1
|
Merrill AH. Don't Be Surprised When These Surprise You: Some Infrequently Studied Sphingoid Bases, Metabolites, and Factors That Should Be Kept in Mind During Sphingolipidomic Studies. Int J Mol Sci 2025; 26:650. [PMID: 39859363 PMCID: PMC11765627 DOI: 10.3390/ijms26020650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Sphingolipidomic mass spectrometry has provided valuable information-and surprises-about sphingolipid structures, metabolism, and functions in normal biological processes and disease. Nonetheless, many noteworthy compounds are not routinely determined, such as the following: most of the sphingoid bases that mammals biosynthesize de novo other than sphingosine (and sometimes sphinganine) or acquire from exogenous sources; infrequently considered metabolites of sphingoid bases, such as N-(methyl)n-derivatives; "ceramides" other than the most common N-acylsphingosines; and complex sphingolipids other than sphingomyelins and simple glycosphingolipids, including glucosyl- and galactosylceramides, which are usually reported as "monohexosylceramides". These and other subspecies are discussed, as well as some of the circumstances when they are likely to be seen (or present and missed) due to experimental conditions that can influence sphingolipid metabolism, uptake from the diet or from the microbiome, or as artifacts produced during extraction and analysis. If these compounds and factors are kept in mind during the design and interpretation of lipidomic studies, investigators are likely to be surprised by how often they appear and thereby advance knowledge about them.
Collapse
Affiliation(s)
- Alfred H Merrill
- School of Biological Sciences and The Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Pham TH, Thomas R, Schwab C, Martinez MM, Vidal NP. Unraveling the neutral and polar lipidome of Nordic brown macroalgae: A sustainable source of functional lipids. Food Chem 2024; 459:140415. [PMID: 39032363 DOI: 10.1016/j.foodchem.2024.140415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/02/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Brown macroalgae represent a sustainable and abundant source of lipids with acknowledged functional and health benefits. Nonetheless, macroalgae lipidome has been poorly unraveled due to lipids complex structural and chemical diversity. In this study, a comprehensive lipidomic analysis was performed in four macroalgae: Saccharina latissima, Fucus vesiculosus, Fucus serratus and the invasive Sargassum muticum, using HILIC-C30RP-HRMS. Neutral lipids (tri-, di-glycerides) comprised 72-82% of total lipids (TL) with a highly unsaturation profile (27-49% depending on species). The polar lipidome comprised glycolipids, phospholipids, betaine lipids and sphingolipids with varied content among macroalgae. S. latissima displayed the greatest level of glycolipids (23% of TL), by contrast with the dominance of long-chain polyunsaturated betaine lipids (10-18% of TL) in the other species, particularly in S. muticum. Phospholipids and sphingolipids were detected in low abundance (<1.7% of TL). This study elevated the potential of brown macroalgae as an emerging reservoir of bioactive lipids with nutritional relevance.
Collapse
Affiliation(s)
- Thu H Pham
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Raymond Thomas
- Biotron Experimental Climate Change Research Centre/Department of Biology, University of Western Ontario, London, ON, Canada
| | - Clarissa Schwab
- Functional Microbe Technology Group, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Mario M Martinez
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark.
| | - Natalia P Vidal
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, DK-8000, Aarhus, Denmark.
| |
Collapse
|
3
|
Sentürk NB, Kasapoglu B, Sahin E, Ozcan O, Ozansoy M, Ozansoy MB, Siyah P, Sezerman U, Sahin F. The Potential Role of Boron in the Modulation of Gut Microbiota Composition: An In Vivo Pilot Study. Pharmaceuticals (Basel) 2024; 17:1334. [PMID: 39458975 PMCID: PMC11510266 DOI: 10.3390/ph17101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The role of the gut microbiome in the development and progression of many diseases has received increased attention in recent years. Boron, a trace mineral found in dietary sources, has attracted interest due to its unique electron depletion and coordination characteristics in chemistry, as well as its potential role in modulating the gut microbiota. This study investigates the effects of inorganic boron derivatives on the gut microbiota of mice. Methods: For three weeks, boric acid (BA), sodium pentaborate pentahydrate (NaB), and sodium perborate tetrahydrate (SPT) were dissolved (200 mg/kg each) in drinking water and administered to wild-type BALB/c mice. The composition of the gut microbiota was analyzed to determine the impact of these treatments. Results: The administration of BA significantly altered the composition of the gut microbiota, resulting in a rise in advantageous species such as Barnesiella and Alistipes. Additionally, there was a decrease in some taxa associated with inflammation and illness, such as Clostridium XIVb and Bilophila. Notable increases in genera like Treponema and Catellicoccus were observed, suggesting the potential of boron compounds to enrich microbial communities with unique metabolic functions. Conclusions: These findings indicate that boron compounds may have the potential to influence gut microbiota composition positively, offering potential prebiotic effects. Further research with additional analyses is necessary to fully understand the interaction between boron and microbiota and to explore the possibility of their use as prebiotic agents in clinical settings.
Collapse
Affiliation(s)
- Nermin Basak Sentürk
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 34755 Istanbul, Turkey; (N.B.S.); (B.K.)
| | - Burcu Kasapoglu
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 34755 Istanbul, Turkey; (N.B.S.); (B.K.)
- Abdi Ibrahim Pharmaceuticals, Biotechnological Products Production Facility (AbdiBio), 34538 Istanbul, Turkey
| | - Eray Sahin
- Biostatistics and Bioinformatics PhD Program, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
| | | | - Mehmet Ozansoy
- Department of Physiology, International School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey;
| | - Muzaffer Beyza Ozansoy
- Department of Physical Therapy and Rehabilitation, Faculty of Health Sciences, Fenerbahçe University, 34758 Istanbul, Turkey;
| | - Pinar Siyah
- Department of Biochemistry, School of Pharmacy, Bahçeşehir University, 34353 Istanbul, Turkey;
| | - Ugur Sezerman
- Biostatistics and Bioinformatics PhD Program, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 34755 Istanbul, Turkey; (N.B.S.); (B.K.)
| |
Collapse
|
4
|
Rossi A, Ruoppolo M, Fedele R, Pirozzi F, Rosano C, Auricchio R, Melis D, Strisciuglio P, Oosterveer MH, Derks TGJ, Parenti G, Caterino M. A specific serum lipid signature characterizes patients with glycogen storage disease type Ia. J Lipid Res 2024; 65:100651. [PMID: 39306041 PMCID: PMC11526085 DOI: 10.1016/j.jlr.2024.100651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024] Open
Abstract
Glycogen storage disease type Ia (GSDIa) is a rare, inherited glucose-6-phosphatase-α (G6Pase-α) deficiency-induced carbohydrate metabolism disorder. Although hyperlipidemia is a hallmark of GSDI, the extent of lipid metabolism disruption remains incompletely understood. Lipidomic analysis was performed to characterize the serum lipidome in patients with GSDIa, by including age- and sex-matched healthy controls and age-matched hypercholesterolemic controls. Metabolic control and dietary information biochemical markers were obtained from patients with GSDIa. Patients with GSDIa showed higher total serum lysophosphatidylcholine (Fold Change, (FC) 2.2, P < 0.0001), acyl-acyl-phosphatidylcholine (FC 2.1, P < 0.0001), and ceramide (FC 2.4, P < 0.0001) levels and bile acid (FC 0.7, P < 0.001), acylcarnitines (FC 0.7, P < 0.001), and cholesterol esters (FC 1.0, P < 0.001) than those of healthy controls, and higher di- (FC 1.1, P < 0.0001; FC 0.9, P < 0.01) and triacylglycerol (FC 6.3, P < 0.0001; FC 3.9, P < 0.01) levels than those of healthy controls and hypercholesterolemic subjects. Both total cholesterol and triglyceride values correlated with Cer (d16:1/22:0), Cer (d18:1/20:0), Cer (d18:1/20:0(OH)), Cer (d18:1/22:0), Cer (d18:1/23:0), Cer (d18:1/24:1), Cer (d18:2/22:0), Cer (d18:2/24:1). Total cholesterol also correlated with Cer (d18:1/24:0), Cer (d18:2/20:0), HexCer (d16:1/22:0), HexCer (d18:1/18:0), and Hex2Cer (d18:1/20:0). Triglyceridelevels correlated with Cer (d18:0/24:1). Alanine aminotransferase values correlated with Cer (d18:0/22:0), insulin with Cer (d18:1/22:1) and Cer (d18:1/24:1), and HDL with hexosylceramide (HexCer) (d18:2/23:0). These results expand on the currently known involvement of lipid metabolism in GSDIa. Circulating Cer may allow for refined dietary assessment compared with traditional biomarkers. Because specific lipid species are relatively easy to assess, they represent potential novel biomarkers of GSDIa.
Collapse
Affiliation(s)
- Alessandro Rossi
- Section of Pediatrics, Department of Translational Medicine, University of Naples "Federico II", Naples, Italy; Section of Metabolic Diseases, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy; CEINGE Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| | | | - Francesca Pirozzi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Carmen Rosano
- Section of Pediatrics, Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Renata Auricchio
- Section of Pediatrics, Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Pietro Strisciuglio
- Section of Pediatrics, Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Maaike H Oosterveer
- Department of Pediatrics and Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Giancarlo Parenti
- Section of Pediatrics, Department of Translational Medicine, University of Naples "Federico II", Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy; CEINGE Biotecnologie Avanzate s.c.ar.l., Naples, Italy.
| |
Collapse
|
5
|
Farag MA, Ragab NA, Maamoun MAI. Metabolites profiling of Sapota fruit pulp via a multiplex approach of gas and ultra performance liquid chromatography/mass spectroscopy in relation to its lipase inhibition effect. PeerJ 2024; 12:e17914. [PMID: 39221269 PMCID: PMC11366232 DOI: 10.7717/peerj.17914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Background Sapota, Manilkara zapota L., are tasty, juicy, and nutrient-rich fruits, and likewise used for several medicinal uses. Methods The current study represents an integrated metabolites profiling of sapota fruits pulp via GC/MS and UPLC/MS, alongside assessment of antioxidant capacity, pancreatic lipase (PL), and α-glucosidase enzymes inhibitory effects. Results GC/MS analysis of silylated primary polar metabolites led to the identification of 68 compounds belonging to sugars (74%), sugar acids (18.27%), and sugar alcohols (7%) mediating the fruit sweetness. Headspace SPME-GC/MS analysis led to the detection of 17 volatile compounds belonging to nitrogenous compounds (72%), ethers (7.8%), terpenes (7.6%), and aldehydes (5.8%). Non-polar metabolites profiling by HR-UPLC/MS/MS-based Global Natural Products Social (GNPS) molecular networking led to the assignment of 31 peaks, with several novel sphingolipids and fatty acyl amides reported for the first time. Total phenolic content was estimated at 6.79 ± 0.12 mg gallic acid equivalent/gram extract (GAE/g extract), but no flavonoids were detected. The antioxidant capacities of fruit were at 1.62 ± 0.2, 1.49 ± 0.11, and 3.58 ± 0.14 mg Trolox equivalent/gram extract (TE/g extract) via DPPH, ABTS, and FRAP assays, respectively. In vitro enzyme inhibition assays revealed a considerable pancreatic lipase inhibition effect (IC50 = 2.2 ± 0.25 mg/mL), whereas no inhibitory effect towards α-glucosidase enzyme was detected. This study provides better insight into sapota fruit's flavor, nutritional, and secondary metabolites composition mediating for its sensory and health attributes.
Collapse
|
6
|
Mah MSM, Cao E, Anderson D, Escott A, Tegegne S, Gracia G, Schmitz J, Brodesser S, Zaph C, Creek DJ, Hong J, Windsor JA, Phillips ARJ, Trevaskis NL, Febbraio MA, Turpin-Nolan SM. High-fat feeding drives the intestinal production and assembly of C 16:0 ceramides in chylomicrons. SCIENCE ADVANCES 2024; 10:eadp2254. [PMID: 39178255 PMCID: PMC11343029 DOI: 10.1126/sciadv.adp2254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
Consumption of a diet rich in saturated fat increases lipid absorption from the intestine, assembly into chylomicrons, and delivery to metabolic tissues via the lymphatic and circulatory systems. Accumulation of ceramide lipids, composed of sphingosine and a fatty acid, in metabolic tissues contributes to the pathogenesis of cardiovascular diseases, type 2 diabetes mellitus and cancer. Using a mesenteric lymph duct cannulated rat model, we showed that ceramides are generated by the intestine and assembled into chylomicrons, which are transported via the mesenteric lymphatic system. A lipidomic screen of intestinal-derived chylomicrons identified a diverse range of fatty acid, sphingolipid, and glycerolipid species that have not been previously detected in chylomicrons, including the metabolically deleterious C16:0 ceramide that increased in response to high-fat feeding in rats and human high-lipid meal replacement enteral feeding. In conclusion, high-fat feeding increases the export of intestinal-derived C16:0 ceramide in chylomicrons, identifying a potentially unknown mechanism through which ceramides are transported systemically to contribute to metabolic dysfunction.
Collapse
Affiliation(s)
- Michael SM Mah
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Enyuan Cao
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Alistair Escott
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- HBP/Upper GI Unit, Department of General Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Surafel Tegegne
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Gracia Gracia
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Joel Schmitz
- Max Planck Institute for Metabolism and Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany
| | - Susanne Brodesser
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence Cellular Stress Responses in Aging associated Diseases (CECAD), Cologne, Germany
| | - Colby Zaph
- Biomedical Discovery Institute, Monash University, Melbourne, Australia
| | - Darren J. Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Jiwon Hong
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - John A. Windsor
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- HBP/Upper GI Unit, Department of General Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Anthony RJ Phillips
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Natalie L. Trevaskis
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Mark A. Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Sarah M. Turpin-Nolan
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
7
|
Abbattista R, Feinberg NG, Snodgrass IF, Newman JW, Dandekar AM. Unveiling the "hidden quality" of the walnut pellicle: a precious source of bioactive lipids. FRONTIERS IN PLANT SCIENCE 2024; 15:1395543. [PMID: 38957599 PMCID: PMC11217525 DOI: 10.3389/fpls.2024.1395543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Tree nut consumption has been widely associated with various health benefits, with walnuts, in particular, being linked with improved cardiovascular and neurological health. These benefits have been attributed to walnuts' vast array of phenolic antioxidants and abundant polyunsaturated fatty acids. However, recent studies have revealed unexpected clinical outcomes related to walnut consumption, which cannot be explained simply with the aforementioned molecular hallmarks. With the goal of discovering potential molecular sources of these unexplained clinical outcomes, an exploratory untargeted metabolomics analysis of the isolated walnut pellicle was conducted. This analysis revealed a myriad of unusual lipids, including oxylipins and endocannabinoids. These lipid classes, which are likely present in the pellicle to enhance the seeds' defenses due to their antimicrobial properties, also have known potent bioactivities as mammalian signaling molecules and homeostatic regulators. Given the potential value of this tissue for human health, with respect to its "bioactive" lipid fraction, we sought to quantify the amounts of these compounds in pellicle-enriched waste by-products of mechanized walnut processing in California. An impressive repertoire of these compounds was revealed in these matrices, and in notably significant concentrations. This discovery establishes these low-value agriculture wastes promising candidates for valorization and translation into high-value, health-promoting products; as these molecules represent a potential explanation for the unexpected clinical outcomes of walnut consumption. This "hidden quality" of the walnut pellicle may encourage further consumption of walnuts, and walnut industries may benefit from a revaluation of abundant pellicle-enriched waste streams, leading to increased sustainability and profitability through waste upcycling.
Collapse
Affiliation(s)
- Ramona Abbattista
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Noah G. Feinberg
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Isabel F. Snodgrass
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
| | - John W. Newman
- Western Human Nutrition Research Center, United States Department of Agriculture, Davis, CA, United States
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Alashmali S. Nutritional roles and therapeutic potentials of dietary sphingomyelin in brain diseases. J Clin Biochem Nutr 2024; 74:185-191. [PMID: 38799143 PMCID: PMC11111474 DOI: 10.3164/jcbn.23-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/12/2023] [Indexed: 05/29/2024] Open
Abstract
Sphingolipids have recently gained interest as potential players in variety of diseases due to their import roles in human body particularly, the brain. As sphingomyelin is the most common type of sphingolipids, deficits in its distribution to brain cells may contribute to neurological anomalies. However, data is limited regarding the impact of different levels of dietary sphingomyelin intake on neural function especially if this approach can boost cognition and prevent neurological disorders. This review evaluates the effect of dietary sphingomyelin and its metabolites (ceramide and sphingosine-1-phosphate) in animal models and in humans, with a primary focus on its impact on brain health. Additionally, it proposes multiple neuroenhancing effects of sphingomyelin-rich diet. This presents an opportunity to stimulate further research that aims to determine the therapeutic value of dietary sphingomyelin in preventing, improving or slowing the progression of central nervous system disorders.
Collapse
Affiliation(s)
- Shoug Alashmali
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
Calarnou L, Vigouroux E, Thollas B, Le Grand F, Mounier J. Screening for the production of polyunsaturated fatty acids and cerebrosides in fungi. J Appl Microbiol 2024; 135:lxae030. [PMID: 38323436 DOI: 10.1093/jambio/lxae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
AIMS To investigate fatty acid, including polyunsaturated fatty acids (PUFA), and cerebroside production of a large diversity of fungi from the Ascomycota, Basidiomycota, and Mucoromycota phyla. METHODS AND RESULTS Seventy-nine fungal strains were grown in Kavadia medium using a microcultivation system, i.e. Duetz microtiter plates. Following cultivation, fatty acid and cerebroside contents were analyzed by gas chromatography-flame ionization detection (GC-FID) and high performance thin-layer chromatography (HPTLC), respectively. Mucoromycota fungi appeared as the most promising candidates for omega-6 PUFA production. The best omega-6 producer, including γ-linolenic acid (GLA, 18:3n-6), was Mucor fragilis UBOCC-A109196 with a concentration of 647 mg L-1 total omega-6 PUFA (representing 35% of total fatty acids) and 225 mg L-1 GLA (representing 12% of total fatty acids). Arachidonic acid concentration (20:4n-6) was the highest in Mortierella alpina UBOCC-A-112046, reaching 255 mg L-1 and 18.56% of total fatty acids. Interestingly, several fungal strains were shown to produce omega-7 monounsaturated fatty acids. Indeed, Torulaspora delbrueckii strains accumulated palmitoleic acid (16:1n-7) up to 20% of total fatty acids, reaching 114 mg L-1 in T. delbrueckii UBOCC-A-214128, while C. elegans UBOCC-A-102008 produced mainly paullinic acid (20:1n-7) with concentrations up to 100 mg L-1. Concerning cerebroside production, HPTLC appeared as a relevant approach for their detection and quantification. Promising candidates belonging to the Mucoromycota phylum were found, especially in the Absidia genus with A. spinosa UBOCC-A-101332 as the best producer (12.7 mg L-1). CONCLUSIONS The present study highlighted PUFA and cerebroside production in a large diversity of fungi and the fact that members of the Mucoromycota phylum are good producers of PUFA as well as cerebrosides.
Collapse
Affiliation(s)
- Laurie Calarnou
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Estelle Vigouroux
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
| | - Bertrand Thollas
- Polymaris Biotechnology, 160 rue Pierre Rivoalon, 29200 Brest, France
| | | | - Jérôme Mounier
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
| |
Collapse
|
10
|
Yaseen NR, Barnes CLK, Sun L, Takeda A, Rice JP. Genetics of vegetarianism: A genome-wide association study. PLoS One 2023; 18:e0291305. [PMID: 37792698 PMCID: PMC10550162 DOI: 10.1371/journal.pone.0291305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 08/19/2023] [Indexed: 10/06/2023] Open
Abstract
A substantial body of evidence points to the heritability of dietary preferences. While vegetarianism has been practiced for millennia in various societies, its practitioners remain a small minority of people worldwide, and the role of genetics in choosing a vegetarian diet is not well understood. Dietary choices involve an interplay between the physiologic effects of dietary items, their metabolism, and taste perception, all of which are strongly influenced by genetics. In this study, we used a genome-wide association study (GWAS) to identify loci associated with strict vegetarianism in UK Biobank participants. Comparing 5,324 strict vegetarians to 329,455 controls, we identified one SNP on chromosome 18 that is associated with vegetarianism at the genome-wide significant level (rs72884519, β = -0.11, P = 4.997 x 10-8), and an additional 201 suggestively significant variants. Four genes are associated with rs72884519: TMEM241, RIOK3, NPC1, and RMC1. Using the Functional Mapping and Annotation (FUMA) platform and the Multi-marker Analysis of GenoMic Annotation (MAGMA) tool, we identified 34 genes with a possible role in vegetarianism, 3 of which are GWAS-significant based on gene-level analysis: RIOK3, RMC1, and NPC1. Several of the genes associated with vegetarianism, including TMEM241, NPC1, and RMC1, have important functions in lipid metabolism and brain function, raising the possibility that differences in lipid metabolism and their effects on the brain may underlie the ability to subsist on a vegetarian diet. These results support a role for genetics in choosing a vegetarian diet and open the door to future studies aimed at further elucidating the physiologic pathways involved in vegetarianism.
Collapse
Affiliation(s)
- Nabeel R. Yaseen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | | | - Lingwei Sun
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Akiko Takeda
- Retired, St. Louis, MO, United States of America
| | - John P. Rice
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States of America
| |
Collapse
|
11
|
Sun G, Wang B, Zhu H, Ye J, Liu X. Role of sphingosine 1-phosphate (S1P) in sepsis-associated intestinal injury. Front Med (Lausanne) 2023; 10:1265398. [PMID: 37746079 PMCID: PMC10514503 DOI: 10.3389/fmed.2023.1265398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a widespread lipid signaling molecule that binds to five sphingosine-1-phosphate receptors (S1PRs) to regulate downstream signaling pathways. Sepsis can cause intestinal injury and intestinal injury can aggravate sepsis. Thus, intestinal injury and sepsis are mutually interdependent. S1P is more abundant in intestinal tissues as compared to other tissues, exerts anti-inflammatory effects, promotes immune cell trafficking, and protects the intestinal barrier. Despite the clinical importance of S1P in inflammation, with a very well-defined mechanism in inflammatory bowel disease, their role in sepsis-induced intestinal injury has been relatively unexplored. In addition to regulating lymphocyte exit, the S1P-S1PR pathway has been implicated in the gut microbiota, intestinal epithelial cells (IECs), and immune cells in the lamina propria. This review mainly elaborates on the physiological role of S1P in sepsis, focusing on intestinal injury. We introduce the generation and metabolism of S1P, emphasize the maintenance of intestinal barrier homeostasis in sepsis, and the protective effect of S1P in the intestine. We also review the link between sepsis-induced intestinal injury and S1P-S1PRs signaling, as well as the underlying mechanisms of action. Finally, we discuss how S1PRs affect intestinal function and become targets for future drug development to improve the translational capacity of preclinical studies to the clinic.
Collapse
Affiliation(s)
- Gehui Sun
- Gannan Medical University, Ganzhou, Jiangxi, China
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bin Wang
- Gannan Medical University, Ganzhou, Jiangxi, China
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hongquan Zhu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junming Ye
- Gannan Medical University, Ganzhou, Jiangxi, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Xiaofeng Liu
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
12
|
Rossi M, Khalifeh M, Fiori F, Parpinel M, Serraino D, Pelucchi C, Negri E, Giacosa A, Crispo A, Collatuzzo G, Hannun Y, Luberto C, La Vecchia C, Boffetta P. Dietary choline and sphingomyelin choline moiety intake and risk of colorectal cancer: a case-control study. Eur J Clin Nutr 2023; 77:905-910. [PMID: 37479807 PMCID: PMC11749154 DOI: 10.1038/s41430-023-01298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 05/03/2023] [Accepted: 06/05/2023] [Indexed: 07/23/2023]
Abstract
INTRODUCTION Phospholipids are possible favorable agents for colorectal cancer (CRC). Choline has been inversely related to CRC risk but findings are inconsistent. We assessed the effect of dietary sphingomyelin (SM) choline moiety and total choline intake on risk of CRC. METHOD This analysis is based on a multicenter case-control study conducted between 1992 and 1996 in Italy. A total of 6107 subjects were enrolled, including 1225 colon cancer cases, 728 rectal cancer cases and 4154 hospital-based controls. We applied data on the composition of foods in terms of SM choline moiety and choline intake on dietary information collected through a validated food-frequency questionnaire. Odds ratio (OR) for energy-adjusted tertiles of SM choline moiety and choline were estimated through logistic regression models adjusted for sex, age, center, education, alcohol consumption, body mass index, family history of CRC, and physical activity. RESULTS Choline was inversely related to CRC risk (OR for the highest versus the lowest tertile: 0.85; 95% confidence interval [CI]: 0.73-0.99), with a significant trend in risk. The OR for an increment of one standard deviation of energy-adjusted choline intake was 0.93 (95% CI: 0.88-0.98). The association was consistent in colon and rectal cancer and also across colon subsites. SM choline moiety was not associated with CRC risk (OR for the highest versus the lowest tertile: 0.96, 95% CI 0.84-1.11). CONCLUSION This study shows an inverse association between choline intake and CRC but not with SM choline moiety.
Collapse
Affiliation(s)
- Marta Rossi
- Department of Clinical Sciences and Community Health, University of Milan, 20133, Milan, Italy
| | - Malak Khalifeh
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Federica Fiori
- Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Maria Parpinel
- Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Diego Serraino
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico, National Cancer Institute IRCCS, 33108, Aviano, Italy
| | - Claudio Pelucchi
- Department of Clinical Sciences and Community Health, University of Milan, 20133, Milan, Italy
| | - Eva Negri
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, Università di Bologna, 40126, Bologna, Italy
| | - Attilio Giacosa
- Department of Gastroenterology and Clinical Nutrition, Policlinico di Monza, 20900, Monza, Italy
| | - Anna Crispo
- Epidemiology and Biostatistics Unit, Istituto Nazionale dei Tumori IRCCS, Fondazione G. Pascale, 80131, Naples, Italy
| | | | - Yusuf Hannun
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Chiara Luberto
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, University of Milan, 20133, Milan, Italy
| | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, Università di Bologna, 40126, Bologna, Italy.
| |
Collapse
|
13
|
Chen P, Shi Y, Xiao X, Xue R, Li Y, Li L, Mao C, Lu T, Xu C. A study of the lipid profile of Coix seeds from four areas based on untargeted lipidomics combined with multivariate algorithms to enable tracing of their origin. Food Res Int 2023; 169:112740. [PMID: 37254373 DOI: 10.1016/j.foodres.2023.112740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 06/01/2023]
Abstract
The geographical traceability of food products is seen as a distinctive feature of the future of food which is increasingly becoming a concern for consumers. In this research, differences in the lipid composition of Coix seed samples from four major Chinese origins were investigated using non-targeted lipidomics. By multivariate statistical analysis, unsupervised PCA and OPLS-DA based differentiation between the four origins of Coix seed samples could be achieved. The OPLS-DA VIP > 1 screened 72 lipids out of 1211 lipids as potential markers to distinguish Coix seeds from different origins. In addition, the potential markers (SPH(d16:0), Cer(d18:2/20:0 + O) and PC(8:0e/8:0) were combined with statistical analysis algorithms to construct a discriminant function for rapid differentiation of Coix seed samples from different origins and a specific function for different origins with 100% discrimination accuracy. In general, a rapid and accurate method combining multivariate chemometrics and algorithms was developed based on untargeted lipidomics to determine the geographical origin of Coix seed samples, which can also be applied to other agricultural products.
Collapse
Affiliation(s)
- Peng Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yabo Shi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoyan Xiao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rong Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lin Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunqin Mao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Conglong Xu
- Jiangxi Jingde Chinese Medicine Co Ltd, Leping 333302, China.
| |
Collapse
|
14
|
Segneanu AE, Vlase G, Chirigiu L, Herea DD, Pricop MA, Saracin PA, Tanasie ȘE. Romanian Wild-Growing Armoracia rusticana L.-Untargeted Low-Molecular Metabolomic Approach to a Potential Antitumoral Phyto-Carrier System Based on Kaolinite. Antioxidants (Basel) 2023; 12:1268. [PMID: 37371998 PMCID: PMC10295413 DOI: 10.3390/antiox12061268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Horseradish is a globally well-known and appreciated medicinal and aromatic plant. The health benefits of this plant have been appreciated in traditional European medicine since ancient times. Various studies have investigated the remarkable phytotherapeutic properties of horseradish and its aromatic profile. However, relatively few studies have been conducted on Romanian horseradish, and they mainly refer to the ethnomedicinal or dietary uses of the plant. This study reports the first complete low-molecular-weight metabolite profile of Romanian wild-grown horseradish. A total of ninety metabolites were identified in mass spectra (MS)-positive mode from nine secondary metabolite categories (glucosilates, fatty acids, isothiocyanates, amino acids, phenolic acids, flavonoids, terpenoids, coumarins, and miscellaneous). In addition, the biological activity of each class of phytoconstituents was discussed. Furthermore, the development of a simple target phyto-carrier system that collectively exploits the bioactive properties of horseradish and kaolinite is reported. An extensive characterization (FT-IR, XRD, DLS, SEM, EDS, and zeta potential) was performed to investigate the morpho-structural properties of this new phyto-carrier system. The antioxidant activity was evaluated using a combination of three in vitro, non-competitive methods (total phenolic assay, 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assay, and phosphomolybdate (total antioxidant capacity)). The antioxidant assessment indicated the stronger antioxidant properties of the new phyto-carrier system compared with its components (horseradish and kaolinite). The collective results are relevant to the theoretical development of novel antioxidant agent fields with potential applications on antitumoral therapeutic platforms.
Collapse
Affiliation(s)
- Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timisoara (ICAM-WUT), Oituz nr. 4, 300086 Timisoara, Romania;
| | - Gabriela Vlase
- Institute for Advanced Environmental Research, West University of Timisoara (ICAM-WUT), Oituz nr. 4, 300086 Timisoara, Romania;
- Research Center for Thermal Analysis in in Environmental Problems, West University of Timisoara, Pestalozzi St. 16, 300115 Timisoara, Romania
| | - Liviu Chirigiu
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, 2, Petru Rareș, 200349 Craiova, Romania; (L.C.); (P.-A.S.); (Ș.E.T.)
| | - Daniel Dumitru Herea
- National Institute of Research and Development for Technical Physics, 47 Mangeron Blvd, 700050 Iasi, Romania;
| | - Maria-Alexandra Pricop
- OncoGen Centre, Clinical County Hospital “Pius Branzeu”, Blvd. Liviu Rebreanu 156, 300723 Timisoara, Romania;
| | - Patricia-Aida Saracin
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, 2, Petru Rareș, 200349 Craiova, Romania; (L.C.); (P.-A.S.); (Ș.E.T.)
| | - Ștefania Eliza Tanasie
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, 2, Petru Rareș, 200349 Craiova, Romania; (L.C.); (P.-A.S.); (Ș.E.T.)
| |
Collapse
|
15
|
Supruniuk E, Żebrowska E, Maciejczyk M, Zalewska A, Chabowski A. Lipid peroxidation and sphingolipid alterations in the cerebral cortex and hypothalamus of rats fed a high-protein diet. Nutrition 2023; 107:111942. [PMID: 36621260 DOI: 10.1016/j.nut.2022.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/10/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES High-protein diets (HPDs) are widely accepted to enhance satiety and energy expenditure and thus have become a popular strategy to lose weight and facilitate muscle protein synthesis. However, long-term high-protein consumption could be linked with metabolic and clinical problems such as renal and liver dysfunctions. This study verified the effects of 8-wk high-protein ingestion on lipid peroxidation and sphingolipid metabolism in the plasma, cerebral cortex, and hypothalamus in rats. METHODS Immunoenzymatic and spectrophotometric methods were applied to assess oxidation-reduction (redox) biomarkers and neutral sphingomyelinase activity, whereas gas-liquid chromatography and high-performance liquid chromatography were used to examine sphingolipid levels. RESULTS The vast majority of HPD-related alterations was restricted to the hypothalamus. Specifically, an increased rate of lipid peroxidation (increased lipid hydroperoxides, 8-isoprostanes, and thiobarbituric acid reactive substances) associated with ceramide accumulation via the activation of de novo synthesis (decreased sphinganine), salvage pathway (decreased sphingosine), and sphingomyelin hydrolysis (decreased sphingomyelin and increased neutral sphingomyelinase activity) was noted. CONCLUSIONS This study showed that HPD substantially affected hypothalamic metabolic pathways, which potentially alter cerebral output signals to the peripheral tissues.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland.
| | - Anna Zalewska
- Department of Restorative Dentistry, Medical University of Bialystok, Bialystok, Poland; Independent Laboratory of Experimental Dentistry, Medical University of Bialystok, Bialystok, Poland.
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
16
|
Yang F, Chen G. The nutritional functions of dietary sphingomyelin and its applications in food. Front Nutr 2022; 9:1002574. [PMID: 36337644 PMCID: PMC9626766 DOI: 10.3389/fnut.2022.1002574] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids are common structural components of cell membranes and are crucial for cell functions in physiological and pathophysiological conditions. Sphingomyelin and its metabolites, such as sphingoid bases, ceramide, ceramide-1-phosphate, and sphingosine-1-phosphate, play signaling roles in the regulation of human health. The diverse structures of sphingolipids elicit various functions in cellular membranes and signal transduction, which may affect cell growth, differentiation, apoptosis, and maintain biological activities. As nutrients, dietary sphingomyelin and its metabolites have wide applications in the food and pharmaceutical industry. In this review, we summarized the distribution, classifications, structures, digestion, absorption and metabolic pathways of sphingolipids, and discussed the nutritional functioning of sphingomyelin in chronic metabolic diseases. The possible implications of dietary sphingomyelin in the modern food preparations including dairy products and infant formula, skin improvement, delivery system and oil organogels are also evaluated. The production of endogenous sphingomyelin is linked to pathological changes in obesity, diabetes, and atherosclerosis. However, dietary supplementations of sphingomyelin and its metabolites have been shown to maintain cholesterol homeostasis and lipid metabolism, and to prevent or treat these diseases. This seemly paradoxical phenomenon shows that dietary sphingomyelin and its metabolites are candidates for food additives and functional food development for the prevention and treatment of chronic metabolic diseases in humans.
Collapse
Affiliation(s)
- Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Fang Yang,
| | - Guoxun Chen
- Department of Nutrition, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
17
|
Investigation of oyster Crassostrea gigas lipid profile from three sea areas of China based on non-targeted lipidomics for their geographic region traceability. Food Chem 2022; 386:132748. [PMID: 35344724 DOI: 10.1016/j.foodchem.2022.132748] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/20/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
The present study sought to analyze the lipid profiles of oyster Crassostrea gigas from Yellow Sea (YS), East China Sea, and South China Sea (SCS) through the untargeted lipidomics strategy based on UPLC-Q-Exactive Orbitrap mass spectrometry and multivariate statistics. The results elucidated that geographical differences had profound effects on the lipid content, composition, and lipid molecular profiles. Notably, oysters from the YS group contained the highest lipid content, including triacylglycerol, diacylglycerols, and the majority of phospholipid molecule species, while oysters from the ECS group contained most of the phosphatidylcholine species and the SCS group contained most of the sphingolipid species. Totally, 1155 lipid molecular species belonging to 21 subclasses were identified; of them, 45 lipid molecular species could serve as differential marker for lipid of oysters from different sea areas. Overall, lipidomics could be a potential approach for discrimination of lipid characters between marine shellfishes for geographical origin traceability.
Collapse
|
18
|
Nicholson RJ, Norris MK, Poss AM, Holland WL, Summers SA. The Lard Works in Mysterious Ways: Ceramides in Nutrition-Linked Chronic Disease. Annu Rev Nutr 2022; 42:115-144. [PMID: 35584813 PMCID: PMC9399075 DOI: 10.1146/annurev-nutr-062220-112920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diet influences onset, progression, and severity of several chronic diseases, including heart failure, diabetes, steatohepatitis, and a subset of cancers. The prevalence and clinical burden of these obesity-linked diseases has risen over the past two decades. These metabolic disorders are driven by ectopic lipid deposition in tissues not suited for fat storage, leading to lipotoxic disruption of cell function and survival. Sphingolipids such as ceramides are among the most deleterious and bioactive metabolites that accrue, as they participate in selective insulin resistance, dyslipidemia, oxidative stress and apoptosis. This review discusses our current understanding of biochemical pathways controlling ceramide synthesis, production and action; influences of diet on ceramide levels; application of circulating ceramides as clinical biomarkers of metabolic disease; and molecular mechanisms linking ceramides to altered metabolism and survival of cells. Development of nutritional or pharmacological strategies to lower ceramides could have therapeutic value in a wide range of prevalent diseases.
Collapse
Affiliation(s)
- Rebekah J. Nicholson
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| | - Marie K. Norris
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| | - Annelise M. Poss
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| | - William L. Holland
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA,Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
19
|
Sugawara T. Sphingolipids as Functional Food Components: Benefits in Skin Improvement and Disease Prevention. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9597-9609. [PMID: 35905137 DOI: 10.1021/acs.jafc.2c01731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sphingolipids are ubiquitous components in eukaryotic organisms and have attracted attention as physiologically functional lipids. Sphingolipids with diverse structures are present in foodstuffs as these structures depend on the biological species they are derived from, such as mammals, plants, and fungi. The physiological functions of dietary sphingolipids, especially those that improve skin barrier function, have recently been noted. In addition, the roles of dietary sphingolipids in the prevention of diseases, including cancer and metabolic syndrome, have been studied. However, the mechanisms underlying the health-improving effects of dietary sphingolipids, especially their metabolic fates, have not been elucidated. Here, we review dietary sphingolipids, including their chemical structures and contents in foodstuff; digestion, intestinal absorption, and metabolism; and nutraceutical functions, based on the available evidence and hypotheses. Further research is warranted to clearly define how dietary sphingolipids can influence human health.
Collapse
Affiliation(s)
- Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake Cho, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan
| |
Collapse
|
20
|
Yun H, Sun L, Wu Q, Luo Y, Qi Q, Li H, Gu W, Wang J, Ning G, Zeng R, Zong G, Lin X. Lipidomic Signatures of Dairy Consumption and Associated Changes in Blood Pressure and Other Cardiovascular Risk Factors Among Chinese Adults. Hypertension 2022; 79:1617-1628. [PMID: 35469422 DOI: 10.1161/hypertensionaha.122.18981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Omics data may provide a unique opportunity to discover dairy-related biomarkers and their linked cardiovascular health. METHODS Dairy-related lipidomic signatures were discovered in baseline data from a Chinese cohort study (n=2140) and replicated in another Chinese study (n=212). Dairy intake was estimated by a validated food-frequency questionnaire. Lipidomics was profiled by high-coverage liquid chromatography-tandem mass spectrometry. Associations of dairy-related lipids with 6-year changes in cardiovascular risk factors were examined in the discovery cohort, and their causalities were analyzed by 2-sample Mendelian randomization using available genome-wide summary data. RESULTS Of 350 lipid metabolites, 4 sphingomyelins, namely sphingomyelin (OH) C32:2, sphingomyelin C32:1, sphingomyelin (2OH) C30:2, and sphingomyelin (OH) C38:2, were identified and replicated to be positively associated with total dairy consumption (β=0.130 to 0.148; P<1.43×10-4), but not or weakly with nondairy food items. The score of 4 sphingomyelins showed inverse associations with 6-year changes in systolic (-2.68 [95% CI, -4.92 to -0.43]; P=0.019), diastolic blood pressures (-1.86 [95% CI, -3.12 to -0.61]; P=0.004), and fasting glucose (-0.25 [95% CI, -0.41 to -0.08]; P=0.003). Mendelian randomization analyses further revealed that genetically inferred sphingomyelin (OH) C32:2 was inversely associated with systolic (-0.57 [95% CI, -0.85 to -0.28]; P=9.16×10-5) and diastolic blood pressures (-0.39 [95% CI, -0.59 to -0.20]; P=7.09×10-5). CONCLUSIONS The beneficial effects of dairy products on cardiovascular health might be mediated through specific sphingomyelins among Chinese with overall low dairy consumption.
Collapse
Affiliation(s)
- Huan Yun
- Shanghai Institute of Nutrition and Health (H.Y., L.S., Y.L., H.L., G.Z., X.L.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liang Sun
- Shanghai Institute of Nutrition and Health (H.Y., L.S., Y.L., H.L., G.Z., X.L.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qingqing Wu
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, China (Q.W., R.Z.)
| | - Yaogan Luo
- Shanghai Institute of Nutrition and Health (H.Y., L.S., Y.L., H.L., G.Z., X.L.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (Q.Q.)
| | - Huaixing Li
- Shanghai Institute of Nutrition and Health (H.Y., L.S., Y.L., H.L., G.Z., X.L.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiqiong Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (W.G., J.W., G.N.).,Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (W.G., J.W., G.N.)
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (W.G., J.W., G.N.).,Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (W.G., J.W., G.N.)
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (W.G., J.W., G.N.).,Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (W.G., J.W., G.N.)
| | - Rong Zeng
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study (R.Z., X.L.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study (R.Z., X.L.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, China (Q.W., R.Z.)
| | - Geng Zong
- Shanghai Institute of Nutrition and Health (H.Y., L.S., Y.L., H.L., G.Z., X.L.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xu Lin
- Shanghai Institute of Nutrition and Health (H.Y., L.S., Y.L., H.L., G.Z., X.L.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study (R.Z., X.L.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study (R.Z., X.L.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
21
|
Luo Z, Ma L, Zhou T, Huang Y, Zhang L, Du Z, Yong K, Yao X, Shen L, Yu S, Shi X, Cao S. Beta-Glucan Alters Gut Microbiota and Plasma Metabolites in Pre-Weaning Dairy Calves. Metabolites 2022; 12:687. [PMID: 35893252 PMCID: PMC9332571 DOI: 10.3390/metabo12080687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
The present study aims to evaluate the alterations in gut microbiome and plasma metabolites of dairy calves with β-glucan (BG) supplementation. Fourteen healthy newborn dairy calves with similar body weight were randomly divided into control (n = 7) and BG (n = 7) groups. All the calves were fed on the basal diet, while calves in the BG group were supplemented with oat BG on d 8 for 14 days. Serum markers, fecal microbiome, and plasma metabolites at d 21 were analyzed. The calves were weaned on d 60 and weighed. The mean weaning weight of the BG group was 4.29 kg heavier than that of the control group. Compared with the control group, the levels of serum globulin, albumin, and superoxide dismutase were increased in the BG group. Oat BG intake increased the gut microbiota richness and decreased the Firmicutes-to-Bacteroidetes ratio. Changes in serum markers were found to be correlated with the plasma metabolites, including sphingosine, trehalose, and 3-methoxy-4-hydroxyphenylglycol sulfate, and gut microbiota such as Ruminococcaceae_NK4A214, Alistipes, and Bacteroides. Overall, these results suggest that the BG promotes growth and health of pre-weaning dairy calves by affecting the interaction between the host and gut microbiota.
Collapse
Affiliation(s)
- Zhengzhong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China;
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Li Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Tao Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Yixin Huang
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G61 1QH, UK;
| | - Liben Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Zhenlong Du
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Kang Yong
- Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404100, China;
| | - Xueping Yao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Liuhong Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Shumin Yu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Xiaodong Shi
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China;
| | - Suizhong Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| |
Collapse
|
22
|
HPLC-MS, GC and NMR Profiling of Bioactive Lipids of Human Milk and Milk of Dairy Animals (Cow, Sheep, Goat, Buffalo, Camel, Red Deer). SEPARATIONS 2022. [DOI: 10.3390/separations9060145] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
For non-bovine milks, information regarding bioactive lipids is fragmented, unreliable or unavailable. The purpose of the current study was to analyse bioactive lipids in the milk of dairy animals using modern analytical methods to achieve the most reliable results. Bioactive lipids in human milk were also analysed and used as a reference. A suite of modern analytical methods was employed, namely High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS), Gas Chromatography (GC) and Nuclear Magnetic Resonance (NMR). The total lipid content was determined, and phospholipid, fatty acid, neutral glycosphingolipids and ganglioside (GM3 and GD3) levels were measured. Lipid classes in selected milks were reliably characterised for the first time, including gangliosides in deer, camel and sheep; cerebrosides in deer, camel and buffalo; plasmalogens in deer, buffalo and goat and phospholipids in deer. Our study demonstrated the advantage of utilising a range of analytical techniques in order to characterise a diverse set of bioactive lipids.
Collapse
|
23
|
Sun X, Qu T, Wang W, Li C, Yang X, He X, Wang Y, Xing G, Xu X, Yang L, Zhang H. Untargeted lipidomics analysis in women with intrahepatic cholestasis of pregnancy: a cross-sectional study. BJOG 2022; 129:880-888. [PMID: 34797934 DOI: 10.1111/1471-0528.17026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To compare the plasma lipid profiles in women with normal pregnancies and those with mild or severe intrahepatic cholestasis of pregnancy (ICP). Our goal was to reveal lipidome-wide alterations in ICP and delve into the pathogenesis of ICP from a lipid metabolism perspective. DESIGN Cross-sectional study, including women with normal pregnancies, women with mild ICP and women with severe ICP. SETTING Gansu Provincial Hospital. POPULATION Women with ICP were recruited from October 2019 to March 2020 in Gansu, China. METHODS Untargeted lipidomics was used to analyse differentially expressed plasma lipids in controls, in women with mild ICP and in women with severe ICP (n = 30 per group). For lipidomics, liquid chromatography and Q-Exactive Plus Orbitrap mass spectrometry were performed. MAIN OUTCOME MEASURES Differentially expressed lipids. RESULTS Thirty-three lipids were differentially expressed in the severe and mild ICP groups, compared with the control group, and 20 of those were sphingolipids (ceramide, six species; sphingomyelin, 14 species). All differentially expressed sphingolipids in women with mild ICP were also differentially expressed in women with severe ICP; the fold change and significance of the differential expression were positively correlated with disease severity. CONCLUSIONS We systematically characterized the lipidome-wide alterations in mild and severe ICP groups. The results indicated a link between ICP and disordered sphingolipid homeostasis. TWEETABLE ABSTRACT Abnormal sphingolipid metabolism is involved in the pathogenesis of ICP.
Collapse
Affiliation(s)
- X Sun
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - T Qu
- Department of Biotherapy Center, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - W Wang
- School of Life Science, Northwest Normal University, Lanzhou, Gansu, China
| | - C Li
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - X Yang
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - X He
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Y Wang
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - G Xing
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - X Xu
- Department of Biotherapy Center, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - L Yang
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - H Zhang
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
24
|
de Weerth C, Aatsinki AK, Azad MB, Bartol FF, Bode L, Collado MC, Dettmer AM, Field CJ, Guilfoyle M, Hinde K, Korosi A, Lustermans H, Mohd Shukri NH, Moore SE, Pundir S, Rodriguez JM, Slupsky CM, Turner S, van Goudoever JB, Ziomkiewicz A, Beijers R. Human milk: From complex tailored nutrition to bioactive impact on child cognition and behavior. Crit Rev Food Sci Nutr 2022; 63:7945-7982. [PMID: 35352583 DOI: 10.1080/10408398.2022.2053058] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human milk is a highly complex liquid food tailor-made to match an infant's needs. Beyond documented positive effects of breastfeeding on infant and maternal health, there is increasing evidence that milk constituents also impact child neurodevelopment. Non-nutrient milk bioactives would contribute to the (long-term) development of child cognition and behavior, a process termed 'Lactocrine Programming'. In this review we discuss the current state of the field on human milk composition and its links with child cognitive and behavioral development. To promote state-of-the-art methodologies and designs that facilitate data pooling and meta-analytic endeavors, we present detailed recommendations and best practices for future studies. Finally, we determine important scientific gaps that need to be filled to advance the field, and discuss innovative directions for future research. Unveiling the mechanisms underlying the links between human milk and child cognition and behavior will deepen our understanding of the broad functions of this complex liquid food, as well as provide necessary information for designing future interventions.
Collapse
Affiliation(s)
- Carolina de Weerth
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
| | - Anna-Katariina Aatsinki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Meghan B Azad
- Department of Pediatrics and Child Health, Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frank F Bartol
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Lars Bode
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, California, USA
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Amanda M Dettmer
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, College of Basic and Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Meagan Guilfoyle
- Department of Anthropology, Indiana University, Bloomington, Indiana, USA
| | - Katie Hinde
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity group, University of Amsterdam, Amsterdam, The Netherlands
| | - Hellen Lustermans
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
| | - Nurul Husna Mohd Shukri
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sophie E Moore
- Department of Women & Children's Health, King's College London, St Thomas' Hospital, London, UK
- School of Hygiene and Tropical Medicine, Nutrition Theme, MRC Unit The Gambia and the London, Fajara, The GambiaBanjul
| | - Shikha Pundir
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Juan Miguel Rodriguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Carolyn M Slupsky
- Department of Nutrition and Department of Food Science and Technology, University of California, Davis, California, USA
| | - Sarah Turner
- Department of Community Health Sciences, Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Johannes B van Goudoever
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Anna Ziomkiewicz
- Department of Anthropology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Roseriet Beijers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
- Department of Social Development, Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
25
|
Hu Z, Duan J. 1-Deoxysphingolipids and Their Analogs in Foods: The Occurrence and Potential Impact on Human Health. J Nutr Sci Vitaminol (Tokyo) 2022; 68:S146-S148. [PMID: 36437001 DOI: 10.3177/jnsv.68.s146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
1-Deoxysphingolipids (1-deoxySLs) are structurally distinguished from canonical sphingolipids (SLs) by absenting the essential C1-OH group that can be found in the daily diet, especially in seafoods. Excessive production of endogenous 1-deoxySLs is involved in multiple diseases. Within this review, we discuss the presence of 1-deoxySLs and their analogs from the diet and their potential physiological and pathophysiological aspects. 1-DeoxySLs as dietary and endogenously produced components are still full of mysteries and research gaps that warrant further attention.
Collapse
Affiliation(s)
- Zhenying Hu
- Human Aging Research Institute and School of Life Sciences, Nanchang University
| | - Jingjing Duan
- Human Aging Research Institute and School of Life Sciences, Nanchang University
| |
Collapse
|
26
|
Zelnik ID, Kim JL, Futerman AH. The Complex Tail of Circulating Sphingolipids in Atherosclerosis and Cardiovascular Disease. J Lipid Atheroscler 2021; 10:268-281. [PMID: 34621698 PMCID: PMC8473959 DOI: 10.12997/jla.2021.10.3.268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Sphingolipids (SLs) are critical players in a number of cellular processes and have recently been implicated in a large number of human diseases, including atherosclerosis and cardiovascular disease (CVD). SLs are generated intracellularly in a stepwise manner, starting with the generation of the sphingoid long chain base (LCB), followed by N-acylation of the LCB to form ceramide, which can be subsequently metabolized to sphingomyelin and glycosphingolipids. Fatty acids, which are taken up by cells prior to their activation to fatty acyl-CoAs, are used in 2 of these enzymatic steps, including by ceramide synthases, which use fatty acyl-CoAs of different chain lengths to generate ceramides with different N-acyl chain lengths. Recently, alterations in plasma ceramides with specific N-acyl chain lengths and degrees of saturation have emerged as novel biomarkers for the prediction of atherosclerosis and overall cardiovascular risk in the general population. We briefly review the sources of plasma SLs in atherosclerosis, the roles of SLs in CVD, and the possible use of the "ceramide score" as a prognostic marker for CVD.
Collapse
Affiliation(s)
- Iris D Zelnik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jiyoon L Kim
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
27
|
Sphingolipids in foodstuff: Compositions, distribution, digestion, metabolism and health effects - A comprehensive review. Food Res Int 2021; 147:110566. [PMID: 34399542 DOI: 10.1016/j.foodres.2021.110566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/26/2022]
Abstract
Sphingolipids (SLs) are common in all eukaryotes, prokaryotes, and viruses, and played a vital role in human health. They are involved in physiological processes, including intracellular transport, cell division, and signal transduction. However, there are limited reviews on dietary effects on endogenous SLs metabolism and further on human health. Various dietary conditions, including the SLs-enriched diet, high-fat diet, and vitamins, can change the level of endogenous SLs metabolites and even affect human health. This review systematically summarizes the main known SLs in foods concerning their variety and contents, as well as their isolation and identification approaches. Moreover, the present review discusses the role of dietary (particularly SLs-enriched diet, high-fat diet, and vitamins) in endogenous SLs metabolism, highlighting how exogenous SLs are digested and absorbed. The role of SLs family in the pathogenesis of diseases, including cancers, neurological disorders, infectious and inflammatory diseases, and cardiovascular diseases, and in recently coronavirus disease-19 outbreak was also discussed. In the post-epidemic era, we believe that the concern for health and the need for plant-based products will increase. Therefore, a need for research on the absorption and metabolism pathway of SLs (especially plant-derived SLs) and their bioavailability is necessary. Moreover, the effects of storage treatment and processing on the content and composition of SLs in food are worth exploring. Further studies should also be conducted on the dose-response of SLs on human health to support the development of SLs supplements. More importantly, new approaches, such as, making SLs based hydrogels can effectively achieve sustained release and targeted therapies.
Collapse
|
28
|
Yin M, Fu X, Wang X. Key lipid molecules in hepatopancreas of Eriocheir sinensis: Identification and thermal oxidative degradation characteristics. J Food Biochem 2021; 45:e13734. [PMID: 33990974 DOI: 10.1111/jfbc.13734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 11/27/2022]
Abstract
The hepatopancreas of Eriocheir sinensis are the key parts that form its unique flavor. Lipids are important parts of hepatopancreas; hence, this study used UHPLC-Q E Orbitrap mass spectrometer to investigate the changes in the lipid composition of crabs formed from thermal oxidation system. The results demonstrated that key lipids in the hepatopancreas of female Chinese mitten crabs were phosphatidylethanolamine (PE) and free fatty acid (FFA) during the steaming process. The key fatty acids of PE were C18:1, C18:3, C20:3, C20:4, C20:5, and C22:6. The degradation rate of C24:0 in FFA was greater than the synthesis rate. Principal component analysis, partial least square analysis combined with hierarchical cluster analysis found that PE (16:0/20:5), PE (18:1/20:4), PE (16:0/22:6), PE (16:0/20:4), PE (16:0 /16:1), PE (16:0/18:2), PE (18:0/20:5), PE (18:0/22:6), PE (18:0/20:4), PE (16:0/18:1), PE (18:0/18:2), PE (18:0/22:5), and PE (18:0/18:1) were the key PE molecular species. Simulating thermal oxidation to understand the dynamic change mechanism of lipids is meaningful for processing of Chinese mitten crab products and catering to public sensory orientation. PRACTICAL APPLICATIONS: In this study, the UHPLC-Q E Orbitrap method was used to detect and analyze the molecular species changes of Eriocheir sinensis in the simulated thermal oxidation system, and systematically analyzed the law of changes. Based on these results, we can expand our understanding of the changing characteristics of the hepatopancreas and pancreas of the river crab and provide a direction for the formation mechanism of the aroma substances of E. sinensis during the heat treatment and the improvement of the quality of its products.
Collapse
Affiliation(s)
- Mingyu Yin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Xueyan Fu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| |
Collapse
|
29
|
Raza GS, Herzig KH, Leppäluoto J. Invited review: Milk fat globule membrane-A possible panacea for neurodevelopment, infections, cardiometabolic diseases, and frailty. J Dairy Sci 2021; 104:7345-7363. [PMID: 33896625 DOI: 10.3168/jds.2020-19649] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/15/2021] [Indexed: 12/23/2022]
Abstract
Milk is an evolutionary benefit for humans. For infants, it offers optimal nutrients for normal growth, neural development, and protection from harmful microbes. Humans are the only mammals who drink milk throughout their life. Lipids in colostrum originate mostly from milk fat globule membrane (MFGM) droplets extruded from the mammary gland. The MFGM gained much interest as a potential nutraceutical, due to their high phospholipid (PL), ganglioside (GD), and protein contents. In this review, we focused on health effects of MFGM ingredients and dairy food across the life span, especially on neurodevelopment, cardiometabolic health, and frailty in older adults. The MFGM supplements to infants and children reduced gastrointestinal and respiratory tract infections and improved neurodevelopment due to the higher content of protein, PL, and GD in MFGM. The MFGM formulas containing PL and GD improved brain myelination and fastened nerve conduction speed, resulting in improved behavioral developments. Administration of MFGM-rich ingredients improved insulin sensitivity and decreased inflammatory markers, LDL-cholesterol, and triglycerides by lowering intestinal absorption of cholesterol and increasing its fecal excretion. The MFGM supplements, together with exercise, improved ambulatory activities, leg muscle mass, and muscle fiber velocity in older adults. There are great variations in the composition of lipids and proteins in MFGM products, which make comparisons of the different studies impossible. In addition, investigations of the individual MFGM components are required to evaluate their specific effects and molecular mechanisms. Although we are currently only beginning to understand the possible health effects of MFGM products, the current MFGM supplementation trials as presented in this review have shown significant clinical health benefits across the human life span, which are worth further investigation.
Collapse
Affiliation(s)
- Ghulam Shere Raza
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland; Oulu University Hospital, 90220 Oulu, Finland; Pediatric Institute, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| | - Juhani Leppäluoto
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland.
| |
Collapse
|
30
|
Tsamo AT, Mohammed M, Dakora FD. Metabolite Fingerprinting of Kersting's Groundnut [ Macrotyloma geocarpum (Harms) Maréchal & Baudet] Seeds Using UPLC-qTOF-MS Reveals the Nutraceutical and Antioxidant Potentials of the Orphan Legume. Front Nutr 2021; 7:593436. [PMID: 33385005 PMCID: PMC7770220 DOI: 10.3389/fnut.2020.593436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/23/2020] [Indexed: 01/04/2023] Open
Abstract
The identification and subsequent quantification of phenolic compounds in plants is the first step toward harnessing their associated nutritional and health benefits. Due to their diverse phenolic compound compositions, grain legumes are known for their high nutritional and health values. The aim of this study was to assess the inter-variations in chemical composition, phytochemical content, and antioxidant capacity of seed extracts from eight Kersting's groundnut [Macrotyloma geocarpum (Harms) Marechal & Baudet] landraces. The chemical profiles were evaluated using UPLC-qTOF-MS. Total phenolics and flavonoids content were determined by the Folin-Ciocalteu and aluminum chloride methods, respectively. The antioxidant capacities in the forms of DPPH and ABTS were evaluated using spectrophotometric methods. Principal component analysis was used to define similarities/differences between the landraces. Based on untargeted metabolomics analysis, 57 metabolites were identified, with phenolics, triterpenes, fatty acids, and sphingolipids being the most predominant. The results showed that the black seeded KG1 (Puffeun) had the highest total phenolic (9.44 mg GAE/g) and flavonoid (3.01 mg QE/g) contents, as well as antioxidant capacity (9.17 μg/mL and 18.44 μg/mL based on DDPH and ABTS assays, respectively). The concentrations of ferulic acid hexoside, procyanidin B2, eryodictyiol-7-rutinoside and quercetin pentoside ranged from 51.78–441.31, 1.86–18.25, 3.26–13.95 to 5.44–63.85 μg/mg, respectively. This study presents a useful report on the phytochemical characterization of Kersting's groundnuts and shows that the grains can be used as a source of nutraceuticals for human consumption.
Collapse
Affiliation(s)
- Armelle Tontsa Tsamo
- Department of Organic Chemistry, University of Yaoundé I, Yaounde, Cameroon.,Department of Chemistry, Tshwane University of Technology, Pretoria, South Africa
| | - Mustapha Mohammed
- Department of Chemistry, Tshwane University of Technology, Pretoria, South Africa.,Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Felix Dapare Dakora
- Department of Chemistry, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
31
|
Whole Goat Milk as a Source of Fat and Milk Fat Globule Membrane in Infant Formula. Nutrients 2020; 12:nu12113486. [PMID: 33202897 PMCID: PMC7696746 DOI: 10.3390/nu12113486] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 01/03/2023] Open
Abstract
Cow milk is the most common dairy milk and has been extensively researched for its functional, technological and nutritional properties for a wide range of products. One such product category is infant formula, which is the most suitable alternative to feed infants, when breastfeeding is not possible. Most infant formulas are based on cow milk protein ingredients. For several reasons, consumers now seek alternatives such as goat milk, which has increasingly been used to manufacture infant, follow-on and young child formulas over the last 30 years. While similar in many aspects, compositional and functional differences exist between cow and goat milk. This offers the opportunity to explore different formulations or manufacturing options for formulas based on goat milk. The use of whole goat milk as the only source of proteins in formulas allows levels of milk fat, short and medium chain fatty acids, sn-2 palmitic acid, and milk fat globule membrane (MFGM) to be maximised. These features improve the composition and microstructure of whole goat milk-based infant formula, providing similarities to the complex human milk fat globules, and have been shown to benefit digestion, and cognitive and immune development. Recent research indicates a role for milk fat and MFGM on digestive health, the gut–brain axis and the gut–skin axis. This review highlights the lipid composition of whole goat milk-based infant formula and its potential for infant nutrition to support healthy digestion, brain development and immunity. Further work is warranted on the role of these components in allergy development and the advantages of goat milk fat and MFGM for infant nutrition and health.
Collapse
|