of crystallite perfection of starch-SA complexes. Correlation analyses showed that the degree of crystallite perfection of the complexes was the main determinant for the rate and extent of complex digestion. Our study shows clearly that a certain degree of debranching can significantly promote the formation of starch-unsaturated FA complexes with higher degree of structural order and lower enzymic digestibility, which may be of interest for the efficient preparation of starch-unsaturated FA complexes to deliver health benefits.
Collapse
Affiliation(s)
- Yiming Zhang
- School of Food Science and Engineering, Tianjin University of Science & Technology, 300457, China
| | - Cuiping Wang
- School of Food Science and Engineering, Tianjin University of Science & Technology, 300457, China
| | - Chen Chao
- School of Food Science and Engineering, Tianjin University of Science & Technology, 300457, China
| | - Jinglin Yu
- School of Food Science and Engineering, Tianjin University of Science & Technology, 300457, China
| | - Yuedong Yang
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China.
| | - Shujun Wang
- School of Food Science and Engineering, Tianjin University of Science & Technology, 300457, China; Food Laboratory of Zhongyuan, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Luo D, Wang W, Jin M, Zhang X, Fan J, Yang Y, Zhai C, Rao H, Xue W. Mechanism of polyphenol-pea starch complexes on reducing fat accumulation in Caenorhabditis elegans. Food Res Int 2025; 209:116308. [PMID: 40253205 DOI: 10.1016/j.foodres.2025.116308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 04/21/2025]
Abstract
Obesity is characterized by lipid metabolism disorders and excessive fat accumulation, imposing a significant burden on individuals and society. Polyphenol-pea starch (PS) complexes have shown considerable potential in alleviating fat accumulation, yet the mechanisms underlying these effects remain unclear. This study investigated the effects and underlying mechanisms of gallic acid-PS (GAL-PS), ferulic acid-PS (FER-PS), quercetin-PS (QUE-PS), and tannic acid-PS (TAN-PS) complexes at a dosage of 1 mg/mL in reducing fat accumulation in Caenorhabditis elegans. The results revealed that GAL-PS, FER-PS, QUE-PS, and TAN-PS complexes significantly reduced triglyceride content in high-fat C. elegans by 38.61 %, 10.81 %, 18.60 %, and 25.78 %, respectively. Additionally, these polyphenol-PS complexes reduced both the size and number of lipid droplets in ZXW618, which are mutant expressing the lipid droplet membrane protein dehydrogenase-3 linked to GFP, and increased the proportions of unsaturated fatty acids and antioxidant activities in high-fat worms. Mechanistically, polyphenol-PS complexes regulated multiple lipid metabolism pathways via MDT-15/SBP-1 and MDT-15/NHR-49 signaling pathways, which include fat-5, fat-6, and fat-7, pod-2, fasn-1, and elo-2 genes modulated fat synthesis, acs-2, aak-2, tub-1, and skn-1 genes participated in fat consumption, and tub-1, and vit-2 regulated fat storage. Our findings provide a novel perspective and theoretical foundation for the reducing fat accumulation by polyphenol starch-based food biomacromolecules and their potential applications in starchy foods.
Collapse
Affiliation(s)
- Dan Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wei Wang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050041, PR China
| | - Manqin Jin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xuemei Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiaxing Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yingkang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Chen Zhai
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Huan Rao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, PR China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
3
|
Wang J, He L, Meng W, Chi C, He Y, Lin L, Liu K. Cooperative complexation of genistein and lauric acid with starch and its impact on starch digestibility. Int J Biol Macromol 2025; 310:143318. [PMID: 40273506 DOI: 10.1016/j.ijbiomac.2025.143318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 04/02/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Fatty acids and polyphenols could individually form V-type crystals with starch to reduce starch digestibility. However, the effects of their combined complexation on starch structures and digestibility remained insufficiently understood. This study investigated the structural and digestibility changes in starch when subjected to the combined complexation of lauric acid (LA) and genistein (Ge). Both Ge and LA could independently form V-type crystals with starch, resulting in an increase in resistant starch (RS) content from 6.74 % to 10.30 % ~ 16.45 %. Interestingly, the ternary systems-starches complexed with both LA and Ge-exhibited either higher or lower RS content compared to the binary systems-starches complexed with either LA or Ge alone, depending on the order of complexation of LA and Ge. Ge was found to disrupt the structures of starch-LA complexes, whereas LA tended to further interact with the starch-Ge complexes to increase the content of ordered structures. Importantly, starch that was simultaneously complexed with both Ge and LA displayed significantly higher crystallinity (15.60 % versus 8.65 % ~ 11.45 %) and RS content (21.20 % versus 10.30 % ~ 16.45 %) than other starches. Molecular dynamics simulations indicated that van der Waals interactions played a crucial role in governing the complexation behavior of starch with Ge and LA.
Collapse
Affiliation(s)
- Jie Wang
- Department of Endocrinology, Zhujiang Hospital/The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China; Experimental Education/Administration Center, National Demonstration Center for Experimental Education of Basic Medical Sciences, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liqin He
- Huaqiang Vocational Technical School, Shenzhen 518034, China
| | - Wenchu Meng
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Chengdeng Chi
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Yongjin He
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Li Lin
- Department of Animal Science, Fujian Vocational College of Agriculture, Fuqing 350119, China
| | - Kun Liu
- Department of Endocrinology, Zhujiang Hospital/The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China; Experimental Education/Administration Center, National Demonstration Center for Experimental Education of Basic Medical Sciences, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
4
|
Zhu H, Zhang M, Wang C, Yu J, Copeland L, Wang S. A Novel, Multifunctional Resistant Starch-Phenol Complex with Potential for Better Glycemic Control. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40263306 DOI: 10.1021/acs.jafc.5c02102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Resistant starch (RS) with added functional properties, for example, starch-phenol complex, has considerable promise for reducing the risks of diet-related diseases such as type 2 diabetes (T2D). In this study, a novel starch-phenol complex was prepared with amylose (AM) and 10-gingerol (10G) to study the potential beneficial effects on blood glucose control. The AM and 10G self-assembled into an AM-10G complex with V6- and V7-type crystallites. The rate of amylolysis of the AM-10G complex was much slower than that of the AM-lauric acid (LA) complex. During enzymic digestion of the AM-10G complex, the α-amylase activity was inhibited greatly and approached zero at 45 min. In separate experiments, 10G suppressed glucose transport rate by 60% across a Caco-2 cell monolayer and also downregulated the expression of mRNA for the two glucose transporter genes, GLUT2 and SGLT1. In vitro fecal fermentation analyses showed that AM-10G complex promoted the proliferation of Lachnospiraceae_NK4A136_group and Lachnospiraceae_UCG_004 associated with improved postprandial glycemia. The present study demonstrates that AM-10G complex has potential for glycemic control due to the inhibitory effects on the amylolytic process and glucose transporters involved in uptake of glucose into the bloodstream, as well as the modulation of gut microbiota associated with glycemic control.
Collapse
Affiliation(s)
- Huilan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Mingyan Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Cuiping Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Les Copeland
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
5
|
Cao M, Liu C, Zhou Z, Li W, Li J. Effect of Canna edulis starch addition on the properties of flour, rheology of dough and quality of semi-dry noodles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3474-3482. [PMID: 39835454 DOI: 10.1002/jsfa.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Canna edulis is a high-quality resistant starch raw material, especially for making flour products. This study aimed to investigate the effect of Canna edulis starch (CES) on the properties of flour, rheology of dough and quality of semi-dry noodles. The CES replaced part of the wheat flour in the semi-dry noodle formula. One control formula containing wheat flour only, and five formulations based on wheat flour containing 8CES, 16CES, 24CES, 32CES and 40CES were prepared. RESULTS The findings revealed that with the increase of CES, the peak viscosity and retrogradation value of the flour increased, and the melting enthalpy decreased. CES caused some bound water to migrate to a semi-bound water state, improving the rheological properties of the dough and enhancing the texture characteristics of the noodles. When the added amount of CES was 24%, the cooking loss rate was 1.687%, and the highest sensory score was 86 points. Simulation of starch in vitro digestion revealed that the hydrolysis rate of starch first increased and then decreased with the increase of CES addition, with the highest proportion of resistant starch content ranging from 44.27% to 79.66%. Compared with the control group, the expected glycemic index decreased after adding CES. CONCLUSION These results assist in realization of comprehensive utilization of Canna edulis resources for the production of noodles with desirable qualities. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meng Cao
- College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang, PR China
- Engineering and Technology Center for the Comprehensive Utilization of Characteristic Food Resources in Dabie Mountain, Xinyang, PR China
| | - Chang Liu
- College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang, PR China
- Engineering and Technology Center for the Comprehensive Utilization of Characteristic Food Resources in Dabie Mountain, Xinyang, PR China
| | - Zhou Zhou
- College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang, PR China
- Engineering and Technology Center for the Comprehensive Utilization of Characteristic Food Resources in Dabie Mountain, Xinyang, PR China
| | - Wenqia Li
- College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang, PR China
| | - Jianfang Li
- College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang, PR China
- Engineering and Technology Center for the Comprehensive Utilization of Characteristic Food Resources in Dabie Mountain, Xinyang, PR China
| |
Collapse
|
6
|
Zhou HB, Peng SH, Liu YM, Wang T, Weng XH, Liu G, Zhang JL. Structural changes of potato starch and activity inhibition of starch digestive enzymes by anthocyanin from lingonberry (Vaccinium uliginosum L.) retarded starch digestibility. Int J Biol Macromol 2024; 281:136673. [PMID: 39426763 DOI: 10.1016/j.ijbiomac.2024.136673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
The effects of anthocyanins on in vitro and in vivo digestibility of potato starch were evaluated in this study. Then the influence of anthocyanins on physicochemical property of potato starch and the activity of starch digestive enzymes (α-amylase and α-glucosidase) were also investigated to understand the mechanism of anthocyanins on starch digestibility. Results have shown that dietary anthocyanins could effectively inhibit the biological activities of α-amylase and α-glucosidase to delay the peak of postprandial blood glucose. Characterization of physicochemical properties of potato starch indicates a structural change due to the presence of anthocyanins, hindering its access to starch digestive enzymes. Among all anthocyanins, lingonberry anthocyanin significantly promoted the retrogradation of potato starch (7.153 % to 25.913 %) and exert promising inhibition on α-amylase and α-glucosidase. Lingonberry anthocyanins mainly interacted with potato starch through hydrogen bonds, which reduce the amount of amylose molecules leached from potato starch and loosen the three-dimensional (3D) network structure of starch gel. This study could provide theoretical evidence for utilization of anthocyanins in diabetic-management function food.
Collapse
Affiliation(s)
- H B Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - S H Peng
- Wuhan Polytechnic University, College of Food Science and Engineering, Wuhan, China
| | - Y M Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - T Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - X H Weng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - G Liu
- Wuhan Polytechnic University, College of Food Science and Engineering, Wuhan, China
| | - J L Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei 430070, China.
| |
Collapse
|
7
|
Dibakoane SR, Da Silva LS, Meiring B, Anyasi TA, Mlambo V, Wokadala OC. The multifactorial phenomenon of enzymatic hydrolysis resistance in unripe banana flour and its starch: A concise review. J Food Sci 2024; 89:5185-5204. [PMID: 39150760 DOI: 10.1111/1750-3841.17270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
Unripe banana flour starch possesses a high degree of resistance to enzymatic hydrolysis, a unique and desirable property that could be exploited in the development of functional food products to regulate blood sugar levels and promote digestive health. However, due to a multifactorial phenomenon in the banana flour matrix-from the molecular to the micro level-there is no consensus regarding the complex mechanisms behind the slow enzymatic hydrolysis of unripe banana flour starch. This work therefore explores factors that influence the enzymatic hydrolysis resistance of raw and modified banana flour and its starch including the proportion and distribution of the amorphous and crystalline phases of the starch granules; granule morphology; amylose-amylopectin ratio; as well as the presence of nonstarch components such as proteins, lipids, and phenolic compounds. Our findings revealed that the relative contributions of these factors to banana starch hydrolytic resistance are apparently dependent on the native or processed state of the starch as well as the cultivar type. The interrelatability of these factors in ensuring amylolytic resistance of unripe banana flour starch was further highlighted as another reason for the multifactorial phenomenon. Knowledge of these factors and their contributions to enzymatic hydrolysis resistance individually and interconnectedly will provide insights into enhanced ways of extraction, processing, and utilization of unripe banana flour and its starch.
Collapse
Affiliation(s)
- Siphosethu R Dibakoane
- School of Agricultural and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
- Agro-Processing and Postharvest Technologies Division, Agricultural Research Council - Tropical and Subtropical Crops, Nelspruit, South Africa
| | - Laura Suzanne Da Silva
- Department of Biotechnology and Food Technology, Tshwane University of Technology, Pretoria, South Africa
| | - Belinda Meiring
- Department of Biotechnology and Food Technology, Tshwane University of Technology, Pretoria, South Africa
| | - Tonna A Anyasi
- Agro-Processing and Postharvest Technologies Division, Agricultural Research Council - Tropical and Subtropical Crops, Nelspruit, South Africa
- Food and Markets Department, Natural Resources Institute, University of Greenwich, Chatham Maritime, UK
| | - Victor Mlambo
- School of Agricultural and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Obiro Cuthbert Wokadala
- School of Agricultural and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
| |
Collapse
|
8
|
Farooq MA, Yu J. Recent Advances in Physical Processing Techniques to Enhance the Resistant Starch Content in Foods: A Review. Foods 2024; 13:2770. [PMID: 39272535 PMCID: PMC11395633 DOI: 10.3390/foods13172770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
The physical modification of starch to produce resistant starch (RS) is a viable strategy for the glycemic index (GI) lowering of foods and functionality improvement in starchy food products. RS cannot be digested in the small intestine but can be fermented in the colon to produce short-chain fatty acids rather than being broken down by human digestive enzymes into glucose. This provides major health advantages, like better blood sugar regulation, weight control, and a lower chance of chronic illnesses. This article provides a concise review of the recent developments in physical starch modification techniques, including annealing, extrusion, high-pressure processing, radiation, and heat-moisture treatment. Specifically, the focus of this paper is on the alteration of the crystalline structure of starch caused by the heat-moisture treatment and annealing and its impact on the resistance of starch to enzymatic hydrolysis, as well as the granular structure and molecular arrangement of starch caused by extrusion and high-pressure processing, and the depolymerization and crosslinking that results from radiation. The impacts of these alterations on starch's textural qualities, stability, and shelf life are also examined. This review demonstrates how physically modified resistant starch can be used as a flexible food ingredient with both functional and health benefits. These methods are economically and ecologically sustainable since they successfully raise the RS content and improve its functional characteristics without the need for chemical reagents. The thorough analysis of these methods and how they affect the structural characteristics and health advantages of RS emphasizes the material's potential as an essential component in the creation of functional foods that satisfy contemporary dietary and health requirements.
Collapse
Affiliation(s)
- Muhammad Adil Farooq
- Institute of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan 64200, Pakistan
| | - Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
| |
Collapse
|
9
|
Zhu H, Yu J, Copeland L, Wang S. Simple Method for Preparing Starch Inclusion Complexes with Enhanced Amylolysis Resistance and Antioxidant Properties. Biomacromolecules 2024; 25:5281-5287. [PMID: 38967045 DOI: 10.1021/acs.biomac.4c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Slow-digesting starch with bioactive functionality has been attracting much interest with the increasing incidence of type-2 diabetes and other diet-related illnesses. The present study demonstrates a simple method for preparing a starch inclusion complex with reduced enzymic digestion and enhanced antioxidant activities using debranched pea starch (PS) and 10-gingerol (10G). Enzymically debranched starch complexed more 10G and formed more structurally ordered starch-10G complexes compared to PS that had not been debranched. Debranching for 6 h resulted in starch with better complexing ability for 10G than starches debranched for longer times. The debranched starch-10G complexes had higher antioxidant activities and a much slower in vitro enzymic digestion profile (rate and hydrolysis extent) than the 10G complex prepared with starch that was not debranched. Our study demonstrates that debranched pea starch-10G complexes with slow-digesting and antioxidant properties are likely to be of interest for developing ingredients for healthier food choices.
Collapse
Affiliation(s)
- Huilan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Les Copeland
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
10
|
Tan R, Tang Q, Xia B, Fu C, Wang L. Organic acid treatments on citrus insoluble dietary fibers and the corresponding effects on starch in vitro digestion. Int J Biol Macromol 2024:134082. [PMID: 39084968 DOI: 10.1016/j.ijbiomac.2024.134082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024]
Abstract
Three environmentally friendly organic acids, acetic acid, citric acid and oxalic acid, were used to treat citrus insoluble dietary fiber (CIDF) in present study, aiming to explore the changes in structural properties as well as their inhibitory effects on starch digestion. The results showed that organic acid treatment significantly reduced the particle size of all three CIDFs, with rougher and folded surfaces, improved crystallinity and thermal stability. During in vitro digestion, it was found that organic acid treatment could increase the particle size and viscosity of digestion, and also effectively enhance the inhibitory ability of α-glucosidase activity, resulting in a further blockage of starch digestion. The starch digestion in oxalic acid-treated group (with 3 wt% addition) was significantly reduced by 18.72 % compared to blank group and 9.05 % compared to untreated. These findings provide evidence of the potential of organic acid-treated insoluble dietary fiber as a functional food.
Collapse
Affiliation(s)
- Ruilin Tan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qingmiao Tang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bin Xia
- Wuhan Sanji Food Technology Co., Ltd., Wuhan, Hubei 430070, China
| | - Caixia Fu
- HuBei TuLaoHan Ecological Agriculture Technology Co., Ltd., Yichang, Hubei 443000, China
| | - Lufeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Wuhan Sanji Food Technology Co., Ltd., Wuhan, Hubei 430070, China.
| |
Collapse
|
11
|
Tiwari V, Sharma S, Tiwari A, Sheoran B, Kaur S, Sharma A, Yadav M, Bhatnagar A, Garg M. Effect of dietary anthocyanins on biomarkers of type 2 diabetes and related obesity: A systematic review and meta-analysis. Crit Rev Food Sci Nutr 2024; 64:7517-7534. [PMID: 36908207 DOI: 10.1080/10408398.2023.2186121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Anthocyanins have been reported for the protective effects against type 2 diabetes and related obesity. This meta-analysis examined the benefits of anthocyanins on type 2 diabetes and obesity biomarkers in animals and humans. The study included 21 clinical trials and 27 pre-clinical studies. A systematic search was conducted using the following inclusion criteria: in vivo rodent studies; human randomized clinical trials, both aimed at assessing the fasting blood glucose (FBG), HbA1c, total cholesterol, triglycerides, high-density lipoprotein and low-density lipoprotein; and study duration of at least two weeks. Out of the 201 examined publications, 48 were shortlisted after implementation of the selection criteria. Results of clinical trials demonstrated that consumption of anthocyanin-rich food significantly reduced the FBG (p < 0.0001), HbA1c (p = 0.02), TC (p = 0.010), TG (p = 0.003), LDL (p = 0.05) and increases the HDL (p = 0.03) levels. Similarly, pre-clinical studies demonstrated the amelioration of the HbA1c (p = 0.02), FBG, TC, TG, and LDL (p < 0.00001), with non-significant changes in the HDL (p = 0.11). Sub-group analysis indicated dose-dependent effect. This compilation confirms that consuming anthocyanin-rich foods positively correlates with the reduction in the blood glucose and lipid levels in diabetic and obese subjects.
Collapse
Affiliation(s)
- Vandita Tiwari
- Department of Agricultural Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Saloni Sharma
- Department of Agricultural Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Apoorv Tiwari
- Department of Agricultural Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Bhawna Sheoran
- Department of Agricultural Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Regional Centre for Biotechnology, Faridabad, Haryana (NCR), Delhi, India
| | - Satveer Kaur
- Department of Agricultural Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Anjali Sharma
- Department of Agricultural Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Mona Yadav
- Department of Agricultural Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Regional Centre for Biotechnology, Faridabad, Haryana (NCR), Delhi, India
| | | | - Monika Garg
- Department of Agricultural Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
12
|
Shang W, Li X, Du J, Guo Y, Fu D, He Y, Pan F, Zhang W, Zhou Z. Study on multiscale structures and digestibility of cassava starch and medium-chain fatty acids complexes using molecular simulation techniques. Food Res Int 2024; 187:114373. [PMID: 38763649 DOI: 10.1016/j.foodres.2024.114373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Effect of complexation of three medium-chain fatty acids (octanoic, decylic and lauric acid, OA, DA and LA, respectively) on structural characteristics, physicochemical properties and digestion behaviors of cassava starch (CS) was investigated. Current study indicated that LA was more easily to combine with CS (complex index 88.9%), followed by DA (80.9%), which was also consistent with their corresponding complexed lipids content. Following the investigation of morphology, short-range ordered structure, helical structure, crystalline/amorphous region and fractal dimension of the various complexes, all cassava starch-fatty acids complexes (CS-FAs) were characterized with a flaked morphology rather than a round morphology in native starch (control CS). X-ray diffraction demonstrated that all CS-FAs had a V-type crystalline structure, and nuclear magnetic resonance spectroscopy confirmed that the complexes made from different fatty acids displayed similar V6 or V7 type polymorphs. Interestingly, small-angle X-ray scattering analysis revealed that α value became greater following increased carbon chain length of fatty acids, indicating the formation of a more ordered fractal structure in the aggregates. Changes in rheological parameters G' and G'' indicated that starch complexed with fatty acids was more likely to form a gel network, but difference among three CS-FAs complexes was significant, which might be contributed to their corresponding hydrophobicity and hydrophilicity raised from individual fatty acids. Importantly, digestion indicated that CS-LA complexes had the lowest hydrolysis degree, followed by the greatest RS content, indicating the importance of chain length of fatty acids for manipulating the fine structure and functionality of the complexes.
Collapse
Affiliation(s)
- Wenting Shang
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou, Hainan, 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, Hainan, 570228, China
| | - Xin Li
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou, Hainan, 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, Hainan, 570228, China
| | - Jinyu Du
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou, Hainan, 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, Hainan, 570228, China
| | - Yuxin Guo
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou, Hainan, 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, Hainan, 570228, China
| | - Dekun Fu
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou, Hainan, 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, Hainan, 570228, China
| | - Yanfu He
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou, Hainan, 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, Hainan, 570228, China
| | - Fei Pan
- Chinese Academy of Agricultural Sciences, Haidian, Beijing, 100080, China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou, Hainan, 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, Hainan, 570228, China.
| | - Zhongkai Zhou
- College of Food Science, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
13
|
Jiang J, Han W, Zhao S, Liu Q, Lin Q, Xiao H, Fu X, Li J, Ren K, Lu H. Comparison of structural and in vitro digestive properties of autoclave-microwave treated maize starch under different retrogradation temperature conditions. Int J Biol Macromol 2024; 271:132410. [PMID: 38821799 DOI: 10.1016/j.ijbiomac.2024.132410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
Retrogradation is a critical step in the physical production of resistant starch. This study aimed to examine the effects of isothermal and temperature-cycled retrogradation on the structural, physicochemical properties, and digestibility of resistant starch type-III (RS3) under various thermal conditions. To create RS3, normal maize starch (NM) and Hylon VII (HAM) were treated by autoclave-microwave and then retrograded at isothermal (4 °C) or various temperature conditions (4/10 °C, 4/20 °C, 4/30 °C, 4/40 °C, and 4/50 °C). We found that temperature-cycled retrogradation possessed greater potential than isothermal retrogradation for producing short-range ordering and crystalline structures of RS3. Also, retrograded starch prepared via temperature cycling exhibited higher double helix content, lower amorphous content, reduced swelling power, and less amylose leaching in water. Furthermore, the starch digestibility was affected by structural alterations, which were more significant in HAM-retrograded starch. While, HAM-4-40 (39.27 %) displayed the highest level of resistant starch (RS).
Collapse
Affiliation(s)
- Jiani Jiang
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wenfang Han
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Siming Zhao
- College of Food Science and Technology Huazhong Agricultural University, Wuhan 430070, China
| | - Qiongxiang Liu
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Huaxi Xiao
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiangjin Fu
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiangtao Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Kangzi Ren
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Huanghua Lu
- Hunan Province Grain and Material Research Design Institute, Changsha 410201, China
| |
Collapse
|
14
|
Yang M, Cai W, Li X, Deng Y, Li J, Wang X, Zhu L, Wang C, Li X. The Effect of Type 2 Resistant Starch and Indole-3-Propionic Acid on Ameliorating High-Fat-Diet-Induced Hepatic Steatosis and Gut Dysbiosis. Foods 2024; 13:1625. [PMID: 38890854 PMCID: PMC11172015 DOI: 10.3390/foods13111625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Owing to the interplay of genetic and environmental factors, obesity has emerged as a significant global public health concern. To gain enhanced control over obesity, we examined the effects of type 2 resistant starch (RS2) and its promoted microbial-derived metabolite, indole-3-propionic acid (IPA), on hepatic steatosis, antioxidant activity, and gut microbiota in obese mice. Neither RS2 nor low-dose IPA (20 mg kg-1) exhibited a reduction in body weight or improved glucose and lipid metabolism in post-obesity state mice continuously fed the high-fat diet (HFD). However, both interventions improved hepatic steatosis, with RS2 being more effective in all measured parameters, potentially due to changes in gut microbiota and metabolites not solely attributed to IPA. LC-MS/MS analysis revealed increased serum IPA levels in both RS2 and IPA groups, which positively correlated with Bifidobacterium and Clostridium. Moreover, RS2 exhibited a more significant restoration of gut dysbiosis by promoting the abundance of health-promoting bacteria including Faecalibaculum and Bifidobacterium. These findings suggest that the regulatory role of RS2 on tryptophan metabolism only partially explains its prebiotic activity. Future studies should consider increasing the dose of IPA and combining RS2 and IPA to explore their potential interventions in obesity.
Collapse
Affiliation(s)
- Min Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology and College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (M.Y.); (W.C.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.L.); (J.L.); (X.W.); (L.Z.)
| | - Wanhao Cai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology and College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (M.Y.); (W.C.)
| | - Xinxin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.L.); (J.L.); (X.W.); (L.Z.)
| | - Yixuan Deng
- The 2nd School of Medicine, Wenzhou Medical University, Chashan University Town, Wenzhou 325035, China;
| | - Jinjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.L.); (J.L.); (X.W.); (L.Z.)
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.L.); (J.L.); (X.W.); (L.Z.)
| | - Liying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.L.); (J.L.); (X.W.); (L.Z.)
| | - Chong Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology and College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (M.Y.); (W.C.)
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.L.); (J.L.); (X.W.); (L.Z.)
| |
Collapse
|
15
|
Zhang Y, Li L, Sun S, Cheng L, Gu Z, Hong Y. Structural characteristics, digestion properties, fermentation properties, and biological activities of butyrylated starch: A review. Carbohydr Polym 2024; 330:121825. [PMID: 38368086 DOI: 10.1016/j.carbpol.2024.121825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 02/19/2024]
Abstract
Butyrylated starch is produced by the esterification of hydroxyl groups in starch with butyryl groups, which improves the structural diversity of starch and expands its function and biological activity. The paper summarizes the structural properties and digestive properties, fermentation properties, and biological activities of butyrylated starch and describes the conformational relationships generated by the butyryl groups to reveal the underlying mechanisms. The butyryl groups replace the hydroxyl groups in starch and break the hydrogen bonds, which consequently changes the molecular, crystal, and granular structures of starch, while the starch structure also affects the distribution of the butyryl groups. Binding to the butyryl groups gives starch efficacy in resisting digestion, lowering the glycaemic index, releasing butyric acid in the colon, and regulating intestinal flora and metabolites. Relationships between starch structural parameters and butyric acid production and intestinal flora were also concluded to provide guidance for the rational design of butyrylated starch to improve efficacy. Moreover, based on its digestive and fermentation properties, butyrylated starch has exhibited good therapeutic efficacy for intestinal diseases, diabetes, polycystic ovary syndrome, and chronic restraint stress-induced abnormalities. This review provides a valuable reference for butyrylated starch advancement and utilization.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Lingjin Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Shenglin Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China.
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China.
| |
Collapse
|
16
|
Liu Q, Guan H, Guo Y, Wang D, Yang Y, Ji H, Jiao A, Jin Z. Structure and in vitro digestibility of amylose-lipid complexes formed by an extrusion-debranching-complexing strategy. Food Chem 2024; 437:137950. [PMID: 37952395 DOI: 10.1016/j.foodchem.2023.137950] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
The formation of amylose-lipid complexes, known as resistant starch type Ⅴ (RS5), is limited by the low content of amylose in natural starch, increasing the amylose content is an effective approach to improve the yield of RS5. In this paper, an extrusion-debranching-complexing strategy with two extrusions was proposed to increase the formation of amylose-lipid complexes. A combination of corn starch (CS), pullulanase (60 U/g, w/w), and lauric acid (LA) with different contents of 4 %, 6 % and 8 % (w/w) generated enzymatically debranched extruded corn starch-lauric acid (EECS-LA) complexes after the second extrusion. The EECS-LA complexes were ordered form II complexes, with a significantly improved short-range molecular order. The melting temperature was in the range of 105-145℃. The enthalpy change increased with the increase of LA content and the value was 9.42 J/g for EECS-8 %LA complexes; these complexes could reform after dissociation. Scanning electron microscopy examination of the EECS-LA complexes revealed an irregular lamellar structure. The RS content of EECS-LA complexes increased significantly, achieving a value of 38.34 % for EECS-8 %LA complexes. This extrusion-debranching-complexing strategy is effective for preparing RS5 and could be useful in industry for the continuous production of RS5.
Collapse
Affiliation(s)
- Qing Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212004, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Huanan Guan
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212004, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212004, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212004, China
| | - Yueyue Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
17
|
Liu J, Wang K, Zhao L, Li Y, Li Z, Li C. Investigation of supplementation with a combination of fermented bean dregs and wheat bran for improving the growth performance of the sow. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:295-309. [PMID: 38628686 PMCID: PMC11016735 DOI: 10.5187/jast.2023.e13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 04/19/2024]
Abstract
To investigate the effect of dietary supplementation with a fermented mixture of bean dregs and wheat bran (FBW) on sow performance. FBW was given to sows during late gestation and lactation; in total, 24 sows were randomly assigned to 4 groups (control diet; 3% FBW diet; 6% FBW diet; 9% FBW diet, n = 6). The weight ratio of bean dregs (wet) to wheat bran was 4:6. Sows were fed different diets from 85 d of gestation until weaning. The results showed that supplementation with FBW increased average daily feed intake (ADFI) during lactation (p < 0.05). FBW supplementation also increased litter weight and milk yield (p < 0.05). The contents of Escherichia coli in the feces of the treatment groups were significantly reduced by FBW supplementation (p < 0.01). FBW supplementation significantly improved the fecal morphology (p < 0.05), alleviating sows' constipation. In conclusion, FBW could increase the ADFI, improve lactation and piglet litter weight in sows and reduce the pathogenic bacterial content in sow feces and constipation.
Collapse
Affiliation(s)
- Junze Liu
- College of Animal Science and Technology,
Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Wang
- College of Animal Science and Technology,
Nanjing Agricultural University, Nanjing 210095, China
| | - Liangyu Zhao
- College of Animal Science and Technology,
Nanjing Agricultural University, Nanjing 210095, China
| | - Yansen Li
- College of Animal Science and Technology,
Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaojian Li
- College of Animal Science and Technology,
Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Li
- College of Animal Science and Technology,
Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
18
|
Chao C, Liang S, Zhang Z, Gidley MJ, Liu Y, Wang S. New Insight into the Effects of Endogenous Protein and Lipids on the Enzymatic Digestion of Starch in Sorghum Flour. Foods 2024; 13:663. [PMID: 38472778 DOI: 10.3390/foods13050663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/27/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The effects of endogenous lipids and protein in sorghum flour on starch digestion were studied following the depletion of lipids and/or protein and after the reconstitution of separated fractions. The removal of protein or lipids moderately increases the digestibility of starch in raw (uncooked) sorghum flour to values close to those for purified starch. Rapid Visco Analyzer data (as a model for the cooking process) show that cooked sorghum flours with lipids have a lower starch digestibility than those without lipids after RVA processing, due to the formation of starch-lipid complexes as evidenced by their higher final viscosity and larger enthalpy changes. Additionally, the formation of a starch-lipid-protein ternary complex was identified in cooked sorghum flour, rather than in a reconstituted ternary mixture, according to the unique cooling stage viscosity peak and a greater enthalpy of lipid complexes. After heating, the sorghum flour showed a lower digestibility than the depleted flours and the reconstituted flours. The results indicate that the natural organization of components in sorghum flour is an important factor in facilitating the interactions between starch, lipids, and protein during RVA processing and, in turn, reducing the starch digestion.
Collapse
Affiliation(s)
- Chen Chao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Song Liang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zheyuan Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Michael J Gidley
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ye Liu
- School of Food and Health, Beijing Technology and Business Technology, Beijing 100048, China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
19
|
Li F, Muhmood A, Akhter M, Gao X, Sun J, Du Z, Wei Y, Zhang T, Wei Y. Characterization, health benefits, and food applications of enzymatic digestion- resistant dextrin: A review. Int J Biol Macromol 2023; 253:126970. [PMID: 37730002 DOI: 10.1016/j.ijbiomac.2023.126970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/19/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Resistant dextrin or resistant maltodextrin (RD), a short-chain glucose polymer that is highly resistant to hydrolysis by human digestive enzymes, has shown broad developmental prospects in the food industry and has gained substantial attention owing to its lack of undesirable effects on the sensory features of food or the digestive system. However, comprehensive fundamental and application information on RD and how RD improves anti-diabetes and obesity have not yet been received. Therefore, the characterization, health benefits and application of RD in various fields are summarized and discussed in the current study. Typically, RD is prepared by the acid thermal method and possesses excellent physicochemical properties, including low viscosity, high solubility, storage stability, and low retro-gradation, which are correlated with its low molecular weight (Mw) and non-digestible glycosidic linkages. In contrast, RD prepared by the simultaneous debranching and crystallization method has low solubility and high crystallinity. The ingestion of RD can positively affect metabolic diseases (diabetes and obesity) in animals and humans by producing short-chain fatty acids (SCFAs), and facilitating the inflammatory response. Moreover, RD has been widely used in the beverage, dairy products, and dessert industries due to its nutritional value and textural properties without unacceptable quality loss. More studies are required to further explore RD application potential in the food industry and its role in the management of different chronic metabolic disorders.
Collapse
Affiliation(s)
- Fei Li
- College of Life Science, Qingdao University, Qingdao 266071, China; Shandong Luhua Group Co., Ltd., Laiyang 265200, China
| | - Atif Muhmood
- Department of Agroecology, Aarhus University, Denmark.
| | - Muhammad Akhter
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Xiang Gao
- College of Life Science, Qingdao University, Qingdao 266071, China; Shandong Huatao Food Co., Ltd., Weifang 262100, China.
| | - Jie Sun
- College of Life Science, Qingdao University, Qingdao 266071, China
| | - Zubo Du
- Shandong Luhua Group Co., Ltd., Laiyang 265200, China.
| | - Yuxi Wei
- College of Life Science, Qingdao University, Qingdao 266071, China.
| | - Ting Zhang
- Henan University of Technology, Grain College, Zhengzhou 450000, China
| | - Yunlu Wei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
20
|
Yin J, Cheng L, Hong Y, Li Z, Li C, Ban X, Zhu L, Gu Z. A Comprehensive Review of the Effects of Glycemic Carbohydrates on the Neurocognitive Functions Based on Gut Microenvironment Regulation and Glycemic Fluctuation Control. Nutrients 2023; 15:5080. [PMID: 38140339 PMCID: PMC10745758 DOI: 10.3390/nu15245080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Improper glycemic carbohydrates (GCs) consumption can be a potential risk factor for metabolic diseases such as obesity and diabetes, which may lead to cognitive impairment. Although several potential mechanisms have been studied, the biological relationship between carbohydrate consumption and neurocognitive impairment is still uncertain. In this review, the main effects and mechanisms of GCs' digestive characteristics on cognitive functions are comprehensively elucidated. Additionally, healthier carbohydrate selection, a reliable research model, and future directions are discussed. Individuals in their early and late lives and patients with metabolic diseases are highly susceptible to dietary-induced cognitive impairment. It is well known that gut function is closely related to dietary patterns. Unhealthy carbohydrate diet-induced gut microenvironment disorders negatively impact cognitive functions through the gut-brain axis. Moreover, severe glycemic fluctuations, due to rapidly digestible carbohydrate consumption or metabolic diseases, can impair neurocognitive functions by disrupting glucose metabolism, dysregulating calcium homeostasis, oxidative stress, inflammatory responses, and accumulating advanced glycation end products. Unstable glycemic status can lead to more severe neurological impairment than persistent hyperglycemia. Slow-digested or resistant carbohydrates might contribute to better neurocognitive functions due to stable glycemic response and healthier gut functions than fully gelatinized starch and nutritive sugars.
Collapse
Affiliation(s)
- Jian Yin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Ling Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
21
|
Sun S, Hong Y, Gu Z, Cheng L, Ban X, Li Z, Li C. Different starch varieties influence the complexing state and digestibility of the resulting starch-lipid complexes. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
22
|
Li X, Hu B, Ma R, Zhang X, Sun C, Zhao Y, Fang Y. Core-shell starch as a platform for reducing starch digestion and saturated fat intake. Biomaterials 2023; 299:122144. [PMID: 37167894 DOI: 10.1016/j.biomaterials.2023.122144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/20/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Ill-balanced diets, especially high-carbohydrate and high-fat diets, have led to an explosion of diabetes and cardiovascular diseases worldwide, posing great threats to human health. The structural design of functional foods can offer promising solutions to these afflictions. Here, we introduce a versatile core-shell starch made from food-grade starch and alcohol-soluble protein to reduce starch digestion and saturated fat intake. The fabrication of core-shell structure is realized through an anti-solvent method, assisted by electrostatic interaction, which is generalizable to starches and proteins from different sources and feasible for scale-up production. The protein shell imparts a higher gelatinization temperature and a lower pasting viscosity to the starch, suggesting restricted granule swelling, which leads to a reduced starch digestibility as proved by in vitro digestion studies. The hypoglycemic effect of core-shell starch is demonstrated in vivo. We also show that the application of core-shell starch can be extended to oil encapsulants and saturated fat replacers due to the impact of protein shell on the surface hydrophobicity of the starch. These results may advance the establishment of healthy diets and the tackling of diet-related diseases.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bing Hu
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Ruixiang Ma
- Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Xun Zhang
- Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Cuixia Sun
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiguo Zhao
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
23
|
Tsitsou S, Athanasaki C, Dimitriadis G, Papakonstantinou E. Acute Effects of Dietary Fiber in Starchy Foods on Glycemic and Insulinemic Responses: A Systematic Review of Randomized Controlled Crossover Trials. Nutrients 2023; 15:nu15102383. [PMID: 37242267 DOI: 10.3390/nu15102383] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Dietary fiber (DF) consumption has been associated with improved glycemic control in epidemiological and long-term interventional studies. However, its acute effects are not yet clear. This systematic review aims to elucidate the postprandial effects of DF in starchy products on glycemia and insulinemia. An electronic search of databases was conducted, and forty-one records met the inclusion criteria and underwent a risk-of-bias assessment. It was shown that soluble DF does not clearly affect glycemia in individuals with normal weight, while resistant starch may be more effective in flattening glycemic responses. Concerning insulinemia, both soluble DF and resistant starch have mixed results, with either favorable or no effects. Data on insoluble DF and glucose metabolism are scarce. The same mixed results for glycemia can be seen in healthy volunteers with overweight/obesity, while resistant starch seems to improve insulinemic responses. Finally, more studies need to examine the acute effects of DF in starchy foods on glucose metabolism and insulin secretion in individuals facing glucose abnormalities. Additionally, more studies are needed to prove whether ingesting high-fiber carbohydrate-containing products per se can result in blunted glycemic and insulinemic responses and which DF type and amount are more effective.
Collapse
Affiliation(s)
- Sofia Tsitsou
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Christina Athanasaki
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - George Dimitriadis
- 2nd Department of Internal Medicine, Research Institute and Diabetes Center, National and Kapodistrian University of Athens, Attikon University Hospital, 1 Rimini Street, 12462 Haidari, Greece
| | - Emilia Papakonstantinou
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| |
Collapse
|
24
|
Bodjrenou DM, Li X, Lu X, Lei S, Zheng B, Zeng H. Resistant starch from sweet potatoes: Recent advancements and applications in the food sector. Int J Biol Macromol 2023; 225:13-26. [PMID: 36481330 DOI: 10.1016/j.ijbiomac.2022.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
In tropical and subtropical areas, tuber and root crops are staple foods and a key source of energy. Sweet potato (SP) is currently regarded as one of the world's top ten foods because of its diverse sizes, shapes, color, and health benefits. The resistant starch (RS) content of SP is substantial. It is predicted to become the cheapest item in the food industry due to its extensive variety, food stability, emulsifier and fat substitution capabilities, and as filler. As a result, interest in SP-sourced RS has recently increased. Due to their unique nutritional and functional qualities, novelty has become a popular research focus in recent years. This review will summarize the current understanding of SP starch components and their impact on the technological and physicochemical properties of produced starch for commercial viability. The importance of sweet potato RS in addressing future RS demand sustainability is emphasized. SPs are a viable alternative to tubers as a sustainable raw material for RS production. It has an advantage over tubers because of its intrinsic nutritional value and climatic endurance. Thermal, chemical, and enzymatic treatments are effective RS manufacturing procedures. The adaptability of sweet potato RS allows for a wide range of food applications.
Collapse
Affiliation(s)
- David Mahoudjro Bodjrenou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaodan Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Suzhen Lei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Honliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
25
|
Tang J, Liang Q, Ren X, Raza H, Ma H. Insights into ultrasound-induced starch-lipid complexes to understand physicochemical and nutritional interventions. Int J Biol Macromol 2022; 222:950-960. [DOI: 10.1016/j.ijbiomac.2022.09.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
|
26
|
Li C, Li E. Relations between in vitro starch digestibility of commercial baked products and their macronutrients. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7363-7369. [PMID: 35780331 DOI: 10.1002/jsfa.12103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/17/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Baked products such as biscuits and breads are the staple foods for a large population, with the starch digestion rate having a crucial effect on human health. Currently, there is a lack of information on general starch digestibility in commercial baked products and its correlation with macronutrient content. RESULTS The present study investigated the starch digestibility of 35 commercial baked products, ranging from low to high moisture contents. Biscuits generally had a slower starch digestion rate than mini-breads, whereas breads including whole wheat bread had the fastest digestion rate. Additionally, starch digestibility was negatively correlated with the calorie (R2 = 0.71) and fat content (R2 = 0.56) in per serving size, possibly because of the formation of amylose-lipid complex. CONCLUSION The present study provides a database for the in vitro starch digestibility of a large number of food items, which gives general indications on the performance of starch components of commercial products in the human gastrointestinal tract. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- 2Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Enpeng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
27
|
Thompson MS, Hui Yan T, Saari N, Sarbini SR. A review: Resistant starch, a promising prebiotic for obesity and weight management. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
28
|
Bodjrenou DM, Li X, Chen W, Zhang Y, Zheng B, Zeng H. Effect of Pullulanase Debranching Time Combined with Autoclaving on the Structural, Physicochemical Properties, and In Vitro Digestibility of Purple Sweet Potato Starch. Foods 2022; 11:foods11233779. [PMID: 36496587 PMCID: PMC9740074 DOI: 10.3390/foods11233779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
The effects of pullulanase debranching combined with autoclaving (PDA) at various debranching times (0 h, 5 h, 10 h, 15 h, 20 h, and 25 h) and 121 °C/20 min of autoclave treatment on the structural and physicochemical characteristics of purple sweet potato (Jinshu No.17) starch were investigated. The results indicated that the native starch (NS) was polygonal, round, and bell-shaped with smooth surfaces. After debranching treatment, the surface of the starch samples became rough and irregular. The molecular weight became smaller after treatments. X-ray diffraction C-type pattern was transformed into a B-type structure in treated samples with increased relative crystallinity. 13C NMR indicated an increased propensity for double helix formation and new shift at C1, 3, 5 region compared to NS. The apparent amylose content was 21.53% in the NS. As the swelling power decreased, the percentage of soluble solids increased and different thermal properties were observed. A higher yield of the resistant starch (RS) was observed in all treated starch except PDA 25 h. The findings of our study reveal that a combination of pullulanase debranching time (15 h) and autoclaving (121 °C for 20 min) is a great technique that can be used to produce a higher amount of resistant starch in the Jinshu No.17 starch.
Collapse
Affiliation(s)
- David Mahoudjro Bodjrenou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Correspondence: ; Tel.: +86-591-83789348
| |
Collapse
|
29
|
Kong H, Yu L, Li C, Ban X, Gu Z, Li Z. Short-Clustered Maltodextrin Activates Ileal Glucose-Sensing and Induces Glucagon-like Peptide 1 Secretion to Ameliorate Glucose Homeostasis in Type 2 Diabetic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12604-12619. [PMID: 36125960 DOI: 10.1021/acs.jafc.2c04978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reconstructing molecular structure is an effective approach to attenuating glycemic response to starch. Previously, we rearranged α-1,4 and α-1,6-glycosidic bonds in starch molecules to produce short-clustered maltodextrin (SCMD). The present study revealed that SCMD slowly released glucose until the distal ileum. The activated ileal glucose-sensing enabled SCMD to be a potent inducer for glucagon-like peptide-1 (GLP-1). Furthermore, SCMD was found feasible to serve as the dominant dietary carbohydrate to rescue mice from diabetes. Interestingly, a mixture of normal maltodextrin and resistant dextrin (MD+RD), although it caused an attenuated glycemic response similar to that of SCMD, failed to ameliorate glucose homeostasis because it hardly induced GLP-1 secretion. The serum GLP-1 levels seen in MD+RD-fed mice (5.25 ± 1.51 pmol/L) were significantly lower than those seen in SCMD-fed mice (8.25 ± 2.01 pmol/L, p < 0.05). Further investigation revealed that the beneficial effects of SCMD could be abolished by a GLP-1 receptor (GLP-1R) antagonist. These results identify GLP-1R signaling as a critical contributor to SCMD-exerted health benefits and highlight the role of ileal glucose-sensing in designing dietary carbohydrates.
Collapse
Affiliation(s)
- Haocun Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Luxi Yu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
30
|
Hu Y, Chen X, Hu M, Zhang D, Yuan S, Li P, Feng L. Medicinal and edible plants in the treatment of dyslipidemia: advances and prospects. Chin Med 2022; 17:113. [PMID: 36175900 PMCID: PMC9522446 DOI: 10.1186/s13020-022-00666-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
Dyslipidemia is an independent risk factor of cardiovascular diseases (CVDs), which lead to the high mortality, disability, and medical expenses in the worldwide. Based on the previous researches, the improvement of dyslipidemia could efficiently prevent the occurrence and progress of cardiovascular diseases. Medicinal and edible plants (MEPs) are the characteristics of Chinese medicine, and could be employed for the disease treatment and health care mostly due to their homology of medicine and food. Compared to the lipid-lowering drugs with many adverse effects, such as rhabdomyolysis and impaired liver function, MEPs exhibit the great potential in the treatment of dyslipidemia with high efficiency, good tolerance and commercial value. In this review, we would like to introduce 20 kinds of MEPs with lipid-lowering effect in the following aspects, including the source, function, active component, target and underlying mechanism, which may provide inspiration for the development of new prescription, functional food and complementary therapy for dyslipidemia.
Collapse
Affiliation(s)
- Ying Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xingjuan Chen
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
| | - Mu Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dongwei Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shuo Yuan
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Ping Li
- Beijing University of Chinese Medicine, Beijing, 100029, China.
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China.
| | - Ling Feng
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China.
- China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
31
|
Irshad A, Guo H, Ur Rehman S, Gu J, Wang C, Xiong H, Xie Y, Zhao S, Liu L. Screening of Induced Mutants Led to the Identification of Starch Biosynthetic Genes Associated with Improved Resistant Starch in Wheat. Int J Mol Sci 2022; 23:10741. [PMID: 36142653 PMCID: PMC9502818 DOI: 10.3390/ijms231810741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Several health benefits are obtained from resistant starch, also known as healthy starch. Enhancing resistant starch with genetic modification has huge commercial importance. The variation of resistant starch content is narrow in wheat, in relation to which limited improvement has been attained. Hence, there is a need to produce a wheat population that has a wide range of variations in resistant starch content. In the present study, stable mutants were screened that showed significant variation in the resistant starch content. A megazyme kit was used for measuring the resistant starch content, digestible starch, and total starch. The analysis of variance showed a significant difference in the mutant population for resistant starch. Furthermore, four diverse mutant lines for resistant starch content were used to study the quantitative expression patterns of 21 starch metabolic pathway genes; and to evaluate the candidate genes for resistant starch biosynthesis. The expression pattern of 21 starch metabolic pathway genes in two diverse mutant lines showed a higher expression of key genes regulating resistant starch biosynthesis (GBSSI and their isoforms) in the high resistant starch mutant lines, in comparison to the parent variety (J411). The expression of SBEs genes was higher in the low resistant starch mutants. The other three candidate genes showed overexpression (BMY, Pho1, Pho2) and four had reduced (SSIII, SBEI, SBEIII, ISA3) expression in high resistant starch mutants. The overexpression of AMY and ISA1 in the high resistant starch mutant line JE0146 may be due to missense mutations in these genes. Similarly, there was a stop_gained mutation for PHO2; it also showed overexpression. In addition, the gene expression analysis of 21 starch metabolizing genes in four different mutants (low and high resistant starch mutants) shows that in addition to the important genes, several other genes (phosphorylase, isoamylases) may be involved and contribute to the biosynthesis of resistant starch. There is a need to do further study about these new genes, which are responsible for the fluctuation of resistant starch in the mutants.
Collapse
Affiliation(s)
- Ahsan Irshad
- National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huijun Guo
- National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shoaib Ur Rehman
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Sharif University of Agriculture, Multan 66000, Pakistan
| | - Jiayu Gu
- National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chaojie Wang
- National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongchun Xiong
- National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongdun Xie
- National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shirong Zhao
- National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Luxiang Liu
- National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
32
|
Xiao M, Jia X, Wang N, Kang J, Hu X, Goff HD, Cui SW, Ding H, Guo Q. Therapeutic potential of non-starch polysaccharides on type 2 diabetes: from hypoglycemic mechanism to clinical trials. Crit Rev Food Sci Nutr 2022; 64:1177-1210. [PMID: 36036965 DOI: 10.1080/10408398.2022.2113366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-starch polysaccharides (NSPs) have been reported to exert therapeutic potential on managing type 2 diabetes mellitus (T2DM). Various mechanisms have been proposed; however, several studies have not considered the correlations between the anti-T2DM activity of NSPs and their molecular structure. Moreover, the current understanding of the role of NSPs in T2DM treatment is mainly based on in vitro and in vivo data, and more human clinical trials are required to verify the actual efficacy in treating T2DM. The related anti-T2DM mechanisms of NSPs, including regulating insulin action, promoting glucose metabolism and regulating postprandial blood glucose level, anti-inflammatory and regulating gut microbiota (GM), are reviewed. The structure-function relationships are summarized, and the relationships between NSPs structure and anti-T2DM activity from clinical trials are highlighted. The development of anti-T2DM medication or dietary supplements of NSPs could be promoted with an in-depth understanding of the multiple regulatory effects in the treatment/intervention of T2DM.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xing Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Nifei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinzhong Hu
- College of Food Engineering & Nutrition Science, Shaanxi Normal University, Shaanxi, China
| | | | - Steve W Cui
- Guelph Research and Development Centre, AAFC, Guelph, Ontario, Canada
| | | | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
33
|
Improvement of Glycemic Control by a Functional Food Mixture Containing Maltodextrin, White Kidney Bean Extract, Mulberry Leaf Extract, and Niacin-Bound Chromium Complex in Obese Diabetic db/db Mice. Metabolites 2022; 12:metabo12080693. [PMID: 35893259 PMCID: PMC9394435 DOI: 10.3390/metabo12080693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Steady-fiber granule (SFG) is a mixture containing maltodextrin, white kidney bean extract, mulberry leaf extract, and niacin-bound chromium complex. These active ingredients have been shown to be associated with improving either hyperglycemia or hyperlipidemia. This study was undertaken to evaluate the potential of SFG in the regulation of blood glucose homeostasis under obese diabetic conditions. Accordingly, db/db mice (8 weeks old) were administered with SFG at doses of 1.025, 2.05, or 5.125 g/kg BW daily via oral gavage for 4 weeks. No body weight loss was observed after SFG supplementation at all three doses during the experimental period. Supplementation of SFG at 2.05 g/kg BW decreased fasting blood glucose, blood fructosamine, and HbA1c levels in db/db mice. Insulin sensitivity was also improved, as indicated by HOMA-IR assessment and oral glucose tolerance test, although the fasting insulin levels were no different in db/db mice with or without SFG supplementation. Meanwhile, the plasma levels of triglyceride were reduced by SFG at all three doses. These findings suggest that SFG improves glycemic control and insulin sensitivity in db/db mice and can be available as an option for functional foods to aid in management of type 2 diabetes mellitus in daily life.
Collapse
|
34
|
Park J, Oh SK, Chung HJ, Shin DS, Choi I, Park HJ. Effect of steaming and roasting on the quality and resistant starch of brown rice flour with high amylose content. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
35
|
Effects of starch-rich or fat-rich diets on metabolism, adiposity, and glycemia in immune-biased, C57BL/6 and BALB/c mice. J Nutr Biochem 2022; 108:109086. [PMID: 35691592 DOI: 10.1016/j.jnutbio.2022.109086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
Diet is an essential factor to maintain health by regulating host metabolism and immunity. Host immunity acts as a critical regulator of metabolic changes. By using differentially immune-biased mice C57BL/6 and BALB/c, we demonstrated the metabolic consequence of consuming diets rich in non-resistant starch (starch-rich), unsaturated fat (sunflower oil-rich), and saturated fat (coconut oil-rich) for shorter (four weeks) or longer (eight weeks) duration. Time kinetics of various diets on two differentially immune-biased mice revealed that starch-rich and unsaturated fat-rich diets reduced insulin resistance (IR) and visceral adiposity in BALB/c mice. In contrast, a saturated fat-rich diet enhanced both parameters. In C57BL/6 mice, a fat-rich diet enhanced IR with time while visceral adiposity remained unchanged. Eight weeks' consumption of a saturated fat-rich diet led to the highest visceral adiposity in C57BL/6 mice, while the same diet resulted in the maximum IR in BALB/c mice. The current report presented a detailed metabolomic analysis of treatments with various diets using a) uni- and b) multi-variate analyses. We also calculated the differential index for each treatment for each mouse strain using a vector analysis of the multivariate linear discriminant data. The outcome of the vector analysis of metabolite profiles identified metabolites that affected lipid and glucose metabolism to establish the inter-strain physiological differences.
Collapse
|
36
|
|
37
|
Khan A, Ali H, Rehman UU, Belduz AO, Bibi A, Abdurahman MA, Shah AA, Badshah M, Hasan F, Kilic AO, Ullah A, Jahan S, Rehman MMU, Mansoor R, Khan S. Prebiotic potential of enzymatically prepared resistant starch in reshaping gut microbiota and their respond to body physiology. PLoS One 2022; 17:e0267318. [PMID: 35576192 PMCID: PMC9109903 DOI: 10.1371/journal.pone.0267318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/06/2022] [Indexed: 12/19/2022] Open
Abstract
The increase in consumer demand for high-quality food products has led to growth in the use of new technologies and ingredients. Resistant starch (RS) is a recently recognised source of fibre and has received much attention for its potential health benefits and functional properties. However, knowledge about the fate of RS in modulating complex intestinal communities, the microbial members involved in its degradation, enhancement of microbial metabolites, and its functional role in body physiology is still limited. For this purpose, the current study was designed to ratify the physiological and functional health benefits of enzymatically prepared resistant starch (EM-RSIII) from maize flour. To approve the beneficial health effects as prebiotic, EM-RSIII was supplemented in rat diets. After 21 days of the experiment, EM-RSIII fed rats showed a significant reduction in body weight gain, fecal pH, glycemic response, serum lipid profile, insulin level and reshaping gut microbiota, and enhancing short-chain fatty acid compared to control. The count of butyrate-producing and starch utilizing bacteria, such as Lactobacillus, Enterococcus, and Pediococcus genus in rat’s gut, elevated after the consumption of medium and high doses of EM-RSIII, while the E. coli completely suppressed in high EM-RSIII fed rats. Short-chain fatty acids precisely increased in feces of EM-RSIII feed rats. Correlation analysis demonstrated that the effect of butyrate on functional and physiological alteration on the body had been investigated during the current study. Conclusively, the present study demonstrated the unprecedented effect of utilising EM-RSIII as a diet on body physiology and redesigning gut microorganisms.
Collapse
Affiliation(s)
- Anum Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Huma Ali
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ubaid Ur Rehman
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali Osman Belduz
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Amna Bibi
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Aamer Ali Shah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Malik Badshah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali Osman Kilic
- Department of Medical Microbiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Asad Ullah
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sarwat Jahan
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Maqsood Ur Rehman
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rashid Mansoor
- Department of Statistical Science, University College London, London, United Kingdom
| | - Samiullah Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
38
|
Zhong Y, Tai L, Blennow A, Ding L, Herburger K, Qu J, Xin A, Guo D, Hebelstrup KH, Liu X. High-amylose starch: Structure, functionality and applications. Crit Rev Food Sci Nutr 2022; 63:8568-8590. [PMID: 35373669 DOI: 10.1080/10408398.2022.2056871] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Starch with a high amylose (AM) content (high AM starch, HAS) has attracted increasing research attention due to its industrial application potential, such as functional foods and biodegradable packaging. In the past two decades, HAS structure, functionality, and applications have been the research hotspots. However, a review that comprehensively summarizes these areas is lacking, making it difficult for interested readers to keep track of past and recent advances. In this review, we highlight studies that benefited from rapidly developing techniques, and systematically review the structure, functionality, and applications of HAS. We particularly emphasize the relationships between HAS molecular structure and physicochemical properties.
Collapse
Affiliation(s)
- Yuyue Zhong
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingyu Tai
- Department of Chemical, Environmental and Material Engineering, Sapienza University of Rome, Rome, Italy
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Li Ding
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Herburger
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jianzhou Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Anzhou Xin
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Dongwei Guo
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Kim Henrik Hebelstrup
- Department of Agroecology, Aarhus University, Flakkebjerg, Denmark
- Plantcarb Aps, Vedbaek, Denmark
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
39
|
|
40
|
Taylor JRN, Duodu KG. Resistant‐Type Starch in Sorghum Foods – Factors Involved and Health Implications. STARCH-STARKE 2022. [DOI: 10.1002/star.202100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- John R. N. Taylor
- Department of Consumer and Food Sciences University of Pretoria Pretoria South Africa
| | - Kwaku G. Duodu
- Department of Consumer and Food Sciences University of Pretoria Pretoria South Africa
| |
Collapse
|
41
|
Rashed AA, Saparuddin F, Rathi DNG, Nasir NNM, Lokman EF. Effects of Resistant Starch Interventions on Metabolic Biomarkers in Pre-Diabetes and Diabetes Adults. Front Nutr 2022; 8:793414. [PMID: 35096939 PMCID: PMC8790517 DOI: 10.3389/fnut.2021.793414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/15/2021] [Indexed: 12/25/2022] Open
Abstract
Simple lifestyle changes can prevent or delay the onset of type 2 diabetes mellitus (T2DM). In addition to maintaining a physically active way of life, the diet has become one of the bases in managing TD2M. Due to many studies linking the ability of resistant starch (RS) to a substantial role in enhancing the nutritional quality of food and disease prevention, the challenge of incorporating RS into the diet and increasing its intake remains. Therefore, we conducted this review to assess the potential benefits of RS on metabolic biomarkers in pre-diabetes and diabetes adults based on available intervention studies over the last decade. Based on the conducted review, we observed that RS intake correlates directly to minimize possible effects through different mechanisms for better control of pre-diabetic and diabetic conditions. In most studies, significant changes were evident in the postprandial glucose and insulin incremental area under the curve (iAUC). Comparative evaluation of RS consumption and control groups also showed differences with inflammatory markers such as TNF-α, IL-1β, MCP-1, and E-selectin. Only RS2 and RS3 were extensively investigated and widely reported among the five reported RS types. However, a proper comparison and conclusion are deemed inappropriate considering the variations observed with the study duration, sample size, subjects and their metabolic conditions, intervention doses, and the intervention base products. In conclusion, this result provides interesting insights into the potential use of RS as part of a sustainable diet in diabetes management and should be further explored in terms of the mechanism involved.
Collapse
Affiliation(s)
- Aswir Abd Rashed
- Nutrition Unit, Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Malaysia
| | - Fatin Saparuddin
- Endocrine and Metabolic Unit, Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Malaysia
| | - Devi-Nair Gunasegavan Rathi
- Nutrition Unit, Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Malaysia
| | - Nur Najihah Mohd Nasir
- Nutrition Unit, Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Malaysia
| | - Ezarul Faradianna Lokman
- Endocrine and Metabolic Unit, Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Malaysia
| |
Collapse
|
42
|
Wang C, McClements DJ, Jiao A, Wang J, Jin Z, Qiu C. Resistant starch and its nanoparticles: Recent advances in their green synthesis and application as functional food ingredients and bioactive delivery systems. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Chen MH, Bett-Garber K, Lea J, McClung A, Bergman C. High Resistant Starch Rice: Variation in Starch Related SNPs, and Functional, and Sensory Properties. Foods 2021; 11:foods11010094. [PMID: 35010220 PMCID: PMC8750951 DOI: 10.3390/foods11010094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/23/2022] Open
Abstract
Human diets containing greater resistant starch (RS) are associated with superior glycemic control. Although high amylose rice has higher RS (29 g/kg to 44 g/kg) than lower amylose content varieties, sensory and processing properties associated with RS have not been evaluated. This study used variants of Waxy and starch synthase II a (SSIIa) genes to divide high amylose (256 g/kg to 284 g/kg) varieties into three haplotypes to examine their effects on RS, RVA parameters, and 14 cooked rice texture properties. RVA characteristics were influenced by both genes with peak and hotpaste viscosity differentiating the three haplotypes. Setback from hotpaste viscosity was the only RVA parameter correlated with RS content across three haplotypes (r = −0.76 to −0.93). Cooked rice texture attributes were impacted more by Waxy than by SSIIa with initial starch coating, roughness, and intact particles differentiating the three haplotypes. Pairwise correlation (r = 0.46) and PCA analyses suggested that roughness was the only texture attribute associated with RS content; while protein content influenced roughness (r = 0.49) and stickiness between grains (r = 0.45). In conclusion, variation exists among genetic haplotypes with high RS for sensory traits that will appeal to diverse consumers across the globe with limited concern for negatively affecting grain processing quality.
Collapse
Affiliation(s)
- Ming-Hsuan Chen
- Dale Bumpers National Rice Research Center, USDA-ARS, Stuttgart, AR 72160, USA;
- Correspondence:
| | - Karen Bett-Garber
- Southern Regional Research Center, USDA-ARS, New Orleans, LA 70124, USA; (K.B.-G.); (J.L.)
| | - Jeanne Lea
- Southern Regional Research Center, USDA-ARS, New Orleans, LA 70124, USA; (K.B.-G.); (J.L.)
| | - Anna McClung
- Dale Bumpers National Rice Research Center, USDA-ARS, Stuttgart, AR 72160, USA;
| | - Christine Bergman
- Food and Beverage Department, University of Nevada Las Vegas, Las Vegas, NV 89154, USA;
| |
Collapse
|
44
|
Guo J, Kong L. Inhibition of in vitro starch digestion by ascorbyl palmitate and its inclusion complex with starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Hu Y, Li C, Hou Y. Possible regulation of liver glycogen structure through the gut-liver axis by resistant starch: a review. Food Funct 2021; 12:11154-11164. [PMID: 34694313 DOI: 10.1039/d1fo02416g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Liver glycogen α particles in diabetic patients are fragile relative to those in healthy individuals, and restoring these fragile glycogen particles to a normal state shows potential to contribute to the remission of diabetes. Resistant starch (RS) is beneficial for diabetes management through its interactions with the gut microbiota. However, its effects on glycogen fragility are not fully understood. This review aims to summarize the recent understanding of the interactions between RS and the human gut microbiota and the possible connections to liver glycogen biosynthesis to elucidate its role in the development of glycogen fragility. RS might regulate glycogen fragility in diabetes by modulating the postprandial glycemic response and glycogen biosynthesis pathways. Before RS can be applied to repair fragile glycogen, more work should be done to better understand in vivo RS structures and identify the factor binding glycogen β particles together. This review contains important information on the connections between glycogen fragility and RS-gut microbiota interactions, which could help to better understand the health benefits of RS consumption.
Collapse
Affiliation(s)
- Yiming Hu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200031, China.
| | - Cheng Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200031, China.
| |
Collapse
|
46
|
Yang M, Zheng J, Zong X, Yang X, Zhang Y, Man C, Jiang Y. Preventive Effect and Molecular Mechanism of Lactobacillus rhamnosus JL1 on Food-Borne Obesity in Mice. Nutrients 2021; 13:3989. [PMID: 34836242 PMCID: PMC8621931 DOI: 10.3390/nu13113989] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/22/2023] Open
Abstract
Probiotics can prevent obesity and related metabolic complications. In our study, the protective effect and molecular mechanism of Lactobacillus rhamnosus JL1 (separated from the feces of healthy infants) on high-fat diet mice were investigated. After 10 weeks of dietary intervention with L. rhamnosus JL1 intervention, the body weight of the JL1 group (23.78 g) was significantly lower than that of the HFD group (26.59 g, p < 0.05) and the liver index was reduced. Serum biochemical analysis showed that the TC, TG and LDL-C contents of JL1 group mice were significantly decreased (p < 0.05). Histological images of the mice livers showed that the degree of lipid action and damage of hepatic cells were improved. L. rhamnosus JL1 activated the AMPK pathway, and reduced the gene expression of PPAR-γ, LXR-α and SREBP-1C. In addition, the protein expression of PPAR-γ and LXR-α were reduced. After dietary intervention with L. rhamnosus JL1, the concentration of acetic acid, propionic acid, and butyric acid were increased significantly, especially the concentration of butyric acid, which was 63.16% higher than that of the HFD group (p < 0.05). In conclusion, this study provided a theoretical reference for the development and application of probiotics derived from healthy infant feces in health products and functional foods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (J.Z.); (X.Z.); (X.Y.); (Y.Z.); (C.M.)
| |
Collapse
|
47
|
Zhang Z, Bao J. Recent Advances in Modification Approaches, Health Benefits, and Food Applications of Resistant Starch. STARCH-STARKE 2021. [DOI: 10.1002/star.202100141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhongwei Zhang
- Yazhou Bay Science and Technology City Hainan Institute of Zhejiang University Yazhou Districut Sanya Hainan 572025 China
- Institute of Nuclear Agricultural Sciences College of Agriculture and Biotechnology Zhejiang University Zijingang Campus Hangzhou 310058 China
| | - Jinsong Bao
- Yazhou Bay Science and Technology City Hainan Institute of Zhejiang University Yazhou Districut Sanya Hainan 572025 China
- Institute of Nuclear Agricultural Sciences College of Agriculture and Biotechnology Zhejiang University Zijingang Campus Hangzhou 310058 China
| |
Collapse
|
48
|
Zhang Y, Yang G, Wang X, Ni G, Cui Z, Yan Z. Sagittaria trifolia tuber: bioconstituents, processing, products, and health benefits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3085-3098. [PMID: 33270242 DOI: 10.1002/jsfa.10977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Sagittaria trifolia is an aquatic plant that is distributed worldwide. The edible tuber part of S. trifolia is a very common and popular vegetable in China. The aim of the present review is to discuss the discovery of nutraceuticals from S. trifolia tuber by reviewing its major constituents, food processing, food products, and health-promoting benefits. Sagittaria trifolia tuber comprises a series of nutritional and bioactive constituents, including dietary fibers, amino acids, minerals, starches, non-starch polysaccharides, diterpenoids, colchicine, phenols, and organic acids. Food processing affects its flavor, biocomponents, and bioactivity. Numerous S. trifolia tuber-based food products and nutraceuticals have been developed, but new categories of products and the anticipated functions still need to be explored. The non-starch polysaccharides could be the central ingredients that contribute to the plant's antioxidant, hepatoprotective, hypoglycemic, lipid-regulating, and immunostimulatory properties. Of these, antioxidant and hepatoprotective effects have been thoroughly investigated. Procedures for the extraction and purification of polysaccharides influence their health-promoting actions. Overall, S. trifolia tuber is an underutilized aquatic vegetable species that is an emerging subject for nutraceutical research. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Guihong Yang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Xinyu Wang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Gaoyang Ni
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Zhumei Cui
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Zhaowei Yan
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
49
|
Zhou D, Ma Z, Hu X. Isolated Pea Resistant Starch Substrates with Different Structural Features Modulate the Production of Short-Chain Fatty Acids and Metabolism of Microbiota in Anaerobic Fermentation In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5392-5404. [PMID: 33843218 DOI: 10.1021/acs.jafc.0c08197] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Resistant starches (RSs) with different structural features were isolated from both native and pullulanase-debranched and acid-hydrolyzed pea starches. Their microscopic changes, short-chain fatty acids (SCFA) composition, microbiota communities, and structural characteristics of the corresponding fermenta residues by the end of 24 h of the in vitro fermentation period were investigated. The microbial fermentation clearly caused numerous cracks and erosion on the RS granule surface. In comparison to the positive control, significantly higher levels of butyrate, propionate, and total SCFA were produced after 24 h of in vitro fecal fermentation when resistant starches were used as substrates. The RS substrates with different structural characteristics enabled varying growth of Bifidobacterium spp., Eubacterium spp., and Faecalibacterium spp. The discrepancy in microbiota communities associated with the differences in SCFA from the fermentation of RS with different structural features would be critical toward the rational design of foods containing resistant starch with targeted health benefits.
Collapse
Affiliation(s)
- Dingting Zhou
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Zhen Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| |
Collapse
|
50
|
Liu H, Zhang M, Ma Q, Tian B, Nie C, Chen Z, Li J. Health beneficial effects of resistant starch on diabetes and obesity via regulation of gut microbiota: a review. Food Funct 2021; 11:5749-5767. [PMID: 32602874 DOI: 10.1039/d0fo00855a] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Resistant starch (RS) is well known to prevent type 2 diabetes mellitus (T2DM) and obesity. Recently, attention has been paid to gut microbiota which mediates the RS's impact on T2DM and obesity, while a mechanistic understanding of how RS prevents T2DM and obesity through gut microbiota is not clear yet. Therefore, this review aims at exploring the underlying mechanisms of it. RS prevents T2DM and obesity through gut microbiota by modifying selective microbial composition to produce starch-degrading enzymes, promoting the production of intestinal metabolites, and improving gut barrier function. Therefore, RS possessing good functional features can be used to increase the fiber content of healthier food. Furthermore, achieving highly selective effects on gut microbiota based on the slight differences of RS's chemical structure and focusing on the effects of RS on strain-levels are essential to manipulate the microbiota for human health.
Collapse
Affiliation(s)
- Huicui Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Qingyu Ma
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Baoming Tian
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Chenxi Nie
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Zhifei Chen
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi Province 712100, People's Republic of China.
| |
Collapse
|