1
|
Torres-Martínez R, García-Rodríguez YM, Ramírez-Ortiz MG, Hernández-Delgado T, Delgado G, Espinosa-García FJ. Antibacterial Essential Oils as Adjuvants to Inhibit Antibiotic Resistance in Multidrug-resistant Bacteria. Chem Biodivers 2025:e202500405. [PMID: 40209089 DOI: 10.1002/cbdv.202500405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/12/2025]
Abstract
In order to contribute to the fight against the antibiotic resistance crisis, we used a dual-activity prospection strategy for natural product mixtures with antibiotic resistance modulating and antibacterial activities in the essential oils (EOs) of Artemisia ludoviciana, Lippia graveolens, and Cosmos bipinnatus against multidrug-resistant strains of Pseudomonas aeruginosa HIM-MR01, Staphylococcus aureus HIM-MR02, Enterococcus faecalis HIM-MR05, and Salmonella typhi HIM-MR06. The three EOs exerted antibacterial activity on the bacterial strains with minimum inhibitory concentrations (MICs) ranging from 0.1735 to 65.6263 µg/mL. When combined with antibiotics, the L. graveolens EO showed the highest resistance modulation for vancomycin (VA), nalidixic acid (NA), and chloramphenicol against S. aureus (MIC: 0.0347 µg/mL), E. faecalis (MIC: 0.0832 µg/mL), and P. aeruginosa (MIC: 0.0694 µg/mL). For the A. ludoviciana EO, resistance modulation was based on S. aureus-VA (MIC: 0.6525 µg/mL) and E. faecalis-NA (MIC: 0.3262 µg/mL). Thereby, C. bipinnatus EO did not show significant antibiotic resistance modulating activity. In conclusion, L. graveolens and A. ludoviciana EOs showed antibacterial activity and the greatest potential in inhibiting bacterial resistance to antibiotics. The dual activity of these EOs makes them a promising adjuvant in the treatment of diseases caused by multidrug-resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Rafael Torres-Martínez
- Laboratorio de Ecología Química y Agroecología, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Campus Morelia, Morelia, Mexico
| | - Yolanda Magdalena García-Rodríguez
- Laboratorio de Ecología Química y Agroecología, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Campus Morelia, Morelia, Mexico
| | - María Guadalupe Ramírez-Ortiz
- Laboratorio de Ecología Química y Agroecología, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Campus Morelia, Morelia, Mexico
| | - Tzasná Hernández-Delgado
- Laboratorio de Fitoquímica, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Guillermo Delgado
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City, Mexico
| | - Francisco Javier Espinosa-García
- Laboratorio de Ecología Química y Agroecología, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Campus Morelia, Morelia, Mexico
| |
Collapse
|
2
|
Moradi Alvand Z, Rahimi M, Parseghian L, Haji F, Rafati H. Application of microfluidic technology and nanoencapsulation to amplify the antibacterial activity of clindamycin against a food born pathogen. Sci Rep 2025; 15:5334. [PMID: 39948283 PMCID: PMC11825678 DOI: 10.1038/s41598-025-89955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/10/2025] [Indexed: 02/16/2025] Open
Abstract
Foodborne illnesses are often caused by microbial contamination during preparation or storage. In this work, stable nanoemulsions of clindamycin were prepared using Mentha piperita essential oil (MEO) as a nanocarrier delivery system. Response Surface Methodology was used to optimize the key variables for clindamycin nanoemulsion formulation, including 4.83, 2.83, and 0.14%w/w surfactant, essential oil, and clindamycin, respectively. The stability of MEO/clindamycin nanoemulsion (MEO/C NE) with a mean droplet size of 75.46 ± 3.2 nm was monitored over 3 months. The antibacterial activity of MEO/C NE and bulk compounds against E. coli bacterium was compared using a conventional method and a microfluidic chip. A significant difference in the antibacterial activity was observed by employing a microfluidic chip as compared to the conventional technique, probably due to a high contact surface area between the nanodroplets and bacterial membrane. In the microfluidic chip, the E. coli was completely inhibited in 30 min, whereas 3 h was needed for complete inhibition using the conventional method. The results of this study highlight the significance of nanoemulsion delivery systems to improve the antimicrobial activity of clindamycin and also microfluidic technology as a fast and reliable technique for examining antibiotics and nano delivery systems against microorganisms.
Collapse
Affiliation(s)
- Zinab Moradi Alvand
- Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, 1983963113, Iran
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Masoud Rahimi
- Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, 1983963113, Iran
| | - Liana Parseghian
- Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, 1983963113, Iran
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Haji
- Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, 1983963113, Iran
| | - Hasan Rafati
- Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, 1983963113, Iran.
| |
Collapse
|
3
|
Elbouzidi A, Taibi M, El Hachlafi N, Haddou M, Jeddi M, Baraich A, Bougrine S, Mothana RA, Hawwal MF, Alobaid WA, Asehraou A, El Guerrouj B, Mrabti HN, Mesnard F, Addi M. Optimization of the Antibacterial Activity of a Three-Component Essential Oil Mixture from Moroccan Thymus satureioides, Lavandula angustifolia, and Origanum majorana Using a Simplex-Centroid Design. Pharmaceuticals (Basel) 2025; 18:57. [PMID: 39861120 PMCID: PMC11769045 DOI: 10.3390/ph18010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES The rise of antibiotic-resistant pathogens has become a global health crisis, necessitating the development of alternative antimicrobial strategies. This study aimed to optimize the antibacterial effects of essential oils (EOs) from Thymus satureioides, Lavandula angustifolia, and Origanum majorana, enhancing their efficacy through optimized mixtures. METHODS This study utilized a simplex-centroid design to optimize the mixture ratios of EOs for maximal antibacterial and antioxidant effectiveness. The chemical profiles of the EOs were analyzed using gas chromatography-mass spectrometry (GC-MS). The antibacterial activity was assessed against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa using minimum inhibitory concentration (MIC) tests, while antioxidant activity was evaluated through DPPH (2,2-diphenyl-1-picrylhydrazyl), and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assays. RESULTS The optimized essential oil mixtures demonstrated potent antibacterial activity, with MIC values of 0.097% (v/v) for E. coli, 0.058% (v/v) for S. aureus, and 0.250% (v/v) for P. aeruginosa. The mixture ratios achieving these results included 76% T. satureioides, and 24% O. majorana for E. coli, and varying proportions for other strains. Additionally, L. angustifolia essential oil exhibited the strongest antioxidant activity, with IC50 values of 84.36 µg/mL (DPPH), and 139.61 µg/mL (ABTS), surpassing both the other EOs and standard antioxidants like BHT and ascorbic acid in the ABTS assay. CONCLUSIONS The study successfully demonstrates that optimized mixtures of EOs can serve as effective natural antibacterial agents. The findings highlight a novel approach to enhance the applications of essential oils, suggesting their potential use in food preservation and biopharmaceutical formulations. This optimization strategy offers a promising avenue to combat antibiotic resistance and enhance food safety using natural products.
Collapse
Affiliation(s)
- Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (B.E.G.)
| | - Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (B.E.G.)
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco;
| | - Naoufal El Hachlafi
- Faculty of Medicine and Pharmacy, Ibn Zohr University, Guelmim 81000, Morocco; (N.E.H.); (M.J.)
| | - Mounir Haddou
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (B.E.G.)
| | - Mohamed Jeddi
- Faculty of Medicine and Pharmacy, Ibn Zohr University, Guelmim 81000, Morocco; (N.E.H.); (M.J.)
| | - Abdellah Baraich
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco; (A.B.); (A.A.)
| | - Saad Bougrine
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco;
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.M.); (M.F.H.); (W.A.A.)
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.M.); (M.F.H.); (W.A.A.)
| | - Waleed A. Alobaid
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.M.); (M.F.H.); (W.A.A.)
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco; (A.B.); (A.A.)
| | - Bouchra El Guerrouj
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (B.E.G.)
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco;
| | - Hanae Naceiri Mrabti
- High Institute of Nursing Professions and Health Techniques, Casablanca 20250, Morocco;
- Department of Pharmacology, Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine, Pharmacy and Dentistry, Sidi Mohamed Ben Abdellah University, Fez P.O. Box 2202, Morocco
| | - Francois Mesnard
- BIOPI-BioEcoAgro UMRT 1158 INRAE, Université de Picardie Jules Verne, 80000 Amiens, France;
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (B.E.G.)
| |
Collapse
|
4
|
Sinha S, Aggarwal S, Singh DV. Efflux pumps: gatekeepers of antibiotic resistance in Staphylococcus aureus biofilms. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:368-377. [PMID: 39568862 PMCID: PMC11576857 DOI: 10.15698/mic2024.11.839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024]
Abstract
Staphylococcus aureus, a versatile human pathogen, poses a significant challenge in healthcare settings due to its ability to develop antibiotic resistance and form robust biofilms. Understanding the intricate mechanisms underlying the antibiotic resistance is crucial for effective infection treatment and control. This comprehensive review delves into the multifaceted roles of efflux pumps in S. aureus, with a focus on their contribution to antibiotic resistance and biofilm formation. Efflux pumps, integral components of the bacterial cell membrane, are responsible for expelling a wide range of toxic substances, including antibiotics, from bacterial cells. By actively extruding antibiotics, these pumps reduce intracellular drug concentrations, rendering antibiotics less effective. Moreover, efflux pumps have emerged as significant contributors to both antibiotic resistance and biofilm formation in S. aureus. Biofilms, structured communities of bacterial cells embedded in a protective matrix, enable S. aureus to adhere to surfaces, evade host immune responses, and resist antibiotic therapy. Efflux pumps play a pivotal role in the development and maintenance of S. aureus biofilms. However, the interplay between efflux pumps, antibiotic resistance and biofilm formation remains unexplored in S. aureus. This review aims to elucidate the complex relationship between efflux pumps, antibiotic resistance and biofilm formation in S. aureus with the aim to aid in the development of potential therapeutic targets for combating S. aureus infections, especially those associated with biofilms. The insights provided herein may contribute to the advancement of novel strategies to overcome antibiotic resistance and disrupt biofilm formation in this clinically significant pathogen.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Biotechnology, School of Earth, Biological and Environmental Sciences, Central University of South Bihar Gaya, 824236 India
| | - Shifu Aggarwal
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023 India
- Current Address: Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts USA
| | - Durg Vijai Singh
- Department of Biotechnology, School of Earth, Biological and Environmental Sciences, Central University of South Bihar Gaya, 824236 India
| |
Collapse
|
5
|
Wei H, You A, Wang D, Zhang A. Plant-derived essential oil contributes to the reduction of multidrug resistance genes in the sludge composting process. ENVIRONMENT INTERNATIONAL 2024; 190:108854. [PMID: 38950496 DOI: 10.1016/j.envint.2024.108854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Multidrug-resistant bacteria and multi-resistance genes in sludge have become a serious issue for public health. It is imperative to develop feasible and environmentally friendly methods of sludge composting to alleviate multidrug resistance genes. Plant-derived essential oil is an effective natural and eco-friendly antibacterial, which has great utilization in inhibiting pathogens in the agricultural industry. Nevertheless, the application of plant-derived essential oil to control pathogenic bacteria and antibiotic resistance in composting has not been reported. This study conducted a composting system by adding plant-derived essential oil i.e., oregano essential oil (OEO), to sludge composting. The findings indicated that multidrug resistance genes and priority pathogens (critical, high, and medium categories) were reduced by (17.0 ± 2.2)% and (26.5 ± 3.0)% in the addition of OEO (OH treatment) compared to control. Besides, the OH treatment changed the bacterial community and enhanced the gene sequences related to carbohydrate metabolism in compost microorganisms. Mantel test and variation partitioning analysis revealed that the target virulence factors (VFs), target mobile genetic elements (MGEs), and priority pathogens were the most important factors affecting multidrug resistance in composting. The OH treatment could significantly inhibit the target VFs, target MGEs, and priority pathogens, which were helpful for the suppression and elimination of multidrug resistance genes. These findings provide new insights into the regulation of multidrug resistance genes during sludge composting and a novel way to diminish the environmental risk of antibiotic resistance.
Collapse
Affiliation(s)
- Huawei Wei
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Gui'an New District 561113, Guizhou, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Gui'an New District 561113, Guizhou, PR China.
| | - Anbo You
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Gui'an New District 561113, Guizhou, PR China
| | - Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Gui'an New District 561113, Guizhou, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Gui'an New District 561113, Guizhou, PR China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Gui'an New District 561113, Guizhou, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Gui'an New District 561113, Guizhou, PR China.
| |
Collapse
|
6
|
Ben Selma W, Alibi S, Ferjeni M, Ghezal S, Gallala N, Belghouthi A, Gargouri A, Marzouk M, Boukadida J. Synergistic activity of Thymus capitatus essential oil and cefotaxime against ESBL-producing Klebsiella pneumoniae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2936-2946. [PMID: 37952172 DOI: 10.1080/09603123.2023.2280149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
The objective of the current study was to evaluate the interaction between Tunisian Thymus capitatus essential oil (EO) and cefotaxime against Extended-Spectrum Beta-lactamases (ESBLs) producing Klebsiella pneumoniae hospital strains. GC-MS revealed that the major component of EO was found to be carvacrol (69.28%). The EO exerts an advanced bactericidal effect against all strains. Synergy between EO and cefotaxime was obtained by combined disk diffusion and checkerboard techniques. Combined use of EO and cefotaxime reduced the MIC of imipenem by 8- to 128-fold for all strains (fractional inhibitory concentration index ˂ 0.5, synergy). The time kill curve assay confirmed the advanced activity of combinatory effects of EO and cefotaxime, with total reduce of bacterial number (CFU/mL) after 6 h of culture. Synergistic activity of the combination between EO and cefotaxime constitute an important strategy as therapeutical option to combat infections caused by ESBLs producing Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Walid Ben Selma
- Department of Biochemistry, Faculty of Medicine, Laboratory of biological and genetic markers studying for early diagnosis and follow-up of neurological diseases (LR18ES47), Sousse, Tunisia
- Higher Institute of Applied Sciences and Technology, Mahdia, Tunisia
| | - Sana Alibi
- Research Unit Analysis and Process Applied to the Environment UR17ES32, Higher Institute of Applied Sciences and Technology, Mahdia, Tunisia
| | - Mohamed Ferjeni
- Department of Biochemistry, Faculty of Medicine, Laboratory of biological and genetic markers studying for early diagnosis and follow-up of neurological diseases (LR18ES47), Sousse, Tunisia
| | - Samira Ghezal
- Laboratory of Microbiology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Najla Gallala
- Laboratory of Microbiology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Amir Belghouthi
- Laboratory of Microbiology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Ali Gargouri
- Biotechnology center of Sfax, Laboratory of Molecular biology, Sfax, Tunisia
| | - Manel Marzouk
- Department of Biochemistry, Faculty of Medicine, Laboratory of biological and genetic markers studying for early diagnosis and follow-up of neurological diseases (LR18ES47), Sousse, Tunisia
- Laboratory of Microbiology, Farhat Hached University Hospital, Sousse, Tunisia
- Department of Microbiology, Faculty of medicine, University of Sousse, Sousse, Tunisia
| | - Jalel Boukadida
- Department of Biochemistry, Faculty of Medicine, Laboratory of biological and genetic markers studying for early diagnosis and follow-up of neurological diseases (LR18ES47), Sousse, Tunisia
- Laboratory of Microbiology, Farhat Hached University Hospital, Sousse, Tunisia
- Department of Microbiology, Faculty of medicine, University of Sousse, Sousse, Tunisia
| |
Collapse
|
7
|
Mechmechani S, Yammine J, Alhuthali S, El Mouzawak M, Charvourou G, Ghasrsallaoui A, Chihib NE, Doulgeraki A, Karam L. Study of the Resistance of Staphylococcus aureus Biofilm, Biofilm-Detached Cells, and Planktonic Cells to Microencapsulated Carvacrol Used Alone or Combined with Low-pH Treatment. Int J Mol Sci 2024; 25:7222. [PMID: 39000327 PMCID: PMC11242642 DOI: 10.3390/ijms25137222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Microbial biofilms pose severe problems in the medical field and food industry, as they are the cause of many serious infections and food-borne diseases. The extreme biofilms' resistance to conventional anti-microbial treatments presents a major challenge to their elimination. In this study, the difference in resistance between Staphylococcus aureus DSMZ 12463 biofilms, biofilm-detached cells, and planktonic cells against microcapsules containing carvacrol was assessed. The antimicrobial/antibiofilm activity of low pH disinfection medium containing the microencapsulated carvacrol was also studied. In addition, the effect of low pH on the in vitro carvacrol release from microcapsules was investigated. The minimum inhibitory concentration of microencapsulated carvacrol was 0.625 mg mL-1. The results showed that biofilms exhibited greater resistance to microencapsulated carvacrol than the biofilm-detached cells and planktonic cells. Low pH treatment alone, by hydrochloric acid addition, showed no bactericidal effect on any of the three states of S. aureus strain. However, microencapsulated carvacrol was able to significantly reduce the planktonic cells and biofilm-detached cells below the detection limit (no bacterial counts), and the biofilm by approximatively 3 log CFU mL-1. In addition, results showed that microencapsulated carvacrol combined with low pH treatment reduced biofilm by more than 5 log CFU mL-1. Thus, the use of microencapsulated carvacrol in acidic environment could be a promising approach to combat biofilms from abiotic surfaces.
Collapse
Affiliation(s)
- Samah Mechmechani
- Institut National de Recherche Pour L'agriculture, L'alimentation Et L'environnement (INRAE), University of Lille, Centre national de la recherche scientifique (CNRS), 59120 Lille, France
| | - Jina Yammine
- Institut National de Recherche Pour L'agriculture, L'alimentation Et L'environnement (INRAE), University of Lille, Centre national de la recherche scientifique (CNRS), 59120 Lille, France
| | - Sakhr Alhuthali
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 22233, Saudi Arabia
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | | | - Georgia Charvourou
- Institute of Technology of Agricultural Products-Hellenic Agricultural Organization DIMITRA, S. Venizelou 1, 14123 Lycovrissi, Greece
| | - Adem Ghasrsallaoui
- Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France
| | - Nour Eddine Chihib
- Institut National de Recherche Pour L'agriculture, L'alimentation Et L'environnement (INRAE), University of Lille, Centre national de la recherche scientifique (CNRS), 59120 Lille, France
| | - Agapi Doulgeraki
- Institute of Technology of Agricultural Products-Hellenic Agricultural Organization DIMITRA, S. Venizelou 1, 14123 Lycovrissi, Greece
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Layal Karam
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
8
|
Sena G, De Rose E, Crudo M, Filippelli G, Passarino G, Bellizzi D, D’Aquila P. Essential Oils from Southern Italian Aromatic Plants Synergize with Antibiotics against Escherichia coli, Pseudomonas aeruginosa and Enterococcus faecalis Cell Growth and Biofilm Formation. Antibiotics (Basel) 2024; 13:605. [PMID: 39061287 PMCID: PMC11274178 DOI: 10.3390/antibiotics13070605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The spread of antibiotic-resistant pathogens has prompted the development of novel approaches to identify molecules that synergize with antibiotics to enhance their efficacy. This study aimed to investigate the effects of ten Essential Oils (EOs) on the activity of nine antibiotics in influencing growth and biofilm formation in Escherichia coli, Pseudomonas aeruginosa, and Enterococcus faecalis. The effects of the EOs alone and in combination with antibiotics on both bacterial growth and biofilm formation were analyzed by measuring the MIC values through the broth microdilution method and the crystal violet assay, respectively. All EOs inhibited the growth of E. coli (1.25 ≤ MIC ≤ 5 mg/mL) while the growth of P. aeruginosa and E. faecalis was only affected by EOs from Origanum vulgare, (MIC = 5 mg/mL) and O. vulgare (MIC = 1.25 mg/mL) and Salvia rosmarinus (MIC = 5 mg/mL), respectively. In E. coli, most EOs induced a four- to sixteen-fold reduction in the MIC values of ampicillin, ciprofloxacin, ceftriaxone, gentamicin, and streptomycin, while in E. faecalis such a reduction is observed in combinations of ciprofloxacin with C. nepeta, C. bergamia, C. limon, C. reticulata, and F. vulgare, of gentamicin with O. vulgare, and of tetracycline with C. limon and O. vulgare. A smaller effect was observed in P. aeruginosa, in which only C. bergamia reduced the concentration of tetracycline four-fold. EO-antibiotic combinations also inhibit the biofilm formation. More precisely, all EOs with ciprofloxacin in E. coli, tetracycline in P. aeruginosa, and gentamicin in E. faecalis showed the highest percentage of inhibition. Combinations induce up- and down-methylation of cytosines and adenines compared to EO or antibiotics alone. The study provides evidence about the role of EOs in enhancing the action of antibiotics by influencing key processes involved in resistance mechanisms such as biofilm formation and epigenetic changes. Synergistic interactions should be effectively considered in dealing with pathogenic microorganisms.
Collapse
Affiliation(s)
- Giada Sena
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (G.S.); (E.D.R.); (G.P.); (P.D.)
| | - Elisabetta De Rose
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (G.S.); (E.D.R.); (G.P.); (P.D.)
| | - Michele Crudo
- Botanical Research Institute of Calabrian Knowledge (B.R.I.C.K.)—GOEL Società Cooperativa Sociale, Via Peppino Brugnano, 89048 Siderno, Italy;
| | - Gianfranco Filippelli
- Unità Operativa Complessa di Oncologia Medica, Ospedale San Francesco di Paola, 87027 Paola, Italy;
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (G.S.); (E.D.R.); (G.P.); (P.D.)
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (G.S.); (E.D.R.); (G.P.); (P.D.)
| | - Patrizia D’Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (G.S.); (E.D.R.); (G.P.); (P.D.)
| |
Collapse
|
9
|
Majeed U, Majeed H, Liu X, Shafi A, Liu T, Ye J, Meng Q, Luo Y. Succinylated starch emulsified Eugenol and Carvacrol nanoemulsions improved digestive stability, bio-accessibility and Salmonella typhimurium inhibition. Int J Biol Macromol 2024; 259:129230. [PMID: 38184054 DOI: 10.1016/j.ijbiomac.2024.129230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
The ultrasonically processed Eugenol (EU) and Carvacrol (CAR) nanoemulsions (NE) were successfully optimized via response surface methodology (RSM) to achieve broad spectrum antimicrobial efficacy. These NE were prepared using 2 % (w/w) purity gum ultra (i.e., succinylated starch), 10 % (v/v) oil phase, 80 % (800 W) sonication power, and 10 min of processing time as determined via RSM. The second order Polynomial method was suitable to RSM with a co-efficient of determination >0.90 and a narrow polydispersity index (PDI) ranging 0.12-0.19. NE had small droplet sizes (135.5-160 nm) and low volatility at high temperatures. The EU & CAR entrapment and heat stability (300 °C) confirmed by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Further, the volatility of EU & CAR NE was 18.18 ± 0.13 % and 12.29 ± 0.11 % respectively, being lower than that of bulk/unencapsulated EU & CAR (i.e., 23.48 ± 0.38 % and 19.11 ± 0.08 %) after 2 h at 90 °C. Interestingly, both EU & CAR NE showed sustained release behaviour till 48 h. Their digest could inhibit Salmonella typhimurium (S. typhimurium) via membrane disruption and access to cellular machinery as evident from SEM images. Furthermore, in-vivo bio-accessibility of EU & CAR in mice serum was up to 80 %. These cost-effective and short-processed EU/CAR NE have the potential as green preservatives for food industry.
Collapse
Affiliation(s)
- Usman Majeed
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Hamid Majeed
- Department of Food sciences, Cholistan university of veterinary and animal sciences, 63100 Bahawalpur, Pakistan
| | - Xuehua Liu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Afshan Shafi
- Department of Food Science and Technology, MNS-University of Agriculture, Multan, Pakistan
| | - Ting Liu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jianming Ye
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Qiang Meng
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yane Luo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
10
|
Jurado P, Uruén C, Martínez S, Lain E, Sánchez S, Rezusta A, López V, Arenas J. Essential oils of Pinus sylvestris, Citrus limon and Origanum vulgare exhibit high bactericidal and anti-biofilm activities against Neisseria gonorrhoeae and Streptococcus suis. Biomed Pharmacother 2023; 168:115703. [PMID: 37857249 DOI: 10.1016/j.biopha.2023.115703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Antimicrobial resistance is a worldwide problem that urges novel alternatives to treat infections. In attempts to find novel molecules, we assess the antimicrobial potential of seven essential oils (EO) of different plants (Pinus sylvestris, Citrus limon, Origanum vulgare, Cymbopogon martini, Cinnamomum cassia, Melaleuca alternifolia and Eucalyptus globulus) against two multidrug-resistant bacteria species, i.e. Neisseria gonorrhoeae and Streptococcus suis. EOs of P. sylvestris and C. limon revealed higher bactericidal activity (MIC ≤ 0.5 mg/mL) and capacity to rapidly disperse biofilms of several N. gonorrhoeae clinical isolates than other EOs. Examination of biofilms exposed to both EO by electron microscopy revealed a reduction of bacterial aggregates, high production of extracellular vesicles, and alteration of cell integrity. This activity was dose-dependent and was enhanced in DNase I-treated biofilms. Antibiotic susceptibility studies confirmed that both EOs affected the outer membrane permeability, and analysis of EO- susceptibility of an LPS-deficient mutant suggested that both EO target the LPS bilayer. Further analysis revealed that α- and β-pinene and d-limonene, components of both EO, contribute to such activity. EO of C. martini, C. cassia, and O. vulgare exhibited promising antimicrobial activity (MIC ≤ 0.5 mg/mL) against S. suis, but only EO of O. vulgare exhibited a high biofilm dispersal activity, which was also confirmed by electron microscopy studies. To conclude, the EO of P. sylvestris, C. limon and O. vulgare studied in this work exhibit bactericidal and anti-biofilm activities against gonococcus and streptococcus, respectively.
Collapse
Affiliation(s)
- Paula Jurado
- Unit of Microbiology and Immunology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, IIS Aragón, 50059 Zaragoza, Spain
| | - Cristina Uruén
- Unit of Microbiology and Immunology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, IIS Aragón, 50059 Zaragoza, Spain
| | - Sara Martínez
- Unit of Microbiology and Immunology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Elena Lain
- Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Sandra Sánchez
- Departament of Microbiology y Parasitology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Víctor López
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, IIS Aragón, 50059 Zaragoza, Spain; Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Zaragoza), Spain
| | - Jesús Arenas
- Unit of Microbiology and Immunology, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, IIS Aragón, 50059 Zaragoza, Spain.
| |
Collapse
|
11
|
Kowalewska A, Majewska-Smolarek K. Eugenol-Based Polymeric Materials-Antibacterial Activity and Applications. Antibiotics (Basel) 2023; 12:1570. [PMID: 37998772 PMCID: PMC10668689 DOI: 10.3390/antibiotics12111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Eugenol (4-Allyl-2-methoxy phenol) (EUG) is a plant-derived allyl chain-substituted guaiacol, widely known for its antimicrobial and anesthetic properties, as well as the ability to scavenge reactive oxygen species. It is typically used as a mixture with zinc oxide (ZOE) for the preparation of restorative tooth fillings and treatment of root canal infections. However, the high volatility of this insoluble-in-water component of natural essential oils can be an obstacle to its wider application. Moreover, molecular eugenol can be allergenic and even toxic if taken orally in high doses for long periods of time. Therefore, a growing interest in eugenol loading in polymeric materials (including the encapsulation of molecular eugenol and polymerization of EUG-derived monomers) has been noted recently. Such active macromolecular systems enhance the stability of eugenol action and potentially provide prolonged contact with pathogens without the undesired side effects of free EUG. In this review, we present an overview of methods leading to the formation of macromolecular derivatives of eugenol as well as the latest developments and further perspectives in their pharmacological and antimicrobial applications.
Collapse
Affiliation(s)
- Anna Kowalewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland;
| | | |
Collapse
|
12
|
Xiao G, Li J, Sun Z. The Combination of Antibiotic and Non-Antibiotic Compounds Improves Antibiotic Efficacy against Multidrug-Resistant Bacteria. Int J Mol Sci 2023; 24:15493. [PMID: 37895172 PMCID: PMC10607837 DOI: 10.3390/ijms242015493] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Bacterial antibiotic resistance, especially the emergence of multidrug-resistant (MDR) strains, urgently requires the development of effective treatment strategies. It is always of interest to delve into the mechanisms of resistance to current antibiotics and target them to promote the efficacy of existing antibiotics. In recent years, non-antibiotic compounds have played an important auxiliary role in improving the efficacy of antibiotics and promoting the treatment of drug-resistant bacteria. The combination of non-antibiotic compounds with antibiotics is considered a promising strategy against MDR bacteria. In this review, we first briefly summarize the main resistance mechanisms of current antibiotics. In addition, we propose several strategies to enhance antibiotic action based on resistance mechanisms. Then, the research progress of non-antibiotic compounds that can promote antibiotic-resistant bacteria through different mechanisms in recent years is also summarized. Finally, the development prospects and challenges of these non-antibiotic compounds in combination with antibiotics are discussed.
Collapse
Affiliation(s)
| | | | - Zhiliang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (G.X.); (J.L.)
| |
Collapse
|
13
|
Huwaimel B, Abouzied AS, Anwar S, Elaasser MM, Almahmoud SA, Alshammari B, Alrdaian D, Alshammari RQ. Novel landmarks on the journey from natural products to pharmaceutical formulations: Phytochemical, biological, toxicological and computational activities of Satureja hortensis L. Food Chem Toxicol 2023; 179:113969. [PMID: 37517548 DOI: 10.1016/j.fct.2023.113969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
This study examined the ethanolic extract of the Satureja hortensis L. plant's aerial parts to describe its phytochemical makeup, biological functions, toxicity tests, and in-silico molecular docking tests. The GC-MS analysis was used to evaluate the phytochemical composition of the tested extract, and the ABTS and hydrogen peroxide antioxidant assays were used to measure antioxidant activity. Aspergillus fumigatus, Candida albicans, Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Proteus vulgaris were tested for antimicrobial potential. On cell lines such as HepG-2, MCF-7, A-549, and Panc-1, the in-vitro toxicity was also examined. The A-549 cell line was also used for flow cytometry analysis of apoptosis and cell cycle. Additionally, the compounds discovered by the GC-MS analysis were used in silico tests against biological targets. Eight different phytocompounds were tentatively identified as a result of the GC-MS analysis. The compounds also demonstrated significant antioxidant potential for the ABTS and H2O2 assays (IC50: 2.44 and 28.04 μg/ml, respectively). The tested extract was found to have a range of inhibition zones and to be significantly active against the tested bacterial and fungal strains. Apoptosis and cell cycle analysis for the A-549 cell line showed that the cell cycle was arrested at S-phase, and the extract was also found to be most active against this cell line with an IC50 value of 113.05 μg/ml. The docking studies have emphasized the compounds' interactions and binding scores with the EGFR-TK target as determined by the GC-MS.
Collapse
Affiliation(s)
- Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia; Medical and Diagnostic Research Center, University of Ha'il, Hail, 55473, Saudi Arabia
| | - Amr S Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia; Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza, 12311, Egypt.
| | - Sirajudheen Anwar
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Mahmoud M Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Egypt
| | - Suliman A Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Bahaa Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
| | - Dareen Alrdaian
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
| | - Reem Q Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
| |
Collapse
|
14
|
Ashrafudoulla M, Mevo SIU, Song M, Chowdhury MAH, Shaila S, Kim DH, Nahar S, Toushik SH, Park SH, Ha SD. Antibiofilm mechanism of peppermint essential oil to avert biofilm developed by foodborne and food spoilage pathogens on food contact surfaces. J Food Sci 2023; 88:3935-3955. [PMID: 37477280 DOI: 10.1111/1750-3841.16712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/10/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
Establishing efficient methods to combat bacterial biofilms is a major concern. Natural compounds, such as essential oils derived from plants, are among the favored and recommended strategies for combatting bacteria and their biofilm. Therefore, we evaluated the antibiofilm properties of peppermint oil as well as the activities by which it kills bacteria generally and particularly their biofilms. Peppermint oil antagonistic activities were investigated against Vibrio parahaemolyticus, Listeria monocytogenes, Pseudomonas aeruginosa, Escherichia coli O157:H7, and Salmonella Typhimurium on four food contact surfaces (stainless steel, rubber, high-density polyethylene, and polyethylene terephthalate). Biofilm formation on each studied surface, hydrophobicity, autoaggregation, metabolic activity, and adenosine triphosphate quantification were evaluated for each bacterium in the presence and absence (control) of peppermint oil. Real-time polymerase chain reaction, confocal laser scanning microscopy, and field-emission scanning electron microscopy were utilized to analyze the effects of peppermint oil treatment on the bacteria and their biofilm. Results showed that peppermint oil (1/2× minimum inhibitory concentration [MIC], MIC, and 2× MIC) substantially lessened biofilm formation, with high bactericidal properties. A minimum of 2.5-log to a maximum of around 5-log reduction was attained, with the highest sensitivity shown by V. parahaemolyticus. Morphological experiments revealed degradation of the biofilm structure, followed by some dead cells with broken membranes. Thus, this study established the possibility of using peppermint oil to combat key foodborne and food spoilage pathogens in the food processing environment.
Collapse
Affiliation(s)
- Md Ashrafudoulla
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | | | - Minsu Song
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | | | - Shanjida Shaila
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | - Duk Hyun Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | - Shamsun Nahar
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | - Sazzad Hossen Toushik
- Department of Biochemistry & Microbiology, School of Health & Life Sciences, North South University, Dhaka, Bangladesh
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| |
Collapse
|
15
|
Cutro AC, Coria MS, Bordon A, Rodriguez SA, Hollmann A. Antimicrobial properties of the essential oil of Schinus areira (Aguaribay) against planktonic cells and biofilms of S. aureus. Arch Biochem Biophys 2023:109670. [PMID: 37336342 DOI: 10.1016/j.abb.2023.109670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
The essential oil (EO) of Schinus areira L. (Anacardiaceae) leaves has shown antibacterial activity against Staphylococcus aureus. In this study we aimed to unravel the mechanisms of its antibacterial action by using bacterial cells and model membranes. First, the integrity of S. aureus membrane was evaluated by fluorescence microscopy. It was observed an increase in the permeability of cells that was dependent on the EO concentration as well as the incubation time. For a deep evaluation of the action of the EO on the lipids, its effect on the membrane fluidity was evaluated on DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine): DMPG (1,2-dimyristoyl-sn-glycero-3-phospho-1'-rac-glycerol) (5:1) liposomes by dynamic scattering light and by using Laurdan doped liposomes. The results indicate that EO produces changes in lipid membrane packing, increasing the fluidity, reducing the cooperative cohesive interaction between phospholipids and increasing access of water or the insertion of some components of the EO to the interior of the membrane. In addition, the potential effect of EO on intracellular targets, as the increase of cytosolic reactive oxygen species (ROS) and DNA damage, were evaluated. The EO was capable of increasing the production of ROS as well as inducing a partial degradation of DNA. Finally, the effect of EO on S. aureus biofilm was tested. These assays showed that EO was able to inhibit the biofilm formation, and also eradicate preformed biofilms. The results show, that the EO seems to have several bacterial targets involved in the antibacterial activity, from the bacterial membrane to DNA. Furthermore, the antibacterial action affects not only planktonic cells but also biofilms; reinforcing the potential application for this EO.
Collapse
Affiliation(s)
- Andrea C Cutro
- Laboratorio de Compuestos Bioactivos, CIBAAL, CONICET - Universidad Nacional de Santiago del Estero, Argentina; Facultad de Ciencias Médicas Universidad Nacional de Santiago del Estero, Argentina
| | - M Sumampa Coria
- INBIONATEC, CONICET- Universidad Nacional de Santiago del Estero, Argentina; Facultad de Agronomía y Agroindustrias Universidad Nacional de Santiago del Estero - CONICET, Argentina
| | - Anahi Bordon
- Laboratorio de Compuestos Bioactivos, CIBAAL, CONICET - Universidad Nacional de Santiago del Estero, Argentina
| | - Sergio A Rodriguez
- Facultad de Agronomía y Agroindustrias Universidad Nacional de Santiago del Estero - CONICET, Argentina
| | - Axel Hollmann
- Laboratorio de Compuestos Bioactivos, CIBAAL, CONICET - Universidad Nacional de Santiago del Estero, Argentina; Laboratorio de Microbiología Molecular Universidad Nacional de Quilmes, Argentina.
| |
Collapse
|
16
|
Chelliah R, Jo KH, Yan P, Chen X, Jo HY, Hasan Madar I, Sultan G, Oh DH. Unravelling the sanitization potential of slightly acidic electrolyzed water combined Thymus vulgaris based nanoemulsion against foodborne pathogens and its safety assessment. Food Control 2023; 146:109527. [DOI: 10.1016/j.foodcont.2022.109527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
17
|
Chelliah R, Jo KH, Yan P, Chen X, Jo HY, Hasan Madar I, Sultan G, Oh DH. Unravelling the sanitization potential of slightly acidic electrolyzed water combined Thymus vulgaris based nanoemulsion against foodborne pathogens and its safety assessment. Food Control 2023; 146:109527. [DOI: https:/doi.10.1016/j.foodcont.2022.109527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
18
|
Piasecki B, Balázs VL, Kieltyka-Dadasiewicz A, Szabó P, Kocsis B, Horváth G, Ludwiczuk A. Microbiological Studies on the Influence of Essential Oils from Several Origanum Species on Respiratory Pathogens. Molecules 2023; 28:molecules28073044. [PMID: 37049808 PMCID: PMC10096388 DOI: 10.3390/molecules28073044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Essential oils (EOs) with established and well-known activities against human pathogens might become new therapeutics in multidrug-resistant bacterial infections, including respiratory tract infections. The aim of this study was to evaluate the antimicrobial activity of EOs obtained from several samples of Origanum vulgare, O. syriacum, and O. majorana cultivated in Poland. EOs were analyzed by GC-MS and tested against four bacterial strains: Staphylococcus aureus (MRSA), Haemophilus influenzae, Haemophilus parainfluenzae, and Pseudomonas aeruginosa. Chemical analyses showed that the Eos were characterized by a high diversity in composition. Based on the chemical data, four chemotypes of Origanum EOs were confirmed. These were carvacrol, terpineol/sabinene hydrate, caryophyllene oxide, and thymol chemotypes. Thin-layer chromatography-bioautography confirmed the presence of biologically active antibacterial components in all tested EOs. The highest number of active spots were found among EOs with cis-sabinene hydrate as the major compound. On the other hand, the largest spots of inhibition were characteristic to EOs of the carvacrol chemotype. Minimal inhibitory concentrations (MICs) were evaluated for the most active EOs: O. vulgare ‘Hirtum’, O. vulgare ‘Margarita’, O. vulgare ‘Hot & Spicy’, O. majorana, and O. syriacum (I) and (II); it was shown that both Haemophilus strains were the most sensitive with an MIC value of 0.15 mg/mL for all EOs. O. majorana EO was also the most active in the MIC assay and had the highest inhibitory rate in the anti-biofilm assay against all strains. The most characteristic components present in this EO were the trans-sabinene hydrate and terpinen-4-ol. The strain with the least sensitivity was the MRSA with an MIC of 0.6 mg/mL for all EOs except for O. majorana, where the MIC value reached 0.3 mg/mL. Scanning electron microscopy performed on the Haemophilus influenzae and Haemophilus parainfluenzae biofilms showed a visible decrease in the appearance of bacterial clusters under the influence of O. majorana EO.
Collapse
|
19
|
Value-Added Compounds with Antimicrobial, Antioxidant, and Enzyme-Inhibitory Effects from Post-Distillation and Post-Supercritical CO 2 Extraction By-Products of Rosemary. Antioxidants (Basel) 2023; 12:antiox12020244. [PMID: 36829802 PMCID: PMC9952831 DOI: 10.3390/antiox12020244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Hydrodistillation is the main technique to obtain essential oils from rosemary for the aroma industry. However, this technique is wasteful, producing numerous by-products (residual water, spent materials) that are usually discarded in the environment. Supercritical CO2 (SC-CO2) extraction is considered an alternative greener technology for producing aroma compounds. However, there have been no discussions about the spent plant material leftover. Therefore, this work investigated the chemical profile (GC-MS, LC-HRMS/MS) and multi-biological activity (antimicrobial, antioxidant, enzyme inhibitory) of several raw rosemary materials (essential oil, SC-CO2 extracts, solvent extracts) and by-products/waste materials (post-distillation residual water, spent plant material extracts, and post-supercritical CO2 spent plant material extracts). More than 55 volatile organic compounds (e.g., pinene, eucalyptol, borneol, camphor, caryophyllene, etc.) were identified in the rosemary essential oil and SC-CO2 extracts. The LC-HRMS/MS profiling of the solvent extracts revealed around 25 specialized metabolites (e.g., caffeic acid, rosmarinic acid, salvianolic acids, luteolin derivatives, rosmanol derivatives, carnosol derivatives, etc.). Minimum inhibitory concentrations of 15.6-62.5 mg/L were obtained for some rosemary extracts against Micrococcus luteus, Bacilus cereus, or Staphylococcus aureus MRSA. Evaluated in six different in vitro tests, the antioxidant potential revealed strong activity for the polyphenol-containing extracts. In contrast, the terpene-rich extracts were more potent in inhibiting various key enzymes (e.g., acetylcholinesterase, butyrylcholinesterase, tyrosinase, amylase, and glucosidase). The current work brings new insightful contributions to the continuously developing body of knowledge about the valorization of rosemary by-products as a low-cost source of high-added-value constituents in the food, pharmaceutical, and cosmeceutical industries.
Collapse
|
20
|
Mohamad F, Alzahrani RR, Alsaadi A, Alrfaei BM, Yassin AEB, Alkhulaifi MM, Halwani M. An Explorative Review on Advanced Approaches to Overcome Bacterial Resistance by Curbing Bacterial Biofilm Formation. Infect Drug Resist 2023; 16:19-49. [PMID: 36636380 PMCID: PMC9830422 DOI: 10.2147/idr.s380883] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
The continuous emergence of multidrug-resistant pathogens evoked the development of innovative approaches targeting virulence factors unique to their pathogenic cascade. These approaches aimed to explore anti-virulence or anti-infective therapies. There are evident concerns regarding the bacterial ability to create a superstructure, the biofilm. Biofilm formation is a crucial virulence factor causing difficult-to-treat, localized, and systemic infections. The microenvironments of bacterial biofilm reduce the efficacy of antibiotics and evade the host's immunity. Producing a biofilm is not limited to a specific group of bacteria; however, Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus biofilms are exemplary models. This review discusses biofilm formation as a virulence factor and the link to antimicrobial resistance. In addition, it explores insights into innovative multi-targeted approaches and their physiological mechanisms to combat biofilms, including natural compounds, phages, antimicrobial photodynamic therapy (aPDT), CRISPR-Cas gene editing, and nano-mediated techniques.
Collapse
Affiliation(s)
- F Mohamad
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Raghad R Alzahrani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia,Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahlam Alsaadi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Bahauddeen M Alrfaei
- Stem Cells and Regenerative Medicine, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Alaa Eldeen B Yassin
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Manal M Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia,Manal M Alkhulaifi, P.O. Box 55670, Riyadh, 11544, Tel +966 (11) 805-1685, Email
| | - Majed Halwani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia,Correspondence: Majed Halwani, P.O. Box 3660, Mail Code 1515 (KAIMRC), Riyadh, 11481, Tel +966 (11) 429-4433, Fax +966 (11) 429-4440, Email ;
| |
Collapse
|
21
|
Perigo CV, Haber LL, Facanali R, Vieira MAR, Torres RB, Bernacci LC, Guimarães EF, Baitello JB, Sobral MEG, Quecini V, Marques MOM. Essential Oils of Aromatic Plant Species from the Atlantic Rainforest Exhibit Extensive Chemical Diversity and Antimicrobial Activity. Antibiotics (Basel) 2022; 11:antibiotics11121844. [PMID: 36551501 PMCID: PMC9774909 DOI: 10.3390/antibiotics11121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Microbial resistance, caused by the overuse or inadequate application of antibiotics, is a worldwide crisis, increasing the risk of treatment failure and healthcare costs. Plant essential oils (EOs) consist of hydrophobic metabolites with antimicrobial activity. The antimicrobial potential of the chemical diversity of plants from the Atlantic Rainforest remains scarcely characterized. In the current work, we determined the metabolite profile of the EOs from aromatic plants from nine locations and accessed their antimicrobial and biocidal activity by agar diffusion assays, minimum inhibitory concentration, time-kill and cell-component leakage assays. The pharmacokinetic properties of the EO compounds were investigated by in silico tools. More than a hundred metabolites were identified, mainly consisting of sesqui and monoterpenes. Individual plants and botanical families exhibited extensive chemical variations in their EO composition. Probabilistic models demonstrated that qualitative and quantitative differences contribute to chemical diversity, depending on the botanical family. The EOs exhibited antimicrobial biocidal activity against pathogenic bacteria, fungi and multiple predicted pharmacological targets. Our results demonstrate the antimicrobial potential of EOs from rainforest plants, indicate novel macromolecular targets, and contribute to highlighting the chemical diversity of native species.
Collapse
Affiliation(s)
| | - Lenita L. Haber
- Vegetables Research Center, Brazilian Agricultural Research Corporation, Brasília 70351-970, Brazil
| | | | | | | | | | - Elsie F. Guimarães
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - João B. Baitello
- Instituto Florestal do Estado de São Paulo, São Paulo 02377-000, Brazil
| | - Marcos E. G. Sobral
- Natural Sciences Department, Campus Dom Bosco, Universidade Federal de São João del-Rei, São João del Reio 36301-160, Brazil
| | - Vera Quecini
- Grape and Wine Research Center, Brazilian Agricultural Research Corporation, Bento Gonçalves 95701-008, Brazil
- Correspondence: (V.Q.); (M.O.M.M.); Tel.: +55-(54)-3455-8000 (V.Q.); +55-(19)-3202-1700 (M.O.M.M.)
| | - Marcia Ortiz M. Marques
- Instituto Agronômico, Campinas 13075-630, Brazil
- Correspondence: (V.Q.); (M.O.M.M.); Tel.: +55-(54)-3455-8000 (V.Q.); +55-(19)-3202-1700 (M.O.M.M.)
| |
Collapse
|
22
|
Alam A, Foudah AI, Salkini MA, Raish M, Sawale J. Herbal Fennel Essential Oil Nanogel: Formulation, Characterization and Antibacterial Activity against Staphylococcus aureus. Gels 2022; 8:736. [PMID: 36421558 PMCID: PMC9689951 DOI: 10.3390/gels8110736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 03/09/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the greatest threats to humanity in the world. Antibiotic-resistant bacteria spread easily in communities and hospitals. Staphylococcus aureus (S. aureus) is a serious human infectious agent with threatening broad-spectrum resistance to many commonly used antibiotics. To prevent the spread of pathogenic microorganisms, alternative strategies based on nature have been developed. Essential oils (EOs) are derived from numerous plant parts and have been described as antibacterial agents against S. aureus. Fennel essential oils were selected as antibacterial agents encapsulated in nanoparticles of polylactic acid and glycolic acid (PLGA). The optimum size of the formulation after loading with the active ingredient was 123.19 ± 6.1595 nm with a zeta potential of 0.051 ± 0.002 (23 ± 1.15 mV). The results of the encapsulation efficiency analysis showed high encapsulation of EOs, i.e., 66.4 ± 3.127. To obtain promising carrier materials for the delivery of fennel EOs, they were incorporated in the form of nanogels. The newly developed fennel oils in PLGANPs nanogels have good drug release and MIC against S. aureus. These results indicate the potential of this novel delivery system for antimicrobial therapy.
Collapse
Affiliation(s)
- Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Mohammad Ayman Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jyotiram Sawale
- IES Institute of Pharmacy, IES University Campus, Kalkheda, Ratibad Main Road, Bhopal 462044, India
| |
Collapse
|
23
|
Zhang L, Zhang M, Mujumdar AS, Yu D, Wang H. Potential nano bacteriostatic agents to be used in meat-based foods processing and storage: A critical review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Gurtler JB, Garner CM. A Review of Essential Oils as Antimicrobials in Foods with Special Emphasis on Fresh Produce. J Food Prot 2022; 85:1300-1319. [PMID: 35588157 DOI: 10.4315/jfp-22-017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Consumer safety concerns over established fresh produce washing methods and the demand for organic and clean-label food has led to the exploration of novel methods of produce sanitization. Essential oils (EOs), which are extracted from plants, have potential as clean-label sanitizers because they are naturally derived and act as antimicrobials and antioxidants. In this review, the antimicrobial effects of EOs are explored individually and in combination, as emulsions, combined with existing chemical and physical preservation methods, incorporated into films and coatings, and in vapor phase. We examined combinations of EOs with one another, with EO components, with surfactants, and with other preservatives or preservation methods to increase sanitizing efficacy. Components of major EOs were identified, and the chemical mechanisms, potential for antibacterial resistance, and effects on organoleptic properties were examined. Studies have revealed that EOs can be equivalent or better sanitizing agents than chlorine; nevertheless, concentrations must be kept low to avoid adverse sensory effects. For this reason, future studies should address the maximum permissible EO concentrations that do not negatively affect organoleptic properties. This review should be beneficial to food scientists or industry personnel interested in the use of EOs for sanitization and preservation of foods, including fresh produce. HIGHLIGHTS
Collapse
Affiliation(s)
- Joshua B Gurtler
- U.S. Department of Agriculture, Agricultural Research Service, Residue Chemistry and Predictive Microbiology Research Unit, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038-8551, USA
| | - Christina M Garner
- U.S. Department of Agriculture, Agricultural Research Service, Residue Chemistry and Predictive Microbiology Research Unit, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038-8551, USA
| |
Collapse
|
25
|
Alipanah H, Abdollahi A, Firooziyan S, Zarenezhad E, Jafari M, Osanloo M. Nanoemulsion and Nanogel Containing Eucalyptus globulus Essential Oil; Larvicidal Activity and Antibacterial Properties. Interdiscip Perspect Infect Dis 2022; 2022:1616149. [PMID: 36092391 PMCID: PMC9453008 DOI: 10.1155/2022/1616149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 12/30/2022] Open
Abstract
Eucalyptus globulus essential oil (EGEO) possesses many biological effects such as antibacterial, antifungal, and insecticide properties. In the current study, the chemical composition of EGEO was first investigated using GC-MS analysis. Then, a nanoemulsion and nanogel containing EGEO (EGEO-nanoemulsion and EGEO-nanogel) were prepared. After that, the successful loading of EGEO was confirmed using ATR-FTIR analysis. EGEO-nanoemulsion and EGEO-nanogel with LC50 values of 27 and 32 μg/mL showed promising efficacies against Anopheles stephensi larvae. Besides, the efficacy of EGEO-nanogel (IC50 187 μg/mL) was significantly more potent than EGEO-nanoemulsion (IC50 3732 μg/mL) against Staphylococcus aureus. However, no significant difference was observed in the efficacy of EGEO-nanoemulsion and EGEO-nanogel against Pseudomonas aeruginosa. Natural components, straightforward preparation, and proper efficacy are some of the advantages of EGEO-nanogel; it could be considered for further consideration against other pathogens and mosquito larvae.
Collapse
Affiliation(s)
- Hiva Alipanah
- Department of Physiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Abbas Abdollahi
- Department of Microbiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Samira Firooziyan
- Urmia Health Center, Disease Control Unit, Urmia University of Medical Sciences, Urmia, Iran
| | - Elham Zarenezhad
- Noncommunicable Disease Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mojtaba Jafari
- Student Research Center Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
26
|
Zhong W, Chen K, Yang L, Tang T, Jiang S, Guo J, Gao Z. Essential Oils From Citrus unshiu Marc. Effectively Kill Aeromonas hydrophila by Destroying Cell Membrane Integrity, Influencing Cell Potential, and Leaking Intracellular Substances. Front Microbiol 2022; 13:869953. [PMID: 35836415 PMCID: PMC9274202 DOI: 10.3389/fmicb.2022.869953] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Aeromonas hydrophila is one of the important pathogenic bacteria in aquaculture causing serious losses every year. Essential oils are usually used as natural antimicrobial agents to reduce or replace the use of antibiotics. The aim of this study was to evaluate the antibacterial activity and explore the mechanisms of essential oil from satsuma mandarin (Citrus unshiu Marc.) (SMEO) against A. hydrophila. The results of the gas chromatography-mass spectrometer demonstrated that SMEO contains 79 chemical components with the highest proportion of limonene (70.22%). SMEO exhibited strong antibacterial activity against A. hydrophila in vitro, the diameter of the inhibition zone was 31.22 ± 0.46 mm, and the MIC and MBC values were all 1% (v/v). Intracellular material release, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and flow cytometry analysis revealed the dynamic antibacterial process of SMEO, the morphological changes of bacterial cells, and the leakage process of intracellular components. These results demonstrated that SMEO disrupted the extracellular membrane permeability. Our study demonstrated that SEMO has the potential to be used to control and prevent A. hydrophila infections in aquaculture.
Collapse
Affiliation(s)
- Weiming Zhong
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Kangyong Chen
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Linlin Yang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Tao Tang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Sifan Jiang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- *Correspondence: Jiajing Guo,
| | - Zhipeng Gao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Zhipeng Gao,
| |
Collapse
|
27
|
Coimbra A, Ferreira S, Duarte AP. Biological properties of Thymus zygis essential oil with emphasis on antimicrobial activity and food application. Food Chem 2022; 393:133370. [PMID: 35667177 DOI: 10.1016/j.foodchem.2022.133370] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/02/2022] [Accepted: 05/29/2022] [Indexed: 11/19/2022]
Abstract
The Thymus plants have been used for centuries in traditional medicine and as a food spice, among this genus, Thymus zygis (red thyme) is a widespread plant, vastly used as a culinary flavouring agent. Its essential oil has demonstrated diverse bioactive properties, such as antimicrobial, insecticidal, larvicidal and antiparasitic activities. Numerous studies have characterized this essential oil showing that it possesses a broad antimicrobial spectrum and may even enhance the effect of certain antimicrobial agents. Its potential application as a food preservative has been analysed on different matrixes pointing to its antimicrobial activity against spoilage and pathogenic microorganisms in food. This review provides an insight in the chemical composition, antimicrobial, insecticidal, larvicidal and antiparasitic activities and toxicity of T. zygis essential oil, as well as its potential application in food as a preservative.
Collapse
Affiliation(s)
- Alexandra Coimbra
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Susana Ferreira
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Ana Paula Duarte
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
28
|
Juneja M, Suthar T, Pardhi VP, Ahmad J, Jain K. Emerging trends and promises of nanoemulsions in therapeutics of infectious diseases. Nanomedicine (Lond) 2022; 17:793-812. [PMID: 35587031 DOI: 10.2217/nnm-2022-0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Infectious diseases are prevalent and have contributed to high morbidity rates by creating havoc like the COVID-19, 1918 influenza and Black Death (the plague) pandemics. Antimicrobial resistance, adverse effects, the emergence of co-infections and the high cost of antimicrobial therapies are major threats to the health of people worldwide while impacting overall healthcare and socioeconomic development. One of the most common ways to address this issue lies in improving existing antimicrobial drug-delivery systems. Nanoemulsions and their modified forms have been successfully employed for the delivery of antimicrobials to treat infectious diseases. In this article, the authors comprehensively reviewed how nanoemulsion-based formulation systems are shifting the paradigm for therapeutics and diagnosis of infectious diseases.
Collapse
Affiliation(s)
- Mehak Juneja
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Raebareli, Uttar Pradesh, 226002, India
| | - Teeja Suthar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Raebareli, Uttar Pradesh, 226002, India
| | - Vishwas P Pardhi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Raebareli, Uttar Pradesh, 226002, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia
| | - Keerti Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Raebareli, Uttar Pradesh, 226002, India
| |
Collapse
|
29
|
Anand U, Carpena M, Kowalska-Góralska M, Garcia-Perez P, Sunita K, Bontempi E, Dey A, Prieto MA, Proćków J, Simal-Gandara J. Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: A comprehensive review on its potential applications, recent advances, and future perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153472. [PMID: 35093375 DOI: 10.1016/j.scitotenv.2022.153472] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Antibiotic resistance is one of the current threats to human health, forcing the use of drugs that are more noxious, costlier, and with low efficiency. There are several causes behind antibiotic resistance, including over-prescription of antibiotics in both humans and livestock. In this scenario, researchers are shifting to new alternatives to fight back this concerning situation. SCOPE AND APPROACH Nanoparticles have emerged as new tools that can be used to combat deadly bacterial infections directly or indirectly to overcome antibiotic resistance. Although nanoparticles are being used in the pharmaceutical industry, there is a constant concern about their toxicity toward human health because of the involvement of well-known toxic chemicals (i.e., sodium/potassium borohydride) making their use very risky for eukaryotic cells. KEY FINDINGS AND CONCLUSIONS Multiple nanoparticle-based approaches to counter bacterial infections, providing crucial insight into the design of elements that play critical roles in the creation of antimicrobial nanotherapeutic drugs, are currently underway. In this context, plant-based nanoparticles will be less toxic than many other forms, which constitute promising candidates to avoid widespread damage to the microbiome associated with current practices. This article aims to review the actual knowledge on plant-based nanoparticle products for antibiotic resistance and the possible replacement of antibiotics to treat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - M Carpena
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Monika Kowalska-Góralska
- Department of Limnology and Fisheries, Institute of Animal Husbandry and Breeding, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland.
| | - P Garcia-Perez
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Kumari Sunita
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh 273009, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| | - Miguel A Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, ul. Kożuchowska 7a, 51-631 Wrocław, Poland.
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| |
Collapse
|
30
|
Ekrami A, Ghadermazi M, Ekrami M, Hosseini MA, Emam-Djomeh Z, Hamidi-Moghadam R. Development and evaluation of Zhumeria majdae essential oil-loaded nanoliposome against multidrug-resistant clinical pathogens causing nosocomial infection. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Lauteri C, Maggio F, Serio A, Festino AR, Paparella A, Vergara A. Overcoming Multidrug Resistance in Salmonella spp. Isolates Obtained From the Swine Food Chain by Using Essential Oils: An in vitro Study. Front Microbiol 2022; 12:808286. [PMID: 35222307 PMCID: PMC8863735 DOI: 10.3389/fmicb.2021.808286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/13/2021] [Indexed: 12/27/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global concern, and new approaches are needed to circumvent animal and food-borne resistant pathogens. Among the new strategies, the combination of antibiotics with natural compounds such as essential oils (EOs) could be an alternative to challenge bacterial resistance. The present study evaluates the phenotypic and genotypic antibiotic resistance of 36 Salmonella enterica (16 S. Typhimurium, 3 monophasic variant S. Typhimurium, 8 S. Enteritidis, 6 S. Rissen, 1 S. Typhi, and 2 S. Derby) strains, isolated from the swine production chain. The isolates displayed phenotypic resistance to gentamicin, amikacin, tobramycin, and tetracycline, while the resistance genes most commonly detected were parC, catA, nfsB, nfsA, blaTEM, tetA, and tetB. Then 31/36 Salmonella isolates were chosen to evaluate resistance to tetracycline and Thymus vulgaris, Eugenia caryophyllata, and Corydothymus capitatus EOs by determining minimum inhibitory concentrations (MICs). Finally, the synergistic effect between tetracycline and each EOs was evaluated by the checkerboard method, calculating the fractional inhibitory concentration (FIC) index. Among the EOs, C. capitatus displayed the best bioactivity in terms of MICs, with the lowest values (0.31 and 0.625 μl/ml). On the contrary, the strains showed the ability to grow in the presence of the maximum concentration of tetracycline employed (256 μg/ml). While not displaying a real synergism according to the FIC index, the combination of tetracycline compounds and the three EOs resulted in a significant reduction in the MIC values to tetracycline (4 μg/ml), suggesting a restoration of the susceptibility to the antibiotic in Salmonella spp.
Collapse
Affiliation(s)
- Carlotta Lauteri
- Section of Food Inspection, Faculty of Veterinary Medicine, School of Specialization in Inspection of Foods of Animal Origin, “G. Tiecco” University of Teramo, Teramo, Italy
| | - Francesca Maggio
- Section of Food Microbiology, Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Annalisa Serio
- Section of Food Microbiology, Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Anna Rita Festino
- Section of Food Inspection, Faculty of Veterinary Medicine, School of Specialization in Inspection of Foods of Animal Origin, “G. Tiecco” University of Teramo, Teramo, Italy
| | - Antonello Paparella
- Section of Food Microbiology, Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Alberto Vergara
- Section of Food Inspection, Faculty of Veterinary Medicine, School of Specialization in Inspection of Foods of Animal Origin, “G. Tiecco” University of Teramo, Teramo, Italy
| |
Collapse
|
32
|
Murugaiyan J, Kumar PA, Rao GS, Iskandar K, Hawser S, Hays JP, Mohsen Y, Adukkadukkam S, Awuah WA, Jose RAM, Sylvia N, Nansubuga EP, Tilocca B, Roncada P, Roson-Calero N, Moreno-Morales J, Amin R, Kumar BK, Kumar A, Toufik AR, Zaw TN, Akinwotu OO, Satyaseela MP, van Dongen MBM. Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics. Antibiotics (Basel) 2022; 11:200. [PMID: 35203804 PMCID: PMC8868457 DOI: 10.3390/antibiotics11020200] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Antibiotic resistance, and, in a broader perspective, antimicrobial resistance (AMR), continues to evolve and spread beyond all boundaries. As a result, infectious diseases have become more challenging or even impossible to treat, leading to an increase in morbidity and mortality. Despite the failure of conventional, traditional antimicrobial therapy, in the past two decades, no novel class of antibiotics has been introduced. Consequently, several novel alternative strategies to combat these (multi-) drug-resistant infectious microorganisms have been identified. The purpose of this review is to gather and consider the strategies that are being applied or proposed as potential alternatives to traditional antibiotics. These strategies include combination therapy, techniques that target the enzymes or proteins responsible for antimicrobial resistance, resistant bacteria, drug delivery systems, physicochemical methods, and unconventional techniques, including the CRISPR-Cas system. These alternative strategies may have the potential to change the treatment of multi-drug-resistant pathogens in human clinical settings.
Collapse
Affiliation(s)
- Jayaseelan Murugaiyan
- Department of Biological Sciences, SRM University-AP, Guntur District, Amaravati 522240, India;
| | - P. Anand Kumar
- Department of Veterinary Microbiology, NTR College of Veterinary Science, Sri Venkateswara Veterinary University, Gannavaram 521102, India;
| | - G. Srinivasa Rao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati 517502, India;
| | - Katia Iskandar
- Department of Mathématiques Informatique et Télécommunications, Université Toulouse III, Paul Sabatier, INSERM, UMR 1295, 31000 Toulouse, France;
- INSPECT-LB: Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban, Beirut 6573, Lebanon
- Faculty of Pharmacy, Lebanese University, Beirut 6573, Lebanon
| | | | - John P. Hays
- Department of Medical Microbiology, Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), 3015 GD Rotterdam, The Netherlands;
| | - Yara Mohsen
- Department of Epidemiology, High Institute of Public Health, Alexandria University, Alexandria 21544, Egypt;
- Infectious Disease Clinical Pharmacist, Antimicrobial Stewardship Department, International Medical Center Hospital, Cairo 11511, Egypt
| | - Saranya Adukkadukkam
- Department of Biological Sciences, SRM University-AP, Guntur District, Amaravati 522240, India;
| | - Wireko Andrew Awuah
- Faculty of Medicine, Sumy State University, 40007 Sumy, Ukraine; (W.A.A.); (A.-R.T.)
| | - Ruiz Alvarez Maria Jose
- Research Coordination and Support Service, National Institute of Health (ISS) Viale Regina -Elena, 299, 00161 Rome, Italy;
| | - Nanono Sylvia
- Infectious Diseases Institute (IDI), College of Health Sciences, Makerere University, Kampala 7072, Uganda;
| | | | - Bruno Tilocca
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (B.T.); (P.R.)
| | - Paola Roncada
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (B.T.); (P.R.)
| | - Natalia Roson-Calero
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (N.R.-C.); (J.M.-M.)
| | - Javier Moreno-Morales
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (N.R.-C.); (J.M.-M.)
| | - Rohul Amin
- James P Grant School of Public Health, BRAC University, Dhaka 1212, Bangladesh;
| | - Ballamoole Krishna Kumar
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore 575018, India;
| | - Abishek Kumar
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Abdul-Rahman Toufik
- Faculty of Medicine, Sumy State University, 40007 Sumy, Ukraine; (W.A.A.); (A.-R.T.)
| | - Thaint Nadi Zaw
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK;
| | - Oluwatosin O. Akinwotu
- Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of Baroda, Vadodara 390002, India;
- Environmental and Biotechnology Unit, Department of Microbiology, University of Ibadan, 200132 Ibadan, Nigeria
| | | | | |
Collapse
|
33
|
Thymus zygis Essential Oil: Phytochemical Characterization, Bioactivity Evaluation and Synergistic Effect with Antibiotics against Staphylococcus aureus. Antibiotics (Basel) 2022; 11:antibiotics11020146. [PMID: 35203749 PMCID: PMC8868214 DOI: 10.3390/antibiotics11020146] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is a nosocomial bacterium causing different infectious diseases, ranging from skin and soft-tissue infections to more serious and life-threatening infections such as sepsis, meningitis and endocarditis, which may be exacerbated by antibiotic resistance. Plant products may be seen as an alternative as antibacterial agents, namely, against S. aureus. Thus, the aim of this work was to characterize the chemical composition and evaluate the bioactive properties of the T. zygis essential oil (EO), with a focus on antimicrobial activity against S. aureus. Gas chromatography coupled with mass spectrometry was used to assess the chemical composition of the T. zygis EO, and the antioxidant activity was evaluated using the DPPH method and β-carotene-bleaching assay. The antimicrobial activity against S. aureus strains, the interaction with different antibiotics and the attenuation of this bacterium’s virulence were evaluated. The T. zygis EO showed antioxidant activity acting through two different mechanisms and antibacterial activity against S. aureus, with antibiofilm and antihaemolytic properties. This EO also demonstrated synergistic or additive interactions in combination with ampicillin, ciprofloxacin or vancomycin against S. aureus strains and, in some cases, changed the antibiotic-resistance phenotype from resistant to susceptible. Therefore, the present work demonstrates the good bioactive properties of the EO of T. zygis, mainly the antimicrobial activity against S. aureus, revealing its potential to be used as an antibacterial agent.
Collapse
|
34
|
Antibacterial and Anti-Biofilm Activities of Essential Oil Compounds against New Delhi Metallo-β-Lactamase-1-Producing Uropathogenic Klebsiella pneumoniae Strains. Antibiotics (Basel) 2022; 11:antibiotics11020147. [PMID: 35203751 PMCID: PMC8868355 DOI: 10.3390/antibiotics11020147] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/20/2022] Open
Abstract
The World Health Organization points out that the opportunistic pathogen Klebsiella pneumoniae that causes various infections among others, urinary tract infections (UTIs), is one of the high-priority species due to a global problem of antimicrobial resistance. The aim of this study was to investigate antibacterial and anti-biofilm activities of chosen constituents of essential oils against NDM-1-producing, uropathogenic K. pneumoniae strains. The genes encoding lipopolysaccharide (uge, wabG), adhesin gene fimH (type I fimbriae) and gene encoding carbapenemase (blaNDM-1) for all tested strains were detected by PCR amplification. The K. pneumoniae ATCC BAA-2473 reference strain was uge- and blaNDM-1-positive. The effectiveness of fifteen essential oil compounds (EOCs) (linalool, β-citronellol, linalyl acetate, menthone, (−)-menthol, (+)-menthol, geraniol, eugenol, thymol, trans-anethole, farnesol, β-caryophyllene, (R)-(+)-limonene, 1,8-cineole, and carvacrol) was assessed by determining the MIC, MBC, MBC/MIC ratio against K. pneumoniae strains by the microdilution method. Anti-biofilm properties of these compounds were also investigated. Thymol, carvacrol and geraniol exhibited the best antibacterial and anti-biofilm activities against uropathogenic NDM-1-producing K. pneumoniae isolates. Results of our investigations provide a basis for more detailed studies of these phytochemicals on their application against uropathogenic K. pneumoniae.
Collapse
|
35
|
Pajohi Alamoti M, Bazargani-Gilani B, Mahmoudi R, Reale A, Pakbin B, Di Renzo T, Kaboudari A. Essential Oils from Indigenous Iranian Plants: A Natural Weapon vs. Multidrug-Resistant Escherichia coli. Microorganisms 2022; 10:microorganisms10010109. [PMID: 35056560 PMCID: PMC8781614 DOI: 10.3390/microorganisms10010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022] Open
Abstract
Aim of this study was to investigate the antimicrobial properties of herbal plant essential oils (EOs) from selected Iranian plant species such as Ferulago angulata, Zataria multiflora, Cuminum cyminum, and Mentha longifolia against antibiotic-resistant Escherichia coli (E. coli) strains. For this purpose, the Escherichia coli strains, isolated from raw cow’s milk and local dairy products (yogurt, cream, whey, cheese, and confectionery products) collected from different areas of Hamedan province, Iran, were investigated for their resistance to antibiotics (i.e., streptomycin, tetracycline, gentamicin, chloramphenicol, ciprofloxacin, and cefixime). Thus, the E. coli strains were tested for their susceptibility to the above-mentioned essential oils. Regarding antibiotics, the E. coli strains were highly sensitive to ciprofloxacin. In relation to essential oils, the most effective antibacterial activity was observed with Zataria multiflora; also, the bacteria were semi-sensitive to Cuminum cyminum and Mentha longifolia essential oils. All strains were resistant to Ferulago angulata essential oil. According to the results, the essential oil of Zataria multiflora can be considered as a practical and alternative antibacterial strategy to inhibit the growth of multidrug-resistant E. coli of dairy origin.
Collapse
Affiliation(s)
- Mohammadreza Pajohi Alamoti
- Department of Food Hygiene and Quality Control, Bu-Ali Sina University, Hamedan P.O. Box 6517658978, Iran; (M.P.A.); (B.B.-G.)
| | - Behnaz Bazargani-Gilani
- Department of Food Hygiene and Quality Control, Bu-Ali Sina University, Hamedan P.O. Box 6517658978, Iran; (M.P.A.); (B.B.-G.)
| | - Razzagh Mahmoudi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin P.O. Box 34185-754, Iran;
- Correspondence:
| | - Anna Reale
- Institute of Food Science, National Research Council (ISA-CNR), Via Roma 64, 83100 Avellino, Italy; (A.R.); (T.D.R.)
| | - Babak Pakbin
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin P.O. Box 34185-754, Iran;
| | - Tiziana Di Renzo
- Institute of Food Science, National Research Council (ISA-CNR), Via Roma 64, 83100 Avellino, Italy; (A.R.); (T.D.R.)
| | - Ata Kaboudari
- Department of Food Hygiene and Quality Control, Urmia University, Urmia P.O. Box 1177, Iran;
| |
Collapse
|
36
|
Song R, Lin Y, Li Z. Ultrasonic-assisted preparation of eucalyptus oil nanoemulsion: Process optimization, in vitro digestive stability, and anti-Escherichia coli activity. ULTRASONICS SONOCHEMISTRY 2022; 82:105904. [PMID: 34979457 PMCID: PMC8799746 DOI: 10.1016/j.ultsonch.2021.105904] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 06/01/2023]
Abstract
Eucalyptus oil (EO) is a natural and effective antimicrobial agent; however, it has disadvantages such as poor water solubility and instability. The aim of this study was to investigate the effect of process vessels and preparation process parameters on the particle size of the emulsion droplets using ultrasonic technique and response surface methodology to prepare eucalyptus oil nanoemulsion (EONE). The optimal sonication process parameters in conical centrifuge tubes were confirmed: sonication distance of 0.9 cm, sonication amplitude of 18%, and sonication time of 2 min. Under these conditions, the particle size of EONE was 18.96 ± 4.66 nm, the polydispersity index was 0.39 ± 0.09, and the zeta potential was -31.17 ± 2.15 mV. In addition, the changes in particle size, potential, micromorphology, and anti-Escherichia coli activity of EONE during digestion were investigated by in vitro simulated digestion. The emulsion was stable in simulated salivary fluid, tended to aggregate in simulated gastric fluid, and increased in particle size and potential value in simulated intestinal fluid. EONE showed higher anti-E. coli activity than EO by simulated digestion. These results provide a useful reference for the in vivo antimicrobial application of the essential oil.
Collapse
Affiliation(s)
- Ruiteng Song
- School of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Yongqi Lin
- School of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Zhenzhen Li
- Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261053, PR China.
| |
Collapse
|
37
|
Cui X, Ng KR, Chai KF, Chen WN. Clinically relevant materials & applications inspired by food technologies. EBioMedicine 2022; 75:103792. [PMID: 34974308 PMCID: PMC8728048 DOI: 10.1016/j.ebiom.2021.103792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Food science and technology have a fundamental and considerable overlap with medicine, and many clinically important applications were borne out of translational food science research. Globally, the food industry - through various food processing technologies - generates huge quantities of agro-waste and food processing byproducts that retain a significant biochemical potential for upcycling into important medical applications. This review explores some distinct clinical applications that are fabricable from food-based biopolymers and substances, often originating from food manufacturing side streams. These include antibacterial wound dressings and tissue scaffolding from the biopolymers cellulose and chitosan and antimicrobial food phytochemicals for combating antibiotic-resistant nosocomial infections. Furthermore, fermentation is discussed as the epitome of a translational food technology that unlocks further therapeutic value from recalcitrant food-based substrates and enables sustainable large-scale production of high-value pharmaceuticals, including novel fermented food-derived bioactive peptides (BPs).
Collapse
Affiliation(s)
- Xi Cui
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 CleanTech Loop, CleanTech One, No. 06-08, 637141, Singapore; Food Science and Technology Programme, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Kuan Rei Ng
- Food Science and Technology Programme, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Kong Fei Chai
- Food Science and Technology Programme, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Wei Ning Chen
- Food Science and Technology Programme, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore.
| |
Collapse
|
38
|
Dashtbani-Roozbehani A, Brown MH. Efflux Pump Mediated Antimicrobial Resistance by Staphylococci in Health-Related Environments: Challenges and the Quest for Inhibition. Antibiotics (Basel) 2021; 10:antibiotics10121502. [PMID: 34943714 PMCID: PMC8698293 DOI: 10.3390/antibiotics10121502] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/04/2023] Open
Abstract
The increasing emergence of antimicrobial resistance in staphylococcal bacteria is a major health threat worldwide due to significant morbidity and mortality resulting from their associated hospital- or community-acquired infections. Dramatic decrease in the discovery of new antibiotics from the pharmaceutical industry coupled with increased use of sanitisers and disinfectants due to the ongoing COVID-19 pandemic can further aggravate the problem of antimicrobial resistance. Staphylococci utilise multiple mechanisms to circumvent the effects of antimicrobials. One of these resistance mechanisms is the export of antimicrobial agents through the activity of membrane-embedded multidrug efflux pump proteins. The use of efflux pump inhibitors in combination with currently approved antimicrobials is a promising strategy to potentiate their clinical efficacy against resistant strains of staphylococci, and simultaneously reduce the selection of resistant mutants. This review presents an overview of the current knowledge of staphylococcal efflux pumps, discusses their clinical impact, and summarises compounds found in the last decade from plant and synthetic origin that have the potential to be used as adjuvants to antibiotic therapy against multidrug resistant staphylococci. Critically, future high-resolution structures of staphylococcal efflux pumps could aid in design and development of safer, more target-specific and highly potent efflux pump inhibitors to progress into clinical use.
Collapse
|
39
|
Asghar S, Khan IU, Salman S, Khalid SH, Ashfaq R, Vandamme TF. Plant-derived nanotherapeutic systems to counter the overgrowing threat of resistant microbes and biofilms. Adv Drug Deliv Rev 2021; 179:114019. [PMID: 34699940 DOI: 10.1016/j.addr.2021.114019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/03/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Since antiquity, the survival of human civilization has always been threatened by the microbial infections. An alarming surge in the resistant microbial strains against the conventional drugs is quite evident in the preceding years. Furthermore, failure of currently available regimens of antibiotics has been highlighted by the emerging threat of biofilms in the community and hospital settings. Biofilms are complex dynamic composites rich in extracellular polysaccharides and DNA, supporting plethora of symbiotic microbial life forms, that can grow on both living and non-living surfaces. These enforced structures are impervious to the drugs and lead to spread of recurrent and non-treatable infections. There is a strong realization among the scientists and healthcare providers to work out alternative strategies to combat the issue of drug resistance and biofilms. Plants are a traditional but rich source of effective antimicrobials with wider spectrum due to presence of multiple constituents in perfect synergy. Other than the biocompatibility and the safety profile, these phytochemicals have been repeatedly proven to overcome the non-responsiveness of resistant microbes and films via multiple pathways such as blocking the efflux pumps, better penetration across the cell membranes or biofilms, and anti-adhesive properties. However, the unfavorable physicochemical attributes and stability issues of these phytochemicals have hampered their commercialization. These issues of the phytochemicals can be solved by designing suitably constructed nanoscaled structures. Nanosized systems can not only improve the physicochemical features of the encapsulated payloads but can also enhance their pharmacokinetic and therapeutic profile. This review encompasses why and how various types of phytochemicals and their nanosized preparations counter the microbial resistance and the biofouling. We believe that phytochemical in tandem with nanotechnological innovations can be employed to defeat the microbial resistance and biofilms. This review will help in better understanding of the challenges associated with developing such platforms and their future prospects.
Collapse
|
40
|
Trifan A, Bostănaru AC, Luca SV, Temml V, Akram M, Herdlinger S, Kulinowski Ł, Skalicka-Woźniak K, Granica S, Czerwińska ME, Kruk A, Greige-Gerges H, Mareș M, Schuster D. Honokiol and Magnolol: Insights into Their Antidermatophytic Effects. PLANTS (BASEL, SWITZERLAND) 2021; 10:2522. [PMID: 34834886 PMCID: PMC8620735 DOI: 10.3390/plants10112522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 05/15/2023]
Abstract
Dermatophyte infections represent a significant public health concern, with an alarming negative impact caused by unsuccessful therapeutic regimens. Natural products have been highlighted as a promising alternative, due to their long-standing traditional use and increasing scientific recognition. In this study, honokiol and magnolol, the main bioactives from Magnolia spp. bark, were investigated for their antidermatophytic activity. The antifungal screening was performed using dermatophyte standard strains and clinical isolates. The minimal inhibitory concentration (MIC) and the minimal fungicidal concentration (MFC) were determined in accordance with EUCAST-AFST guidelines, with minor modifications. The effects on ergosterol biosynthesis were assessed in Trichophyton rubrum cells by HPLC-DAD. Putative interactions with terbinafine against T. rubrum were evaluated by the checkerboard method. Their impact on cells' viability and pro-inflammatory cytokines (IL-1β, IL-8 and TNF-α) was shown using an ex vivo human neutrophils model. Honokiol and magnolol were highly active against tested dermatophytes, with MIC and MFC values of 8 and 16 mg/L, respectively. The mechanism of action involved the inhibition of ergosterol biosynthesis, with accumulation of squalene in T. rubrum cells. Synergy was assessed for binary mixtures of magnolol with terbinafine (FICI = 0.50), while honokiol-terbinafine combinations displayed only additive effects (FICI = 0.56). In addition, magnolol displayed inhibitory effects towards IL-1β, IL-8 and TNF-α released from lipopolysaccharide (LPS)-stimulated human neutrophils, while honokiol only decreased IL-1β secretion, compared to the untreated control. Overall, honokiol and magnolol acted as fungicidal agents against dermatophytes, with impairment of ergosterol biosynthesis.
Collapse
Affiliation(s)
- Adriana Trifan
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Andra-Cristina Bostănaru
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iasi, Romania;
| | - Simon Vlad Luca
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
- Biothermodynamics, TUM School of Life and Food Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Veronika Temml
- Department of Pharmaceutical Chemistry, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (V.T.); (M.A.); (S.H.); (D.S.)
| | - Muhammad Akram
- Department of Pharmaceutical Chemistry, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (V.T.); (M.A.); (S.H.); (D.S.)
| | - Sonja Herdlinger
- Department of Pharmaceutical Chemistry, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (V.T.); (M.A.); (S.H.); (D.S.)
| | - Łukasz Kulinowski
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (Ł.K.); (K.S.-W.)
| | - Krystyna Skalicka-Woźniak
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (Ł.K.); (K.S.-W.)
| | - Sebastian Granica
- Microbiota Lab, Centre for Preclinical Studies, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland; (S.G.); (A.K.)
| | - Monika E. Czerwińska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Aleksandra Kruk
- Microbiota Lab, Centre for Preclinical Studies, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland; (S.G.); (A.K.)
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences, Section II, Lebanese University, Jdeidet el-Matn B.P. 90656, Lebanon;
| | - Mihai Mareș
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iasi, Romania;
| | - Daniela Schuster
- Department of Pharmaceutical Chemistry, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (V.T.); (M.A.); (S.H.); (D.S.)
| |
Collapse
|
41
|
Trifan A, Luca SV, Bostănaru AC, Brebu M, Jităreanu A, Cristina RT, Skalicka-Woźniak K, Granica S, Czerwińska ME, Kruk A, Greige-Gerges H, Sieniawska E, Mareș M. Apiaceae Essential Oils: Boosters of Terbinafine Activity against Dermatophytes and Potent Anti-Inflammatory Effectors. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112378. [PMID: 34834740 PMCID: PMC8623916 DOI: 10.3390/plants10112378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 05/03/2023]
Abstract
Dermatophyte infections represent an important public health concern, affecting up to 25% of the world's population. Trichophyton rubrum and T. mentagrophytes are the predominant dermatophytes in cutaneous infections, with a prevalence accounting for 70% of dermatophytoses. Although terbinafine represents the preferred treatment, its clinical use is hampered by side effects, drug-drug interactions, and the emergence of resistant clinical isolates. Combination therapy, associating terbinafine and essential oils (EOs), represents a promising strategy in the treatment of dermatophytosis. In this study, we screened the potential of selected Apiaceae EOs (ajowan, coriander, caraway, and anise) to improve the antifungal activity of terbinafine against T. rubrum ATCC 28188 and T. mentagrophytes ATCC 9533. The chemical profile of EOs was analyzed by gas chromatography. The minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) of EOs/main compounds were determined according to EUCAST-AFST guidelines, with minor modifications. The checkerboard microtiter method was used to identify putative synergistic combinations of EOs/main constituents with terbinafine. The influence of EOs on the viability and pro-inflammatory cytokine production (IL-1β, IL-8 and TNF-α) was determined using an ex vivo human neutrophils model. The binary associations of tested EOs with terbinafine were found to be synergistic against T. rubrum, with FICI values of 0.26-0.31. At the tested concentrations (6.25-25 mg/L), EOs did not exert cytotoxic effects towards human neutrophils. Anise EO was the most potent inhibitor of IL-1β release (46.49% inhibition at 25 mg/L), while coriander EO displayed the highest inhibition towards IL-8 and TNF-α production (54.15% and 54.91%, respectively). In conclusion, the synergistic combinations of terbinafine and investigated Apiaceae EOs could be a starting point in the development of novel topical therapies against T. rubrum-related dermatophytosis.
Collapse
Affiliation(s)
- Adriana Trifan
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
- Correspondence: (A.T.); (A.-C.B.)
| | - Simon Vlad Luca
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
- Biothermodynamics, TUM School of Life and Food Sciences, Technical University of Munich, 85354 Freising, Germany;
| | - Andra-Cristina Bostănaru
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iasi, Romania;
- Correspondence: (A.T.); (A.-C.B.)
| | - Mihai Brebu
- Physical Chemistry of Polymers Laboratory, Petru Poni Institute of Macromolecular Chemistry, 700481 Iasi, Romania;
| | - Alexandra Jităreanu
- Department of Toxicology, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Romeo-Teodor Cristina
- Department of Pharmacology, The Banat University of Agricultural Sciences and Veterinary Medicine, 300645 Timisoara, Romania;
| | - Krystyna Skalicka-Woźniak
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (K.S.-W.); (E.S.)
| | - Sebastian Granica
- Microbiota Lab, Centre for Preclinical Studies, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland; (S.G.); (A.K.)
| | - Monika E. Czerwińska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Aleksandra Kruk
- Microbiota Lab, Centre for Preclinical Studies, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland; (S.G.); (A.K.)
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences, Section II, Lebanese University, Jdaidet el-Matn B.P. 90656, Lebanon;
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (K.S.-W.); (E.S.)
| | - Mihai Mareș
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iasi, Romania;
| |
Collapse
|
42
|
Insights into the Phytochemical and Multifunctional Biological Profile of Spices from the Genus Piper. Antioxidants (Basel) 2021; 10:antiox10101642. [PMID: 34679776 PMCID: PMC8533580 DOI: 10.3390/antiox10101642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 01/26/2023] Open
Abstract
Piper spices represent an inexhaustible reservoir of bioactive compounds that may act as drug leads in natural product research. The aim of this study was to investigate a series of methanolic fruit extracts obtained from P. nigrum (black, green, white and red), P. longum and P. retrofractum in comparative phytochemical and multi-directional biological (antimicrobial, antioxidant, anti-enzymatic and anti-melanogenic) assays. The metabolite profiling revealed the presence of 17 piperamides, with a total content of 247.75-591.42 mg piperine equivalents/g. Among the 22 tested microorganism strains, Piper spices were significantly active (MIC < 0.1 mg/mL) against the anaerobes Actinomyces israelii and Fusobacterium nucleatum. The antioxidant and anti-enzymatic activities were evidenced in DPPH (10.64-82.44 mg TE/g) and ABTS (14.20-77.60 mg TE/g) radical scavenging, CUPRAC (39.94-140.52 mg TE/g), FRAP (16.05-77.00 mg TE/g), chelating (0-34.80 mg EDTAE/g), anti-acetylcholinesterase (0-2.27 mg GALAE/g), anti-butyrylcholinesterase (0.60-3.11 mg GALAE/g), anti-amylase (0.62-1.11 mmol ACAE/g) and anti-glucosidase (0-1.22 mmol ACAE/g) assays. Several Piper extracts (10 μg/mL) inhibited both melanin synthesis (to 32.05-60.65% of αMSH+ cells) and release (38.06-45.78% of αMSH+ cells) in αMSH-stimulated B16F10 cells, partly explained by their tyrosinase inhibitory properties. Our study uncovers differences between Piper spices and sheds light on their potential use as nutraceuticals or cosmeceuticals for the management of different diseases linked to bacterial infections, Alzheimer's dementia, type 2 diabetes mellitus or hyperpigmentation.
Collapse
|
43
|
Yang R, Chen X, Huang Q, Chen C, Rengasamy KRR, Chen J, Wan C(C. Mining RNA-Seq Data to Depict How Penicillium digitatum Shapes Its Transcriptome in Response to Nanoemulsion. Front Nutr 2021; 8:724419. [PMID: 34595200 PMCID: PMC8476847 DOI: 10.3389/fnut.2021.724419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023] Open
Abstract
Penicillium digitatum is the most severe pathogen that infects citrus fruits during storage. It can cause fruit rot and bring significant economic losses. The continuous use of fungicides has resulted in the emergence of drug-resistant strains. Consequently, there is a need to develop naturally and efficiently antifungal fungicides. Natural antimicrobial agents such as clove oil, cinnamon oil, and thyme oil can be extracted from different plant parts. They exhibited broad-spectrum antimicrobial properties and have great potential in the food industry. Here, we exploit a novel cinnamaldehyde (CA), eugenol (EUG), or carvacrol (CAR) combination antifungal therapy and formulate it into nanoemulsion form to overcome lower solubility and instability of essential oil. In this study, the antifungal activity evaluation and transcriptional profile of Penicillium digitatum exposed to compound nanoemulsion were evaluated. Results showed that compound nanoemulsion had a striking inhibitory effect on P. digitatum in a dose-dependent manner. According to RNA-seq analysis, there were 2,169 differentially expressed genes (DEGs) between control and nanoemulsion-treated samples, including 1,028 downregulated and 1,141 upregulated genes. Gene Ontology (GO) analysis indicated that the DEGs were mainly involved in intracellular organelle parts of cell component: cellular respiration, proton transmembrane transport of biological process, and guanyl nucleotide-binding molecular function. KEGG analysis revealed that metabolic pathway, biosynthesis of secondary metabolites, and glyoxylate and dicarboxylate metabolism were the most highly enriched pathways for these DEGs. Taken together, we can conclude the promising antifungal activity of nanoemulsion with multiple action sites against P. digitatum. These outcomes would deepen our knowledge of the inhibitory mechanism from molecular aspects and exploit naturally, efficiently, and harmlessly antifungal agents in the citrus postharvest industry.
Collapse
Affiliation(s)
- Ruopeng Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- College of Life Science and Technology, Honghe University, Mengzi, China
| | - Xiu Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Qiang Huang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Kannan R. R. Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Mankweng, South Africa
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, China
| | - Chunpeng (Craig) Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
44
|
Enhanced Antibacterial Efficiency of Cellulosic Fibers: Microencapsulation and Green Grafting Strategies. COATINGS 2021. [DOI: 10.3390/coatings11080980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report an analysis of chemical components of essential oils from barks of Ceylon cinnamon and cloves of Syzygium aromaticum and an investigation of their antibacterial activity. The components of oils were determined by using Gas Chromatography/Mass Spectrometry (GC-MS) analysis, and the antimicrobial activity was assessed by the disk diffusion test. The synergic effect of essential oils mixture (cinnamon oil and clove oil) was evaluated. Antimicrobial properties were conferred to cellulosic fibers through microencapsulation using citric acid as a green binding agent. Essential oil mixture was encapsulated by coacervation using chitosan as a wall material and sodium hydroxide as a hardening agent. The diameter of the produced microcapsules varies between 12 and 48 μm. Attachment of the produced microcapsules onto cotton fabrics surface was confirmed by Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) spectroscopy, optical microscopy and Scanning Electron Microscopy (SEM) analysis. The results show that microcapsules were successfully attached on cotton fabric surfaces, imparting antibacterial activity without significantly affecting their properties. The finished cotton fabrics exhibited good mechanical properties and wettability.
Collapse
|
45
|
Araújo-Filho HGD, Dos Santos JF, Carvalho MTB, Picot L, Fruitier-Arnaudin I, Groult H, Quintans-Júnior LJ, Quintans JSS. Anticancer activity of limonene: A systematic review of target signaling pathways. Phytother Res 2021; 35:4957-4970. [PMID: 33864293 DOI: 10.1002/ptr.7125] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/26/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
Limonene (LIM) is a monoterpene, which is abundant in essential oils of Citrus fruits peels (Rutaceae). More recently, LIM, as a potential natural anticancer compound, has attracted major attention and exerted a chemopreventive activity, stimulating the detoxification of carcinogenic compounds and limiting tumor growth and angiogenesis in various cancer models. Twenty-six (26) articles were selected based on previously established criteria. Anticancer activity of LIM was related to the inhibition of tumor initiation, growth, and angiogenesis and the induction of cancer cells apoptosis. LIM was able to increase Bax expression, release cytochrome c, and activate the caspase pathway. In addition, LIM increased the expression of p53 and decreased the activity of Ras/Raf/MEK/ERK and PI3K/Akt pathways. LIM also decreased the expression of VEGF and increased the activities of the Man-6-P / IGF2R and TGF-βIIR receptors. These results highlight LIM as an abundant natural molecule with low toxicity and pleiotropic pharmacological activity in cancer cells, targeting various cell-signaling pathways critically involved in the initiation, growth, and chemoresistance of cancer cells.
Collapse
Affiliation(s)
- Heitor Gomes de Araújo-Filho
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Jucilene F Dos Santos
- Laboratory of Neuropharmacology and Integrative Physiology (LNFI), Department of Physiology, Federal University of Alagoas, Maceió, Brazil
| | - Mikaella T B Carvalho
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil.,Postgraduate Health Sciences Program (PPGCS), Federal University of Sergipe, São Cristóvão, Brazil
| | - Laurent Picot
- UMRi CNRS 7266 LIENSs, University of La Rochelle, La Rochelle, France
| | | | - Hugo Groult
- UMRi CNRS 7266 LIENSs, University of La Rochelle, La Rochelle, France
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil.,Postgraduate Health Sciences Program (PPGCS), Federal University of Sergipe, São Cristóvão, Brazil
| | - Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil.,Postgraduate Health Sciences Program (PPGCS), Federal University of Sergipe, São Cristóvão, Brazil
| |
Collapse
|
46
|
Coles ME, Forga AJ, Señas-Cuesta R, Graham BD, Selby CM, Uribe ÁJ, Martínez BC, Angel-Isaza JA, Vuong CN, Hernandez-Velasco X, Hargis BM, Tellez-Isaias G. Assessment of Lippia origanoides Essential Oils in a Salmonella typhimurium, Eimeria maxima, and Clostridium perfringens Challenge Model to Induce Necrotic Enteritis in Broiler Chickens. Animals (Basel) 2021; 11:1111. [PMID: 33924404 PMCID: PMC8069271 DOI: 10.3390/ani11041111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
The objective of the present research was to evaluate dietary supplementation of essential oils from Lippia origanoides (LEO) on necrotic enteritis (NE). Chickens were randomly assigned to three groups. Group 1: negative control; Group 2: positive control challenged with Salmonella typhimurium (day 1), Eimeria maxima (day 18), and C. perfringens (CP, days 22-23); Group 3: dietary supplementation LEO and challenged. On d 25 of age, serum samples were collected to evaluate fluorescein isothiocyanate-dextran (FITC-d), superoxide dismutase (SOD), gamma interferon (IFN-γ), Immunoglobulin A (IgA). Group 3 showed a significant reduction of the harmful effects of induced infection/dysbiosis and a significant reduction in NE lesion scores, morbidity and mortality compared with the positive challenge control group (p < 0.05) compared with Group 2. Digested feed supernatant, supplemented with LEO and inoculated with CP, reduced CP burden (p < 0.05). Group 3 also exhibited a significant reduction in FITC-d, IFN-γ and IgA compared with Group 2. However, a significant increase SOD was observed in Group 3 compared with both control groups. Further investigation to compare the effect of LEO and the standard treatment of clostridial NE is required.
Collapse
Affiliation(s)
- Makenly E. Coles
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (M.E.C.); (A.J.F.); (R.S.-C.); (B.D.G.); (C.M.S.); (C.N.V.); (B.M.H.)
| | - Aaron J. Forga
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (M.E.C.); (A.J.F.); (R.S.-C.); (B.D.G.); (C.M.S.); (C.N.V.); (B.M.H.)
| | - Roberto Señas-Cuesta
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (M.E.C.); (A.J.F.); (R.S.-C.); (B.D.G.); (C.M.S.); (C.N.V.); (B.M.H.)
| | - Brittany D. Graham
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (M.E.C.); (A.J.F.); (R.S.-C.); (B.D.G.); (C.M.S.); (C.N.V.); (B.M.H.)
| | - Callie M. Selby
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (M.E.C.); (A.J.F.); (R.S.-C.); (B.D.G.); (C.M.S.); (C.N.V.); (B.M.H.)
| | - Álvaro J. Uribe
- Promitec S.A., Bucaramanga, Santander 680001, Colombia; (Á.J.U.); (B.C.M.); (J.A.A.-I.)
| | - Blanca C. Martínez
- Promitec S.A., Bucaramanga, Santander 680001, Colombia; (Á.J.U.); (B.C.M.); (J.A.A.-I.)
| | - Jaime A. Angel-Isaza
- Promitec S.A., Bucaramanga, Santander 680001, Colombia; (Á.J.U.); (B.C.M.); (J.A.A.-I.)
| | - Christine N. Vuong
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (M.E.C.); (A.J.F.); (R.S.-C.); (B.D.G.); (C.M.S.); (C.N.V.); (B.M.H.)
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, FMVZ, Universidad Nacional Autonoma de Mexico, Mexico City 4510, Mexico;
| | - Billy M. Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (M.E.C.); (A.J.F.); (R.S.-C.); (B.D.G.); (C.M.S.); (C.N.V.); (B.M.H.)
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (M.E.C.); (A.J.F.); (R.S.-C.); (B.D.G.); (C.M.S.); (C.N.V.); (B.M.H.)
| |
Collapse
|
47
|
Combination Therapy Involving Lavandula angustifolia and Its Derivatives in Exhibiting Antimicrobial Properties and Combatting Antimicrobial Resistance: Current Challenges and Future Prospects. Processes (Basel) 2021. [DOI: 10.3390/pr9040609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial resistance (AMR) has been identified as one of the biggest health threats in the world. Current therapeutic options for common infections are markedly limited due to the emergence of multidrug resistant pathogens in the community and the hospitals. The role of different essential oils (EOs) and their derivatives in exhibiting antimicrobial properties has been widely elucidated with their respective mechanisms of action. Recently, there has been a heightened emphasis on lavender essential oil (LEO)’s antimicrobial properties and wound healing effects. However, to date, there has been no review published examining the antimicrobial benefits of lavender essential oil, specifically. Previous literature has shown that LEO and its constituents act synergistically with different antimicrobial agents to potentiate the antimicrobial activity. For the past decade, encapsulation of EOs with nanoparticles has been widely practiced due to increased antimicrobial effects and greater bioavailability as compared to non-encapsulated oils. Therefore, this review intends to provide an insight into the different aspects of antimicrobial activity exhibited by LEO and its constituents, discuss the synergistic effects displayed by combinatory therapy involving LEO, as well as to explore the significance of nano-encapsulation in boosting the antimicrobial effects of LEO; it is aimed that from the integration of these knowledge areas, combating AMR will be more than just a possibility.
Collapse
|
48
|
Chitosan-Coating Effect on the Characteristics of Liposomes: A Focus on Bioactive Compounds and Essential Oils: A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9030445] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In recent years, liposomes have gained increasing attention for their potential applications as drug delivery systems in the pharmaceutic, cosmetic and food industries. However, they have a tendency to aggregate and are sensitive to degradation caused by several factors, which may limit their effectiveness. A promising approach to improve liposomal stability is to modify liposomal surfaces by forming polymeric layers. Among natural polymers, chitosan has received great interest due to its biocompatibility and biodegradability. This review discussed the characteristics of this combined system, called chitosomes, in comparison to those of conventional liposomes. The coating of liposomes with chitosan or its derivatives improved liposome stability, provided sustained drug release and increased drug penetration across mucus layers. The mechanisms behind these results are highlighted in this paper. Alternative assembly of polyelectrolytes using alginate, sodium hyaluronate, or pectin with chitosan could further improve the liposomal characteristics. Chitosomal encapsulation could also ensure targeted delivery and boost the antimicrobial efficacy of essential oils (EOs). Moreover, chitosomes could be an efficient tool to overcome the major drawbacks related to the chemical properties of EOs (low water solubility, sensitivity to oxygen, light, heat, and humidity) and their poor bioavailability. Overall, chitosomes could be considered as a promising strategy to enlarge the use of liposomes.
Collapse
|
49
|
Van Dyck K, Pinto RM, Pully D, Van Dijck P. Microbial Interkingdom Biofilms and the Quest for Novel Therapeutic Strategies. Microorganisms 2021; 9:412. [PMID: 33671126 PMCID: PMC7921918 DOI: 10.3390/microorganisms9020412] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Fungal and bacterial species interact with each other within polymicrobial biofilm communities in various niches of the human body. Interactions between these species can greatly affect human health and disease. Diseases caused by polymicrobial biofilms pose a major challenge in clinical settings because of their enhanced virulence and increased drug tolerance. Therefore, different approaches are being explored to treat fungal-bacterial biofilm infections. This review focuses on the main mechanisms involved in polymicrobial drug tolerance and the implications of the polymicrobial nature for the therapeutic treatment by highlighting clinically relevant fungal-bacterial interactions. Furthermore, innovative treatment strategies which specifically target polymicrobial biofilms are discussed.
Collapse
Affiliation(s)
- Katrien Van Dyck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Rita M. Pinto
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade Do Porto, 4050-313 Porto, Portugal
| | - Durgasruthi Pully
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| |
Collapse
|
50
|
Nocera FP, Attili AR, De Martino L. Acinetobacter baumannii: Its Clinical Significance in Human and Veterinary Medicine. Pathogens 2021; 10:pathogens10020127. [PMID: 33513701 PMCID: PMC7911418 DOI: 10.3390/pathogens10020127] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
Acinetobacter baumannii is a Gram-negative, opportunistic pathogen, causing severe infections difficult to treat. The A. baumannii infection rate has increased year by year in human medicine and it is also considered as a major cause of nosocomial infections worldwide. This bacterium, also well known for its ability to form biofilms, has a strong environmental adaptability and the characteristics of multi-drug resistance. Indeed, strains showing fully resistant profiles represent a worrisome problem in clinical therapeutic treatment. Furthermore, A. baumannii-associated veterinary nosocomial infections has been reported in recent literature. Particularly, carbapenem-resistant A. baumannii can be considered an emerging opportunistic pathogen in human medicine as well as in veterinary medicine.
Collapse
Affiliation(s)
- Francesca Paola Nocera
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, 80137 Naples, Italy;
| | - Anna-Rita Attili
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy;
| | - Luisa De Martino
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, 80137 Naples, Italy;
- Correspondence:
| |
Collapse
|