1
|
Lan J, Zou J, Xin H, Sun J, Han T, Sun M, Niu M. Nanomedicines as disruptors or inhibitors of biofilms: Opportunities in addressing antimicrobial resistance. J Control Release 2025; 381:113589. [PMID: 40032007 DOI: 10.1016/j.jconrel.2025.113589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/02/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
The problem of antimicrobial resistance (AMR) has caused global concern due to its great threat to human health. Evidences are emerging for a critical role of biofilms, one of the natural protective mechanisms developed by bacteria during growth, in resisting commonly used clinical antibiotics. Advances in nanomedicines with tunable physicochemical properties and unique anti-biofilm mechanisms provide opportunities for solving AMR risks more effectively. In this review, we summarize the five "A" stages (adhesion, amplification, alienation, aging and allocation) of biofilm formation and mechanisms through which they protect the internal bacteria. Aimed at the characteristics of biofilms, we emphasize the design "THAT" principles (targeting, hacking, adhering and transport) of nanomedicines in their interactions with biofilms and internal bacteria. Furthermore, recent progresses in multimodal antibacterial nanomedicines, including biofilms disruption and bactericidal activity, and the types of currently available antibiofilm nanomedicines contained organic and inorganic nanomedicines are outlined and highlighted their potential applications in the development of preclinical research. Last but not least, we offer a perspective for the effectiveness of nanomedicines designed to address AMR and challenges associated with their clinical translation.
Collapse
Affiliation(s)
- Jiaming Lan
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jingyu Zou
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - He Xin
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Tao Han
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| | - Mengchi Sun
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| | - Meng Niu
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
2
|
Han Y, Yin M, Zhang Q, Tian L, Wu H, Song Y, He X. Fe 2O 3@D201 Enhanced Efficiency of Food Waste Degradation by Microbial Inoculum Under Aerobic Condition. Curr Microbiol 2025; 82:224. [PMID: 40172644 DOI: 10.1007/s00284-025-04215-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
The global quantity of food waste (FW) is increasing at an alarming rate, making safe disposal a pressing issue in urban management. The inappropriate disposal of FW will put risks on health and environment. Aerobic degradation equipment has emerged as a promising solution for FW disposal by adding microbial agents. However, current equipment faces challenges such as long processing duration and low efficiency. Therefore, we investigated the impact of combining microbial agents with iron oxide nano-resin (Fe2O3@D201) on the aerobic degradation of FW. We conducted experiments using 10% microbial agents supplemented with 6% Fe2O3@D201 for FW degradation. Compared to the control group containing 10% microbial agents, the Fe2O3@D201-treated group showed higher levels of dissolved COD in the leachate, reaching 1.59 × 105 mg/L. Furthermore, the microbial hydrolytic enzyme activities in FW of this group surpassed those of the control group, with cellulase activity peaking at 0.13 U compared to the control group's peak of 0.06 U. Through 16S rRNA gene amplicon sequencing, we found that Fe2O3@D201 significantly enriched the abundance of Bacillus, which are commonly known for their hydrolysis functions. The results indicated that Fe2O3@D201 enhanced FW degradation by promoting the abundance of specialized microorganisms, and thus increased the hydrolytic enzyme activity, promoting the conversion of solid macromolecules into soluble organic matter. Consequently, Fe2O3@D201 shows potential for application in FW treatment equipment.
Collapse
Affiliation(s)
- Ying Han
- School of Environmental and Chemical Engineering, YanShan University, 438# West Hebei Street, Haigang District, Qinhuangdao, 066004, Hebei, People's Republic of China.
- Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, YanShan University, Qinhuangdao, 066004, People's Republic of China.
| | - Meiqi Yin
- School of Environmental and Chemical Engineering, YanShan University, 438# West Hebei Street, Haigang District, Qinhuangdao, 066004, Hebei, People's Republic of China
| | - Qingrui Zhang
- School of Environmental and Chemical Engineering, YanShan University, 438# West Hebei Street, Haigang District, Qinhuangdao, 066004, Hebei, People's Republic of China
- Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, YanShan University, Qinhuangdao, 066004, People's Republic of China
| | - Lili Tian
- School of Environmental and Chemical Engineering, YanShan University, 438# West Hebei Street, Haigang District, Qinhuangdao, 066004, Hebei, People's Republic of China
- Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, YanShan University, Qinhuangdao, 066004, People's Republic of China
| | - Hao Wu
- School of Environmental and Chemical Engineering, YanShan University, 438# West Hebei Street, Haigang District, Qinhuangdao, 066004, Hebei, People's Republic of China
| | - Yu Song
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, 066102, Hebei, People's Republic of China
| | - Xin He
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, 066102, Hebei, People's Republic of China
| |
Collapse
|
3
|
Huang F, Zhang T, Zhu L, Wang H, Zhao Y, Wang Z, Huang Q. Nano-Formulated Pyraclostrobin With Iron Bismuthide Enhances Efficient Utilization of Active Ingredient and Improves Biosafety. Chem Biodivers 2025:e202402934. [PMID: 39788900 DOI: 10.1002/cbdv.202402934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
The widespread application of pyraclostrobin (PYR), an important strobilurin fungicide with low utilization efficiency, urgently requires optimization for sustainable agriculture. In this study, nanoformulated PYR with nano-iron bismuthide (FeBi) was successfully prepared via flash nanoprecipitation, yielding spherical PYR/FeBi nanoparticles (NPs, Φ120 nm) with stable drug loading capacity (67.9%) and controlled release. These NPs exhibited enhanced anti-Botrytis activity in vitro and superior in vivo performance. On tomato leaves, PYR/FeBi NPs at 80 µg/mL achieved greater than 90% curative and protective efficacy against Botrytis cinerea infection and significantly mitigated lesion expansion, surpassing commercial PYR suspension concentrate (SC) at equivalent concentrations. On tomato seedlings, PYR/FeBi NPs significantly reduced gray mold disease by 89%, compared to 67% with PYR SC at the same concentration. The mechanism underlying this enhanced activity involved stronger disruption of mitochondrial metabolism, including acetylation process, oxalate production, and damage to mycelia and conidia. Further, PYR/FeBi NPs displayed reduced cytotoxicity on human Hek293 and Chinese hamster V79 cells compared to PYR SC. The results highlighted the biocompatibility and potential of PYR/FeBi NPs for efficient utilization of active ingredients in sustainable agriculture.
Collapse
Affiliation(s)
- Fengcheng Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Tianyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Lisong Zhu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Hongye Wang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Yanjun Zhao
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
4
|
Khan S, Haider MF. A Comprehensive Review on Repurposing the Nanocarriers for the Treatment of Parkinson's Disease: An Updated Patent and Clinical Trials. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:181-195. [PMID: 39400019 DOI: 10.2174/0118715273323074241001071645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative disorder marked by the deterioration of dopamine-producing neurons, resulting in motor impairments like tremors and rigidity. While the precise cause remains elusive, genetic and environmental factors are implicated. Mitochondrial dysfunction, oxidative stress, and protein misfolding contribute to the disease's pathology. Current therapeutics primarily aim at symptom alleviation, employing dopamine replacement and deep brain stimulation. However, the quest for disease-modifying treatments persists. Ongoing clinical trials explore novel approaches, such as neuroprotective agents and gene therapies, reflecting the evolving PD research landscape. This review provides a comprehensive overview of PD, covering its basics, causal factors, major pathways, existing treatments, and a nuanced exploration of ongoing clinical trials. As the scientific community strives to unravel PD's complexities, this review offers insights into the multifaceted strategies pursued for a better understanding and enhanced management of this debilitating condition.
Collapse
Affiliation(s)
- Sara Khan
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Md Faheem Haider
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| |
Collapse
|
5
|
Younis MA, Alsogaihi MA, Abdellatif AAH, Saleem I. Nanoformulations in the treatment of lung cancer: current status and clinical potential. Drug Dev Ind Pharm 2024:1-17. [PMID: 39629952 DOI: 10.1080/03639045.2024.2437562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/17/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVE Recent developments in nanotechnology have regained hope in enabling the eradication of lung cancer, while overcoming the drawbacks of the classic therapeutics. Nevertheless, there are still formidable obstacles that hinder the translation of such platforms from the bench into the clinic. Herein, we shed light on the clinical potential of these formulations and discuss their future directions. SIGNIFICANCE OF REVIEW The current article sheds light on the recent advancements in the recruitment of nanoformulations against lung cancer, focusing on their unique features, merits, and demerits. Moreover, inorganic nanoparticles, including gold, silver, magnetic, and carbon nanotubes are highlighted as emerging drug delivery technologies. Furthermore, the clinical status of these formulations is discussed, with particular attention on the challenges that they encounter in their clinical translation. Lastly, the future perspectives in this promising area are inspired. KEY FINDINGS Nanoformulations have a promising potential in improving the physico-chemical properties, pharmacokinetics, delivery efficiency, and selectivity of lung cancer therapeutics. The key challenges that encounter their clinical translation include their structural intricacy, high production cost, scale-up issues, and unclear toxicity profiles. The application of biodegradable platforms improves the biosafety of lung cancer-targeted nanomedicine. Moreover, the design of novel targeting strategies that apply a lower number of components can promote their industrial scalability and deliver them to the market at affordable prices. CONCLUSIONS Nanomedicines have opened up new possibilities for treating lung cancer. Focusing on tackling the challenges that hinder their clinical translation will promote the future of this area of endeavor.
Collapse
Affiliation(s)
- Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mohammad A Alsogaihi
- Pharma D Student, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Imran Saleem
- Nanomedicine, Formulation & Delivery Research Group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
6
|
Dai X, Dai Y, Zheng Y, Lv Y. Magnetic nanoparticles and possible synergies with cold atmospheric plasma for cancer treatment. RSC Adv 2024; 14:29039-29051. [PMID: 39282063 PMCID: PMC11391930 DOI: 10.1039/d4ra03837a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024] Open
Abstract
The biomedical applications of magnetic nanoparticles (MNPs) have gained increasing attention due to their unique biological, chemical, and magnetic properties such as biocompatibility, chemical stability, and high magnetic susceptibility. However, several critical issues still remain that have significantly halted the clinical translation of these nanomaterials such as the relatively low therapeutic efficacy, hyperthermia resistance, and biosafety concerns. To identify innovative approaches possibly creating synergies with MNPs to resolve or mitigate these problems, we delineated the anti-cancer properties of MNPs and their existing onco-therapeutic portfolios, based on which we proposed cold atmospheric plasma (CAP) to be a possible synergizer of MNPs by enhancing free radical generation, reducing hyperthermia resistance, preventing MNP aggregation, and functioning as an innovative magnetic and light source for magnetothermal- and photo-therapies. Our insights on the possible facilitating role of CAP in translating MNPs for biomedical use may inspire fresh research directions that, once actualized, gain mutual benefits from both.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061 PR China
| | - Yilin Dai
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061 PR China
| | - Yan Zheng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061 PR China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061 PR China
| |
Collapse
|
7
|
Rajkhowa S, Hussain SZ, Agarwal M, Zaheen A, Al-Hussain SA, Zaki MEA. Advancing Antibiotic-Resistant Microbe Combat: Nanocarrier-Based Systems in Combination Therapy Targeting Quorum Sensing. Pharmaceutics 2024; 16:1160. [PMID: 39339197 PMCID: PMC11434747 DOI: 10.3390/pharmaceutics16091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The increase in antibiotic-resistant bacteria presents a significant risk to worldwide public health, emphasizing the necessity of novel approaches to address infections. Quorum sensing, an essential method of communication among bacteria, controls activities like the formation of biofilms, the production of virulence factors, and the synthesis of secondary metabolites according to the number of individuals in the population. Quorum quenching, which interferes with these processes, emerges as a vital approach to diminish bacterial virulence and prevent biofilm formation. Nanocarriers, characterized by their small size, high surface-area-to-volume ratio, and modifiable surface chemistry, offer a versatile platform for the disruption of bacterial communication by targeting various stages within the quorum sensing pathway. These features allow nanocarriers to infiltrate biofilms, disrupt cell membranes, and inhibit bacterial proliferation, presenting a promising alternative to traditional antibiotics. Integrating nanocarrier-based systems into combination therapies provides a multi-pronged approach to infection control, enhancing both the efficacy and specificity of treatment regimens. Nonetheless, challenges related to the stability, safety, and clinical effectiveness of nanomaterial-based antimicrobial treatments remain. Continued research and development are essential to overcoming these obstacles and fully harnessing the potential of nano-antimicrobial therapies. This review emphasizes the importance of quorum sensing in bacterial behavior and highlights the transformative potential of nanotechnology in advancing antimicrobial treatments, offering innovative solutions to combat antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Sanchaita Rajkhowa
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Safrina Zeenat Hussain
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Manisha Agarwal
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Alaiha Zaheen
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Sami A. Al-Hussain
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Magdi E. A. Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| |
Collapse
|
8
|
Albukhaty S, Sulaiman GM, Al-Karagoly H, Mohammed HA, Hassan AS, Alshammari AAA, Ahmad AM, Madhi R, Almalki FA, Khashan KS, Jabir MS, Yusuf M, Al-aqbi ZT, Sasikumar P, Khan RA. Iron oxide nanoparticles: The versatility of the magnetic and functionalized nanomaterials in targeting drugs, and gene deliveries with effectual magnetofection. J Drug Deliv Sci Technol 2024; 99:105838. [DOI: 10.1016/j.jddst.2024.105838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Lal N, Seifan M, Ebrahiminezhad A, Berenjian A. The Impact of Amine-Functionalised Iron Oxide Nanoparticles on the Menaquinone-7 Isomer Profile and Production of the Bioactive Isomer. Mol Biotechnol 2024; 66:1970-1987. [PMID: 37517081 PMCID: PMC11281992 DOI: 10.1007/s12033-023-00832-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
The K family of vitamins includes a collection of molecules with different pharmacokinetic characteristics. Menaquinone-7 (MK-7) has the finest properties and is the most therapeutically beneficial due to its long plasma half-life and outstanding extrahepatic bioavailability. MK-7 exhibits cis-trans isomerism, and merely the all-trans form is biologically efficacious. Therefore, the remedial value of MK-7 end products is exclusively governed by the quantity of all-trans MK-7. Consumers favour fermentation for the production of MK-7; however, it involves several challenges. The low MK-7 yield and extensive downstream processing requirements increase production costs, resulting in an expensive final product that is not universally available. Bacterial cell immobilisation with iron oxide nanoparticles (IONs) can potentially address the limitations of MK-7 fermentation. Uncoated IONs tend to have low stability and can adversely affect cell viability; thus, amine-functionalised IONs, owing to their increased physicochemical stability and biocompatibility, are a favourable alternative. Nonetheless, employing biocompatible IONs for this purpose is only advantageous if the bioactive MK-7 isomer is obtained in the most significant fraction, exploring which formed the aim of this investigation. Two amine-functionalised IONs, namely 3-aminopropyltriethoxysilane (APTES)-coated IONs (IONs@APTES) and L-Lysine (L-Lys)-coated IONs (L-Lys@IONs), were synthesised and characterised, and their impact on various parameters was evaluated. IONs@APTES were superior, and the optimal concentration (300 μ g/mL) increased all-trans MK-7 production and improved its yield relative to the untreated cells by 2.3- and 3.1-fold, respectively. The outcomes of this study present an opportunity to develop an innovative and effective fermentation method that enhances the production of bioactive MK-7.
Collapse
Affiliation(s)
- Neha Lal
- School of Engineering, The University of Waikato, Hamilton, 3240, New Zealand
| | - Mostafa Seifan
- School of Engineering, The University of Waikato, Hamilton, 3240, New Zealand
| | | | - Aydin Berenjian
- School of Engineering, The University of Waikato, Hamilton, 3240, New Zealand.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
10
|
Sil M, Mukherjee D, Goswami A, Nag M, Lahiri D, Bhattacharya D. Antibiofilm activity of mesoporous silica nanoparticles against the biofilm associated infections. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3617-3633. [PMID: 38051365 DOI: 10.1007/s00210-023-02872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
In pharmaceutical industries, various chemical carriers are present which are used for drug delivery to the correct target sites. The most popular and upcoming drug delivery carriers are mesoporous silica nanoparticles (MSN). The main reason for its popularity is its ability to be specific and optimize the drug delivery process in a controlled manner. Nowadays, MSNs are widely used to eradicate various microbial infections, especially the ones related to biofilms. Biofilms are sessile groups of cells that live by forming a consortium and exhibit antibacterial resistance (AMR). They exhibit AMR by extracellular polymeric substances (EPS) and various quorum sensing (QS) signaling molecules. Usually, bacterial and fungal cells are capable of forming biofilms. These biofilms are pathogenic. In the majority of the cases, biofilms cause nosocomial diseases. This review will focus on the antibiofilm activities of MSN, its mechanism of target-specific drug delivery, and its ability to disrupt the bacterial biofilms inhibiting the infection. The review will also discuss various mechanisms for the delivery of pharmaceutical molecules by the MSNs to inhibit the bacterial biofilms, and lastly, we will talk about the different types of MSNs and their antibiofilm activities.
Collapse
Affiliation(s)
- Moumita Sil
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, India
| | - Dipro Mukherjee
- Agricultural and Ecological Research Unit, Biological Sciences Division, Indian Statistical Institute, Kolkata, India
| | - Arunava Goswami
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, India
| | - Moupriya Nag
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, New Town, University of Engineering and Management, Kolkata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, New Town, University of Engineering and Management, Kolkata, India.
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata, Salt Lake, University of Engineering and Management, Kolkata, India
| |
Collapse
|
11
|
Sandhu ZA, Raza MA, Alqurashi A, Sajid S, Ashraf S, Imtiaz K, Aman F, Alessa AH, Shamsi MB, Latif M. Advances in the Optimization of Fe Nanoparticles: Unlocking Antifungal Properties for Biomedical Applications. Pharmaceutics 2024; 16:645. [PMID: 38794307 PMCID: PMC11124843 DOI: 10.3390/pharmaceutics16050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, nanotechnology has achieved a remarkable status in shaping the future of biological applications, especially in combating fungal diseases. Owing to excellence in nanotechnology, iron nanoparticles (Fe NPs) have gained enormous attention in recent years. In this review, we have provided a comprehensive overview of Fe NPs covering key synthesis approaches and underlying working principles, the factors that influence their properties, essential characterization techniques, and the optimization of their antifungal potential. In addition, the diverse kinds of Fe NP delivery platforms that command highly effective release, with fewer toxic effects on patients, are of great significance in the medical field. The issues of biocompatibility, toxicity profiles, and applications of optimized Fe NPs in the field of biomedicine have also been described because these are the most significant factors determining their inclusion in clinical use. Besides this, the difficulties and regulations that exist in the transition from laboratory to experimental clinical studies (toxicity, specific standards, and safety concerns) of Fe NPs-based antifungal agents have been also summarized.
Collapse
Affiliation(s)
- Zeshan Ali Sandhu
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Muhammad Asam Raza
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Abdulmajeed Alqurashi
- Department of Biology, College of Science, Taibah University, Madinah 42353, Saudi Arabia;
| | - Samavia Sajid
- Department of Chemistry, Faculty of Science, University of Engineering and Technology, Lahore 54890, Pakistan;
| | - Sufyan Ashraf
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Kainat Imtiaz
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Farhana Aman
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan;
| | - Abdulrahman H. Alessa
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Monis Bilal Shamsi
- Centre for Genetics and Inherited Diseases (CGID), Taibah University, Madinah 42353, Saudi Arabia;
- Department Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| | - Muhammad Latif
- Centre for Genetics and Inherited Diseases (CGID), Taibah University, Madinah 42353, Saudi Arabia;
- Department Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| |
Collapse
|
12
|
Khan J, Yadav S. Nanotechnology-based Nose-to-brain Delivery in Epilepsy: A NovelApproach to Diagnosis and Treatment. Pharm Nanotechnol 2024; 12:314-328. [PMID: 37818558 DOI: 10.2174/0122117385265554230919070402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 10/12/2023]
Abstract
Epilepsy is a serious neurological disease, and scientists have a significant challenge in developing a noninvasive treatment for the treatment of epilepsy. The goal is to provide novel ideas for improving existing and future anti-epileptic medications. The injection of nano treatment via the nose to the brain is being considered as a possible seizure control method. Various nasal medicine nanoformulations have the potential to cure epilepsy. Investigations with a variety of nose-to-brain dosing methods for epilepsy treatment have yielded promising results. After examining global literature on nanotechnology and studies, the authors propose nasal administration with nanoformulations as a means to successfully treat epilepsy. The goal of this review is to look at the innovative application of nanomedicine for epilepsy treatment via nose-to-brain transfer, with a focus on the use of nanoparticles for load medicines. When nanotechnology is combined with the nose to brain approach, treatment efficacy can be improved through site specific delivery. Furthermore, this technique of administration decreases adverse effects and patient noncompliance encountered with more traditional procedures.
Collapse
Affiliation(s)
- Javed Khan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
13
|
Zheng T, Zhou Q, Tao Z, Ouyang S. Magnetic iron-based nanoparticles biogeochemical behavior in soil-plant system: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166643. [PMID: 37647959 DOI: 10.1016/j.scitotenv.2023.166643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/31/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Increasing attention is being given to magnetic iron-based nanoparticles (MINPs) because of their potential environmental benefits. Owing to the earth abundance and high utilization of MINPs, as well as the significant functions of Fe in sustainable agriculture and environmental remediation, an understanding of the environmental fate of MINPs is indispensable. However, there are still knowledge gaps regarding the largely unknown environmental behaviors and fate of MINPs in soil-plant system. Thus, this review summarizes recent literature on the biogeochemical behavior (uptake, transportation, and transformation) of MINPs in soil and plants. The different possible uptake (e.g., foliar and root adsorption) and translocation (e.g., xylem, phloem, symplastic/apoplastic pathway, and endocytosis) pathways are discussed. Furthermore, drivers of MINPs uptake and transportation (e.g., soil characteristics, fertilizer treatments, copresence of inorganic and organic anions, meteorological conditions, and cell wall pores) in both soil and plant environments are summarized. This review also details the physical, chemical, and biological transformations of MINPs in soil-plant system. More importantly, a metadata analysis from the existing literature was employed to investigate the distinction between MINPs and other engineering nanoparticles biogeochemical behavior. In the future, more attention should be given to understanding the behavior of MINPs in soil-plant system and improving the capabilities of predictive models. This review thus highlights the main knowledge gaps regarding MINPs behavior and fate to provide guidance for their safe application in agrochemicals, crop production, and soil health.
Collapse
Affiliation(s)
- Tong Zheng
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Carbon Neutrality Interdisciplinary Science Center, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Carbon Neutrality Interdisciplinary Science Center, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zongxin Tao
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Carbon Neutrality Interdisciplinary Science Center, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohu Ouyang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Carbon Neutrality Interdisciplinary Science Center, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
14
|
Tao Z, Zhou Q, Zheng T, Mo F, Ouyang S. Iron oxide nanoparticles in the soil environment: Adsorption, transformation, and environmental risk. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132107. [PMID: 37515989 DOI: 10.1016/j.jhazmat.2023.132107] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
Iron oxide nanoparticles (IONPs) have great application potential due to their multifunctional excellence properties, leading to the possibility of their release into soil environments. IONPs exhibit different adsorption properties toward environmental pollutants (e.g., heavy metals and organic compounds), thus the adsorption performance for various contaminants and the molecular interactions at the IONPs-pollutants interface are discussed. After solute adsorption, the change in the environmental behavior of IONPs is an important transformation process in the natural environments. The aggregation, aging process, and chemical/biological transformation of IONPs can be altered by soil solution chemistry, as well as by the presence of dissolved organic matter and microorganisms. Upon exposure to soil environments, IONPs have both positive and negative impacts on soil organisms (e.g., bacteria, plants, nematodes, and earthworms). Moreover, we compared the toxicity of IONPs alone to combined toxicity with environmental pollutants and pristine IONPs to aged IONPs, and the mechanisms of IONPs toxicity at the cellular level are also reviewed. Given the unanswered questions, future research should include prediction and design of IONPs, new characterization technology for monitoring IONPs transformation in soil ecosystems, and further refinement the environmental risk assessment of IONPs. This review will greatly enhance our knowledge of the performance and impact of IONPs in soil systems.
Collapse
Affiliation(s)
- Zongxin Tao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tong Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fan Mo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
15
|
Iravani S. Silica-based nanosystems against antibiotic-resistant bacteria and pathogenic viruses. Crit Rev Microbiol 2023; 49:598-610. [PMID: 35930235 DOI: 10.1080/1040841x.2022.2108309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/19/2022] [Accepted: 07/27/2022] [Indexed: 11/03/2022]
Abstract
Today, with the intensity of antibiotic abuse and self-medication, the need for the use of novel systems with high efficiency and biosafety for targeted drug delivery against antibiotic-resistant bacteria and their infections should be highly considered by researchers. Silica-based nanosystems with unique physicochemical properties such as large surface area, tuneable pore diameter, drug loading capacity, controlled particle size/morphology, and good biocompatibility are attractive candidates against antibiotic-resistant bacteria and pathogenic viruses. They can be loaded with antiviral and antimicrobial drugs or molecules through their exclusive internal porous structures or different surface linkers. In this context, smart nanosystems can be produced via suitable surface functionalization/modification with a variety of functional groups to act against different clinical pathogenic microbes or viruses, offering great opportunities for controlling and treating various infections. However, important criteria such as the ability to degrade, biocompatibility, biodegradability, cytotoxicity, stability, clearance from targeted organs should be systematically analysed to develop nanosystems or nanocarriers with high efficiency and multifunctionality. Herein, recent advancements pertaining to the application of silica-based nanosystems against antibiotic-resistant bacteria and pathogenic viruses are deliberated, focussing on important challenges and future perspectives.
Collapse
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Lal N, Seifan M, Ebrahiminezhad A, Berenjian A. The Effect of Iron Oxide Nanoparticles on the Menaquinone-7 Isomer Composition and Synthesis of the Biologically Significant All- Trans Isomer. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1825. [PMID: 37368255 DOI: 10.3390/nano13121825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Menaquinone-7 (MK-7) is the most therapeutically valuable K vitamin owing to its excellent bioavailability. MK-7 occurs as geometric isomers, and only all-trans MK-7 is bioactive. The fermentation-based synthesis of MK-7 entails various challenges, primarily the low fermentation yield and numerous downstream processing steps. This raises the cost of production and translates to an expensive final product that is not widely accessible. Iron oxide nanoparticles (IONPs) can potentially overcome these obstacles due to their ability to enhance fermentation productivity and enable process intensification. Nevertheless, utilisation of IONPs in this regard is only beneficial if the biologically active isomer is achieved in the greatest proportion, the investigation of which constituted the objective of this study. IONPs (Fe3O4) with an average size of 11 nm were synthesised and characterised using different analytical techniques, and their effect on isomer production and bacterial growth was assessed. The optimum IONP concentration (300 μg/mL) improved the process output and resulted in a 1.6-fold increase in the all-trans isomer yield compared to the control. This investigation was the first to evaluate the role of IONPs in the synthesis of MK-7 isomers, and its outcomes will assist the development of an efficient fermentation system that favours the production of bioactive MK-7.
Collapse
Affiliation(s)
- Neha Lal
- School of Engineering, The University of Waikato, Hamilton 3240, New Zealand
| | - Mostafa Seifan
- School of Engineering, The University of Waikato, Hamilton 3240, New Zealand
| | - Alireza Ebrahiminezhad
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz P.O. Box 71348-14336, Iran
| | - Aydin Berenjian
- School of Engineering, The University of Waikato, Hamilton 3240, New Zealand
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
17
|
Pérez H, Quintero García OJ, Amezcua-Allieri MA, Rodríguez Vázquez R. Nanotechnology as an efficient and effective alternative for wastewater treatment: an overview. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2971-3001. [PMID: 37387425 PMCID: wst_2023_179 DOI: 10.2166/wst.2023.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The increase in the surface and groundwater contamination due to global population growth, industrialization, proliferation of pathogens, emerging pollutants, heavy metals, and scarcity of drinking water represents a critical problem. Because of this problem, particular emphasis will be placed on wastewater recycling. Conventional wastewater treatment methods may be limited due to high investment costs or, in some cases, poor treatment efficiency. To address these issues, it is necessary to continuously evaluate novel technologies that complement and improve these traditional wastewater treatment processes. In this regard, technologies based on nanomaterials are also being studied. These technologies improve wastewater management and constitute one of the main focuses of nanotechnology. The following review describes wastewater's primary biological, organic, and inorganic contaminants. Subsequently, it focuses on the potential of different nanomaterials (metal oxides, carbon-based nanomaterials, cellulose-based nanomaterials), membrane, and nanobioremediation processes for wastewater treatment. The above is evident from the review of various publications. However, nanomaterials' cost, toxicity, and biodegradability need to be addressed before their commercial distribution and scale-up. The development of nanomaterials and nanoproducts must be sustainable and safe throughout the nanoproduct life cycle to meet the requirements of the circular economy.
Collapse
Affiliation(s)
- Heilyn Pérez
- Centro Nacional de Estudios Avanzados de Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico E-mail:
| | - Omar Jasiel Quintero García
- Centro Nacional de Estudios Avanzados de Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico
| | - Myriam Adela Amezcua-Allieri
- Gerencia de Transformación de Biomasa, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, colonia San Bartolo Atepehuacan, Mexico City 07730, Mexico
| | - Refugio Rodríguez Vázquez
- Centro Nacional de Estudios Avanzados de Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico
| |
Collapse
|
18
|
Vazhnichaya E, Lytvyn S, Kurapov Y, Semaka O, Lutsenko R, Chunikhin A. The influence of pure (ligandless) magnetite nanoparticles functionalization on blood gases and electrolytes in acute blood loss. NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY AND MEDICINE 2023; 50:102675. [PMID: 37028737 DOI: 10.1016/j.nano.2023.102675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
Objective was to compare the effect of functionalization of magnetite (Fe3O4) nanoparticles (NPs) with sodium chloride (NaCl), or its combination with ethylmethylhydroxypyrydine succinate (EMHPS) and polyvinylpyrrolidone (PVP) on blood gases and electrolytes in acute blood loss. Ligandless magnetite NPs were synthesized by the electron beam technology and functionalized by mentioned agents. Size of NPs in colloidal solutions Fe3O4@NaCl, Fe3O4@NaCl@EMHPS, Fe3O4@NaCl@PVP, Fe3O4@NaCl@EMHPS@PVP (nanosystems 1-4) was determined by dynamic light scattering. In vivo experiments were performed on 27 Wistar rats. Acute blood loss was modeled by removal 25 % circulating blood. Nanosystems 1-4 were administered to animals intaperitoneally after the blood loss with followed determination of blood gases, pH and electrolytes. In blood loss, nanosystems Fe3O4@NaCl and Fe3O4@NaCl@PVP were able to improve the state of blood gases, pH, and the ratio of sodium/potassium in the blood. So, magnetite NPs with a certain surface modification can promote oxygen transport under hypoxic conditions.
Collapse
Affiliation(s)
- Elena Vazhnichaya
- Department of Pharmacology, Clinical Pharmacology and Pharmacy, Poltava State Medical University, 23 Shevchenko Street, 36011 Poltava, Ukraine
| | - Stanislav Lytvyn
- Laboratory of Electron Beam Nanotechnology of Inorganic Materials for Medicine, E. O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11 Kazymyr Malevych Street, 03150 Kyiv, Ukraine.
| | - Yurii Kurapov
- Laboratory of Electron Beam Nanotechnology of Inorganic Materials for Medicine, E. O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11 Kazymyr Malevych Street, 03150 Kyiv, Ukraine
| | - Oleksandr Semaka
- Department of Pharmacology, Clinical Pharmacology and Pharmacy, Poltava State Medical University, 23 Shevchenko Street, 36011 Poltava, Ukraine
| | - Ruslan Lutsenko
- Department of Pharmacology, Clinical Pharmacology and Pharmacy, Poltava State Medical University, 23 Shevchenko Street, 36011 Poltava, Ukraine
| | - Alexander Chunikhin
- Department of Smooth Muscle, O.V. Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 9 Leontovich Street, 01054 Kyiv, Ukraine
| |
Collapse
|
19
|
Pu Y, Ke H, Wu C, Xu S, Xiao Y, Han L, Lyv G, Li S. Superparamagnetic iron oxide nanoparticles target BxPC-3 cells and silence MUC4 for theranostics of pancreatic cancer. Biochim Biophys Acta Gen Subj 2023:130383. [PMID: 37236323 DOI: 10.1016/j.bbagen.2023.130383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
PURPOSE Superparamagnetic iron oxide nanoparticles (SPION) are excellent magnetic resonance imaging (MRI) contrast agents. Mucin 4 (MUC4) acts as pancreatic cancer (PC) tumor antigen and influences PC progression. Small interfering RNAs (siRNAs) are used as a gene-silencing tool to treat a variety of diseases. METHODS We designed a therapeutic probe based on polyetherimide-superparamagnetic iron oxide nanoparticles (PEI-SPION) combined with siRNA nanoprobes (PEI-SPION-siRNA) to assess the contrast in MRI. The biocompatibility of the nanocomposite, and silencing of MUC4 were characterized and evaluated. RESULTS The prepared molecular probe had a particle size of 61.7 ± 18.5 nmand a surface of 46.7 ± 0.8mVand showed good biocompatibility in vitro and T2 relaxation efficiency. It can also load and protect siRNA. PEI-SPION-siRNA showed a good silencing effect on MUC4. CONCLUSION PEI-SPION-siRNA may be beneficial as a novel theranostic tool for PC.
Collapse
Affiliation(s)
- Yu Pu
- Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China; Department of Medical Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of North Sichuan Medical College. No. 234, Fujiang Road, Shunqing District, Nanchong City 637000, People's Republic of China; Department of Medicine, Quanzhou Medical College, No. 2 Anji Road, Luojiang District, Quanzhou 362000, People's Republic of China
| | - Helin Ke
- Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China
| | - Changqiang Wu
- Department of Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College. No. 55, Dongshun Road, Gaoping District, Nanchong City 637100, People's Republic of China
| | - Shaodan Xu
- Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China
| | - Yang Xiao
- Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China
| | - Lina Han
- Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China
| | - Guorong Lyv
- Department of Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College. No. 55, Dongshun Road, Gaoping District, Nanchong City 637100, People's Republic of China.
| | - Shilin Li
- Department of Ultrasonography, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China.
| |
Collapse
|
20
|
Bhattarai MK, Ashie MD, Dugu S, Subedi K, Bastakoti BP, Morell G, Katiyar RS. Block Copolymer-Assisted Synthesis of Iron Oxide Nanoparticles for Effective Removal of Congo Red. Molecules 2023; 28:molecules28041914. [PMID: 36838902 PMCID: PMC9964741 DOI: 10.3390/molecules28041914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Iron oxide nanoparticles (IONPs) were synthesized via a block copolymer-assisted hydrothermal method and the phase purity and the crystal structure were investigated by X-ray diffraction. The Rietveld analysis of X-ray diffractometer spectra shows the hexagonal phase symmetry of α-Fe2O3. Further, the vibrational study suggests Raman active modes: 2A1g + 5Eg associated with α-Fe2O3, which corroborates the Rietveld analysis and orbital analysis of 2PFe. The superparamagnetic behavior is confirmed by magnetic measurements performed by the physical properties measurement system. The systematic study of the Congo red (CR) interaction with IONPs using a UV-visible spectrophotometer and a liquid chromatography-tandem mass spectrometry system equipped with a triple quadrupole mass analyzer and an electrospray ionization interface shows effective adsorption. In visible light, the Fe2O3 nanoparticles get easily excited and generate electrons and holes. The photogenerated electrons reduce the Fe3+ ions to Fe2+ ions. The Fe2+/H2O2 oxidizes CR by the Fenton mechanism. The strong adsorption ability of prepared nanoparticles towards dyes attributes the potential candidates for wastewater treatment and other catalytic applications.
Collapse
Affiliation(s)
- Mohan K. Bhattarai
- Department of Physics, University of Puerto Rico, P.O. Box 70377, San Juan, PR 00936-8377, USA
- Correspondence: (M.K.B.); (B.P.B.)
| | - Moses D. Ashie
- Department of Chemistry, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
| | - Sita Dugu
- Department of Physics, University of Puerto Rico, P.O. Box 70377, San Juan, PR 00936-8377, USA
| | - Kiran Subedi
- Analytical Services Laboratory, College of Agriculture and Environmental Sciences, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
| | - Bishnu P. Bastakoti
- Department of Chemistry, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
- Correspondence: (M.K.B.); (B.P.B.)
| | - Gerardo Morell
- Department of Physics, University of Puerto Rico, P.O. Box 70377, San Juan, PR 00936-8377, USA
| | - Ram S. Katiyar
- Department of Physics, University of Puerto Rico, P.O. Box 70377, San Juan, PR 00936-8377, USA
| |
Collapse
|
21
|
Rabaan AA, Bukhamsin R, AlSaihati H, Alshamrani SA, AlSihati J, Al-Afghani HM, Alsubki RA, Abuzaid AA, Al-Abdulhadi S, Aldawood Y, Alsaleh AA, Alhashem YN, Almatouq JA, Emran TB, Al-Ahmed SH, Nainu F, Mohapatra RK. Recent Trends and Developments in Multifunctional Nanoparticles for Cancer Theranostics. Molecules 2022; 27:8659. [PMID: 36557793 PMCID: PMC9780934 DOI: 10.3390/molecules27248659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Conventional anticancer treatments, such as radiotherapy and chemotherapy, have significantly improved cancer therapy. Nevertheless, the existing traditional anticancer treatments have been reported to cause serious side effects and resistance to cancer and even to severely affect the quality of life of cancer survivors, which indicates the utmost urgency to develop effective and safe anticancer treatments. As the primary focus of cancer nanotheranostics, nanomaterials with unique surface chemistry and shape have been investigated for integrating cancer diagnostics with treatment techniques, including guiding a prompt diagnosis, precise imaging, treatment with an effective dose, and real-time supervision of therapeutic efficacy. Several theranostic nanosystems have been explored for cancer diagnosis and treatment in the past decade. However, metal-based nanotheranostics continue to be the most common types of nonentities. Consequently, the present review covers the physical characteristics of effective metallic, functionalized, and hybrid nanotheranostic systems. The scope of coverage also includes the clinical advantages and limitations of cancer nanotheranostics. In light of these viewpoints, future research directions exploring the robustness and clinical viability of cancer nanotheranostics through various strategies to enhance the biocompatibility of theranostic nanoparticles are summarised.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Rehab Bukhamsin
- Dammam Regional Laboratory and Blood Bank, Dammam 31411, Saudi Arabia
| | - Hajir AlSaihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Saleh A. Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Jehad AlSihati
- Internal Medicine Department, Gastroenterology Section, King Fahad Specialist Hospital, Dammam 31311, Saudi Arabia
| | - Hani M. Al-Afghani
- Laboratory Department, Security Forces Hospital, Makkah 24269, Saudi Arabia
- iGene Center for Research and Training, Jeddah 23484, Saudi Arabia
| | - Roua A. Alsubki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Abdulmonem A. Abuzaid
- Medical Microbiology Department, Security Forces Hospital Programme, Dammam 32314, Saudi Arabia
| | - Saleh Al-Abdulhadi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Riyadh 11942, Saudi Arabia
- Dr. Saleh Office for Medical Genetic and Genetic Counseling Services, The House of Expertise, Prince Sattam Bin Abdulaziz University, Dammam 32411, Saudi Arabia
| | - Yahya Aldawood
- Department of Clinical Laboratory Sciences, Mohammed AlMana College of Health Sciences, Dammam 34222, Saudi Arabia
| | - Abdulmonem A. Alsaleh
- Department of Clinical Laboratory Sciences, Mohammed AlMana College of Health Sciences, Dammam 34222, Saudi Arabia
| | - Yousef N. Alhashem
- Department of Clinical Laboratory Sciences, Mohammed AlMana College of Health Sciences, Dammam 34222, Saudi Arabia
| | - Jenan A. Almatouq
- Department of Clinical Laboratory Sciences, Mohammed AlMana College of Health Sciences, Dammam 34222, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Shamsah H. Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, India
| |
Collapse
|
22
|
Abdulsada FM, Hussein NN, Sulaiman GM, Al Ali A, Alhujaily M. Evaluation of the Antibacterial Properties of Iron Oxide, Polyethylene Glycol, and Gentamicin Conjugated Nanoparticles against Some Multidrug-Resistant Bacteria. J Funct Biomater 2022; 13:jfb13030138. [PMID: 36135573 PMCID: PMC9503097 DOI: 10.3390/jfb13030138] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Antibacterial resistance is observed as a public health issue around the world. Every day, new resistance mechanisms appear and spread over the world. For that reason, it is imperative to improve the treatment schemes that have been developed to treat infections caused by wound infections, for instance, Staphylococcus epidermidis (S. epidermidis), Proteus mirabilis (P. mirabilis), and Acinetobacter baumannii (A. baumannii). In this case, we proposed a method that involves mixing the Gentamicin (Gen) with iron oxide nanoparticles (Fe3O4 NPs) and a polymer (polyethylene glycol (PEG)) with Fe3O4 NPs. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), scanning electron microscope (SEM), and transmission electron microscope (TEM) were used to characterize Fe3O4 NPs. Zeta potential and dynamic light scattering (DLS) were also assessed. The antibacterial activity of Fe3O4 NPs, Fe3O4 NPs+PEG, Fe3O4 NPs+Gen, and Fe3O4 NPs+PEG+Gen composites was investigated. The results showed a significant improvement in the antibacterial activity of nanoparticles against bacterial isolates, especially for the Fe3O4 NPs+PEG+Gen as the diameter of the inhibition zone reached 26.33 ± 0.57 mm for A. baumannii, 25.66 ± 0.57 mm for P. mirabilis, and 23.66 ± 0.57 mm for S. epidermidis. The Fe3O4 NPs, Fe3O4 NPs+PEG, Fe3O4+Gen, and Fe3O4+PEG+Gen also showed effectiveness against the biofilm produced by these isolated bacteria. The minimum inhibitory concentration (MIC) of Fe3O4 NPs for S. epidermidis was 25 µg mL−1 and for P. mirabilis and A. baumannii was 50 µg mL−1. The findings suggest that the prepared nanoparticles could be potential therapeutic options for treating wound infections caused by S. epidermidis, P. mirabilis, and A. baumannii.
Collapse
Affiliation(s)
- Farah M. Abdulsada
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Nehia N. Hussein
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Ghassan M. Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
- Correspondence:
| | - Amer Al Ali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Bisha 67714, Saudi Arabia
| | - Muhanad Alhujaily
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Bisha 67714, Saudi Arabia
| |
Collapse
|
23
|
Design, preparation and application of the semicarbazide-pyridoyl-sulfonic acid-based nanocatalyst for the synthesis of pyranopyrazoles. Sci Rep 2022; 12:14347. [PMID: 35999336 PMCID: PMC9399233 DOI: 10.1038/s41598-022-18651-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022] Open
Abstract
A novel, efficient, and recoverable nanomagnetic catalyst bearing the semicarbazide linkers, namely, Fe3O4@SiO2@OSi(CH2)3-N(3-pyridoyl sulfonic acid)semicarbazide (FSiPSS) was designed, synthesized and characterized by the use of various techniques such as FT-IR, EDX, elemental mapping analysis, XRD, SEM, TEM, TGA/DTA, BET, and VSM. Then, the catalytic capability of the novel prepared nanomagnetic FSiPSS catalyst was successfully investigated in the synthesis of diverse pyranopyrazoles through a one-pot four-component condensation reaction of ethyl acetoacetate, hydrazine hydrate, aromatic aldehydes, and malononitrile or ethyl cyano-acetate by the help of ultrasonication in very short reaction time, good to high yields and easy work-up (Fig. 1). Figure 1 Synthesis of diverse pyranopyrazoles by the FSiPSS nano-catalyst.
Collapse
|
24
|
Tarfeen N, Nisa KU, Nisa Q. MALDI-TOF MS: application in diagnosis, dereplication, biomolecule profiling and microbial ecology. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [PMCID: PMC9340741 DOI: 10.1007/s43538-022-00085-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized scientific research over the past few decades and has provided a unique platform in ongoing technological developments. Undoubtedly, there has been a bloom chiefly in the field of biological sciences with this emerging technology, and has enabled researchers to generate critical data in the field of disease diagnoses, drug development, dereplication. It has received well acceptance in the field of microbial identification even at strain level, as well as diversified field like biomolecule profiling (proteomics and lipidomics) has evolved tremendously. Additionally, this approach has received a lot more attention over conventional technologies due to its high throughput, speed, and cost effectiveness. This review aims to provide a detailed insight regarding the application of MALDI-TOF MS in the context of medicine, biomolecule profiling, dereplication, and microbial ecology. In general, the expansion in the application of this technology and new advancements it has made in the field of science and technology has been highlighted.
Collapse
|
25
|
Jakhar AM, Aziz I, Kaleri AR, Hasnain M, Haider G, Ma J, Abideen Z. Nano-fertilizers: A sustainable technology for improving crop nutrition and food security. NANOIMPACT 2022; 27:100411. [PMID: 35803478 DOI: 10.1016/j.impact.2022.100411] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/19/2022] [Accepted: 06/26/2022] [Indexed: 05/21/2023]
Abstract
Excessive use of synthetic fertilizers cause economic burdens, increasing soil, water and atmospheric pollution. Nano-fertilizers have shown great potential for their sustainable uses in soil fertility, crop production and with minimum or no environmental tradeoffs. Nano-fertilizers are of submicroscopic sizes, have a large surface area to volume ratio, can have nutrient encapsulation, and greater mobility hence they may increase plant nutrient access and crop yield. Due to these properties, nano-fertilizers are regarded as deliverable 'smart system of nutrients'. However, the problems in the agroecosystem are broader than existing developments. For example, nutrient delivery in different physicochemical properties of soils, moisture, and other agro-ecological conditions is still a challenge. In this context, the present review provides an overview of various uses of nanotechnology in agriculture, preference of nano-fertilizers over the conventional fertilizers, nano particles formation, mobility, and role in heterogeneous soils, with special emphasis on the development and use of chitosan-based nano-fertilizers.
Collapse
Affiliation(s)
- Ali Murad Jakhar
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang Sichuan 621010, China; Institute of Plant Sciences, University of Sindh, Jamshoro, Pakistan
| | - Irfan Aziz
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan
| | - Abdul Rasheed Kaleri
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang Sichuan 621010, China
| | - Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Ghulam Haider
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Jiahua Ma
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang Sichuan 621010, China.
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
26
|
Alnahdi HS, Mousa RMA, El‐Said WA. Development of Organochlorine Pesticide Electrochemical Sensor Based on Fe
3
O
4
Nanoparticles@indium Tin Oxide Electrode. ELECTROANAL 2022. [DOI: 10.1002/elan.202100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hanan S. Alnahdi
- University of Jeddah, College of Science, Department of Biochemistry P.O. 80327 Jeddah 21589 Saudi Arabia
| | - Rasha Mousa Ahmed Mousa
- University of Jeddah, College of Science, Department of Biochemistry P.O. 80327 Jeddah 21589 Saudi Arabia
| | - Waleed A. El‐Said
- University of Jeddah, College of Science, Department of Chemistry P.O. 80327 Jeddah 21589 Saudi Arabia
- Department of Chemistry Faculty of Science Assiut University Assiut 71516 Egypt
| |
Collapse
|
27
|
Taghizadeh SM, Ebrahiminezhad A, Raee MJ, Ramezani H, Berenjian A, Ghasemi Y. A Study of l-Lysine-Stabilized Iron Oxide Nanoparticles (IONPs) on Microalgae Biofilm Formation of Chlorella vulgaris. Mol Biotechnol 2022; 64:702-710. [PMID: 35099707 PMCID: PMC9135783 DOI: 10.1007/s12033-022-00454-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/14/2022] [Indexed: 12/01/2022]
Abstract
Despite iron-based nanoparticles gaining huge attraction in various field of sciences and technology, their application rises ecological concerns due to lack of studies on their interaction with microbial cells populations and communities, such as biofilms. In this study, Chlorella vulgaris cells were employed as a model of aquatic microalgae to investigate the impacts of l-lysine-coated iron oxide nanoparticles (lys@IONPs) on microalgal growth and biofilm formation. In this regard, C. vulgaris cells were exposed to different concentrations of lys@IONPs and the growth of cells was evaluated by OD600 and biofilm formation was analyzed using crystal violet staining throughout 12 days. It was revealed that low concentration of nanoparticles (< 400 µg/mL) can promote cell growth and biofilm formation. However, higher concentrations have an adverse effect on microalgal communities. It is interesting that microalgal growth and biofilm are concentration- and exposure time-dependent to lys@IONPs. Over long period (~ 12 days) exposure to high concentrations of nanoparticles, cells can adapt with the condition, so growth was raised and biofilm started to develop. Results of the present study could be considered in ecological issues and also bioprocesses using microalgal cells.
Collapse
|
28
|
Wang Y, Du J, Guo H, Liu R, Li Z, Yang T, Ai J, Liu C. The antibacterial activity and mechanism of polyurethane coating with quaternary ammonium salt. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02904-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Kumar M, Gupta G, Varghese T, Srivastava PP, Gupta S. Preparation and characterization of glucose-conjugated super-paramagnetic iron oxide nanoparticles (G-SPIONs) for removal of Edwardsiella tarda and Aeromonas hydrophila from water. Microsc Res Tech 2022; 85:1768-1783. [PMID: 35038205 DOI: 10.1002/jemt.24037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022]
Abstract
The present research was conducted to prepare efficient G-SPIONs by co-precipitation to remove Edwardsiella tarda and Aeromonas hydrophila from the aqueous solution. The synthesized G-SPIONs were characterized by UV-Vis spectrophotometer, DLS, FEG-TEM, FT-IR, XRD, and VSM analysis. The results showed that the synthesized G-SPIONs had super-paramagnetic properties (58.31 emu/g) and spherical shape (16 ± 3 nm). The antibacterial activity was assessed in sterilized distilled water at different G-SPIONs concentrations viz. 0, 1.5, 3, 6, 12, 24, 48, 120, and 240 mg/L against E. tarda and A. hydrophila with various bacterial loads viz. 1 × 103 , 1 × 104 , 1 × 105 , 1 × 106 , and 1 × 107 CFU/ml at different time intervals 15, 30, 45, and 60 min. At a lower bacterial load of E. tarda and A. hydrophila 1 × 103 -1 × 104 CFU/ml, 100% bacterial load was removed by 15 min exposure with NPs concentration 6-48 mg/L and 1.5-6 mg/L, respectively. Cent percent bacterial removal was observed in both the bacterial species even at higher bacterial load (1 × 105 -1 × 107 CFU/ml) by increasing exposure time (15-60 min) and nanoparticle concentration as well (24-240 mg/L). At an initial bacterial load of E. tarda and A. hydrophila (1 × 103 -1 × 107 CFU/ml), the EC50 ranged between 0.01-6.51 mg/L and 0.02-3.84 mg/L, respectively, after 15-60 min exposure. Thus, it is concluded that the antibacterial effect of G-SPIONs depends on concentration and exposure time. Hence, G-SPIONs can be used as an antibacterial/biocidal agent to treat Edwardsiellosis and Aeromonosis disease in aquaculture.
Collapse
Affiliation(s)
- Munish Kumar
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Gyandeep Gupta
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Tincy Varghese
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | | | - Subodh Gupta
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| |
Collapse
|
30
|
Berini F, Orlandi VT, Gamberoni F, Martegani E, Armenia I, Gornati R, Bernardini G, Marinelli F. Antimicrobial Activity of Nanoconjugated Glycopeptide Antibiotics and Their Effect on Staphylococcus aureus Biofilm. Front Microbiol 2021; 12:657431. [PMID: 34925248 PMCID: PMC8674785 DOI: 10.3389/fmicb.2021.657431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
In the era of antimicrobial resistance, the use of nanoconjugated antibiotics is regarded as a promising approach for preventing and fighting infections caused by resistant bacteria, including those exacerbated by the formation of difficult-to-treat bacterial biofilms. Thanks to their biocompatibility and magnetic properties, iron oxide nanoparticles (IONPs) are particularly attractive as antibiotic carriers for the targeting therapy. IONPs can direct conjugated antibiotics to infection sites by the use of an external magnet, facilitating tissue penetration and disturbing biofilm formation. As a consequence of antibiotic localization, a decrease in its administration dosage might be possible, reducing the side effects to non-targeted organs and the risk of antibiotic resistance spread in the commensal microbiota. Here, we prepared nanoformulations of the 'last-resort' glycopeptides teicoplanin and vancomycin by conjugating them to IONPs via surface functionalization with (3-aminopropyl) triethoxysilane (APTES). These superparamagnetic NP-TEICO and NP-VANCO were chemically stable and NP-TEICO (better than NP-VANCO) conserved the typical spectrum of antimicrobial activity of glycopeptide antibiotics, being effective against a panel of staphylococci and enterococci, including clinical isolates and resistant strains. By a combination of different methodological approaches, we proved that NP-TEICO and, although to a lesser extent, NP-VANCO were effective in reducing biofilm formation by three methicillin-sensitive or resistant Staphylococcus aureus strains. Moreover, when attracted and concentrated by the action of an external magnet, NP-TEICO exerted a localized inhibitory effect on S. aureus biofilm formation at low antibiotic concentration. Finally, we proved that the conjugation of glycopeptide antibiotics to IONPs reduced their intrinsic cytotoxicity toward a human cell line.
Collapse
Affiliation(s)
- Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | - Federica Gamberoni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Eleonora Martegani
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Ilaria Armenia
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
31
|
Godoy-Gallardo M, Eckhard U, Delgado LM, de Roo Puente YJ, Hoyos-Nogués M, Gil FJ, Perez RA. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioact Mater 2021; 6:4470-4490. [PMID: 34027235 PMCID: PMC8131399 DOI: 10.1016/j.bioactmat.2021.04.033] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/02/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Bacterial infection of implanted scaffolds may have fatal consequences and, in combination with the emergence of multidrug bacterial resistance, the development of advanced antibacterial biomaterials and constructs is of great interest. Since decades ago, metals and their ions had been used to minimize bacterial infection risk and, more recently, metal-based nanomaterials, with improved antimicrobial properties, have been advocated as a novel and tunable alternative. A comprehensive review is provided on how metal ions and ion nanoparticles have the potential to decrease or eliminate unwanted bacteria. Antibacterial mechanisms such as oxidative stress induction, ion release and disruption of biomolecules are currently well accepted. However, the exact antimicrobial mechanisms of the discussed metal compounds remain poorly understood. The combination of different metal ions and surface decorations of nanoparticles will lead to synergistic effects and improved microbial killing, and allow to mitigate potential side effects to the host. Starting with a general overview of antibacterial mechanisms, we subsequently focus on specific metal ions such as silver, zinc, copper, iron and gold, and outline their distinct modes of action. Finally, we discuss the use of these metal ions and nanoparticles in tissue engineering to prevent implant failure.
Collapse
Affiliation(s)
- Maria Godoy-Gallardo
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Carrer de Josep Trueta, 08195, del Vallès, Sant Cugat, Barcelona, Spain
| | - Ulrich Eckhard
- Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Luis M. Delgado
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Carrer de Josep Trueta, 08195, del Vallès, Sant Cugat, Barcelona, Spain
| | - Yolanda J.D. de Roo Puente
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Carrer de Josep Trueta, 08195, del Vallès, Sant Cugat, Barcelona, Spain
| | - Mireia Hoyos-Nogués
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Carrer de Josep Trueta, 08195, del Vallès, Sant Cugat, Barcelona, Spain
| | - F. Javier Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Carrer de Josep Trueta, 08195, del Vallès, Sant Cugat, Barcelona, Spain
| | - Roman A. Perez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Carrer de Josep Trueta, 08195, del Vallès, Sant Cugat, Barcelona, Spain
| |
Collapse
|
32
|
Abdulhamid MB, Hero JS, Zamora M, Gómez MI, Navarro MC, Romero CM. Effect of the biological functionalization of nanoparticles on magnetic CLEA preparation. Int J Biol Macromol 2021; 191:689-698. [PMID: 34547314 DOI: 10.1016/j.ijbiomac.2021.09.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/08/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Lipase immobilization using adsorption on magnetic nanoparticles, cross-linked enzyme aggregates (CLEA), and a combination of both techniques was investigated. Experimental designs were used for the optimization of the immobilization observing that the pH and ionic strength play a principal role during the lipase immobilization and its activity. For adsorption on magnetic nanoparticles and CLEA synthesis the optimal condition was pH and 100 mM. Besides, during the CLEA synthesis, glutaraldehyde concentration showed to be a significant effect on the enzyme activity. A comparison between a magnetic CLEA prepared with (Lip@mCLEA) and without (mCLEA) biological functionalized magnetic nanoparticles was made observing that the use of functionalized support showed the best performance activity. All biocatalytic systems developed gives to the enzyme thermal stability between 45 and 70 °C, being Lip@mCLEA the more stable biocatalyst. Similar behavior was observed at different pH, where both Lip@mCLEA and mCLEA showed stability at a range of pH 5 to 8. The immobilized biocatalysts showed the same affinity of the subtract that the free enzyme suggested that the enzyme structure not modified the active site. The combination of both types of immobilization show evidenced the importance of the biological functionalization of the support when magnetic CLEA is produced.
Collapse
Affiliation(s)
- María Belén Abdulhamid
- Planta Piloto de Procesos Industriales Microbiológicos- (PROIMI-CONICET), Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, T4001 MVB, Tucumán, Argentina
| | - Johan Sebatian Hero
- Planta Piloto de Procesos Industriales Microbiológicos- (PROIMI-CONICET), Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán, Argentina
| | - Mariana Zamora
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, T4001 MVB, Tucumán, Argentina
| | - María Inés Gómez
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, T4001 MVB, Tucumán, Argentina
| | - María Carolina Navarro
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, T4001 MVB, Tucumán, Argentina.
| | - Cintia Mariana Romero
- Planta Piloto de Procesos Industriales Microbiológicos- (PROIMI-CONICET), Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, T4001 MVB, Tucumán, Argentina.
| |
Collapse
|
33
|
Importance of structures and interactions in ionic liquid-nanomaterial composite systems as a novel approach for their utilization in safe lithium metal batteries: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Yusuf A, Al Jitan S, Garlisi C, Palmisano G. A review of recent and emerging antimicrobial nanomaterials in wastewater treatment applications. CHEMOSPHERE 2021; 278:130440. [PMID: 33838416 DOI: 10.1016/j.chemosphere.2021.130440] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
In this paper, we present a critical review on antimicrobial nanomaterials with demonstrated potential for application as a disinfection technology in wastewater treatment. Studies involving fabrication and testing of antimicrobial nanomaterials for wastewater treatment were gathered, critically reviewed, and analyzed. Our review shows that there are only a few eligible candidate nanoparticles (NPs) (metal and metal oxide) that can adequately serve as an antimicrobial agent. Nanosilver (nAg) was the most studied and moderately understood metal NPs with proven antimicrobial activity followed by ZnO (among antimicrobial metal oxide NPs) which outperformed titania (in the absence of light) in efficacy due to its better solubility in aqueous condition. The direction of future work was found to be in the development of antimicrobial nanocomposites, since they provide more stability for antimicrobial metal and metal oxides NPs in water, thereby increasing their activity. This review will serve as an updated survey, yet touching also the fundamentals of the antimicrobial activity, with vital information for researchers planning to embark on the development of superior antimicrobial nanomaterials for wastewater treatment applications.
Collapse
Affiliation(s)
- Ahmed Yusuf
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Samar Al Jitan
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Corrado Garlisi
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Giovanni Palmisano
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
35
|
Paunovic J, Vucevic D, Radosavljevic T, Vukomanovic Djurdjevic B, Stankovic S, Pantic I. Effects of Iron Oxide Nanoparticles on Structural Organization of Hepatocyte Chromatin: Gray Level Co-occurrence Matrix Analysis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:889-896. [PMID: 34039461 DOI: 10.1017/s1431927621000532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gray level co-occurrence matrix (GLCM) analysis is a contemporary and innovative computer-based algorithm that can be used for the quantification of subtle changes in a cellular structure. In this work, we use this method for the detection of discrete alterations in hepatocyte chromatin distribution after in vivo exposure to iron oxide nanoparticles (IONPs). The study was performed on 40 male, healthy C57BL/6 mice divided into four groups: three experimental groups that received different doses of IONPs and 1 control group. We describe the dose-dependent reduction of chromatin textural uniformity measured as GLCM angular second moment. Similar changes were detected for chromatin textural uniformity expressed as the value of inverse difference moment. To the best of our knowledge, this is the first study to investigate the impact of iron-based nanomaterials on hepatocyte GLCM parameters. Also, this is the first study to apply discrete wavelet transform analysis, as a supplementary method to GLCM, for the assessment of hepatocyte chromatin structure in these conditions. The results may present the useful basis for future research on the application of GLCM and DWT methods in pathology and other medical research areas.
Collapse
Affiliation(s)
- Jovana Paunovic
- Faculty of Medicine, Institute of Pathological Physiology, University of Belgrade, Dr Subotica 9, RS-11129, Belgrade, Serbia
| | - Danijela Vucevic
- Faculty of Medicine, Institute of Pathological Physiology, University of Belgrade, Dr Subotica 9, RS-11129, Belgrade, Serbia
| | - Tatjana Radosavljevic
- Faculty of Medicine, Institute of Pathological Physiology, University of Belgrade, Dr Subotica 9, RS-11129, Belgrade, Serbia
| | | | - Sanja Stankovic
- Centre of Medical Biochemistry, Clinical Centre of Serbia, Visegradska 26, RS-11129, Belgrade, Serbia
| | - Igor Pantic
- Faculty of Medicine, Institute of Medical Physiology, University of Belgrade, Visegradska 26/II, RS-11129, Belgrade, Serbia
- University of Haifa, 199 Abba Hushi Blvd. Mount Carmel, HaifaIL-3498838, Israel
| |
Collapse
|
36
|
Aragaw TA, Bogale FM, Aragaw BA. Iron-based nanoparticles in wastewater treatment: A review on synthesis methods, applications, and removal mechanisms. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101280] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Castillo RR, Vallet-Regí M. Recent Advances Toward the Use of Mesoporous Silica Nanoparticles for the Treatment of Bacterial Infections. Int J Nanomedicine 2021; 16:4409-4430. [PMID: 34234434 PMCID: PMC8256096 DOI: 10.2147/ijn.s273064] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
It is a fact that the use of antibiotics is inducing a growing resistance on bacteria. This situation is not only the consequence of a drugs’ misuse, but a direct consequence of a widespread and continuous use. Current studies suggest that this effect could be reversed by using abandoned antibiotics to which bacteria have lost their resistance, but this is only a temporary solution that in near future would lead to new resistance problems. Fortunately, current nanotechnology offers a new life for old and new antibiotics, which could have significantly different pharmacokinetics when properly delivered; enabling new routes able to bypass acquired resistances. In this contribution, we will focus on the use of porous silica nanoparticles as functional carriers for the delivery of antibiotics and biocides in combination with additional features like membrane sensitizing and heavy metal-driven metabolic-disrupting therapies as two of the most interesting combination therapies.
Collapse
Affiliation(s)
- Rafael R Castillo
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - María Vallet-Regí
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, 28040, Spain.,Centro de Investigación Biomédica en Red-CIBER, Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre-imas12, Madrid, 28041, Spain
| |
Collapse
|
38
|
Firoozi FR, Raee MJ, Lal N, Ebrahiminezhad A, Teshnizi SH, Berenjian A, Ghasemi Y. Application of magnetic immboilization for ethanol biosynthesis using Saccharomyces cerevisiae. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1939376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Farid Reza Firoozi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Centre for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neha Lal
- School of Engineering, Faculty of Science and Engineering, University of Waikato, Hamilton New Zealand
| | | | - Saeed Hosseini Teshnizi
- Department of Biostatistics, Paramedical School, Hormozgan University of Medical Sciences, Bandar-abbas, Iran
| | - Aydin Berenjian
- School of Engineering, Faculty of Science and Engineering, University of Waikato, Hamilton New Zealand
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
39
|
Li X, Li W, Wang M, Liao Z. Magnetic nanoparticles for cancer theranostics: Advances and prospects. J Control Release 2021; 335:437-448. [PMID: 34081996 DOI: 10.1016/j.jconrel.2021.05.042] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/21/2022]
Abstract
Cancer is one of the leading causes of mortality worldwide. Nanoparticles have been broadly studied and emerged as a novel approach in diagnosis and treatment of tumors. Over the last decade, researches have significantly improved magnetic nanoparticle (MNP)'s theranostic potential as nanomedicine for cancer. Newer MNPs have various advantages such as wider operating temperatures, smaller sizes, lower toxicity, simpler preparations and lower production costs. With a series of unique and superior physical and chemical properties, MNPs have great potential in medical applications. In particular, using MNPs as probes for medical imaging and carriers for targeted drug delivery systems. While MNPs are expected to be the future of cancer diagnosis and precision drug delivery, more research is still required to minimize their toxicity and improve their efficacy. An ideal MNP for clinical applications should be precisely engineered to be stable to act as tracers or deliver drugs to the targeted sites, release drug components only at the targeted sites and have minimal health risks. Our review aims to consolidate the recent improvements in MNPs for clinical applications as well as discuss the future research prospects and potential of MNPs in cancer theranostics.
Collapse
Affiliation(s)
- Xuexin Li
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17121, Sweden
| | - Weiyuan Li
- School of Medicine, Yunnan University, Kunming 650091, Yunnan, China
| | - Mina Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institute, Stockholm 17177, Sweden.
| |
Collapse
|
40
|
Zhu FD, Hu YJ, Yu L, Zhou XG, Wu JM, Tang Y, Qin DL, Fan QZ, Wu AG. Nanoparticles: A Hope for the Treatment of Inflammation in CNS. Front Pharmacol 2021; 12:683935. [PMID: 34122112 PMCID: PMC8187807 DOI: 10.3389/fphar.2021.683935] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, an inflammatory response within the central nervous system (CNS), is a main hallmark of common neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS), among others. The over-activated microglia release pro-inflammatory cytokines, which induces neuronal death and accelerates neurodegeneration. Therefore, inhibition of microglia over-activation and microglia-mediated neuroinflammation has been a promising strategy for the treatment of neurodegenerative diseases. Many drugs have shown promising therapeutic effects on microglia and inflammation. However, the blood–brain barrier (BBB)—a natural barrier preventing brain tissue from contact with harmful plasma components—seriously hinders drug delivery to the microglial cells in CNS. As an emerging useful therapeutic tool in CNS-related diseases, nanoparticles (NPs) have been widely applied in biomedical fields for use in diagnosis, biosensing and drug delivery. Recently, many NPs have been reported to be useful vehicles for anti-inflammatory drugs across the BBB to inhibit the over-activation of microglia and neuroinflammation. Therefore, NPs with good biodegradability and biocompatibility have the potential to be developed as an effective and minimally invasive carrier to help other drugs cross the BBB or as a therapeutic agent for the treatment of neuroinflammation-mediated neurodegenerative diseases. In this review, we summarized various nanoparticles applied in CNS, and their mechanisms and effects in the modulation of inflammation responses in neurodegenerative diseases, providing insights and suggestions for the use of NPs in the treatment of neuroinflammation-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Feng-Dan Zhu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yu-Jiao Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Anesthesia, Southwest Medical University, Luzhou, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qing-Ze Fan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
41
|
Kawish M, Jabri T, Elhissi A, Zahid H, Muhammad Iqbal K, Rao K, Gul J, Abdullah M, Shah MR. Galactosylated iron oxide nanoparticles for enhancing oral bioavailability of ceftriaxone. Pharm Dev Technol 2021; 26:291-301. [PMID: 33475034 DOI: 10.1080/10837450.2020.1866602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The current study focuses on the development, characterization, biocompatibility investigation and oral bioavailability evaluation of ceftriaxone (CFT)-loaded lactobionic acid (LBA)-functionalized iron oxide magnetic nanoparticles (MNP-LBA). Atomic force microscopy and dynamic light scattering showed that the developed CFT-loaded MNP-LBA is spherical, with a measured hydrodynamic size of 147 ± 15.9 nm and negative zeta potential values (-35 ± 0.58 mV). Fourier transformed infrared analysis revealed interactions between the nanocarrier and the drug. Nanoparticles showed high drug entrapment efficiencies of 91.5 ± 2.2%, and the drug was released gradually in vitro and shows prolonged in vitro stability using simulated gastrointestinal (GI) fluids. The formulations were found to be highly biocompatible (up to 100 µg/mL) and hemocompatible (up to 1.0 mg/mL). Using an albino rabbit model, the formulation showed a significant enhancement in drug plasma concentration up to 14.46 ± 2.5 µg/mL in comparison with its control (1.96 ± 0.58 µg/mL). Overall, the developed MNP-LBA formulation was found promising for provision of high-drug entrapment, gradual drug release and was appropriate for enhancing the oral delivery of CFT.
Collapse
Affiliation(s)
- Muhammad Kawish
- International Center for Chemical and Biological Sciences, H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Tooba Jabri
- International Center for Chemical and Biological Sciences, H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Abdelbary Elhissi
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar.,Office of The Vice President for Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Hina Zahid
- Faculty of Pharmaceutical Sciences, Dow University of Health Sciences Karachi, Karachi, Pakistan
| | - Kanwal Muhammad Iqbal
- International Center for Chemical and Biological Sciences, H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Komal Rao
- International Center for Chemical and Biological Sciences, H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Jasra Gul
- International Center for Chemical and Biological Sciences, H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Muhammad Abdullah
- International Center for Chemical and Biological Sciences, H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Muhammad Raza Shah
- International Center for Chemical and Biological Sciences, H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
42
|
Thomas MD, Ewunkem AJ, Boyd S, Williams DK, Moore A, Rhinehardt KL, Van Beveren E, Yang B, Tapia A, Han J, Harrison SH, Graves JL. Too much of a good thing: Adaption to iron (II) intoxication in Escherichia coli. EVOLUTION MEDICINE AND PUBLIC HEALTH 2021; 9:53-67. [PMID: 33717488 PMCID: PMC7937436 DOI: 10.1093/emph/eoaa051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/30/2020] [Indexed: 12/22/2022]
Abstract
Background There has been an increased usage of metallic antimicrobial materials to control pathogenic and multi-drug resistant bacteria. Yet, there is a corresponding need to know if this usage leads to genetic adaptations that could produce more harmful strains. Methodology Experimental evolution was used to adapt Escherichia coli K-12 MG1655 to excess iron (II) with subsequent genomic analysis. Phenotypic assays and gene expression studies were conducted to demonstrate pleiotropic effects associated with this adaptation and to elucidate potential cellular responses. Results After 200 days of adaptation, populations cultured in excess iron (II), showed a significant increase in 24-h optical densities compared to controls. Furthermore, these populations showed increased resistance toward other metals [iron (III) and gallium (III)] and to traditional antibiotics (bacitracin, rifampin, chloramphenicol and sulfanilamide). Genomic analysis identified selective sweeps in three genes; fecA, ptsP and ilvG unique to the iron (II) resistant populations, and gene expression studies demonstrated that their cellular response may be to downregulate genes involved in iron transport (cirA and fecA) while increasing the oxidative stress response (oxyR, soxS and soxR) prior to FeSO4 exposure. Conclusions and implications Together, this indicates that the selected populations can quickly adapt to stressful levels of iron (II). This study is unique in that it demonstrates that E. coli can adapt to environments that contain excess levels of an essential micronutrient while also demonstrating the genomic foundations of the response and the pleiotropic consequences. The fact that adaptation to excess iron also causes increases in general antibiotic resistance is a serious concern. Lay summary: The evolution of iron resistance in E. coli leads to multi-drug and general metal resistance through the acquisition of mutations in three genes (fecA, ptsP and ilvG) while also initiating cellular defenses as part of their normal growth process.
Collapse
Affiliation(s)
- Misty D Thomas
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC 27411, USA
| | - Akamu J Ewunkem
- BEACON, Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
| | - Sada Boyd
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University and UNC Greensboro, 2907 E. Gate City Blvd., Greensboro, NC 27401, USA
| | - Danielle K Williams
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC 27411, USA
| | - Adiya Moore
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC 27411, USA
| | - Kristen L Rhinehardt
- Computational Data Science and Engineering, North Carolina Agricultural and Technical State University, 1601 E. Market Street, Greensboro, NC 27411, USA
| | - Emma Van Beveren
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University and UNC Greensboro, 2907 E. Gate City Blvd., Greensboro, NC 27401, USA
| | - Bobi Yang
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University and UNC Greensboro, 2907 E. Gate City Blvd., Greensboro, NC 27401, USA
| | - Anna Tapia
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University and UNC Greensboro, 2907 E. Gate City Blvd., Greensboro, NC 27401, USA
| | - Jian Han
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC 27411, USA
| | - Scott H Harrison
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC 27411, USA
| | - Joseph L Graves
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E. Market St, Greensboro, NC 27411, USA
| |
Collapse
|
43
|
Colino CI, Lanao JM, Gutierrez-Millan C. Recent advances in functionalized nanomaterials for the diagnosis and treatment of bacterial infections. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111843. [PMID: 33579480 DOI: 10.1016/j.msec.2020.111843] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023]
Abstract
The growing problem of resistant infections due to antibiotic misuse is a worldwide concern that poses a grave threat to healthcare systems. Thus, it is necessary to discover new strategies to combat infectious diseases. In this review, we provide a selective overview of recent advances in the use of nanocomposites as alternatives to antibiotics in antimicrobial treatments. Metals and metal oxide nanoparticles (NPs) have been associated with inorganic and organic supports to improve their antibacterial activity and stability as well as other properties. For successful antibiotic treatment, it is critical to achieve a high drug concentration at the infection site. In recent years, the development of stimuli-responsive systems has allowed the vectorization of antibiotics to the site of infection. These nanomaterials can be triggered by various mechanisms (such as changes in pH, light, magnetic fields, and the presence of bacterial enzymes); additionally, they can improve antibacterial efficacy and reduce side effects and microbial resistance. To this end, various types of modified polymers, lipids, and inorganic components (such as metals, silica, and graphene) have been developed. Applications of these nanocomposites in diverse fields ranging from food packaging, environment, and biomedical antimicrobial treatments to diagnosis and theranosis are discussed.
Collapse
Affiliation(s)
- Clara I Colino
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Spain; The Institute for Biomedical Research of Salamanca (IBSAL), Spain
| | - José M Lanao
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Spain; The Institute for Biomedical Research of Salamanca (IBSAL), Spain.
| | - Carmen Gutierrez-Millan
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Spain; The Institute for Biomedical Research of Salamanca (IBSAL), Spain
| |
Collapse
|
44
|
Nagarajan K, Perumal SK, Marimuthu SK, Palanisamy S, Subbiah L. Addressing Antimicrobial Resistance Through Nanoantibiotics. HANDBOOK OF RESEARCH ON NANO-STRATEGIES FOR COMBATTING ANTIMICROBIAL RESISTANCE AND CANCER 2021:56-86. [DOI: 10.4018/978-1-7998-5049-6.ch003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, the irrational use of antibiotics has escalated the evolution of multidrug-resistant (MDR) bacterial strains. The infectious diseases caused by these MDR bacterial strains remain a major threat to human health and have emerged as the leading cause of morbidity and mortality. The WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. The antimicrobial resistance (AMR) poses a severe global threat of growing concern to human health and economic burden. Bacteria have developed the ability to resist antimicrobials by altering target site/enzyme, inactivation of the enzyme, decreasing cell permeability, increasing efflux due to over-expression of efflux pumps, target protection, target overproduction, and many other ways. The shortage of new antimicrobials and rapid rise in antibiotic resistance demands pressing need to develop alternate antibacterial agents.
Collapse
Affiliation(s)
- Krishnanand Nagarajan
- University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, India
| | | | | | | | | |
Collapse
|
45
|
Saraiva AS, Ribeiro IA, Fernandes MH, Cerdeira AC, Vieira BJ, Waerenborgh JC, Pereira LC, Cláudio R, Carmezim MJ, Gomes P, Gonçalves LM, Santos CF, Bettencourt AF. 3D-printed platform multi-loaded with bioactive, magnetic nanoparticles and an antibiotic for re-growing bone tissue. Int J Pharm 2021; 593:120097. [DOI: 10.1016/j.ijpharm.2020.120097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
|
46
|
Din MI, Zahoor A, Hussain Z, Khalid R. A review on green synthesis of iron (Fe) nanomaterials, its alloys and oxides. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1862229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Ayesha Zahoor
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Zaib Hussain
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Rida Khalid
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
47
|
de Santana WMO, Caetano BL, de Annunzio SR, Pulcinelli SH, Ménager C, Fontana CR, Santilli CV. Conjugation of superparamagnetic iron oxide nanoparticles and curcumin photosensitizer to assist in photodynamic therapy. Colloids Surf B Biointerfaces 2020; 196:111297. [DOI: 10.1016/j.colsurfb.2020.111297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022]
|
48
|
Araujo HC, Arias LS, Caldeirão ACM, Assumpção LCDF, Morceli MG, de Souza Neto FN, de Camargo ER, Oliveira SHP, Pessan JP, Monteiro DR. Novel Colloidal Nanocarrier of Cetylpyridinium Chloride: Antifungal Activities on Candida Species and Cytotoxic Potential on Murine Fibroblasts. J Fungi (Basel) 2020; 6:jof6040218. [PMID: 33053629 PMCID: PMC7712500 DOI: 10.3390/jof6040218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Nanocarriers have been used as alternative tools to overcome the resistance of Candida species to conventional treatments. This study prepared a nanocarrier of cetylpyridinium chloride (CPC) using iron oxide nanoparticles (IONPs) conjugated with chitosan (CS), and assessed its antifungal and cytotoxic effects. CPC was immobilized on CS-coated IONPs, and the nanocarrier was physico-chemically characterized. Antifungal effects were determined on planktonic cells of Candida albicans and Candida glabrata (by minimum inhibitory concentration (MIC) assays) and on single- and dual-species biofilms of these strains (by quantification of cultivable cells, total biomass and metabolic activity). Murine fibroblasts were exposed to different concentrations of the nanocarrier, and the cytotoxic effect was evaluated by MTT reduction assay. Characterization methods confirmed the presence of a nanocarrier smaller than 313 nm. IONPs-CS-CPC and free CPC showed the same MIC values (0.78 µg mL−1). CPC-containing nanocarrier at 78 µg mL−1 significantly reduced the number of cultivable cells for all biofilms, surpassing the effect promoted by free CPC. For total biomass, metabolic activity, and cytotoxic effects, the nanocarrier and free CPC produced statistically similar outcomes. In conclusion, the IONPs-CS-CPC nanocarrier was more effective than CPC in reducing the cultivable cells of Candida biofilms without increasing the cytotoxic effects of CPC, and may be a useful tool for the treatment of oral fungal infections.
Collapse
Affiliation(s)
- Heitor Ceolin Araujo
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil; (H.C.A.); (L.S.A.); (F.N.d.S.N.); (J.P.P.)
| | - Laís Salomão Arias
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil; (H.C.A.); (L.S.A.); (F.N.d.S.N.); (J.P.P.)
| | - Anne Caroline Morais Caldeirão
- Graduate Program in Dentistry (GPD—Master’s Degree), University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil;
| | - Lanay Caroline de Freitas Assumpção
- School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil; (L.C.d.F.A.); (M.G.M.)
| | - Marcela Grigoletto Morceli
- School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil; (L.C.d.F.A.); (M.G.M.)
| | - Francisco Nunes de Souza Neto
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil; (H.C.A.); (L.S.A.); (F.N.d.S.N.); (J.P.P.)
| | | | - Sandra Helena Penha Oliveira
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil;
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil; (H.C.A.); (L.S.A.); (F.N.d.S.N.); (J.P.P.)
| | - Douglas Roberto Monteiro
- Graduate Program in Dentistry (GPD—Master’s Degree), University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil;
- School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil; (L.C.d.F.A.); (M.G.M.)
- Correspondence: or ; Tel.: +55-18-3229-1000
| |
Collapse
|
49
|
Munir MU, Ahmed A, Usman M, Salman S. Recent Advances in Nanotechnology-Aided Materials in Combating Microbial Resistance and Functioning as Antibiotics Substitutes. Int J Nanomedicine 2020; 15:7329-7358. [PMID: 33116477 PMCID: PMC7539234 DOI: 10.2147/ijn.s265934] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
The ongoing escalation of drug-resistant bacteria creates the leading challenges for human health. Current predictions show that deaths due to bacterial illness will be more in comparison to cancer in 2050. Irrational use of antibiotics, prolonged regimen and using as a prophylactic treatment for various infections are leading cause of microbial resistance. It is an emerging approach to introduce evolving nanomaterials (NMs) as a base of antibacterial therapy to overcome the bacterial resistance pattern. NMs can implement several bactericidal ways and turn into a challenge for bacteria to survive and develop resistance against NMs. All the pathways depend on the surface chemistry, shape, core material and size of NMs. Because of these reasons, NMs based stuff shows a critical role in advancing the treatment efficiency by interacting with the cellular system of bacteria and functioned as an antibiotic substitute. We divided this review into two sections. The first part highlights the development of microbial resistance to antibiotics and their mechanisms. The second section details the NMs mechanisms to combat antibiotic resistance. In short, we try to summarize the advances in NMs role to deal with microbial resistance and giving solution as antibiotics substitute.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 72388, Saudi Arabia.,Nanobiotech Group, Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Arsalan Ahmed
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000, Pakistan
| | - Muhammad Usman
- Department of Physics, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Sajal Salman
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| |
Collapse
|
50
|
Abstract
Among all minerals, iron is one of the elements identified early by human beings to take advantage of and be used. The role of iron in human life is so great that it made an era in the ages of humanity. Pure iron has a shiny grayish-silver color, but after combining with oxygen and water it can make a colorful set of materials with divergent properties. This diversity sometimes appears ambiguous but provides variety of applications. In fact, iron can come in different forms: zero-valent iron (pure iron), iron oxides, iron hydroxides, and iron oxide hydroxides. By taking these divergent materials into the nano realm, new properties are exhibited, providing us with even more applications. This review deals with iron as a magic element in the nano realm and provides comprehensive data about its structure, properties, synthesis techniques, and applications of various forms of iron-based nanostructures in the science, medicine, and technology sectors.
Collapse
|