1
|
Kumar SN, Kumari R, Khan NH, Khan NS, Nayek A, Sahu A, Bastia B, Ahluwalia M, Raisuddin S, Jain AK. Decreased activity of acetylcholine esterase as a biomarker of pesticide exposure in female tea plantation workers. Toxicol Ind Health 2025:7482337251336580. [PMID: 40271925 DOI: 10.1177/07482337251336580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Because of their beneficial effects in controlling pests, pesticides are used worldwide to reduce pests in agricultural fields and commercial gardens, thereby increasing the crop yield. Pesticides are ubiquitous in the environment and besides targeting pests they also affect non-target organisms. This study was undertaken to evaluate the activity of acetylcholine esterase (AChE) inhibition and its associated health effects in female tea plantation workers (TPW). In silico analysis was applied to identify whether pesticide exposure had an increased affinity after binding with the AChE enzyme, and the findings were validated by measuring the AChE activity in the plasma of study subjects by the biochemical analysis. The activity of AChE was found to be considerably compromised in TPW exposed to pesticides. Inhibition of AChE activity may lead to severe adverse health effects, such as cough, fatigue, and headache in TPW exposed to pesticides. Among all pesticides, λ-cyhalothrin, fipronil, and fenazaquine had the highest binding affinity with AChE (-10.098 Kcal/mol, -8.574 Kcal/mol, and -8.507 Kcal/mol, respectively) as compared to the other pesticides and their natural acetylcholine substrate (-4.398 Kcal/mol). Based on in silico results, AChE was found to have the highest binding affinity with λ-cyhalothrin, fipronil, and fenazaquine, and these pesticides could be responsible for the enzyme activity inhibition. Hence, these pesticides may cause more adverse health effects on humans compared to other pesticides. This finding on biomarker role for AChE may aid in the development of effective antidotes against pesticide exposure, thereby faciliating mitigation of negative health effects of pesticides.
Collapse
Affiliation(s)
- Shashi Nandar Kumar
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
- Environmental Toxicology and Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi, India
| | - Rakhi Kumari
- Department of Computer Science and Information Systems, Birla Institute of Technology & Science Pilani, Pilani, India
| | - Nawaid Hussain Khan
- Faculty of Medicine, Ala-Too International University, Bishkek, Kyrgyz Republic
| | - Noor Saba Khan
- Environmental Toxicology and Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi, India
| | - Arnab Nayek
- Environmental Toxicology and Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi, India
| | - Ankita Sahu
- Tumor Biology Lab, ICMR-National Institute of Pathology, New Delhi, India
| | - Banajit Bastia
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Meenakshi Ahluwalia
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| | - Arun Kumar Jain
- Environmental Toxicology and Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi, India
| |
Collapse
|
2
|
Fouad BM, Abdel-Ghany AA, Kandeil MA, Ibrahim IT. Protective effects of Silibinin and cinnamic acid against paraquat-induced lung toxicity in rats: impact on oxidative stress, PI3K/AKT pathway, and miR-193a signaling. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4291-4303. [PMID: 39453500 PMCID: PMC11978700 DOI: 10.1007/s00210-024-03511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
Levels of reactive oxygen species (ROS) are the primary determinants of pulmonary fibrosis. It was discovered that antioxidants can ameliorate pulmonary fibrosis caused by prolonged paraquat (PQ) exposure. However, research on the precise mechanisms by which antioxidants influence the signaling pathways implicated in pulmonary fibrosis induced by paraquat is still insufficient. This research utilized a rat model of pulmonary fibrosis induced by PQ to examine the impacts of Silibinin (Sil) and cinnamic acid (CA) on pulmonary fibrosis, with a specific focus on pro-fibrotic signaling pathways and ROS-related autophagy. Lung injury induced by paraquat was demonstrated to be associated with oxidative stress and inflammation of the lungs, downregulated (miR-193a), and upregulated PI3K/AKT/mTOR signaling lung tissues. Expression levels of miR-193a were determined with quantitative real-time PCR, protein level of protein kinase B (Akt), and phosphoinositide 3-Kinase (PI3K) which were determined by western blot analysis. Hydroxyproline levels (HYP) and transforming growth factor-β1 (TGF-β1) were measured by ELISA, malondialdehyde (MDA), total antioxidant capacity (TAC), glutathione peroxidase (GSH), and catalase and were measured in lung tissue homogenates colorimetrically using spectrophotometer. Long-term exposure to paraquat resulted in decreased PI3K/AKT signaling, decreased cell autophagy, increased oxidative stress, and increased pulmonary fibrosis formation. Silibinin and cinnamic acid also decreased oxidative stress by increasing autophagy and miR-193a expression, which in turn decreased pulmonary fibrosis. These effects were associated by low TGF-β1. Silibinin and cinnamic acid inhibited PQ-induced PI3K/AKT by stimulating miR-193-a expression, thus attenuating PQ-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Basma M Fouad
- Department of Biochemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, 62513, Egypt.
| | - A A Abdel-Ghany
- Department of Biochemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, 62513, Egypt
- Biochemistry Department, Faculty of Pharmacy, Al-Azher University, Assiut, Egypt
| | - Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ibrahim T Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
3
|
Yue R, Yang T, Niu D, Zeng Z, Wang X, Pan L, Yao J. Integration of pharmacodynamics, network pharmacology and metabolomics to elucidate the effect and mechanism of Jingfang Granule in the treatment of Paraquat induced Pulmonary fibrosis. PLoS One 2025; 20:e0318246. [PMID: 39965011 PMCID: PMC11835338 DOI: 10.1371/journal.pone.0318246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
OBJECTIVE One of the main risk factors of COVID-19 is Pulmonary fibrosis (PF). The protective effect of Jingfang Granule (JF) to bleomycin-induced PF has been confirmed in our previous studies. This work was designed to reveal the effect and mechanism of JF on PF which induced by Paraquat (PQ). METHODS In this study, the PF mice model was induced by PQ with the administration of 1, 0.5, and 0.25 g/kg JF or Nintedanib (NTNB) 45 mg/kg by oral administration. The ameliorating effects of JF were reflected by the survival curve and lung coefficient. And the pathological alterations of lung were observed by H&E, Masson and Sirius red staining. Then, the expression of fibrosis-associated protein α-SMA and TGFβ1/Smad2,3 signaling pathway was detected by immunohistochemistry and western blot. An integrated approach combined metabolomics with network pharmacology was applied to recognize the mechanism of JF on ameliorated the PQ-induced PF, and the result of integrated was verified by western blot. RESULTS The experiment results showed that JF could inhibit the progression of PQ-induced PF and delay the death of mice after PQ poisoning, and the inhibit effect was similar to NTNB. JF also reduced fibroblasts in lung tissue of the PF mice model by significantly down- regulated the expression of α-SMA and TGFβ1/Smad2,3 signaling pathway. In addition, JF intervened 16 serum metabolites compared with PQ-induced PF mice, and the differential metabolites were linked 241 corresponding targeted proteins obtained by database, which have 79 common targets to JF related targets. The integrated results of metabolomics, network pharmacology and western blot showed that apoptosis was a crucial way for JF to relieve the PQ-induced PF, and JF regulated the signals of Bcl-2, Bax, Caspase-3 protein and PI3k/Akt pathway to inhibit the apoptosis. CONCLUSION These findings demonstrate that JF down-regulated the TGFβ1/Smad2,3 signaling pathway to reduce the fibroblasts, regulate the expression of Bcl-2, Bax, Caspase-3 and PI3k/Akt pathway to inhibit the apoptosis, and display a favorable effect on inhibiting the development of pulmonary fibrosis and delaying the death of PQ-induced PF mice.
Collapse
Affiliation(s)
- Rujing Yue
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, China
| | - Tianye Yang
- Department of Medicine and Pharmacy, Wuhan University, Wuhan, Hubei, China
| | - Dejun Niu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, China
| | - Zhen Zeng
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, China
| | - Xishuang Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, China
| | - Lihong Pan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, China
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, China
| |
Collapse
|
4
|
Kantimathinathan S, Thangaraj PR, Sunder T, Kuppuswamy MK, Chinnasamy S, Sriraman KB, Rajasingh EM. Extracorporeal membrane oxygenation as a bridge to lung transplantation following paraquat poisoning. Indian J Thorac Cardiovasc Surg 2025. [DOI: 10.1007/s12055-024-01893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 03/04/2025] Open
|
5
|
Kang DH, Marques AH, Yang JH, Park CHK, Kim MJ, Rhee SJ, Ahn YM. Suicide prevention strategies in South Korea: What we have learned and the way forward. Asian J Psychiatr 2025; 104:104359. [PMID: 39813873 DOI: 10.1016/j.ajp.2025.104359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
Suicide is a serious global public health concern. South Korea has consistently reported one of the highest suicide rates among Organization for Economic Cooperation and Development countries over the past few decades. In response to the increasing suicide rate, South Korea enacted the Suicide Prevention Act in 2011, and allocated significant budget funding for implementation of various policies according to its national strategy for suicide prevention. Suicide prevention policies, such as restricting access to highly hazardous pesticides, implementing emergency room-based follow-up management programs, and adhering to safety guidelines for the media while reporting on suicide, were effective. Thereafter, the overall suicide rate and the suicide rate in older people steadily declined. However, the suicide rate among younger age groups has increased since 2017, and South Korea continues to report higher suicide rates than those of most other countries. Further research is needed to develop and implement suicide prevention strategies that address the recently changing trends.
Collapse
Affiliation(s)
- Dae Hun Kang
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | | | - Jeong Hun Yang
- Department of Psychiatry, Chungnam National University Sejong Hospital, Sejong, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - C Hyung Keun Park
- Department of Psychiatry, Asan Medical Center, Seoul, Republic of Korea
| | - Min Ji Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang Jin Rhee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Yong Min Ahn
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Pimalai D, Putnin T, Bamrungsap S. A highly sensitive electrochemical sensor based on poly(3-aminobenzoic acid)/graphene oxide-gold nanoparticles modified screen printed carbon electrode for paraquat detection. J Environ Sci (China) 2025; 148:139-150. [PMID: 39095153 DOI: 10.1016/j.jes.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 08/04/2024]
Abstract
Herein, a modified screen printed carbon electrode (SPCE) based on a composite material, graphene oxide-gold nanoparticles (GO-AuNPs), and poly(3-aminobenzoic acid)(P3ABA) for the detection of paraquat (PQ) is introduced. The modified electrode was fabricated by drop casting of the GO-AuNPs, followed by electropolymerization of 3-aminobenzoic acid to achieve SPCE/GO-AuNPs/P3ABA. The morphology and microstructural characteristics of the modified electrodes were revealed by scanning electron microscopy (SEM) for each step of modification. The composite GO-AuNPs can provide high surface area and enhance electroconductivity of the electrode. In addition, the presence of negatively charged P3ABA notably improved PQ adsorption and electron transfer rate, which stimulate redox reaction on the modified electrode, thus improving the sensitivity of PQ analysis. The SPCE/GO-AuNPs/P3ABA offered a wide linear range of PQ determination (10-9-10-4 mol/L) and low limit of detection (LOD) of 0.45 × 10-9 mol/L or 0.116 µg/L, which is far below international safety regulations. The modified electrode showed minimum interference effect with percent recovery ranging from 96.5% to 116.1% after addition of other herbicides, pesticides, metal ions, and additives. The stability of the SPCE/GO-AuNPs/P3ABA was evaluated, and the results indicated negligible changes in the detection signal over 9 weeks. Moreover, this modified electrode was successfully implemented for PQ analysis in both natural and tapped water with high accuracy.
Collapse
Affiliation(s)
- Dechnarong Pimalai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Thitirat Putnin
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| |
Collapse
|
7
|
Kavianinia M, Kalantar H, Salehcheh M, Khorsandi L, Shariati S, Mohtadi S, Khodayar MJ. Dimethyl fumarate effects on paraquat-induced hepatotoxicity in mice via anti-oxidative, anti-inflammatory, and anti-apoptotic activities. Sci Rep 2025; 15:3897. [PMID: 39890857 PMCID: PMC11785811 DOI: 10.1038/s41598-025-88461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/28/2025] [Indexed: 02/03/2025] Open
Abstract
Paraquat (PQ) toxicity is a common problem in the world, associated with oxidative stress, inflammation, and apoptosis. Therefore, the use of agents that reduce these disorders can be effective in the treatment of PQ toxicity. The protective effects of dimethyl fumarate (DMF) on liver disorders have been suggested in many reports. In this study, mice were divided into 6 groups; control, PQ (30 mg/kg, i.p., at day 4), DMF (100 mg/kg, p.o.), and PQ groups pretreated by DMF in three doses 10, 30, and 100 mg/kg, respectively. DMF was administered for 7 days to counteract PQ-induced liver toxicity. On the 8th day, mice were euthanized with ketamine/xylazine, and serum factors, oxidative stress markers, apoptosis index, and inflammatory markers were measured. PQ significantly increased the activity level of serum enzymes, thiobarbituric acid reactive substances, apoptotic factor (Bax/Bcl-2 ratio), inflammatory factors (NF-κB protein expression, tumor necrosis factor-α, interleukin-1β), nitric oxide, and Nrf-2 protein expression. Furthermore, PQ decreased hepatic total thiol and activity levels of catalase, superoxide dismutase, and glutathione peroxidase. However, DMF reduced the harmful effects caused by the imbalance in the oxidant and antioxidant system and histopathological damage in PQ-poisoned mice and improved the damage caused by inflammation and apoptosis.
Collapse
Affiliation(s)
- Maryam Kavianinia
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Kalantar
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Salehcheh
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeedeh Shariati
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shokooh Mohtadi
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
8
|
Memarzia A, Beigoli S, Eshaghi Ghalibaf MH, Ghasemi SZ, Abbasian A, Mahzoon E, Naderi Toosi A, Mohammadian Roshan N, Boskabady MH. The preventive effectiveness of Crocus sativus extract in treating lung injuries caused by inhaled paraquat in rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118767. [PMID: 39236778 DOI: 10.1016/j.jep.2024.118767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The herbicide paraquat (PQ) is highly toxic, capable of inducing severe lung inflammation and oxidative stress, resulting in lung fibrosis and respiratory failure. Previous research has demonstrated a range of pharmacological effects associated with Crocus sativus. L (Cs) through its anti-inflammatory, antioxidant and immunomodulatory properties. Pharmacological studies support the widespread use of Cs in traditional medicine to treat respiratory disorders such as coughs and asthma. AIM OF STUDY This study aimed to investigate the preventive impact of Cs extract and pioglitazone (Pio) on lung inflammation, oxidative stress, pathological alterations, and tracheal reactivity induced by inhaled PQ in rats as compared to dexamethasone (Dexa). METHODS The control (Ctrl) group of rats was administered with saline aerosol, while the remaining six groups received PQ aerosol eight times every other day. The six PQ exposure groups were treated daily during the exposure period to PQ with either; saline alone, low dose Cs, High dose Cs, Pio alone, Pio combined with low dose Cs, or Dexa of 16 days. RESULTS In the PQ group, the levels of superoxide dismutase (SOD), catalase (CAT), and thiol in the bronchoalveolar lavage fluid (BALF) were declined whereas, the levels of MDA, total and differential WBC, and lung tissue levels of tumor necrosis factor (TNF-α) and Interleukin 10 (IL-10), tracheal responsiveness (TR) to methacholine and lung pathological changes were enhanced. The measured variables showed significant improvement in all treated groups, except for a few variables in Cs (L). The combined Cs (L) + Pio showed higher effects than Cs (L) and Pio alone. For all comparisons, p values were <0.05 to <0.001. CONCLUSIONS The results showed preventive effect of Cs comparable to that of Dexa and the potential additive preventive capabilities of the Cs and Pio indicate that the involvement of the PPARγ receptor is implicated in the effects induced by Cs.
Collapse
Affiliation(s)
- Arghavan Memarzia
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyedeh Zahra Ghasemi
- Cutaneous Leishmaniasis Research Center, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Abbasian
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Erfan Mahzoon
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Naderi Toosi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Saffron Institute, University of Torbat Heydariyeh, Torbat Heydariyeh, Iran
| | - Nema Mohammadian Roshan
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Elemam NM, Nader MA, Abdelmageed ME. Ameliorative impact of sacubitril/valsartan on paraquat-induced acute lung injury: role of Nrf2 and TLR4/NF-κB signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03785-w. [PMID: 39869189 DOI: 10.1007/s00210-025-03785-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025]
Abstract
Herbicides such as paraquat (PQ) are frequently utilized particularly in developing nations. The present research concentrated on the pulmonary lesions triggered by PQ and the beneficial effect of the angiotensin receptor neprilysin inhibitor (ARNI), sacubitril/valsartan, against such pulmonary damage. Five groups of rats were established: control, ARNI, PQ (10 mg/kg), ARNI 68 + PQ, and ARNI 34 + PQ. Following euthanasia, lungs were isolated and subjected to a histopathological test, and the ELISA technique was used to evaluate oxidative stress biomarkers, toll-like receptor 4 (TLR4), nuclear factor erythroid 2-related factor 2 (Nrf2), phosphatidylinositol-3-kinase (PI3K), phosphorylated protein kinase B (p-AKT), and inflammatory markers: nuclear factor kappa B p65 subunit (NF-κB p65), tumor necrosis factor α (TNFα), and interleukin 1beta (IL-1β). In conjunction with abnormally high levels of malondialdehyde (MDA) and inducible nitric oxide synthase (iNOS), the PQ group also displayed low levels of reduced glutathione (GSH) and total antioxidant capacity (TAC). Additionally, TLR4, PI3K, and p-AKT were significantly elevated together with unusually low level of Nrf2. Moreover, inflammatory biomarkers, NF-κB p65, TNFα, and IL-1β, were abnormally elevated. Meanwhile, ARNI-treated groups reversed all alterations precipitated by PQ in a dose-dependent manner. ARNI could mitigate pulmonary damage triggered by PQ via potential antioxidant anti-inflammatory qualities.
Collapse
Affiliation(s)
- Nourhane M Elemam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, 7731168, Egypt.
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, 7731168, Egypt
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, 7731168, Egypt
| |
Collapse
|
10
|
Amin F, Basirat H, Parvaz N, Khademalhosseini M, Hakimizadeh E, Fatemi I. Protective effects of myrtenol against paraquat-induced toxicity in rats. BMC Pulm Med 2025; 25:17. [PMID: 39806385 PMCID: PMC11730473 DOI: 10.1186/s12890-025-03484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Paraquat (PQ) is a widely used pesticide, can cause severe intoxication and respiratory failure. Myrtenol (Mrl), an essential oil derived in various plants, exhibits several biological properties, including anti-inflammatory and antioxidant activities. This study aims to investigate the protective potential of Mrl against oxidative stress and inflammation caused by PQ exposure. METHODS Twenty-five Wistar albino rats were divided into the following groups (n = 5 in each group): a control group (treated by dimethyl sulfoxide (DMSO)), a PQ group (exposed to 54 mg/m³ aerosol PQ), and two treatment groups that were exposed to PQ aerosol and administered oral Mrl at doses of 25 mg/kg/day and 50 mg/kg/day, respectively. The final group was exposed to PQ aerosol and treated with oral dexamethasone at a dose of 0.03 mg/kg/day. Various hematological, oxidative, inflammatory, and pathological indices were measured at the conclusion of the treatment period. RESULTS PQ decreases the levels or activities of superoxide dismutase (SOD), catalase (CAT), and Thiol, while increasing the levels or activities of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and malondialdehyde (MDA). Mrl restored activites of SOD, and CAT, as well as thiol levels to near-control values while reducing TNF-α, IL-6, and MDA levels. Pathological studies further confirmed the therapeutic effects of Mrl. CONCLUSION The results of this study demonstrate the promising therapeutic effects of Mrl against inhaled PQ in rats.
Collapse
Affiliation(s)
- Fatemeh Amin
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hosein Basirat
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Najmeh Parvaz
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Khademalhosseini
- Clinical Research Development Unit (CRDU), Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Pathology, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elham Hakimizadeh
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, 7618868367, Iran.
| |
Collapse
|
11
|
Horsley E, Chandler C, Wainwright C, Sashak Rishanghan L, Cree ML, Humphreys M, Rampersad N. Management of Accidental Paraquat Ingestion in a Child. J Paediatr Child Health 2025. [PMID: 39780399 DOI: 10.1111/jpc.16754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/18/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025]
Abstract
AIM To report on the management of a toddler who had accidental ingestion of an unknown amount of paraquat, with treatment including continuous renal replacement therapy (CRRT), steroids and antifibrinolytics at a tertiary-level health system. METHODS A 16-month-old child weighing 10 kg accidentally ingested an unknown amount of Gramoxone containing paraquat. The child was transferred to a tertiary centre Paediatric Intensive Care Unit (PICU) where she was electively intubated and commenced on CRRT at 7 hours and 15 minutes post-ingestion. She was also treated with activated charcoal, methylprednisolone, N-acetylcysteine infusion and pirfenidone. Paraquat blood and urine samples were monitored throughout her PICU admission. RESULTS The child did not exhibit respiratory distress or significant hypoxia during the admission. She developed ulceration of the lips, mouth and tongue on day 2 which improved after 48 hours. Feed intolerance and pneumatosis intestinalis were managed conservatively. Interstitial changes were noted on chest x-ray on day 3 and pirfenidone was initiated to minimise the risk of pulmonary fibrosis. The child was discharged from PICU to the general ward for further observation. At follow-up, there has been no evidence of pulmonary fibrosis up to 6 months post-discharge. CONCLUSIONS This case highlights the toxicity of Paraquat and importance of early management and urgent transfer of paraquat poisoning cases to specialised medical centres. Prompt interventions including activated charcoal, N-acetylcysteine, CRRT and pirfenidone can improve patient prognosis and reduce the risk of long-term complications such as pulmonary fibrosis in paediatric paraquat toxicity.
Collapse
Affiliation(s)
- Emily Horsley
- University of Queensland, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Claire Chandler
- Queensland Children's Hospital, Brisbane, Queensland, Australia
| | | | | | | | | | - Neeta Rampersad
- Queensland Children's Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Zhou YQ, Peng JJ, Shan LP, Liu W. Proteomic characterization of molecular mechanisms of paraquat-induced lung injury in a mouse model. Respir Res 2025; 26:1. [PMID: 39748354 PMCID: PMC11697879 DOI: 10.1186/s12931-024-03072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND We sought to explore the molecular mechanisms underpinning acute lung injury (ALI) caused by poisoning with paraquat (PQ). METHODS Selection mice were intraperitoneally injected with PQ at 40 mg/kg, whereas controls were injected with sterile saline. On days 2, 7, and 14 after administration, mice were anesthetized and sacrificed, and lung tissue was removed. Lung pathological changes were observed with conventional staining techniques. Lung tissue components were assessed with tandem mass spectrometry tag technology, and differentially expressed proteins (DEPs) were bioinformatically analyzed and investigated with parallel reaction monitoring. RESULTS The expression of 91, 160, and 78 proteins was significantly altered at days 2, 7, and 14, respectively. Gene Ontology analyses revealed that the DEPs in the PQ-2d and PQ-7d groups were involved primarily in humoral immunity and coagulation-related reactions, whereas those in the PQ-14d group were implicated primarily in chemotactic and regulatory responses. Kyoto Encyclopedia of Genes and Genomes analyses indicated that complement and coagulation cascades were key pathways in the PQ-2d and PQ-7d groups, whereas xenobiotic metabolism by cytochrome P450 was a key pathway in the PQ-14d group. Nine proteins at PQ-2d and eight proteins at PQ-7d were validated through parallel reaction monitoring (PRM). CONCLUSIONS PQ-induced ALI depends on over-activation of immune responses by damaged alveolar/endothelial cells, and the complement/coagulation cascade pathway plays a key role during this process. The proteins identified herein might provide new therapeutic targets or biomarkers for PQ poisoning.
Collapse
Affiliation(s)
- Yu Qing Zhou
- Emergency Department, The First Hospital of China Medical University, No.155 North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Jin Jin Peng
- Emergency Department, The First Hospital of China Medical University, No.155 North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Li Ping Shan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
- Urology Surgery, ShengJing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Wei Liu
- Emergency Department, The First Hospital of China Medical University, No.155 North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
13
|
Rabiee N, Rabiee M. MXene-based aptasensors: a perspective on recent advances. NANOSCALE 2024; 16:22128-22141. [PMID: 39533857 DOI: 10.1039/d4nr03984j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Recent advancements in science and technology have significantly enhanced public health by integrating novel materials and early diagnostic methods. A key focus is on MXenes, a class of materials known for their distinctive morphology and exceptional stability in diverse environments. MXenes possess notable structural engineering capabilities, enabling their design and synthesis into various forms tailored for specific applications. Their surface can be functionalized with different groups to enable chemical binding and physical attachment to various molecules, while variations in layer thickness and elemental composition influence their electrical conductivity and stability. This perspective article examines recent structural innovations in MXenes, particularly their application in biosensors. We highlight the role of aptamer surface decorations, which offer specific and selective binding for detecting a broad spectrum of analytes, thus underscoring MXenes' potential in advancing diagnostic technologies and improving public health.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India.
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| |
Collapse
|
14
|
Dong J, Wang G, Li X, Han A, Zhang W, Yue Y, Yang Y, Wang Y, Yuan B, Wang J, Peng Y, Liu R, Chen S, Du X. Bio-friendly multi-stimuli responsive α-CD polymer-gated mesoporous carbon nanoherbicides for enhanced paraquat delivery. J Adv Res 2024:S2090-1232(24)00561-7. [PMID: 39672232 DOI: 10.1016/j.jare.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024] Open
Abstract
INTRODUCTION Weeds seriously affect crop yield in global agricultural production. Paraquat (PQ), as one of low cost and highly effective herbicide, is forbidden or severely restricted in production and sales owing to its lethal toxicity to humans. Creating an efficient and bio-friendly PQ formulation is crucial to facilitate the open use of PQ in world's agriculture. OBJECTIVES This study aims to construct one intelligent and bio-friendly mesoporous carbon nanoparticles (MCN) nanoherbicides coated with α-CD polymer (CDP) gatekeepers. METHODS MCN was prepared through the low-concentration hydrothermal way, calcined and carbonized. PEG stalks were immobilized on MCN surface by amidation reaction. The PQ was trapped in the MCN pores via physical diffusion adsorption and the robust π-π effects between electron-deficient PQ and electron-rich MCN. CDP gatekeepers were fastened via host-guest effects between the chamber of α-CD units and PEG stalks. RESULTS The PQ-loaded MCN-PEG@CDP nanoherbicides integrated with multi-stimuli responses to amylase, elevated temperature under sunlight, and competitors at leaf interface to control the PQ release for efficient weed control, while appeared low PQ leakage under the simulated human gastric or intestinal conditions, low cytotoxicity to human normal cells in vitro, and high mouse survival rate in vivo. Even through the nanoherbicides inevitably contact with water or intake by beneficial insects, they appear good biosafety on zebrafish (D. rerio) and honeybees (Apis mellifera L.). CONCLUSION The as-prepared nanoherbicides have high herbicidal efficacy and low risks to non-target species, and could promote the open use of PQ in agriculture.
Collapse
Affiliation(s)
- Jiangtao Dong
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China.
| | - Guoquan Wang
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Xiaona Li
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Aohui Han
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Wanpeng Zhang
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Yuhang Yue
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Yue Yang
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Yishan Wang
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Bowen Yuan
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Jiahui Wang
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Yuhui Peng
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Runqiang Liu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China.
| | - Si Chen
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China.
| | - Xuezhong Du
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
15
|
Khederzadeh A, Ebrahimnejad P, Seyedabadi M, Babaei A, Amiri FT, Aslani N, Mojarad-Jabali S, Mohammadi H. Synergistic effect of curcumin and Piperine loaded Niosomal nanoparticles on acute pulmonary toxicity induced by Paraquat in mice. Toxicol Res (Camb) 2024; 13:tfae181. [PMID: 39507590 PMCID: PMC11537766 DOI: 10.1093/toxres/tfae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/16/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Objective Paraquat (PQ), a widely used non-selective herbicide, induces severe lung toxicity by promoting cell death and tissue necrosis through the generation of reactive oxygen species (ROS) and free radicals. This study aimed to develop and evaluate novel niosomal nanoparticles (NPs) encapsulating curcumin and piperine to mitigate PQ-induced acute pulmonary toxicity in Balb/c mice. Methods The NPs were prepared using non-ionic surfactants and cholesterol via the thin film hydration method. Results Characterization revealed high encapsulation efficiency (>85%), proper particle sizes (264-286 nm), narrow polydispersity index (PDI) (0.19 ± 0.04 to 0.23 ± 0.02), and good stability over 90 days. Thermal analysis confirmed successful encapsulation of curcumin and piperine within the niosomal NPs. In vivo studies showed that PQ exposure significantly elevated ROS, lipid peroxidation (LPO), and protein carbonylation (PC) levels, while reducing glutathione (GSH) levels and impairing mitochondrial function (P < 0.001). However, co-treatment with curcumin- and piperine-loaded niosomal NPs effectively reversed these effects (P < 0.001), improving mitochondrial function. Conclusion The combined formulation of curcumin and piperine in niosomal NPs offers a promising therapeutic strategy for treating PQ-induced pulmonary toxicity, likely due to enhanced bioavailability and potent antioxidant activity.
Collapse
Affiliation(s)
- Aram Khederzadeh
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
| | - Pedram Ebrahimnejad
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Faculty of Pharmacy, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
| | - Mohammad Seyedabadi
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Faculty of Pharmacy, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
| | - Nasim Aslani
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
| | - Solmaz Mojarad-Jabali
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Faculty of Pharmacy, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
| | - Hamidreza Mohammadi
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Faculty of Pharmacy, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
| |
Collapse
|
16
|
Khosravi R, Beigoli S, Behrouz S, Amirahmadi S, Sarbaz P, Hosseini M, Sarir H, Boskabady MH. The inhibitory influence of carvacrol on behavioral modifications, brain oxidation, and general inflammation triggered by paraquat exposure through inhalation. Neurotoxicology 2024; 105:184-195. [PMID: 39393544 DOI: 10.1016/j.neuro.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
The current study investigated how carvacrol (C) can prevent behavioral and brain oxidative changes, along with systemic inflammation caused by inhaled paraquat (PQ). Control rats exposed to saline solution, whereas six rat groups were subjected to PQ aerosols at a concentration of 54 mg/m3 in 16 days. The PQ-exposed groups received saline (PQ group), C at dosages of 20 (C-L) and 80 mg/kg/day (C-H), dexamethasone at a dosage of 0.03 mg/kg/day, pioglitazone at dose of 5 and 10 mg/kg/day (Pio-L and Pio-H), and a combination of C-L + Pio-L. Various parameters were assessed following the end of the treatment duration. There were marked elevation in total and differential white blood cell counts (WBCs), and malondialdehyde levels in the blood, hippocampus, and cerebral tissue but, thiol, superoxide dismutase (SOD), and catalase (CAT) exhibited a notable decrease (p < 0.05 to p < 0.001). The escape delay and traveled distance exhibited enhancement, however, on the probe day, the duration spent in the target quadrant and the time taken to enter the dark room at 3, 24, 48, and 72 hours post an electrical shock, showed a reduction in the PQ group (P<0.05 to P<0.001). Inhaled PQ-induced changes were significantly improved in C, Pio, Dexa, and C-L + Pio-L treated groups (P<0.05 to P<0.001). The effects of C-L + Pio-L on most measured variables were higher than C-L and Pio-L (P<0.05 to P<0.001). C improved PQ-induced changes similar to dexamethasone and C-L showed additive effects when administered in combination with Pio.
Collapse
Affiliation(s)
- Reyhaneh Khosravi
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Behrouz
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sabiheh Amirahmadi
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Sarbaz
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - Mahmoud Hosseini
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Sarir
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran.
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Dong JH, Zhang M, Yang X, Wu B, Huang L, Li C, Ge Y. Fractionated plasma separation and adsorption integrated with continuous veno-venous hemofiltration in patients with acute bipyridine herbicide poisoning. Ren Fail 2024; 46:2374013. [PMID: 38967153 PMCID: PMC11229766 DOI: 10.1080/0886022x.2024.2374013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
OBJECTIVE To evaluate the clinical efficacy and safety of fractionated plasma separation and adsorption combined with continuous veno-venous hemofiltration (FPSA-CVVH) treatment in patients with acute bipyridine herbicide poisoning. METHODS A retrospective analysis of 18 patients with acute bipyridine herbicide poisoning was conducted, of which 9 patients were poisoned by diquat and 9 patients by paraquat. All patients underwent FPSA-CVVH treatment. The serum cytokine levels in pesticide-poisoned patients were assessed. The efficacy of FPSA-CVVH in eliminating cytokines, the 90-d survival rate of poisoned patients, and adverse reactions to the treatment were observed. RESULTS Fourteen patients (77.8%) had acute kidney injuries and 10 (55.6%) had acute liver injuries. The serum cytokine levels of high mobility group protein B-1 (HMGB-1), interleukin-6 (IL-6), IL-8, interferon-inducible protein-10 (IP-10), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1β (MIP-1β) were significantly elevated. A total of 41 FPSA-CVVH treatment sessions were administered. After a single 8-h FPSA-CVVH treatment, the decreases in HMGB-1, IL-6, IL-8, IP-10, MCP-1, and MIP-1β were 66.0%, 63.5%, 73.3%, 63.7%, 53.9%, and 54.1%, respectively. During FPSA-CVVH treatment, one patient required a filter change due to coagulation in the plasma component separator, and one experienced a bleeding adverse reaction. The 90-d patient survival rate was 50%, with 4 patients with diquat poisoning and 5 patients with paraquat poisoning, and both liver and kidney functions were restored to normal. CONCLUSION Cytokine storms may play a significant role in the progression of multiorgan dysfunction in patients with acute bipyridine herbicide poisoning. FPSA-CVVH can effectively reduce cytokine levels, increase the survival rate of patients with acute bipyridine herbicide poisoning, and decrease the incidence of adverse events.
Collapse
Affiliation(s)
- Jian-Hua Dong
- National Clinical Research Center of Kidney Diseases, JinLing Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Minghong Zhang
- National Clinical Research Center of Kidney Diseases, JinLing Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Xi Yang
- National Clinical Research Center of Kidney Diseases, JinLing Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Bian Wu
- National Clinical Research Center of Kidney Diseases, JinLing Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Li Huang
- National Clinical Research Center of Kidney Diseases, JinLing Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Chuan Li
- National Clinical Research Center of Kidney Diseases, JinLing Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Yongchun Ge
- National Clinical Research Center of Kidney Diseases, JinLing Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Tayeb FJ, Felemban MF, Adnan Ashour A, Shafie A. Paraquat-Induced Toxicities: Epidemiological Insights and Advances in Colorimetric and Fluorimetric Detection Methods. Crit Rev Anal Chem 2024:1-31. [PMID: 39602183 DOI: 10.1080/10408347.2024.2433005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Paraquat (PQ) is a potent and widely utilized herbicide known for its effectiveness in controlling a broad spectrum of weeds. Its chemical properties make it an invaluable tool in agriculture, where it helps maintain crop yields and manage invasive plant species. However, despite its benefits in weed management, PQ poses significant risks due to its severe toxicity, which affects multiple organ systems in both humans and animals. The dual nature of PQ, as both a valuable agricultural chemical and a hazardous toxicant, necessitates a comprehensive understanding of its toxicological impacts and the development of effective detection and development strategies. This review aims to provide a comprehensive overview of PQ-induced toxicities, including neurotoxicity, lung toxicity, liver toxicity, kidney toxicity, and immunotoxicity. By synthesizing current knowledge on PQ health impacts, highlighting epidemiological trends, and exploring recent advancements in colorimetric and fluorimetric detection methods, this review seeks to contribute to the development of strategies for improving public health outcomes and enhancing our ability to manage the risks associated with PQ exposure. Addressing PQ toxicity through a multidisciplinary approach, incorporating toxicological, epidemiological, and technological perspectives, is essential for safeguarding health and promoting effective interventions.
Collapse
Affiliation(s)
- Faris J Tayeb
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammed Fareed Felemban
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
19
|
Robinson DE, Stuart AM, Willis S, Salmon JP, Ramjattan J, Ganpat W, Williamson S, Tyrell KF, Saravanakumar D. Assessment of unintentional acute pesticide poisoning among smallholder vegetable farmers in Trinidad and Jamaica. Front Public Health 2024; 12:1470276. [PMID: 39564361 PMCID: PMC11573769 DOI: 10.3389/fpubh.2024.1470276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
Poisoning caused by pesticides is widely recognized as a major public health problem among smallholder farmers and rural communities, including in the Caribbean. However, a lack of quality data impedes understanding of the problem and hampers the development of effective strategies for its management. To better understand the prevalence of unintentional acute pesticide poisoning (UAPP) in Trinidad and Tobago and Jamaica and the pesticides and practices involved, we conducted a cross-sectional survey of 197 and 330 vegetable farmers in Trinidad and Jamaica, respectively. The findings from this study revealed a high incidence of self-reported health effects from occupational pesticide exposure, with 48 and 16% of respondents, respectively, experiencing symptoms of UAPP within the previous 12 months. Furthermore, the substantial proportion of UAPP incidents were associated with a few highly hazardous pesticides (HHPs), particularly lambda-cyhalothrin, acetamiprid, and profenofos in Jamaica, and alpha-cypermethrin, paraquat and lambda-cyhalothrin in Trinidad. Given the well-documented adverse effects of these chemicals on human health, the results of this study should be of significant concern to health authorities in Jamaica and Trinidad. This clearly indicates an urgent need for improved regulation and safer alternatives to the use of HHPs, as well as the promotion of alternatives. We provide policy recommendations and identify alternatives to HHPs for tropical vegetable production.
Collapse
Affiliation(s)
- Dwight E Robinson
- Department of Life Sciences, Faculty of Science and Technology, The University of West Indies, Mona, Jamaica
| | - Alexander M Stuart
- Pesticide Action Network UK, Brighthelm Centre, Brighton, United Kingdom
| | - Sheila Willis
- Pesticide Action Network UK, Brighthelm Centre, Brighton, United Kingdom
| | - Joey P Salmon
- Pesticide Action Network UK, Brighthelm Centre, Brighton, United Kingdom
| | - Jeet Ramjattan
- Faculty of Food and Agriculture, The University of West Indies, St. Augustine, Trinidad and Tobago
| | - Wayne Ganpat
- Faculty of Food and Agriculture, The University of West Indies, St. Augustine, Trinidad and Tobago
| | | | - Keith F Tyrell
- Pesticide Action Network UK, Brighthelm Centre, Brighton, United Kingdom
| | - Duraisamy Saravanakumar
- Faculty of Food and Agriculture, The University of West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
20
|
Silva R, Sobral AF, Dinis-Oliveira RJ, Barbosa DJ. The Link Between Paraquat and Demyelination: A Review of Current Evidence. Antioxidants (Basel) 2024; 13:1354. [PMID: 39594496 PMCID: PMC11590890 DOI: 10.3390/antiox13111354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Paraquat (1,1'-dimethyl-4,4'-bipyridilium dichloride), a widely used bipyridinium herbicide, is known for inducing oxidative stress, leading to extensive cellular toxicity, particularly in the lungs, liver, kidneys, and central nervous system (CNS), and is implicated in fatal poisonings. Due to its biochemical similarities with the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), paraquat has been used as a Parkinson's disease model, although its broader neurotoxic effects suggest the participation of multiple mechanisms. Demyelinating diseases are conditions characterized by damage to the myelin sheath of neurons. They affect the CNS and peripheral nervous system (PNS), resulting in diverse clinical manifestations. In recent years, growing concerns have emerged about the impact of chronic, low-level exposure to herbicides on human health, particularly due to agricultural runoff contaminating drinking water sources and their presence in food. Studies indicate that paraquat may significantly impact myelinating cells, myelin-related gene expression, myelin structure, and cause neuroinflammation, potentially contributing to demyelination. Therefore, demyelination may represent another mechanism of neurotoxicity associated with paraquat, which requires further investigation. This manuscript reviews the potential association between paraquat and demyelination. Understanding this link is crucial for enhancing strategies to minimize exposure and preserve public health.
Collapse
Affiliation(s)
- Renata Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - Ana Filipa Sobral
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.F.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.F.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- FOREN—Forensic Science Experts, Dr. Mário Moutinho Avenue, No. 33-A, 1400-136 Lisbon, Portugal
| | - Daniel José Barbosa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.F.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
21
|
Zhang Y, Chen X, Du H, Zhao M, Jiang X, Ma Y. Association between toxicity-index of diquat and in-hospital mortality in patients with acute diquat poisoning: a retrospective cohort study. Biomarkers 2024; 29:427-433. [PMID: 39325641 DOI: 10.1080/1354750x.2024.2410238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND This study investigates the impact of diquat toxicity levels on in-hospital mortality rates among patients with acute diquat poisoning. It aims to clarify the relationship between diquat toxicity scores and the likelihood of death during hospitalization. METHODS A retrospective cohort study was conducted on 98 individuals with acute diquat poisoning. Data on post-ingestion time, initial diquat plasma concentration, and clinical outcomes were systematically collected for all participants. The toxicity-index of diquat was calculated based on post-ingestion time and initial diquat plasma concentration. Logistic regression analysis was utilized to assess the association between the toxicity-index of diquat and in-hospital mortality rates, adjusting for potential confounding variables such as age, comorbidities, and treatment interventions. RESULTS The study found that the overall prevalence of in-hospital mortality was 34.7%, with 58.2% in males. The multivariable-adjusted regression coefficient for in-hospital mortality associated with the toxicity-index was 1.09, with a 95% confidence interval (CI) of 1.01-1.17. Subsequent exploratory subgroup analysis indicated that there were no significant interactions (all p values for interaction were >0.05). CONCLUSIONS The study found that higher diquat toxicity-index values correlate with increased in-hospital mortality in acute diquat poisoning cases, indicating that the toxicity-index could be a useful biomarker for assessing mortality risk.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Respiratory and Critical Care Medicine, Beijing You'an Hospital, Capital Medical University, Beijing, China
- Department of Critical Care Medicine, Beijing Mentougou District Hospital, Capital Medical University affiliated Tongren Hospital, Beijing, China
- Beijing Institute of Hepatology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Xian Chen
- Department of Emergency, Chinese People's Armed Police Force characteristic medical Center, Tianjing, China
- Graduate School of PLA Army Medical University, Chongqing, China
| | - Haike Du
- Department of Emergency, Chinese People's Armed Police Force characteristic medical Center, Tianjing, China
| | - Min Zhao
- Department of Critical Care Medicine, Beijing Mentougou District Hospital, Capital Medical University affiliated Tongren Hospital, Beijing, China
| | - Xiaoming Jiang
- Department of Critical Care Medicine, Beijing Mentougou District Hospital, Capital Medical University affiliated Tongren Hospital, Beijing, China
| | - Yingmin Ma
- Department of Respiratory and Critical Care Medicine, Beijing You'an Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Loncarevic I, Mutlu S, Dzepic M, Keshavan S, Petri-Fink A, Blank F, Rothen-Rutishauser B. Current Challenges to Align Inflammatory Key Events in Animals and Lung Cell Models In Vitro. Chem Res Toxicol 2024; 37:1601-1611. [PMID: 39115970 PMCID: PMC11497357 DOI: 10.1021/acs.chemrestox.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
With numerous novel and innovative in vitro models emerging every year to reduce or replace animal testing, there is an urgent need to align the design, harmonization, and validation of such systems using in vitro-in vivo extrapolation (IVIVE) approaches. In particular, in inhalation toxicology, there is a lack of predictive and prevalidated in vitro lung models that can be considered a valid alternative for animal testing. The predictive power of such models can be enhanced by applying the Adverse Outcome Pathways (AOP) framework, which casually links key events (KE) relevant to IVIVE. However, one of the difficulties identified is that the endpoint analysis and readouts of specific assays in in vitro and animal models for specific toxicants are currently not harmonized, making the alignment challenging. We summarize the current state of the art in endpoint analysis in the two systems, focusing on inflammatory-induced effects and providing guidance for future research directions to improve the alignment.
Collapse
Affiliation(s)
- Isidora Loncarevic
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Seyran Mutlu
- Lung
Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department
for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University
of Bern, Bern, Switzerland
| | - Martina Dzepic
- Lung
Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department
for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University
of Bern, Bern, Switzerland
| | - Sandeep Keshavan
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Chemistry
Department, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Fabian Blank
- Lung
Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department
for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University
of Bern, Bern, Switzerland
| | | |
Collapse
|
23
|
Luis E, Conde-Maldonado V, García-Nieto E, Juárez-Santacruz L, Alvarado M, Anaya-Hernández A. Altered Expression of Thyroid- and Calcium Ion Channels-Related Genes in Rat Testes by Short-Term Exposure to Commercial Herbicides Paraquat or 2,4-D. J Xenobiot 2024; 14:1450-1464. [PMID: 39449422 PMCID: PMC11503356 DOI: 10.3390/jox14040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/28/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Exposure to pesticides such as paraquat and 2,4-dichlorophenoxyacetic acid (2,4-D) has been linked to harmful health effects, including alterations in male reproduction. Both herbicides are widely used in developing countries and have been associated with reproductive alterations, such as disruption of spermatogenesis and steroidogenesis. The thyroid axis and Ca2+-permeable ion channels play a key role in these processes, and their disruption can lead to reproductive issues and even infertility. This study evaluated the short-term effects of exposure to commercial herbicides based on paraquat and 2,4-D on gene expression in rat testes. At the molecular level, exposure to paraquat increased the expression of the thyroid hormone transporters monocarboxylate transporter 8 (Mct8) and organic anion-transporting polypeptide 1C1 (Oatp1c1) and the thyroid receptor alpha (TRα), suggesting a possible endocrine disruption. However, it did not alter the expression of the sperm-associated cation channels (CatSper1-2) or vanilloid receptor-related osmotically activated channel (Trpv4) related to sperm motility. In contrast, exposure to 2,4-D reduced the expression of the Mct10 transporter, Dio2 deiodinase, and CatSper1, which could affect both the availability of T3 in testicular cells and sperm quality, consistent with previous studies. However, 2,4-D did not affect the expression of CatSper2 or Trpv4. Deregulation of gene expression could explain the alterations in male reproductive processes reported by exposure to paraquat and 2,4-D. These thyroid hormone-related genes can serve as molecular biomarkers to assess endocrine disruption due to exposure to these herbicides, aiding in evaluating the health risks of pesticides.
Collapse
Affiliation(s)
- Enoch Luis
- Investigadores por México CONAHCYT—Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U., Ciudad de México 04510, Mexico;
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U., Ciudad de México 04510, Mexico
| | - Vanessa Conde-Maldonado
- Maestría en Ciencias en Sistemas del Ambiente, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala de Xicohténcatl 90000, Mexico; (V.C.-M.); (E.G.-N.); (L.J.-S.)
- Laboratorio de Toxicología y Química Ambiental, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Km 10.5 Autopista Tlaxcala-San Martín, Ixtacuixtla 90120, Tlaxcala, Mexico
| | - Edelmira García-Nieto
- Maestría en Ciencias en Sistemas del Ambiente, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala de Xicohténcatl 90000, Mexico; (V.C.-M.); (E.G.-N.); (L.J.-S.)
- Laboratorio de Toxicología y Química Ambiental, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Km 10.5 Autopista Tlaxcala-San Martín, Ixtacuixtla 90120, Tlaxcala, Mexico
| | - Libertad Juárez-Santacruz
- Maestría en Ciencias en Sistemas del Ambiente, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala de Xicohténcatl 90000, Mexico; (V.C.-M.); (E.G.-N.); (L.J.-S.)
- Laboratorio de Toxicología y Química Ambiental, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Km 10.5 Autopista Tlaxcala-San Martín, Ixtacuixtla 90120, Tlaxcala, Mexico
| | - Mayvi Alvarado
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico;
| | - Arely Anaya-Hernández
- Maestría en Ciencias en Sistemas del Ambiente, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala de Xicohténcatl 90000, Mexico; (V.C.-M.); (E.G.-N.); (L.J.-S.)
- Laboratorio de Toxicología y Química Ambiental, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Km 10.5 Autopista Tlaxcala-San Martín, Ixtacuixtla 90120, Tlaxcala, Mexico
| |
Collapse
|
24
|
Nuwongsa I, Markmee T, Pholpo N, Chockjamsai M, Monum T, Amornlertwatana Y, Tajai P. Paraquat Poisoning: Insights from Autopsy, Histology, and Liquid Chromatography with Tandem Mass Spectrometry in Multidisciplinary Forensic Toxicology Practice. TOXICS 2024; 12:675. [PMID: 39330603 PMCID: PMC11435590 DOI: 10.3390/toxics12090675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
The herbicide paraquat (PQ) is responsible for a significant number of fatalities resulting from self-poisoning. Nevertheless, only a limited number of comprehensive studies focusing on fatal PQ poisoning, which include examination of autopsy findings, histopathology, and quantitative analysis of post-mortem samples, have been published. This study aimed to evaluate autopsy findings, histopathology, and quantitative analysis of PQ in post-mortem human serum samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS), a simple, sensitive, and specific method. Autopsies were performed on all deaths due to PQ poisoning, and serum samples were sent to the toxicology laboratory for chemical analysis. The method was successfully applied to seven human serum samples, and the results indicate its reliability for detecting PQ. The study reports fatal serum PQ levels ranging from 0.5 to 372.0 µg/mL. The comprehensive data presented in this study can be useful for further research and practical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Preechaya Tajai
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (I.N.); (T.M.); (N.P.); (M.C.); (T.M.); (Y.A.)
| |
Collapse
|
25
|
Min J, Jiaqi H, Lihua L, Qianqian C, Shujuan W, Xiang L, Liang L, Liang R, Yiwu Z, Qian L. Proteomics of severe SARS-COV-2 infection and paraquat poisoning in human lung tissue samples: comparison of microbial infected and toxic pulmonary fibrosis. Front Cell Infect Microbiol 2024; 14:1446305. [PMID: 39301288 PMCID: PMC11410708 DOI: 10.3389/fcimb.2024.1446305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024] Open
Abstract
Introduction Pulmonary fibrosis (PF) encompasses a spectrum of lung conditions characterized by the abnormal accumulation of scar tissue in the lungs, leading to impaired respiratory function. Various conditions can result in severe PF, among which viral infections have emerged as significant triggers. In addition to viral infections, exposure to toxic substances such as paraquat represents another significant risk factor for PF. Therefore, this study aimed to explore the dissimilarities and similarities between PF triggered by viral infections and chemical toxicants, using the mechanism of PF in IPF as a reference. Methods Data-independent acquisition proteomics technology was employed to identify COVID-19 and paraquat-induced PF from the autopsy of lung tissue samples obtained from individuals who died due to PF. Bioinformatics was employed for differential protein analysis, and selected indicators were validated on pathological sections. Results Our results showed that the differential proteins associated with the two causes of PF were enriched in similar lung fibrosis-related signaling pathways, such as the Wnt signaling pathway. However, differences were observed in proteins such as CACYBP, we verified the consistency of the results with proteomics using the IHC approach. Conclusion This study illuminates distinct protein-level differences by investigating pulmonary fibrosis pathways in severe COVID-19 and paraquat poisoning. Although both conditions activate lung-protective and repair pathways, COVID-19 shows limited phosphorylation-independent ubiquitination of β-catenin compared to paraquat toxicity. These findings shed light on potential therapeutic targets for PF induced via diverse factors.
Collapse
Affiliation(s)
- Jiang Min
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hou Jiaqi
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Lihua
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chai Qianqian
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wang Shujuan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Xiang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Liang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ren Liang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Yiwu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Qian
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Sarbaz P, Beigoli S, Payami B, Eshaghi Ghalibaf MH, Amirahmadi S, Hosseini M, Boskabady MH. Curcuma longa impact on behavioral, brain oxidative stress, and systemic inflammation in rats exposed to inhaled paraquat. TOXICOLOGY AND ENVIRONMENTAL HEALTH SCIENCES 2024; 16:287-298. [DOI: 10.1007/s13530-024-00225-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2024] [Indexed: 03/05/2025]
|
27
|
Memarzia A, Amin F, Mokhtari-Zaer A, Arab Z, Saadat S, Heydari M, Ghasemi Z, Naghdi F, Hosseini M, Boskabady MH. Systemic and Lung Inflammation and Oxidative Stress Associated With Behavioral Changes Induced by Inhaled Paraquat Are Ameliorated by Carvacrol. PPAR Res 2024; 2024:4049448. [PMID: 39221092 PMCID: PMC11366052 DOI: 10.1155/2024/4049448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/27/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
Paraquat (PQ) is an herbicide toxin that induces injury in different organs. The anti-inflammatory and antioxidant effects of carvacrol were reported previously. The effects of carvacrol and pioglitazone (Pio) alone and their combination on inhaled PQ-induced systemic and lung oxidative stress and inflammation as well as behavioral changes were examined in rats. In this study, animals were exposed to saline (control [Ctrl]) or PQ (PQ groups) aerosols. PQ-exposed animals were treated with 0.03 mg/kg/day dexamethasone (Dexa), 20 and 80 mg/kg/day carvacrol (C-L and C-H), 5 mg/kg/day Pio, and Pio+C-L for 16 days. Inhaled PQ markedly enhanced total and differential white blood cell (WBC) counts, nitric oxide (NO), and malondialdehyde (MDA) levels but decreased catalase (CAT) and superoxide dismutase (SOD) activities and thiol levels both in the bronchoalveolar lavage fluid (BALF) and blood and increased interferon-gamma (INF-γ) and interleukin-10 (IL-10) levels in the BALF (p < 0.001 for all cases) except lymphocyte count in blood which was not significantly changed. The escape latency and traveled distance were increased in the PQ group. However, the time spent in the target quadrant in the Morris water maze (MWM) test and the duration of time latency in the dark room in the shuttle box test were reduced after receiving an electrical shock (p < 0.05-p < 0.001). Inhaled PQ-induced changes were significantly improved in carvacrol, Pio, Dexa, and especially in the combination of the Pio+C-L treated groups (p < 0.05-p < 0.001). Carvacrol and Pio improved PQ-induced changes similar to Dexa, but ameliorative effects produced by combination treatments of Pio+C-L were more prominent than Pio and C-L alone, suggesting a potentiating effect for the combination of the two agents.
Collapse
Affiliation(s)
- Arghavan Memarzia
- Applied Biomedical Research CenterMashhad University of Medical Sciences, Mashhad, Iran 9177948564
| | - Fatemeh Amin
- Physiology–Pharmacology Research CenterResearch Institute of Basic Medical SciencesRafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and PharmacologySchool of MedicineRafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Amin Mokhtari-Zaer
- Student Research CommitteeTorbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
- Department of Basic Medical SciencesMashhad University of Medical Sciences, Mashhad, Iran
| | - Zohre Arab
- Department of PhysiologyFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran 9177948564
| | - Saeideh Saadat
- Department of PhysiologySchool of MedicineZahedan University of Medical Sciences, Zahedan, Iran 9816743175
| | - Mahrokh Heydari
- Department of PhysiologyFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran 9177948564
| | - Zahra Ghasemi
- Cutaneous Leishmaniasis Research CenterImam Reza HospitalMashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Naghdi
- Department of PhysiologyFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran 9177948564
| | - Mahmoud Hosseini
- Department of PhysiologyFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran 9177948564
| | | |
Collapse
|
28
|
Gu Q, Zhang B, Zhang J, Wang Z, Li Y, Zhang Y, Song B, Zhou Z, Chang X. Unraveling paraquat-induced toxicity on mouse neural stem cells: Dose-response metabolomics insights and identification of sensitive biomarkers for risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124211. [PMID: 38795820 DOI: 10.1016/j.envpol.2024.124211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Exposure to pesticide could contribute to neurodevelopmental and neurodegenerative disorders. Notably, research suggests that prenatal or early postnatal exposure to paraquat (PQ), an herbicide, might trigger neurodevelopmental toxicity in neural stem cells (NSCs) via oxidative stress. However, the molecular mechanisms of PQ-induced perturbations in NSCs, particularly at the metabolite level, are not fully understood. Using a dose-response metabolomics approach, we examined metabolic changes in murine NSCs exposed to different PQ doses (0, 10, 20, 40 μM) for 24h. At 20 μM, PQ treatment led to significant metabolic alterations, highlighting unique toxic mechanisms. Metabolic perturbations, mainly affecting amino acid metabolism pathways (e.g., phenylalanine, tyrosine, arginine, tryptophan, and pyrimidine metabolism), were associated with oxidative stress, mitochondrial dysfunction, and cell cycle dysregulation. Dose-response models were used to identify potential biomarkers (e.g., Putrescine, L-arginine, ornithine, L-histidine, N-acetyl-L-phenylalanine, thymidine) reflecting early damage from low-dose PQ exposure. These biomarkers could be used as points of departure (PoD) for characterizing PQ exposure hazard in risk assessment. Our study offers insights into mechanisms and risk assessment related to PQ-induced neurotoxicity in NSCs.
Collapse
Affiliation(s)
- Qiuyun Gu
- Department of Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| | - Bing Zhang
- Department of Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Jiming Zhang
- Department of Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Zheng Wang
- Department of Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yixi Li
- Department of Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yuwei Zhang
- Department of Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Bo Song
- Department of Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Zhijun Zhou
- Department of Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Xiuli Chang
- Department of Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
29
|
Goyal P, Gautam PL, Sharma S, Paul G, Taneja V, Mona A. A Study of Paraquat Poisoning Presentation, Severity, Management and Outcome in a Tertiary Care Hospital: Is There a Silver Lining in the Dark Clouds? Indian J Crit Care Med 2024; 28:741-747. [PMID: 39239183 PMCID: PMC11372668 DOI: 10.5005/jp-journals-10071-24764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/25/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction Accidental or intentional ingestion of paraquat leads to many local and systemic effects and the mortality rate is very high. There is limited data from North India and our objectives were to study the spectrum of presentation, treatment given, and its relation with outcome in a tertiary care setting. Materials and methods This retrospective observational study was conducted after ethical approval and data regarding demography, clinical features, duration of presentation, organ involvement, renal replacement therapy (RRT), management, and outcome was collected. Statistical analysis was done by calculating mean and standard deviation (SD). Chi-square (χ2) test was applied to categorical variables and the Fisher exact test was used when the expected frequency was less than 5. Results The study population consisted of 91 male (84%) and 18 female patients. Out of 109 patients, 13 survived (12%) and 88% had a fatal outcome. Nearly 92% of patients belonged to rural background, and 68% were of younger (<30 years) age group. Age, gender, occupation, and amount taken did not have any significant relation with mortality. Patients having metabolic acidosis (58.7%), altered renal (75.2%), and hepatic function (62.3%) at presentation had a statistically significant relation with mortality. Duration of presentation was significantly lesser in patients who survived (17.26 ± 17.23, median 14 hours vs 80.18 ± 90.07, median 48 hours) compared to patients who did not survive. Renal replacement therapy (n = 57) had no relation with mortality whereas 36% of the patients who received hemoperfusion (HP) survived (p = 0.03). Conclusion Treatment should be started early as the duration of the presentation has a significant association with the outcome. Currently there is no antidote available. Supportive treatment includes oxygenation, immunosuppression, antioxidants, RRT, and HP wherever the resources are available. How to cite this article Goyal P, Gautam PL, Sharma S, Paul G, Taneja V, Mona A. A Study of Paraquat Poisoning Presentation, Severity, Management and Outcome in a Tertiary Care Hospital: Is There a Silver Lining in the Dark Clouds? Indian J Crit Care Med 2024;28(8):741-747.
Collapse
Affiliation(s)
- Priya Goyal
- Department of Anaesthesia, Dayanand Medical College & Hospital, Ludhiana, Punjab, India
| | - Parshotam L Gautam
- Department of Critical Care Medicine, Dayanand Medical College & Hospital, Ludhiana, Punjab, India
| | - Shruti Sharma
- Department of Critical Care Medicine, Dayanand Medical College & Hospital, Ludhiana, Punjab, India
| | - Gunchan Paul
- Department of Critical Care Medicine, Dayanand Medical College & Hospital, Ludhiana, Punjab, India
| | - Vaibhav Taneja
- Department of Critical Care Medicine, Dayanand Medical College & Hospital, Ludhiana, Punjab, India
| | - Aarti Mona
- Department of Critical Care Medicine, Dayanand Medical College & Hospital, Ludhiana, Punjab, India
| |
Collapse
|
30
|
Zhang C, Shi G, Meng Q, Hu R, Li Y, Hu G, Wang K, Huang M. An approach based on a combination of toxicological experiments and in silico predictions to investigate the adverse outcome pathway (AOP) of paraquat neuro-immunotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134607. [PMID: 38761765 DOI: 10.1016/j.jhazmat.2024.134607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Paraquat (PQ) exposure is strongly associated with neurotoxicity. However, research on the neurotoxicity mechanisms of PQ varies in terms of endpoints of toxic assessment, resulting in a great challenge to understand the early neurotoxic effects of PQ. In this study, we developed an adverse outcome pathway (AOP) to investigate PQ-induced neuro-immunotoxicity from an immunological perspective, combining of traditional toxicology methods and computer simulations. In vivo, PQ can microstructurally lead to an early synaptic loss in the brain mice, which is a large degree regarded as a main reason for cognitive impairment to mice behavior. Both in vitro and in vivo demonstrated synapse loss is caused by excessive activation of the complement C1q/C3-CD11b pathway, which mediates microglial phagocytosis dysfunction. Additionally, the interaction between PQ and C1q was validated by molecular simulation docking. Our findings extend the AOP framework related to PQ neurotoxicity from a neuro-immunotoxic perspective, highlighting C1q activation as the initiating event for PQ-induced neuro-immunotoxicity. In addition, downstream complement cascades induce abnormal microglial phagocytosis, resulting in reduced synaptic density and subsequent non-motor dysfunction. These findings deepen our understanding of neurotoxicity and provide a theoretical basis for ecological risk assessment of PQ.
Collapse
Affiliation(s)
- Chunhui Zhang
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Ge Shi
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Qi Meng
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Rong Hu
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Yang Li
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Guiling Hu
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Kaidong Wang
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China.
| | - Min Huang
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
31
|
Sun X, Mao C, Wang J, Wu S, Qu Y, Xie Y, Sun F, Jiang D, Song Y. Unveiling the Potential of Sulfur-Containing Gas Signaling Molecules in Acute Lung Injury: A Promising Therapeutic Avenue. Curr Issues Mol Biol 2024; 46:7147-7168. [PMID: 39057067 PMCID: PMC11275821 DOI: 10.3390/cimb46070426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), are pulmonary conditions that cause significant morbidity and mortality. The common etiologies of these conditions include pneumonia, pulmonary contusion, fat embolism, smoke inhalation, sepsis, shock, and acute pancreatitis. Inflammation, oxidative stress, apoptosis, and autophagy are key pathophysiological mechanisms underlying ALI. Hydrogen sulfide (H2S) and sulfur dioxide (SO2) are sulfur-containing gas signaling molecules that can mitigate these pathogenic processes by modulating various signaling pathways, such as toll-like receptor 4 (TLR4)/nod-like receptor protein 3 (NLRP3), extracellular signal-regulating protein kinase 1/2 (ERK1/2), mitogen-activated protein kinase (MAPK), phosphatidyl inositol 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), and nuclear factor kappa B (NF-κB), thereby conferring protection against ALI. Given the limited clinical effectiveness of prevailing ALI treatments, investigation of the modulation of sulfur-containing gas signaling molecules (H2S and SO2) in ALI is imperative. This article presents an overview of the regulatory pathways of sulfur-containing gas signaling molecules in ALI animal models induced by various stimuli, such as lipopolysaccharide, gas inhalation, oleic acid, and ischemia-reperfusion. Furthermore, this study explored the therapeutic prospects of diverse H2S and SO2 donors for ALI, stemming from diverse etiologies. The aim of the present study was to establish a theoretical framework, in order to promote the new treatment of ALI.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.M.); (S.W.); (Y.Q.)
| | - Jiaxin Wang
- Department of Synopsis Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.W.); (Y.X.)
| | - Siyu Wu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.M.); (S.W.); (Y.Q.)
| | - Ying Qu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.M.); (S.W.); (Y.Q.)
| | - Ying Xie
- Department of Synopsis Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.W.); (Y.X.)
| | - Fengqi Sun
- Department of Pathology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Deyou Jiang
- Department of Synopsis Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.W.); (Y.X.)
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.M.); (S.W.); (Y.Q.)
| |
Collapse
|
32
|
Li M, Ren Q, Chen K, Yin R, Li W, Fang Z, Liu S, Lan L, Hong G. Regulation of macrophage polarization and glucose metabolism by the ERK/MAPK-HK1 signaling pathway in paraquat-induced acute lung injury. Chem Biol Interact 2024; 397:111062. [PMID: 38763349 DOI: 10.1016/j.cbi.2024.111062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
Acute lung injury is the leading cause of paraquat (PQ) poisoning-related mortality. The mechanism by which macrophages are involved in PQ-induced acute lung injury remains unclear. In recent years, the role of metabolic reprogramming in macrophage functional transformation has received significant attention. The current study aimed to identify the role of altered macrophage glucose metabolism and molecular mechanisms in PQ poisoning-induced acute lung injury. We established a model of acute lung injury in PQ-intoxicated mice via the intraperitoneal injection of PQ. PQ exposure induces macrophage M1 polarization and promotes the release of inflammatory factors, which causes the development of acute lung injury in mice. In vitro analysis revealed that PQ altered glucose metabolism, which could be reversed by siRNA transfection to silence the expression of HK1, a key enzyme in glucose metabolism. RNA sequencing revealed that the ERK/MAPK pathway was the crucial molecular mechanism of PQ pathogenesis. Further, U0126, an ERK inhibitor, could inhibit PQ-induced HK1 activation and macrophage M1 polarization. These findings provide novel insights into the previously unrecognized mechanism of ERK/MAPK-HK1 activation in PQ poisoning.
Collapse
Affiliation(s)
- Mengxuan Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qinghuan Ren
- Wenzhou Medical University, Wenzhou, 325000, China
| | - Kaiyuan Chen
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ran Yin
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wenwen Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zuochun Fang
- Longgang Campus of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Sunxiang Liu
- Longgang Campus of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Guangliang Hong
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Longgang Campus of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
33
|
Zhang D, Shi Y, Kong J, Chen N, Li G, Wang M, Zhang G, Zhai C. Early diagnosis and staging of paraquat-induced pulmonary fibrosis using [ 18F]F-FAPI-42 PET/CT imaging. EJNMMI Res 2024; 14:57. [PMID: 38888802 PMCID: PMC11189367 DOI: 10.1186/s13550-024-01118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Paraquat (PQ) -induced pulmonary fibrosis poses a significant medical challenge due to limited treatment options and high mortality rates. Consequently, there is an urgent need for early diagnosis and accurate staging to facilitate appropriate treatment strategies. In this study, we assessed the diagnostic potential of [18F]F-FAPI-42 PET/CT imaging for early detection and disease staging in a rat model of PQ-induced lung fibrosis. METHODS After administering 80 mg/kg of PQ orally to Sprague-Dawley rats, we intravenously injected 3-3.5 MBq of [18F]F-FAPI-42 on day 7, 14, and 21 post-dosing. Dynamic PET/CT imaging was carried out for one hour immediately after the administration of [18F]F-FAPI-42. Subsequently, the lung tissues were collected for Hematoxylin and Eosin (HE) staining, Masson's trichrome staining, and NOTA-FAPI-04-MB fluorescent probe staining. Data analysis was performed using the Imalytics preclinical software, and the mean standardized uptake value (SUVmean) was calculated. RESULTS PET signals revealed that in areas with evident lesions on CT, the SUVmean on day 14 was significantly higher than on day 7 and 21, indicating that changes in fibrosis activity levels contribute to the staging of pulmonary fibrosis. Additionally, the NOTA-FAPI-04-MB fluorescent probe staining also demonstrated the most pronounced probe uptake on day 14. In regions without apparent lesions on CT, the SUVmean gradually increased from day 7 to day 21, reflecting ongoing fibrotic activity. Moreover, HE staining and Masson's trichrome staining did not reveal pulmonary fibrosis, while PET imaging was able to detect it, serving the purpose of early diagnosis. At 30 min and 60 min, the target-to-background ratio (TBR) of the PQ groups on day 7, 14, and 21 was significantly higher than the control group, suggesting a high specificity of [18F]F-FAPI-42 binding to activated fibroblasts. CONCLUSION [18F]F-FAPI-42 PET/CT imaging enables early diagnosis and staging of PQ-induced pulmonary fibrosis, demonstrating its feasibility and potential for characterizing early disease stages.
Collapse
Affiliation(s)
- Dimei Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yusheng Shi
- Department of Radiation Oncology, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, China
| | - Jiangwei Kong
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Na Chen
- Department of Pathology, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Guiting Li
- Research and Development Center, Guangdong Huixuan Pharmaceutical Technology Co., Ltd., Guangzhou, 510765, China
| | - Mingfang Wang
- Research and Development Center, Guangdong Huixuan Pharmaceutical Technology Co., Ltd., Guangzhou, 510765, China
| | - Guoxia Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Chuangyan Zhai
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
34
|
Zhao Z, Yang X. Inhibition of SMYD2 attenuates paraquat-induced pulmonary fibrosis by inhibiting the epithelial-mesenchymal transition through the GLIPR2/ERK/p38 axis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 202:105971. [PMID: 38879290 DOI: 10.1016/j.pestbp.2024.105971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024]
Abstract
Paraquat (PQ) poisoning leads to irreversible fibrosis in the lungs with high mortality and no known antidote. In this study, we investigated the effect of the SET and MYND domain containing 2 (SMYD2) on PQ-induced pulmonary fibrosis (PF) and its potential mechanisms. We established an in vivo PQ-induced PF mouse model by intraperitoneal injection of PQ (20 mg/kg) and in vitro PQ (25 μM)-injured MLE-12 cell model. On the 15th day of administration, tissue injury, inflammation, and fibrosis in mice were evaluated using various methods including routine blood counts, blood biochemistry, blood gas analysis, western blotting, H&E staining, ELISA, Masson staining, and immunofluorescence. The findings indicated that AZ505 administration mitigated tissue damage, inflammation, and collagen deposition in PQ-poisoned mice. Mechanistically, both in vivo and in vitro experiments revealed that AZ505 treatment suppressed the PQ-induced epithelial-mesenchymal transition (EMT) process by downregulating GLI pathogenesis related 2 (GLIPR2) and ERK/p38 pathway. Further investigations demonstrated that SMYD2 inhibition decreased GLIPR2 methylation and facilitated GLIPR2 ubiquitination, leading to GLIPR2 destabilization in PQ-exposed MLE-12 cells. Moreover, rescue experiments conducted in vitro demonstrated that GLIPR2 overexpression eliminated the inhibitory effect of AZ505 on the ERK/p38 pathway and EMT. Our results reveal that the SMYD2 inhibitor AZ505 may act as a novel therapeutic candidate to suppress the EMT process by modulating the GLIPR2/ERK/p38 axis in PQ-induced PF.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xue Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
35
|
Yu Y, Chu C, Wang K, Li Y, Mao Z, Hu L, Wang J, Yu Y, Sun H, Chen F. YAP/TAZ activation mediates PQ-induced lung fibrosis by sustaining senescent pulmonary epithelial cells. Respir Res 2024; 25:212. [PMID: 38762455 PMCID: PMC11102259 DOI: 10.1186/s12931-024-02832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/02/2024] [Indexed: 05/20/2024] Open
Abstract
Paraquat (PQ) is a widely used herbicide and a common cause of poisoning that leads to pulmonary fibrosis with a high mortality rate. However, the underlying mechanisms of PQ-induced pulmonary fibrosis and whether pulmonary epithelial cell senescence is involved in the process remain elusive. In this study, PQ-induced pulmonary epithelial cell senescence and Hippo-YAP/TAZ activation were observed in both C57BL/6 mice and human epithelial cells. PQ-induced senescent pulmonary epithelial cells promoted lung fibroblast transformation through secreting senescence-associated secretory phenotype (SASP) factors. Yap/Taz knockdown in mice lungs significantly decreased the expression of downstream profibrotic protein Ctgf and senescent markers p16 and p21, and alleviated PQ-induced pulmonary fibrosis. Interfering YAP/TAZ in senescent human pulmonary epithelial cells resulted in decreased expression of the anti-apoptosis protein survivin and elevated level of apoptosis. In conclusion, our findings reveal a novel mechanism by which the involvement of Hippo-YAP/TAZ activation in pulmonary epithelial cell senescence mediates the pathogenesis of PQ-induced pulmonary fibrosis, thereby offering novel insights and potential targets for the clinical management of PQ poisoning as well as providing the mechanistic insight of the involvement of Yap/Taz activation in cell senescence in pulmonary fibrosis and its related pulmonary disorders. The YIN YANG balance between cell senescence and apoptosis is important to maintain the homeostasis of the lung, the disruption of which will lead to disease.
Collapse
Affiliation(s)
- Youjia Yu
- Department of Forensic Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu, China
| | - Chunyan Chu
- Department of Forensic Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu, China
- Department of Pathology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Kang Wang
- Department of Forensic Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu, China
| | - Yan Li
- Department of Forensic Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu, China
- Biomedical publications center, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Zhengsheng Mao
- Department of Forensic Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu, China
| | - Li Hu
- Department of Forensic Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu, China
| | - Jie Wang
- Department of Forensic Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu, China
| | - Yanfang Yu
- Department of Forensic Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu, China
| | - Hao Sun
- Department of Emergency, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, Jiangsu, China.
- The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu, China.
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Wuxi People's Hospital Affiliated with Nanjing Medical University, Wuxi, 214023, Jiangsu, China.
| |
Collapse
|
36
|
Wu D, Wang J, Du X, Cao Y, Ping K, Liu D. Cucurbit[8]uril-based supramolecular theranostics. J Nanobiotechnology 2024; 22:235. [PMID: 38725031 PMCID: PMC11084038 DOI: 10.1186/s12951-024-02349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/20/2024] [Indexed: 05/12/2024] Open
Abstract
Different from most of the conventional platforms with dissatisfactory theranostic capabilities, supramolecular nanotheranostic systems have unparalleled advantages via the artful combination of supramolecular chemistry and nanotechnology. Benefiting from the tunable stimuli-responsiveness and compatible hierarchical organization, host-guest interactions have developed into the most popular mainstay for constructing supramolecular nanoplatforms. Characterized by the strong and diverse complexation property, cucurbit[8]uril (CB[8]) shows great potential as important building blocks for supramolecular theranostic systems. In this review, we summarize the recent progress of CB[8]-based supramolecular theranostics regarding the design, manufacture and theranostic mechanism. Meanwhile, the current limitations and corresponding reasonable solutions as well as the potential future development are also discussed.
Collapse
Affiliation(s)
- Dan Wu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jianfeng Wang
- Department of Radiotherapy, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
| | - Xianlong Du
- Bethune First Clinical Medical College, Jilin University, Changchun, 130012, People's Republic of China
| | - Yibin Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Kunmin Ping
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Dahai Liu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China.
| |
Collapse
|
37
|
Wang B, Kong Y, Tian X, Xu M. A highly sensitive and selective chemiluminescent probe for peroxynitrite detection in vitro, in vivo and in human liver cancer tissue. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134094. [PMID: 38518698 DOI: 10.1016/j.jhazmat.2024.134094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Peroxynitrite (ONOO-) is one of the important active nitrogen/reactive oxygen species that plays various roles in biological processes, such as inducing apoptosis and necrosis. Recent studies have shown that a significant increases in ONOO- content during tumor development, which is closely related to the level of oxidative stress within the tumor. It has been found that herbicide paraquat (PQ) can significantly increase the level of ONOO- in cells. Therefore, accurate monitoring abnormal changes in ONOO- caused by environmental hazardous materials and tumors is helpful in promoting the diagnosis and treatment of oxidative stress diseases (tumors), evenly environmental detection. Currently, traditional fluorescent probes for ONOO- detection have background interference. To address this, we developed a chemiluminescent probe (CL-1) and a fluorescent probe (Flu-1), using diphenyl phosphonate as a recognition group. CL-1 shows extremely sensitivity (9.8 nM), a high signal-to-noise(S/N) ratio (502), and excellent bioimaging capabilities compared to fluorescent probe (Flu-1). We have successfully used CL-1 to detect ONOO- produced by PQ stimulated cells, as well as endogenous ONOO- in tumor cells, mice, and human liver cancer tissues. Therefore, CL-1 can not only be a valuable tool for visualizing tumor and studying the role of ONOO- in tumor pathology, but the probe has the potential to be a powerful molecular imaging tool for exploring the complex biological role of ONOO- in a variety of biological Settings.
Collapse
Affiliation(s)
- Baoqu Wang
- Centre for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming 650500, China
| | - Yating Kong
- Centre for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming 650500, China
| | - Xiaoxue Tian
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangzhou, Guangdong 510080, China
| | - Min Xu
- Centre for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming 650500, China.
| |
Collapse
|
38
|
Yukawa N, Koppenol WH, Kakizaki E, Sinkawa N, Sonoda A. Possible formation of trioxidocarbonate(•1-) (CO 3•-) instead of hydroxyl radical (HO •) from superoxide anions (O 2•-) during paraquat poisoning under physiological conditions. Leg Med (Tokyo) 2024; 68:102420. [PMID: 38402712 DOI: 10.1016/j.legalmed.2024.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/15/2024] [Accepted: 02/11/2024] [Indexed: 02/27/2024]
Affiliation(s)
- Nobuhiro Yukawa
- Division of Legal Medicine, Department of Social Medicine, Faculty of Medicine, University of Miyazaki, Kihara 5200, Kiyotake-cho, Miyazaki 889-1692, Japan.
| | - Willem H Koppenol
- Emeritus, Swiss Federal Institute of Technology, Zürich, Switzerland
| | - Eiji Kakizaki
- Division of Legal Medicine, Department of Social Medicine, Faculty of Medicine, University of Miyazaki, Kihara 5200, Kiyotake-cho, Miyazaki 889-1692, Japan
| | - Norihiro Sinkawa
- Division of Legal Medicine, Department of Social Medicine, Faculty of Medicine, University of Miyazaki, Kihara 5200, Kiyotake-cho, Miyazaki 889-1692, Japan
| | - Ai Sonoda
- Division of Legal Medicine, Department of Social Medicine, Faculty of Medicine, University of Miyazaki, Kihara 5200, Kiyotake-cho, Miyazaki 889-1692, Japan
| |
Collapse
|
39
|
Caurio AC, Boldori JR, Gonçalves LM, Rodrigues CC, Rodrigues NR, Somacal S, Emanuelli T, Roehrs R, Denardin CC, Denardin ELG. Protective effect of Bougainvillea glabra Choisy bract in toxicity induced by Paraquat in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109873. [PMID: 38423200 DOI: 10.1016/j.cbpc.2024.109873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Paraquat (PQ) is a herbicide widely used in agriculture to control weeds. The damage caused to health through intoxication requires studies to combating its damage to health. Bougainvillea glabra Choisy is a plant native to South America and its bracts contain a variety of compounds, including betalains and phenolic compounds, which have been underexplored about their potential applications and benefits for biological studies to neutralize toxicity. In this study, we evaluated the antioxidant and protective potential of the B. glabra bracts (BBGCE) hydroalcoholic extract against Paraquat-induced toxicity in Drosophila melanogaster. BBGCE demonstrated high antioxidant capacity in vitro through the assays of ferric-reducing antioxidant power (FRAP), radical 2,2-diphenyl-1-picrylhydrazyl (DPPH), free radical ABTS and quantification of phenolic compounds, confirmed through identifying the main compounds. Wild males of D. melanogaster were exposed to Paraquat (1.75 mM) and B. glabra Choisy (1, 10, 50 and 100 μg/mL) in agar medium for 4 days. Flies exposed to Paraquat showed a reduction in survival rate and a significant decrease in climbing capacity and balance test when compared to the control group. Exposure of the flies to Paraquat caused a reduction in acetylcholinesterase activity, an increase in lipid peroxidation and production of reactive species, and a change in the activity of the antioxidant enzymes. Co-exposure with BBGCE was able to block toxicity induced by PQ exposure. Our results demonstrate that bract extract has a protective effect against PQ on the head and body of flies, attenuating behavioral deficit, exerting antioxidant effects and blocking oxidative damage in D. melanogaster.
Collapse
Affiliation(s)
- Aline Castro Caurio
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil; Research Group of Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Jean Ramos Boldori
- Research Group of Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Leonardo Martha Gonçalves
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Camille Cadore Rodrigues
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Nathane Rosa Rodrigues
- Research Group of Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Sabrina Somacal
- Department of Food Technology and Food Science, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Tatiana Emanuelli
- Department of Food Technology and Food Science, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rafael Roehrs
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Cristiane Casagrande Denardin
- Research Group of Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Elton Luis Gasparotto Denardin
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil.
| |
Collapse
|
40
|
Cirilo MAS, Santos VBS, Lima NKS, Muzi-Filho H, Paixão ADO, Vieyra A, Vieira LD. Reactive oxygen species impair Na+ transport and renal components of the renin-angiotensin-aldosterone system after paraquat poisoning. AN ACAD BRAS CIENC 2024; 96:e20230971. [PMID: 38597493 DOI: 10.1590/0001-3765202420230971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/14/2023] [Indexed: 04/11/2024] Open
Abstract
Paraquat (1,1'-dimethyl-4,4'-bipyridyl dichloride) is an herbicide widely used worldwide and officially banned in Brazil in 2020. Kidney lesions frequently occur, leading to acute kidney injury (AKI) due to exacerbated reactive O2 species (ROS) production. However, the consequences of ROS exposure on ionic transport and the regulator local renin-angiotensin-aldosterone system (RAAS) still need to be elucidated at a molecular level. This study evaluated how ROS acutely influences Na+-transporting ATPases and the renal RAAS. Adult male Wistar rats received paraquat (20 mg/kg; ip). After 24 h, we observed body weight loss and elevation of urinary flow and serum creatinine. In the renal cortex, paraquat increased ROS levels, NADPH oxidase and (Na++K+)ATPase activities, angiotensin II-type 1 receptors, tumor necrosis factor-α (TNF-α), and interleukin-6. In the medulla, paraquat increased ROS levels and NADPH oxidase activity but inhibited (Na++K+)ATPase. Paraquat induced opposite effects on the ouabain-resistant Na+-ATPase in the cortex (decrease) and medulla (increase). These alterations, except for increased serum creatinine and renal levels of TNF-α and interleukin-6, were prevented by 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (tempol; 1 mmol/L in drinking water), a stable antioxidant. In summary, after paraquat poisoning, ROS production culminated with impaired medullary function, urinary fluid loss, and disruption of Na+-transporting ATPases and angiotensin II signaling.
Collapse
Affiliation(s)
- Marry A S Cirilo
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
| | - Valéria B S Santos
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
| | - Natália K S Lima
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
| | - Humberto Muzi-Filho
- Federal University of Rio de Janeiro, Center for Research in Precision Medicine, First Floor, Carlos Chagas Filho Institute of Biophysics, Carlos Chagas Filho Ave., University City, 21941-904 Rio de Janeiro, RJ, Brazil
- Federal University of Rio de Janeiro, National Center for Structural Biology and Bioimaging/CENABIO, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology in Regenerative Medicine-REGENERA, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Ana D O Paixão
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
| | - Adalberto Vieyra
- Federal University of Rio de Janeiro, Center for Research in Precision Medicine, First Floor, Carlos Chagas Filho Institute of Biophysics, Carlos Chagas Filho Ave., University City, 21941-904 Rio de Janeiro, RJ, Brazil
- Federal University of Rio de Janeiro, National Center for Structural Biology and Bioimaging/CENABIO, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology in Regenerative Medicine-REGENERA, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
- Grande Rio University, 1160 Professor José de Souza Herdy Street, Building C, Second Floor, 25071-202 Duque de Caxias, RJ, Brazil
| | - Leucio D Vieira
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
- Federal University of Rio de Janeiro, National Center for Structural Biology and Bioimaging/CENABIO, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
41
|
Padilla-Guzmán A, Prado OL, Ballesteros D, Rivera V, Bravo Y, Murillo L, Narváez S, Forero JM. A hospital management algorithm for acute poisoning by Paraquat® in a pediatric population, a series of cases. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2024; 44:16-34. [PMID: 38648344 PMCID: PMC11166252 DOI: 10.7705/biomedica.7024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 02/02/2024] [Indexed: 04/25/2024]
Abstract
Paraquat®, or N,N′-dimethyl-4,4′-bipyridinium dichloride, is a bipyridyl compound used as a non-selective herbicide and desiccant that can cause acute poisoning through all routes of exposure. There is no known antidote, and the available treatments are based on avoiding its absorption and timely removing it, in adults and children. We describe a case series of 14 pediatric patients from the department of Cauca, Colombia, with acute intoxication after oral intake of paraquat. Patients were referred to a medium-high complexity hospital in southwestern Colombia and treated according to an institutional protocol for acute paraquat poisoning. Acute paraquat poisoning after oral ingestion is associated with a high mortality rate, even with timely medical attention, as the compound has no known antidote and quickly reaches systemic concentrations for fulminant poisoning. Based on the available literature, our center has proposed a clinical protocol including early standard management, immunosuppressive and antioxidant treatments, and systemic removal techniques. This protocol suggests an adequate approach to acute paraquat poisoning in the pediatric population.
Collapse
Affiliation(s)
- Alejandro Padilla-Guzmán
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, ColombiaFundación Valle del LiliFundación Valle del LiliCaliCali
| | - Olga L. Prado
- Nefrología y Cuidado Intensivo Pediátrico, Hospital Universitario San José, Popayán, ColombiaHospital Universitario San JoséHospital Universitario San JoséPopayánPopayán
| | - David Ballesteros
- Nefrología y Cuidado Intensivo Pediátrico, Hospital Universitario San José, Popayán, ColombiaHospital Universitario San JoséHospital Universitario San JoséPopayánPopayán
| | - Viviana Rivera
- Nefrología y Cuidado Intensivo Pediátrico, Hospital Universitario San José, Popayán, ColombiaHospital Universitario San JoséHospital Universitario San JoséPopayánPopayán
| | - Yessica Bravo
- Nefrología y Cuidado Intensivo Pediátrico, Hospital Universitario San José, Popayán, ColombiaHospital Universitario San JoséHospital Universitario San JoséPopayánPopayán
| | - Luisa Murillo
- Nefrología y Cuidado Intensivo Pediátrico, Hospital Universitario San José, Popayán, ColombiaHospital Universitario San JoséHospital Universitario San JoséPopayánPopayán
| | - Sandra Narváez
- Nefrología y Cuidado Intensivo Pediátrico, Hospital Universitario San José, Popayán, ColombiaHospital Universitario San JoséHospital Universitario San JoséPopayánPopayán
| | - Jessica M. Forero
- Servicio de Nefrología Pediátrica, Fundación Valle del Lili, Cali, ColombiaFundación Valle del LiliFundación Valle del LiliCaliCali
- Facultad de Ciencias de la Salud, Universidad Icesi, Cali, ColombiaUniversidad IcesiUniversidad IcesiCaliCali
| |
Collapse
|
42
|
Zhang M, Xue X, Lou Z, Lin Y, Li Q, Huang C. Exosomes from senescent epithelial cells activate pulmonary fibroblasts via the miR-217-5p/Sirt1 axis in paraquat-induced pulmonary fibrosis. J Transl Med 2024; 22:310. [PMID: 38532482 PMCID: PMC10964553 DOI: 10.1186/s12967-024-05094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Paraquat (PQ) is a widely used and highly toxic herbicide that poses a significant risk to human health. The main consequence of PQ poisoning is pulmonary fibrosis, which can result in respiratory failure and potentially death. Our research aims to uncover a crucial mechanism in which PQ poisoning induces senescence in epithelial cells, ultimately regulating the activation of pulmonary fibroblasts through the exosomal pathway. METHODS Cellular senescence was determined by immunohistochemistry and SA-β-Gal staining. The expression of miRNAs was measured by qPCR. Pulmonary fibroblasts treated with specific siRNA of SIRT1 or LV-SIRT1 were used to analysis senescent exosomes-mediated fibroblasts activation. Luciferase reporter assay and western blot were performed to elucidated the underlying molecular mechanisms. The effects of miR-217-5p antagomir on pulmonary fibrosis were assessed in PQ-poisoned mice models. RESULTS Impairing the secretion of exosomes effectively mitigates the harmful effects of senescent epithelial cells on pulmonary fibroblasts, offering protection against PQ-induced pulmonary fibrosis in mice. Additionally, we have identified a remarkable elevation of miR-217-5p expression in the exosomes of PQ-treated epithelial cells, which specifically contributes to fibroblasts activation via targeted inhibition of SIRT1, a protein involved in cellular stress response. Remarkably, suppression of miR-217-5p effectively impaired senescent epithelial cells-induced fibroblasts activation. Further investigation has revealed that miR-217-5p attenuated SIRT1 expression and subsequently resulted in enhanced acetylation of β-catenin and Wnt signaling activation. CONCLUSION These findings highlight a potential strategy for the treatment of pulmonary fibrosis induced by PQ poisoning. Disrupting the communication between senescent epithelial cells and pulmonary fibroblasts, particularly by targeting the miR-217-5p/SIRT1/β-catenin axis, may be able to alleviate the effects of PQ poisoning on the lungs.
Collapse
Affiliation(s)
- Min Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Xiang Xue
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Zhenshuai Lou
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Yanhong Lin
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Qian Li
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Changbao Huang
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China.
| |
Collapse
|
43
|
Chen T, Ding L, Zhao M, Song S, Hou J, Li X, Li M, Yin K, Li X, Wang Z. Recent advances in the potential effects of natural products from traditional Chinese medicine against respiratory diseases targeting ferroptosis. Chin Med 2024; 19:49. [PMID: 38519984 PMCID: PMC10958864 DOI: 10.1186/s13020-024-00918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Respiratory diseases, marked by structural changes in the airways and lung tissues, can lead to reduced respiratory function and, in severe cases, respiratory failure. The side effects of current treatments, such as hormone therapy, drugs, and radiotherapy, highlight the need for new therapeutic strategies. Traditional Chinese Medicine (TCM) offers a promising alternative, leveraging its ability to target multiple pathways and mechanisms. Active compounds from Chinese herbs and other natural sources exhibit anti-inflammatory, antioxidant, antitumor, and immunomodulatory effects, making them valuable in preventing and treating respiratory conditions. Ferroptosis, a unique form of programmed cell death (PCD) distinct from apoptosis, necrosis, and others, has emerged as a key area of interest. However, comprehensive reviews on how natural products influence ferroptosis in respiratory diseases are lacking. This review will explore the therapeutic potential and mechanisms of natural products from TCM in modulating ferroptosis for respiratory diseases like acute lung injury (ALI), asthma, pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD), lung ischemia-reperfusion injury (LIRI), pulmonary hypertension (PH), and lung cancer, aiming to provide new insights for research and clinical application in TCM for respiratory health.
Collapse
Affiliation(s)
- Tian Chen
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lu Ding
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Meiru Zhao
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Siyu Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Juan Hou
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyan Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Kai Yin
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| | - Zeyu Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| |
Collapse
|
44
|
Beigoli S, Hajizadeh AA, Taghavizadeh Yazdi ME, Khosravi R, Vafaee F, Boskabady MH. Improvement of inhaled paraquat induced lung and systemic inflammation, oxidative stress and memory changes by safranal. Toxicon 2024; 241:107687. [PMID: 38484848 DOI: 10.1016/j.toxicon.2024.107687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
The effects of safranal and pioglitazone alone and their combination on inhaled paraquat (PQ)-induced systemic oxidative stress and inflammation as well as behavioral changes were examined in rats. In this study, animals were exposed to saline (Ctrl) or PQ (PQ groups) aerosols. PQ exposed animals were treated with dexamethasone, 0.8 and 3.2 mg/kg/day safranal (Saf-L and Saf-H), 5 mg/kg/day pioglitazone (Pio), and Saf-L + Pio for 16 days during PQ exposure period. PQ group showed increased numbers of total and differential WBCs in blood and bronchoalveolar lavage fluid (BALF), increased malondialdehyde (MDA), in the serum BALF and brain reduced thiol, catalase (CAT), and superoxide dismutase (SOD) levels compared to the control group (for all, p < 0.001). The escape latency and traveled distance were enhanced, but the time spent in the target quadrant in the probe day and the latency to enter the dark room 3, 24, 48, and 72 h after receiving an electrical shock, (in the shuttle box test) were decreased in the PQ group (p < 0.05 to P < 0.001). In all treated groups, all measure values were improved compared to PQ group (p < 0.05 to p < 0.001). In combination treated group of Saf-L + Pio, most measured values were more improved than the Saf-L and Pio groups (p < 0.05 to p < 0.001). Saf and Pio improved PQ-induced changes similar to dexamethasone but the effects produced by combination treatments of Saf-L + Pio were more prominent than Pio and Saf-L alone, suggesting a potentiating effect for the combination of the two agents.
Collapse
Affiliation(s)
- Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Asghar Hajizadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Reyhaneh Khosravi
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
45
|
Kaur R, Choudhary D, Bali S, Bandral SS, Singh V, Ahmad MA, Rani N, Singh TG, Chandrasekaran B. Pesticides: An alarming detrimental to health and environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170113. [PMID: 38232846 DOI: 10.1016/j.scitotenv.2024.170113] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Pesticides are chemical substances of natural or synthetic origin that are used to eradicate pests and insects. These are indispensable in the agricultural processes for better crop production. Pesticide use aims to promote crop yield and protect the crops from diseases and damage. Pesticides must be handled carefully and disposed of appropriately because they are dangerous to people and other species by default. Environmental pollution occurs when pesticide contamination spreads away from the intended plants. Older pesticides such as lindane and dichlorodiphenyltrichloroethane (DDT) may remain in water and soil for a longer time. These accumulate in various parts of the food chain and cause damage to the ecosystem. Biological techniques in the management of pest control such as importation, augmentation, and conservation, and the accompanying procedures are more efficient, less expensive, and ecologically sound than other ways. This review mainly focuses on the consequences on the targeted and non-targeted organisms including the health and well-being of humans by the use of pesticides and their toxicity. The side effects that occur when a pesticide's LD50 exceeds the accepted limit through oral or skin penetration due to their binding to various receptors such as estrogen receptors, GABA, EGFR, and others. These pesticide classes include carbamates, pyrethroids, organochlorides, organophosphorus, and others. The current study seeks to highlight the urgent requirement for a novel agricultural concept that includes a major reduction in the use of chemical pesticides.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India.
| | - Diksha Choudhary
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Samriddhi Bali
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | | | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Md Altamash Ahmad
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Nidhi Rani
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | | | | |
Collapse
|
46
|
Ramkumar A, Murthy T, Elanjeran R, Chaitanya YV, Harika K, Mahalingam S, Rajendiran G. Unraveling the link between severe bradycardia and paraquat poisoning. Clin Exp Emerg Med 2024; 11:117-119. [PMID: 38204158 PMCID: PMC11009708 DOI: 10.15441/ceem.23.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/11/2023] [Indexed: 01/12/2024] Open
Affiliation(s)
- Anitha Ramkumar
- Department of Emergency Medicine, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission Research Foundation, Puducherry, India
| | - Tatavarti Murthy
- Department of Anesthesia, GSL Medical College, Rajamahendravaram, India
| | - Rajkumar Elanjeran
- Department of Emergency Medicine, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission Research Foundation, Puducherry, India
| | - Y Vishnu Chaitanya
- Department of Emergency Medicine, GSL Medical College, Rajamahendravaram, India
| | - Kari Harika
- Department of Emergency Medicine, GSL Medical College, Rajamahendravaram, India
| | - Sasikumar Mahalingam
- Department of Emergency Medicine, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission Research Foundation, Puducherry, India
| | - Gunaseelan Rajendiran
- Department of Emergency Medicine, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission Research Foundation, Puducherry, India
| |
Collapse
|
47
|
Tambuzzi S, Vacchiano L, Gentile G, Boracchi M, Zoja R, Migliorini AS. A Forensic Case of Suicide Ingestion of Paraquat Herbicide: New Histological Insights and Revision of the Literature. Am J Forensic Med Pathol 2024; 45:81-87. [PMID: 37728953 PMCID: PMC11446524 DOI: 10.1097/paf.0000000000000878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
ABSTRACT Paraquat (PQ) is one of the most widely used herbicides in the world, and poisoning is generally associated with accidental, suicidal, or homicidal events. Therefore, in the forensic context, PQ could be in various ways involved as a possible cause of death of a subject. However, even though its systemic toxicity is known, the biological effects exerted on individual viscera have been explored only to some extent, especially in case of victim's survival. Therefore, a case concerning a suicidal ingestion of PQ with survival of 3 days was deemed of interest. Clinical toxicological analyses confirmed acute PQ intoxication, and after the death of the victim, an autopsy was performed showing local and systemic signs of ingestion of a caustic substance. Histologic examination revealed marked cellular damage to the major viscera, particularly the gastroesophageal tract, liver, kidneys, and lungs, with initial alveolar fibrosis noted despite the patient's short survival. This finding represents a new element in the context of PQ lung injury, as it has not been previously documented in the literature. Thus, histological findings in lethal intoxications after survival can reveal specific peculiarities still unknown and, therefore, assume transversal relevance not only at forensic but also clinical level.
Collapse
Affiliation(s)
- Stefano Tambuzzi
- From the Laboratory of Forensic Histopathology and Forensic Microbiology, Institute of Forensic Medicine, Department of Biomedical Sciences for Health, University of Milan
| | - Laura Vacchiano
- From the Laboratory of Forensic Histopathology and Forensic Microbiology, Institute of Forensic Medicine, Department of Biomedical Sciences for Health, University of Milan
| | - Guendalina Gentile
- From the Laboratory of Forensic Histopathology and Forensic Microbiology, Institute of Forensic Medicine, Department of Biomedical Sciences for Health, University of Milan
| | - Michele Boracchi
- From the Laboratory of Forensic Histopathology and Forensic Microbiology, Institute of Forensic Medicine, Department of Biomedical Sciences for Health, University of Milan
| | - Riccardo Zoja
- From the Laboratory of Forensic Histopathology and Forensic Microbiology, Institute of Forensic Medicine, Department of Biomedical Sciences for Health, University of Milan
| | | |
Collapse
|
48
|
Amin F, Memarzia A, Kazemi Rad H, Kazerani HR, Ghasemi SZ, Boskabady MH. Inhaled paraquat-induced lung injury in rat, improved by the extract of Zataria multiflora boiss and PPARγ agonist, pioglitazone. Leg Med (Tokyo) 2024; 67:102335. [PMID: 37951808 DOI: 10.1016/j.legalmed.2023.102335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023]
Abstract
The effects of a PPAR-γ agonist, pioglitazone and Zataria multiflora (Z. multiflora) on inhaled paraquat (PQ)-induced lung oxidative stress, inflammation, pathological changes and tracheal responsiveness were examined. The study was carried out in control rats exposed to normal aerosol of saline, PQl and PQh groups exposed to aerosols of 27 and 54 mg/m3 PQ, groups exposed to high PQ concentration (PQh) and treated with 200 and 800 mg/kg/day Z. multiflora, 5 and 10 mg/kg/day pioglitazone, low doses of Z. multiflora + pioglitazone, and 0.03 mg/kg/day dexamethasone. Increased tracheal responsiveness, transforming growth factor beta (TGF-ß) and lung pathological changes due to PQh were significantly improved by high doses of Z. multiflora and pioglitazone, dexamethasone and extract + pioglitazone, (p < 0.05 to p < 0.001). In group treated with low doses of the extract + pioglitazone, the improvements of most measured variables were significantly higher than the low dose of two agents alone (p < 0.05 to p < 0.001). Z. multiflora improved lung injury induced by inhaled PQ similar to dexamethasone and pioglitazone which could be mediated by PPAR-γ receptor.
Collapse
Affiliation(s)
- Fatemeh Amin
- Department of Physiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arghavan Memarzia
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Kazemi Rad
- Department of Physiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Hamid Reza Kazerani
- Department of Physiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyedeh Zahra Ghasemi
- Department of Physiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
49
|
Ma Z, Wang N, Meng T, Zhang R, Huang Y, Li T. Integrated analysis of ceRNA-miRNA changes in paraquat-induced pulmonary epithelial-mesenchymal transition via high-throughput sequencing. J Biochem Mol Toxicol 2024; 38:e23681. [PMID: 38444083 DOI: 10.1002/jbt.23681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 09/13/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
Recent studies have shown that epithelial-mesenchymal transition (EMT) plays an important role in paraquat (PQ)-induced tissue fibrosis, which is the main cause of death in patients with PQ poisoning. However, no effective treatment for pulmonary interstitial fibrosis caused by PQ poisoning exists. It is of great significance for us to find new therapeutic targets through bioinformatics in PQ-induced EMT. We conducted transcriptome sequencing to determine the expression profiles of 1210 messenger RNAs (mRNAs), 558 long noncoding RNAs, 28 microRNAs (miRNAs), including 18 known-miRNAs, 10 novel-miRNAs and 154 circular RNAs in the PQ-exposed EMT group mice. Using gene ontology and Kyoto Encyclopaedia of Genes and Genomes analyses, we identified the pathways associated with signal transduction, cancers, endocrine systems and immune systems were involved in PQ-induced EMT. Furthermore, we constructed long noncoding RNA-miRNA-mRNA interrelated networks and found that upregulated genes included Il22ra2, Mdm4, Slc35e2 and Angptl4, and downregulated genes included RGS2, Gabpb2, Acvr1, Prkd3, Sp100, Tlr12, Syt15 and Camk2d. Thirteen new potential competitive endogenous RNA targets were also identified for further treatment of PQ-induced pulmonary tissue fibrosis. Through further study of the pathway and networks, we may identify new molecular targets in PQ-induced pulmonary EMT.
Collapse
Affiliation(s)
- Zhiyu Ma
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| | - Nana Wang
- Endocrinology Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tingting Meng
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| | - Ruoying Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| | - Yang Huang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| |
Collapse
|
50
|
Chen K, Li M, Tang Y, Lu Z. Mitochondrial reactive oxygen species initiate gasdermin D-mediated pyroptosis and contribute to paraquat-induced nephrotoxicity. Chem Biol Interact 2024; 390:110873. [PMID: 38237652 DOI: 10.1016/j.cbi.2024.110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/06/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Paraquat (PQ)-induced acute kidney injury (AKI) progresses rapidly and is associated with high mortality rates; however, no specific antidote for PQ has been identified. Poor understanding of toxicological mechanisms underlying PQ has hindered the development of suitable treatments to combat PQ exposure. Gasdermin D (GSDMD), a key executor of pyroptosis, has recently been shown to enhance nephrotoxicity in drug-induced AKI. To explore the role of pyroptosis in PQ-induced AKI, the plasma membrane damage of the cells was detected by LDH release assay. Western blot was performed to detect the cleavage of GSDMD. RNA sequencing analysis was performed to explore the mechanism of PQ induced nephrotoxicity. Herein, we demonstrated that PQ could induce pyroptosis in HK-2 cells and nephridial tissues. Mechanistically, PQ initiated GSDMD cleavage, and GSDMD knockout attenuated PQ-induced nephrotoxicity in vivo. Further analysis revealed that the accumulation of mitochondrial reactive oxygen species (ROS) induced p38 activation, contributing to PQ-induced pyroptosis. Furthermore, mitoquinone, a mitochondria-targeted antioxidant, reduced mitochondrial ROS levels and inhibited pyroptosis. Collectively, these findings provide insights into the role of GSDMD-dependent pyroptosis as a novel mechanism of PQ-induced AKI.
Collapse
Affiliation(s)
- Kaiyuan Chen
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China
| | - Mengxuan Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China
| | - Yahui Tang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China.
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China.
| |
Collapse
|