1
|
De Lima Gualque MW, Vaso CO, dos Santos KS, Galeane MC, Gomes PC, Palma MS, Soares Mendes Giannini MJ, Moroz A, Fusco Almeida AM. Peptides from Galleria mellonella against Cryptococcus spp: toxicity in three-dimensional cell cultures and G. mellonella. Future Microbiol 2025; 20:11-21. [PMID: 39552598 PMCID: PMC11731228 DOI: 10.1080/17460913.2024.2421632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
Aim: This work aimed to test peptides against the planktonic and biofilm form of Cryptococcus spp. and in vitro toxicity using three-dimensional (3D) cells characterized and evaluate in vivo toxicity in Galleria mellonella.Materials & methods: Susceptibility tests were conducted on the planktonic form and biofilm formation. The toxicity of the peptides was evaluated in lung and brain cells in monolayer (2D) and 3D mono- and co-culture, in addition to in vivo analysis with G. mellonella.Results: Susceptibility values ranged from 31.25 to over 250 µg/ml with a fungicidal profile. Regarding toxicity, the PepM2 peptide was not toxic in 3D culture (500 µg/ml). G. mellonella, showed a survival rate of more than 85% In assays with brain and lung cell lines, concentrations ranged from 4 × 104 to 4 × 103 cells/well for brain cells and 1 × 103 cells/well for lung cells. Cocultures used 1 × 105 brain and 1 × 103 lung cells.Conclusion: This study shows that the peptides have great potential against cryptococcosis, and all spheroids were characterized as having a spheroidal and compact structure.
Collapse
Affiliation(s)
- Marcos William De Lima Gualque
- Laboratory of Mycology & Center of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Carolina Orlando Vaso
- Laboratory of Mycology & Center of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Kelvin Sousa dos Santos
- Laboratory for Monoclonal Antibodies, Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Mariana Cristina Galeane
- Laboratory of Mycology & Center of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Paulo César Gomes
- Laboratory of Mycology & Center of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Mario Sérgio Palma
- Department of Basic & Applied Biology/LSBZ, Institute of Biosciences, São Paulo State University-UNESP, Rio Claro, 13506-900, São Paulo, Brazil
| | - Maria José Soares Mendes Giannini
- Laboratory of Mycology & Center of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Andrei Moroz
- Laboratory for Monoclonal Antibodies, Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Ana Marisa Fusco Almeida
- Laboratory of Mycology & Center of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| |
Collapse
|
2
|
Wahbi W, Awad S, Salo T, Al-Samadi A. Stroma modulation of radiation response in head and neck squamous cell carcinoma: Insights from zebrafish larvae xenografts. Exp Cell Res 2024; 435:113911. [PMID: 38182078 DOI: 10.1016/j.yexcr.2024.113911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/28/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
BACKGROUND The tumour microenvironment (TME) of head and neck squamous cell carcinoma (HNSCC) consists of different subtypes of cells that interact with the tumour or with each other. This study investigates the possibility of co-culturing HNSCC cells with different stroma cells in a zebrafish xenograft model, focusing on the effect of stroma cells on HNSCC growth and response to irradiation. MATERIAL AND METHOD HNSCC metastatic cell line HSC-3 was used along with five types of stroma cells: normal gingival fibroblasts (NOF), cancer associated fibroblasts (CAF), macrophages, CD4+ T cells, and human umbilical vein endothelial cells (HUVEC). The mixture of HSC-3 cells and each-stroma cell type-was injected into 2-day post-fertilization zebrafish embryos, and the effect of stroma cells on tumour growth was tested. The study also aimed to mimic the HNSCC tumour by injecting a mixture of HSC-3 cells, CAFs, macrophages, and HUVECs into zebrafish embryos and testing the effect of these stroma cells on the cancer cells' response to irradiation compared to HSC-3-only tumours. RESULTS CAFs had a significant inducement effect on tumour size, while HUVECs showed the opposite effect. The irradiated group of HSC-3-only tumour had a significantly smaller tumor cell area compared to the control, while the group with stroma cells and HSC-3 cells showed cancer cells being resistant to irradiation. CONCLUSION This is the first report of co-culturing cancer cells with several types of stroma cells using a zebrafish xenograft model. This study also highlighted the role of stroma cells in turning the cancer cells from radioresponsive to radioresistant.
Collapse
Affiliation(s)
- Wafa Wahbi
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Biomedicum Helsinki 1, C223b, Haartmaninkatu 8, P.O. Box 63, Helsinki, 00014, Finland; Translational Immunology Research Program (TRIMM), Faculty of Medicine, University of Helsinki, Biomedicum Helsinki 1, Haartmaninkatu 8, P.O. Box 63, Helsinki, 00014, Finland
| | - Shady Awad
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt; Hematology Research Unit, Department of Hematology, University of Helsinki and Helsinki University Central Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Biomedicum Helsinki 1, C223b, Haartmaninkatu 8, P.O. Box 63, Helsinki, 00014, Finland; Translational Immunology Research Program (TRIMM), Faculty of Medicine, University of Helsinki, Biomedicum Helsinki 1, Haartmaninkatu 8, P.O. Box 63, Helsinki, 00014, Finland; Department of Pathology, HUSLAB, University of Helsinki and Helsinki University Hospital, P.O. Box 21, Helsinki, 00014, Finland; Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5281, Oulu, 90014, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5281, Oulu, 90014, Finland
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Biomedicum Helsinki 1, C223b, Haartmaninkatu 8, P.O. Box 63, Helsinki, 00014, Finland; Translational Immunology Research Program (TRIMM), Faculty of Medicine, University of Helsinki, Biomedicum Helsinki 1, Haartmaninkatu 8, P.O. Box 63, Helsinki, 00014, Finland; Institute of Dentistry, School of Medicine, Kuopio Campus, University of Eastern Finland, P.O. Box 1627, Kuopio, Finland.
| |
Collapse
|
3
|
Wen S, Tu X, Zang Q, Zhu Y, Li L, Zhang R, Abliz Z. Liquid chromatography-mass spectrometry-based metabolomics and fluxomics reveals the metabolic alterations in glioma U87MG multicellular tumor spheroids versus two-dimensional cell cultures. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9670. [PMID: 38124173 DOI: 10.1002/rcm.9670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 12/23/2023]
Abstract
RATIONALE Multicellular tumor spheroids (MCTSs) that reconstitute the metabolic characteristics of in vivo tumor tissue may facilitate the discovery of molecular biomarkers and effective anticancer therapies. However, little is known about how cancer cells adapt their metabolic changes in complex three-dimensional (3D) microenvironments. Here, using the two-dimensional (2D) cell model as control, the metabolic phenotypes of glioma U87MG multicellular tumor spheroids were systematically investigated based on static metabolomics and dynamic fluxomics analysis. METHODS A liquid chromatography-mass spectrometry-based global metabolomics and lipidomics approach was adopted to survey the cellular samples from 2D and 3D culture systems, revealing marked molecular differences between them. Then, by means of metabolomic pathway analysis, the metabolic pathways altered in glioma MCTSs were found using 13 C6 -glucose as a tracer to map the metabolic flux of glycolysis, the tricarboxylic acid (TCA) cycle, de novo nucleotide synthesis, and de novo lipid biosynthesis in the MCTS model. RESULTS We found nine metabolic pathways as well as glycerolipid, glycerophospholipid and sphingolipid metabolism to be predominantly altered in glioma MCTSs. The reduced nucleotide metabolism, amino acid metabolism and glutathione metabolism indicated an overall lower cellular activity in MCTSs. Through dynamic fluxomics analysis in the MCTS model, we found that cells cultured in MCTSs exhibited increased glycolysis activity and de novo lipid biosynthesis activity, and decreased the TCA cycle and de novo purine nucleotide biosynthesis activity. CONCLUSIONS Our study highlights specific, altered biochemical pathways in MCTSs, emphasizing dysregulation of energy metabolism and lipid metabolism, and offering novel insight into metabolic events in glioma MCTSs.
Collapse
Affiliation(s)
- Shanjing Wen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyi Tu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingce Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Limei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
4
|
Lee SY, Koo IS, Hwang HJ, Lee DW. WITHDRAWN: In Vitro three-dimensional (3D) cell culture tools for spheroid and organoid models. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023:100131. [PMID: 38101575 DOI: 10.1016/j.slasd.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 12/17/2023]
Abstract
The Publisher regrets that this article is an accidental duplication of an article previously published at http://dx.doi.org/10.1016/j.slasd.2023.03.006. This duplication was due to an error in the publishing workflow and was not the responsibility of the authors or editors. As a result, the duplicate article has been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Sang-Yun Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea; Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea
| | - In-Seong Koo
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Hyun Ju Hwang
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea
| | - Dong Woo Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
5
|
Ghuloum FI, Stevens LA, Johnson CA, Riobo-Del Galdo NA, Amer MH. Towards modular engineering of cell signalling: Topographically-textured microparticles induce osteogenesis via activation of canonical hedgehog signalling. BIOMATERIALS ADVANCES 2023; 154:213652. [PMID: 37837904 DOI: 10.1016/j.bioadv.2023.213652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Polymer microparticles possess great potential as functional building blocks for advanced bottom-up engineering of complex tissues. Tailoring the three-dimensional architectural features of culture substrates has been shown to induce osteogenesis in mesenchymal stem cells in vitro, but the molecular mechanisms underpinning this remain unclear. This study proposes a mechanism linking the activation of Hedgehog signalling to the osteoinductive effect of surface-engineered, topographically-textured polymeric microparticles. In this study, mesenchymal progenitor C3H10T1/2 cells were cultured on smooth and dimpled poly(D,l-lactide) microparticles to assess differences in viability, cellular morphology, proliferation, and expression of a range of Hedgehog signalling components and osteogenesis-related genes. Dimpled microparticles induced osteogenesis and activated the Hedgehog signalling pathway relative to smooth microparticles and 2D-cultured controls without the addition of exogenous biochemical factors. We observed upregulation of the osteogenesis markers Runt-related transcription factor2 (Runx2) and bone gamma-carboxyglutamate protein 2 (Bglap2), as well as the Hedgehog signalling components, glioma associated oncogene homolog 1 (Gli1), Patched1 (Ptch1), and Smoothened (Smo). Treatment with the Smo antagonist KAAD-cyclopamine confirmed the involvement of Smo in Gli1 target gene activation, with a significant reduction in the expression of Gli1, Runx2 and Bglap2 (p ≤ 0.001) following KAAD-cyclopamine treatment. Overall, our study demonstrates the role of the topographical microenvironment in the modulation of Hedgehog signalling, highlighting the potential for tailoring substrate topographical design to offer cell-instructive 3D microenvironments. Topographically-textured microparticles allow the modulation of Hedgehog signalling in vitro without adding exogenous biochemical agonists, thereby eliminating potential confounding artefacts in high-throughput drug screening applications.
Collapse
Affiliation(s)
- Fatmah I Ghuloum
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom; Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Lee A Stevens
- Low Carbon Energy and Resources Technologies Research Group, Faculty of Engineering, University of Nottingham, UK
| | - Colin A Johnson
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Natalia A Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom; Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | - Mahetab H Amer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
6
|
Fusco-Almeida AM, de Matos Silva S, dos Santos KS, de Lima Gualque MW, Vaso CO, Carvalho AR, Medina-Alarcón KP, Pires ACMDS, Belizario JA, de Souza Fernandes L, Moroz A, Martinez LR, Ruiz OH, González Á, Mendes-Giannini MJS. Alternative Non-Mammalian Animal and Cellular Methods for the Study of Host-Fungal Interactions. J Fungi (Basel) 2023; 9:943. [PMID: 37755051 PMCID: PMC10533014 DOI: 10.3390/jof9090943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
In the study of fungal pathogenesis, alternative methods have gained prominence due to recent global legislation restricting the use of mammalian animals in research. The principle of the 3 Rs (replacement, reduction, and refinement) is integrated into regulations and guidelines governing animal experimentation in nearly all countries. This principle advocates substituting vertebrate animals with other invertebrate organisms, embryos, microorganisms, or cell cultures. This review addresses host-fungus interactions by employing three-dimensional (3D) cultures, which offer more faithful replication of the in vivo environment, and by utilizing alternative animal models to replace traditional mammals. Among these alternative models, species like Caenorhabditis elegans and Danio rerio share approximately 75% of their genes with humans. Furthermore, models such as Galleria mellonella and Tenebrio molitor demonstrate similarities in their innate immune systems as well as anatomical and physiological barriers, resembling those found in mammalian organisms.
Collapse
Affiliation(s)
- Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Samanta de Matos Silva
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin 050010, Colombia; (O.H.R.); (Á.G.)
| | - Kelvin Sousa dos Santos
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Marcos William de Lima Gualque
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Carolina Orlando Vaso
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Angélica Romão Carvalho
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Kaila Petrolina Medina-Alarcón
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Ana Carolina Moreira da Silva Pires
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Jenyffie Araújo Belizario
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Lígia de Souza Fernandes
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Andrei Moroz
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Luis R. Martinez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
- Center for Immunology and Transplantation, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Orville Hernandez Ruiz
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin 050010, Colombia; (O.H.R.); (Á.G.)
- Cellular and Molecular Biology Group University of Antioquia, Corporation for Biological Research, Medellin 050010, Colombia
| | - Ángel González
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin 050010, Colombia; (O.H.R.); (Á.G.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| |
Collapse
|
7
|
Kumari N, Pullaguri N, Sahu V, Ealla KKR. Research and therapeutic applications of silk proteins in cancer. J Biomater Appl 2023:8853282231184572. [PMID: 37343291 DOI: 10.1177/08853282231184572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Despite the availability of advanced treatments, cancer remains the second leading cause of death worldwide. This is due to the many challenges prevailing in the research field and cancer therapy. Resistance to therapy and side effects provide major hindrances to recovery from cancer. As a result, in addition to the aim of killing cancer cells, the focus should also be on reducing or preventing side effects of the treatment. To enhance the effectiveness of cancer treatment, many researchers are studying drug delivery systems based on silk proteins: fibroin and sericin. These proteins have high biocompatibility, biodegradability, and ease of modification. Consequently, many researchers have developed several formulations of silk proteins such as scaffolds, nanoparticles, and hydrogels by combining them with other materials or drugs. This review summarizes the use of silk proteins in various forms in cancer research and therapy. The use of silk proteins to study cancer cells, to deliver cancer drugs to a target site, in cancer thermal therapy, and as an anti-cancer agent is described here.
Collapse
Affiliation(s)
- Neema Kumari
- Center for Research Development and Sustenance, Malla Reddy Institute of Medical Sciences, Hyderabad, India
| | - Narasimha Pullaguri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Vikas Sahu
- Center for Research Development and Sustenance, Malla Reddy Institute of Dental Sciences, Hyderabad, India
| | - Kranti Kiran Reddy Ealla
- Center for Research Development and Sustenance, Malla Reddy Institute of Dental Sciences, Hyderabad, India
- Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
8
|
Li FC, Kishen A. 3D Organoids for Regenerative Endodontics. Biomolecules 2023; 13:900. [PMID: 37371480 DOI: 10.3390/biom13060900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Apical periodontitis is the inflammation and destruction of periradicular tissues, mediated by microbial factors originating from the infected pulp space. This bacteria-mediated inflammatory disease is known to interfere with root development in immature permanent teeth. Current research on interventions in immature teeth has been dedicated to facilitating the continuation of root development as well as regenerating the dentin-pulp complex, but the fundamental knowledge on the cellular interactions and the role of periapical mediators in apical periodontitis in immature roots that govern the disease process and post-treatment healing is limited. The limitations in 2D monolayer cell culture have a substantial role in the existing limitations of understanding cell-to-cell interactions in the pulpal and periapical tissues. Three-dimensional (3D) tissue constructs with two or more different cell populations are a better physiological representation of in vivo environment. These systems allow the high-throughput testing of multi-cell interactions and can be applied to study the interactions between stem cells and immune cells, including the role of mediators/cytokines in simulated environments. Well-designed 3D models are critical for understanding cellular functions and interactions in disease and healing processes for future therapeutic optimization in regenerative endodontics. This narrative review covers the fundamentals of (1) the disease process of apical periodontitis; (2) the influence and challenges of regeneration in immature roots; (3) the introduction of and crosstalk between mesenchymal stem cells and macrophages; (4) 3D cell culture techniques and their applications for studying cellular interactions in the pulpal and periapical tissues; (5) current investigations on cellular interactions in regenerative endodontics; and, lastly, (6) the dental-pulp organoid developed for regenerative endodontics.
Collapse
Affiliation(s)
- Fang-Chi Li
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Anil Kishen
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| |
Collapse
|
9
|
Goel R, Gulwani D, Upadhyay P, Sarangthem V, Singh TD. Unsung versatility of elastin-like polypeptide inspired spheroid fabrication: A review. Int J Biol Macromol 2023; 234:123664. [PMID: 36791934 DOI: 10.1016/j.ijbiomac.2023.123664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Lately, 3D cell culture technique has gained a lot of appreciation as a research model. Augmented with technological advancements, the area of 3D cell culture is growing rapidly with a diverse array of scaffolds being tested. This is especially the case for spheroid cultures. The culture of cells as spheroids provides opportunities for unanticipated vision into biological phenomena with its application to drug discovery, metabolic profiling, stem cell research as well as tumor, and disease biology. Spheroid fabrication techniques are broadly categorised into matrix-dependent and matrix-independent techniques. While there is a profusion of spheroid fabrication substrates with substantial biological relevance, an economical, modular, and bio-compatible substrate for high throughput production of spheroids is lacking. In this review, we posit the prospects of elastin-like polypeptides (ELPs) as a broad-spectrum spheroid fabrication platform. Elastin-like polypeptides are nature inspired, size-tunable genetically engineered polymers with wide applicability in various arena of biological considerations, has been employed for spheroid culture with profound utility. The technology offers a cheap, high-throughput, reproducible alternative for spheroid culture with exquisite adaptability. Here, we will brief the applicability of 3D cultures as compared to 2D cultures with spheroids being the focal point of the review. Common approaches to spheroid fabrication are discussed with existential limitations. Finally, the versatility of elastin-like polypeptide inspired substrates for spheroid culture has been discussed.
Collapse
Affiliation(s)
- Ridhima Goel
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Deepak Gulwani
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Priyanka Upadhyay
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vijaya Sarangthem
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Thoudam Debraj Singh
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
10
|
Lee SY, Koo IS, Hwang HJ, Lee DW. In Vitro Three-dimensional (3D) Cell Culture Tools for Spheroid and Organoid Models. SLAS DISCOVERY 2023:S2472-5552(23)00028-X. [PMID: 36997090 DOI: 10.1016/j.slasd.2023.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Three-dimensional (3D) cell culture technology has been steadily studied since the 1990's due to its superior biocompatibility compared to the conventional two-dimensional (2D) cell culture technology, and has recently developed into an organoid culture technology that further improved biocompatibility. Since the 3D culture of human cell lines in artificial scaffolds was demonstrated in the early 90's, 3D cell culture technology has been actively developed owing to various needs in the areas of disease research, precision medicine, new drug development, and some of these technologies have been commercialized. In particular, 3D cell culture technology is actively being applied and utilized in drug development and cancer-related precision medicine research. Drug development is a long and expensive process that involves multiple steps-from target identification to lead discovery and optimization, preclinical studies, and clinical trials for approval for clinical use. Cancer ranks first among life-threatening diseases owing to intra-tumoral heterogeneity associated with metastasis, recurrence, and treatment resistance, ultimately contributing to treatment failure and adverse prognoses. Therefore, there is an urgent need for the development of efficient drugs using 3D cell culture techniques that can closely mimic in vivo cellular environments and customized tumor models that faithfully represent the tumor heterogeneity of individual patients. This review discusses 3D cell culture technology focusing on research trends, commercialization status, and expected effects developed until recently. We aim to summarize the great potential of 3D cell culture technology and contribute to expanding the base of this technology.
Collapse
|
11
|
Development of 3D-Bioprinted Colitis-Mimicking Model to Assess Epithelial Barrier Function Using Albumin Nano-Encapsulated Anti-Inflammatory Drugs. Biomimetics (Basel) 2023; 8:biomimetics8010041. [PMID: 36810372 PMCID: PMC9944493 DOI: 10.3390/biomimetics8010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Physiological barrier function is very difficult to replicate in vitro. This situation leads to poor prediction of candidate drugs in the drug development process due to the lack of preclinical modelling for intestinal function. By using 3D bioprinting, we generated a colitis-like condition model that can evaluate the barrier function of albumin nanoencapsulated anti-inflammatory drugs. Histological characterization demonstrated the manifestation of the disease in 3D-bioprinted Caco-2 and HT-29 constructs. A comparison of proliferation rates in 2D monolayer and 3D-bioprinted models was also carried out. This model is compatible with currently available preclinical assays and can be implemented as an effective tool for efficacy and toxicity prediction in drug development.
Collapse
|
12
|
Tutty MA, Prina-Mello A. Three-Dimensional Spheroids for Cancer Research. Methods Mol Biol 2023; 2645:65-103. [PMID: 37202612 DOI: 10.1007/978-1-0716-3056-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In vitro cell culture is one of the most widely used tools used today for increasing our understanding of various things such as protein production, mechanisms of drug action, tissue engineering, and overall cellular biology. For the past decades, however, cancer researchers have relied heavily on conventional two-dimensional (2D) monolayer culture techniques to test a variety of aspects of cancer research ranging from the cytotoxic effects of antitumor drugs to the toxicity of diagnostic dyes and contact tracers. However, many promising cancer therapies have either weak or no efficacy in real-life conditions, therefore delaying or stopping altogether their translating to the clinic. This is, in part, due to the reductionist 2D cultures used to test these materials, which lack appropriate cell-cell contacts, have altered signaling, do not represent the natural tumor microenvironment, and have different drug responses, due to their reduced malignant phenotype when compared to real in vivo tumors. With the most recent advances, cancer research has moved into 3D biological investigation. Three-dimensional (3D) cultures of cancer cells not only recapitulate the in vivo environment better than their 2D counterparts, but they have, in recent years, emerged as a relatively low-cost and scientifically accurate methodology for studying cancer. In this chapter, we highlight the importance of 3D culture, specifically 3D spheroid culture, reviewing some key methodologies for forming 3D spheroids, discussing the experimental tools that can be used in conjunction with 3D spheroids and finally their applications in cancer research.
Collapse
Affiliation(s)
- Melissa Anne Tutty
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland.
| | - Adriele Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland
- Nanomedicine and Molecular Imaging Group, Trinity Translational Medicine Institute, (TTMI), School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Anthon SG, Valente KP. Vascularization Strategies in 3D Cell Culture Models: From Scaffold-Free Models to 3D Bioprinting. Int J Mol Sci 2022; 23:14582. [PMID: 36498908 PMCID: PMC9737506 DOI: 10.3390/ijms232314582] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
The discrepancies between the findings in preclinical studies, and in vivo testing and clinical trials have resulted in the gradual decline in drug approval rates over the past decades. Conventional in vitro drug screening platforms employ two-dimensional (2D) cell culture models, which demonstrate inaccurate drug responses by failing to capture the three-dimensional (3D) tissue microenvironment in vivo. Recent advancements in the field of tissue engineering have made possible the creation of 3D cell culture systems that can accurately recapitulate the cell-cell and cell-extracellular matrix interactions, as well as replicate the intricate microarchitectures observed in native tissues. However, the lack of a perfusion system in 3D cell cultures hinders the establishment of the models as potential drug screening platforms. Over the years, multiple techniques have successfully demonstrated vascularization in 3D cell cultures, simulating in vivo-like drug interactions, proposing the use of 3D systems as drug screening platforms to eliminate the deviations between preclinical and in vivo testing. In this review, the basic principles of 3D cell culture systems are briefly introduced, and current research demonstrating the development of vascularization in 3D cell cultures is discussed, with a particular focus on the potential of these models as the future of drug screening platforms.
Collapse
Affiliation(s)
- Shamapto Guha Anthon
- Department of Biomedical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | | |
Collapse
|
14
|
Lourenço D, Lopes R, Pestana C, Queirós AC, João C, Carneiro EA. Patient-Derived Multiple Myeloma 3D Models for Personalized Medicine-Are We There Yet? Int J Mol Sci 2022; 23:12888. [PMID: 36361677 PMCID: PMC9657251 DOI: 10.3390/ijms232112888] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 12/03/2023] Open
Abstract
Despite the wide variety of existing therapies, multiple myeloma (MM) remains a disease with dismal prognosis. Choosing the right treatment for each patient remains one of the major challenges. A new approach being explored is the use of ex vivo models for personalized medicine. Two-dimensional culture or animal models often fail to predict clinical outcomes. Three-dimensional ex vivo models using patients' bone marrow (BM) cells may better reproduce the complexity and heterogeneity of the BM microenvironment. Here, we review the strengths and limitations of currently existing patient-derived ex vivo three-dimensional MM models. We analyze their biochemical and biophysical properties, molecular and cellular characteristics, as well as their potential for drug testing and identification of disease biomarkers. Furthermore, we discuss the remaining challenges and give some insight on how to achieve a more biomimetic and accurate MM BM model. Overall, there is still a need for standardized culture methods and refined readout techniques. Including both myeloma and other cells of the BM microenvironment in a simple and reproducible three-dimensional scaffold is the key to faithfully mapping and examining the relationship between these players in MM. This will allow a patient-personalized profile, providing a powerful tool for clinical and research applications.
Collapse
Affiliation(s)
- Diana Lourenço
- Myeloma Lymphoma Research Group—Champalimaud Experimental Clinical Research Programme of Champalimaud Foundation, 1400-038 Lisbon, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Raquel Lopes
- Myeloma Lymphoma Research Group—Champalimaud Experimental Clinical Research Programme of Champalimaud Foundation, 1400-038 Lisbon, Portugal
- Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Carolina Pestana
- Myeloma Lymphoma Research Group—Champalimaud Experimental Clinical Research Programme of Champalimaud Foundation, 1400-038 Lisbon, Portugal
- Centre of Statistics and Its Applications, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Ana C. Queirós
- Myeloma Lymphoma Research Group—Champalimaud Experimental Clinical Research Programme of Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Cristina João
- Myeloma Lymphoma Research Group—Champalimaud Experimental Clinical Research Programme of Champalimaud Foundation, 1400-038 Lisbon, Portugal
- Faculty of Medical Sciences, NOVA Medical School, 1169-056 Lisbon, Portugal
- Hemato-Oncology Department of Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Emilie Arnault Carneiro
- Myeloma Lymphoma Research Group—Champalimaud Experimental Clinical Research Programme of Champalimaud Foundation, 1400-038 Lisbon, Portugal
| |
Collapse
|
15
|
Sonju JJ, Dahal A, Prasasty VD, Shrestha P, Liu YY, Jois SD. Assessment of Antitumor and Antiproliferative Efficacy and Detection of Protein-Protein Interactions in Cancer Cells from 3D Tumor Spheroids. Curr Protoc 2022; 2:e569. [PMID: 36286844 PMCID: PMC9886098 DOI: 10.1002/cpz1.569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
When compared to two-dimensional (2D) cell cultures, 3D spheroids have been considered suitable in vitro models for drug discovery research and other studies of drug activity. Based on different 3D cell culture procedures, we describe procedures we have used to obtain 3D tumor spheroids by both the hanging-drop and ultra-low-attachment plate methods and to analyze the antiproliferative and antitumor efficacy of different chemotherapeutic agents, including a peptidomimetic. We have applied this method to breast and lung cancer cell lines such as BT-474, MCF-7, A549, and Calu-3. We also describe a proximity ligation assay of the cells from the spheroid model to detect protein-protein interactions of EGFR and HER2. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Growth of 3D spheroids using the hanging-drop method Basic Protocol 2: Growth of spheroids using ultra-low-attachment plates Support Protocol 1: Cell viability assay of tumor spheroids Support Protocol 2: Antiproliferative and antitumor study in 3D tumor spheroids Support Protocol 3: Proximity ligation assay on cells derived from 3D spheroids.
Collapse
Affiliation(s)
- Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
- These authors contributed equally to this work
| | - Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
- These authors contributed equally to this work
| | - Vivitri Dewi Prasasty
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Prajesh Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Yong-Yu Liu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Seetharama D. Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| |
Collapse
|
16
|
Evaluation of Anticancer and Cytotoxic Effects of Genistein on PC3 Prostate Cell Line under Three-Dimensional Culture Medium. IRANIAN BIOMEDICAL JOURNAL 2022; 26:380-8. [PMID: 36403104 PMCID: PMC9763873 DOI: 10.52547/ibj.3711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Prostate cancer is a major cause of disease and mortality among men. Genistein (GNT) is an isoflavone found naturally in legumes. Isoflavones, a subset of phytoestrogens, are structurally similar to mammalian estrogens. This study aimed to evaluate the anticancer and cytotoxic effects of GNT on PC3 cell line under three dimensional (3D) culture medium. Methods The 3D culture was created by encapsulating the PC3 cells in alginate hydrogel. MTT assay, neutral red uptake, comet assay, and cytochrome C assay were used to study the anticancer and cytotoxic effects of GNT at 120, 240, and 480 μM concentrations. Also, nitric oxide (NO), catalase, and glutathione assay levels were determined to evaluate the effect of GNT on the cellular stress. The culture medium was used as the negative control. Results GNT reduced the production of cellular NO and increased the production of catalase and glutathione, confirming the results of the NO test. Evaluation of the toxicity effect of GNT at the concentrations of 120, 240, and 480 μM using comet assay showed that this chemical agent induces apoptosis in PC3 cells in a dose-dependent manner. As the level of cytochrome C in PC3 cells treated with different concentrations of GNT was not significantly different from that of the control, GNT could induce apoptosis in PC3 cells through the non-mitochondrial pathway. Conclusion The findings of this study disclose that the anticancer effect of GNT on PC3 cells under 3D culture conditions could increase the effectiveness of treatment. Also, the cell survival rate is dependent on GNT concentration.
Collapse
|
17
|
Cacciamali A, Villa R, Dotti S. 3D Cell Cultures: Evolution of an Ancient Tool for New Applications. Front Physiol 2022; 13:836480. [PMID: 35936888 PMCID: PMC9353320 DOI: 10.3389/fphys.2022.836480] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Recently, research is undergoing a drastic change in the application of the animal model as a unique investigation strategy, considering an alternative approach for the development of science for the future. Although conventional monolayer cell cultures represent an established and widely used in vitro method, the lack of tissue architecture and the complexity of such a model fails to inform true biological processes in vivo. Recent advances in cell culture techniques have revolutionized in vitro culture tools for biomedical research by creating powerful three-dimensional (3D) models to recapitulate cell heterogeneity, structure and functions of primary tissues. These models also bridge the gap between traditional two-dimensional (2D) single-layer cultures and animal models. 3D culture systems allow researchers to recreate human organs and diseases in one dish and thus holds great promise for many applications such as regenerative medicine, drug discovery, precision medicine, and cancer research, and gene expression studies. Bioengineering has made an important contribution in the context of 3D systems using scaffolds that help mimic the microenvironments in which cells naturally reside, supporting the mechanical, physical and biochemical requirements for cellular growth and function. We therefore speak of models based on organoids, bioreactors, organ-on-a-chip up to bioprinting and each of these systems provides its own advantages and applications. All of these techniques prove to be excellent candidates for the development of alternative methods for animal testing, as well as revolutionizing cell culture technology. 3D systems will therefore be able to provide new ideas for the study of cellular interactions both in basic and more specialized research, in compliance with the 3R principle. In this review, we provide a comparison of 2D cell culture with 3D cell culture, provide details of some of the different 3D culture techniques currently available by discussing their strengths as well as their potential applications.
Collapse
Affiliation(s)
| | | | - Silvia Dotti
- *Correspondence: Andrea Cacciamali, ; Silvia Dotti,
| |
Collapse
|
18
|
Tomar A, Uysal-Onganer P, Basnett P, Pati U, Roy I. 3D Disease Modelling of Hard and Soft Cancer Using PHA-Based Scaffolds. Cancers (Basel) 2022; 14:3549. [PMID: 35884609 PMCID: PMC9321847 DOI: 10.3390/cancers14143549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Tumour cells are shown to change shape and lose polarity when they are cultured in 3D, a feature typically associated with tumour progression in vivo, thus making it significant to study cancer cells in an environment that mimics the in vivo milieu. In this study we established hard (MCF7 and MDA-MB-231, breast cancer) and soft (HCT116, colon cancer) 3D cancer tumour models utilizing a blend of P(3HO-co-3HD) and P(3HB). P(3HO-co-3HD) and P(3HB) belong to a group of natural biodegradable polyesters, PHAs, that are synthesised by microorganisms. The 3D PHA scaffolds produced, with a pore size of 30 to 300 µm, allow for nutrients to diffuse within the scaffold and provide the cells with the flexibility to distribute evenly within the scaffold and grow within the pores. Interestingly, by Day 5, MDA-MB-231 showed dispersed growth in clusters, and MCF7 cells formed an evenly dispersed dense layer, while HCT116 formed large colonies within the pockets of the 3D PHA scaffolds. Our results show Epithelial Mesenchymal Transition (EMT) marker gene expression profiles in the hard tumour cancer models. In the 3D-based PHA scaffolds, MDA-MB-231 cells expressed higher levels of Wnt-11 and mesenchymal markers, such as Snail and its downstream gene Vim mRNAs, while MCF7 cells exhibited no change in their expression. On the other hand, MCF7 cells exhibited a significantly increased E-Cadherin expression as compared to MDA-MB-231 cells. The expression levels of EMT markers were comparative to their expression reported in the tumour samples, making them good representative of cancer models. In future these models will be helpful in mimicking hypoxic tumours, in studying gene expression, cellular signalling, angiogenesis and drug response more accurately than 2D and perhaps other 3D models.
Collapse
Affiliation(s)
- Akanksha Tomar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1W 6UW, UK;
| | - Pooja Basnett
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1W 6XH, UK;
| | - Uttam Pati
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
19
|
Journey of organ on a chip technology and its role in future healthcare scenario. APPLIED SURFACE SCIENCE ADVANCES 2022; 9. [PMCID: PMC9000345 DOI: 10.1016/j.apsadv.2022.100246] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Organ on a chip refers to microengineered biomimetic system which reflects structural and functional characteristics of human tissue. It involves biomaterial technology, cell biology and engineering combined together in a miniaturized platform. Several models using different organs such as lungs on a chip, liver on a chip, kidney on a chip, heart on a chip, intestine on a chip and skin on a chip have been successfully developed. Food and Drug administration (FDA) has also shown confidence in this technology and has partnered with industries/institutes which are working with this technology. In this review, the concepts and applications of Organ on a chip model in different scientific domains including disease model development, drug screening, toxicology, pathogenesis study, efficacy testing and virology is discussed. It is envisaged that amalgamation of various organs on chip modules into a unified body on chip device is of utmost importance for diagnosis and treatment, especially considering the complications due to the ongoing COVID-19 pandemic. It is expected that the market demand for developing organ on chip devices to skyrocket in the near future.
Collapse
|
20
|
Evaluation of the Anti-Histoplasma capsulatum Activity of Indole and Nitrofuran Derivatives and Their Pharmacological Safety in Three-Dimensional Cell Cultures. Pharmaceutics 2022; 14:pharmaceutics14051043. [PMID: 35631629 PMCID: PMC9147190 DOI: 10.3390/pharmaceutics14051043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Histoplasma capsulatum is a fungus that causes histoplasmosis. The increased evolution of microbial resistance and the adverse effects of current antifungals help new drugs to emerge. In this work, fifty-four nitrofurans and indoles were tested against the H. capsulatum EH-315 strain. Compounds with a minimum inhibitory concentration (MIC90) equal to or lower than 7.81 µg/mL were selected to evaluate their MIC90 on ATCC G217-B strain and their minimum fungicide concentration (MFC) on both strains. The quantification of membrane ergosterol, cell wall integrity, the production of reactive oxygen species, and the induction of death by necrosis–apoptosis was performed to investigate the mechanism of action of compounds 7, 11, and 32. These compounds could reduce the extracted sterol and induce necrotic cell death, similarly to itraconazole. Moreover, 7 and 11 damaged the cell wall, causing flaws in the contour (11), or changing the size and shape of the fungal cell wall (7). Furthermore, 7 and 32 induced reactive oxygen species (ROS) formation higher than 11 and control. Finally, the cytotoxicity was measured in two models of cell culture, i.e., monolayers (cells are flat) and a three-dimensional (3D) model, where they present a spheroidal conformation. Cytotoxicity assays in the 3D model showed a lower toxicity in the compounds than those performed on cell monolayers. Overall, these results suggest that derivatives of nitrofurans and indoles are promising compounds for the treatment of histoplasmosis.
Collapse
|
21
|
Cell Culture-Based Assessment of Toxicity and Therapeutics of Phytochemical Antioxidants. Molecules 2022; 27:molecules27031087. [PMID: 35164354 PMCID: PMC8839249 DOI: 10.3390/molecules27031087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022] Open
Abstract
Plant-derived natural products are significant resources for drug discovery and development including appreciable potentials in preventing and managing oxidative stress, making them promising candidates in cancer and other disease therapeutics. Their effects have been linked to phytochemicals such as phenolic compounds and their antioxidant activities. The abundance and complexity of these bio-constituents highlight the need for well-defined in vitro characterization and quantification of the plant extracts/preparations that can translate to in vivo effects and hopefully to clinical use. This review article seeks to provide relevant information about the applicability of cell-based assays in assessing anti-cytotoxicity of phytochemicals considering several traditional and current methods.
Collapse
|
22
|
The additive effect of iloprost on the biological properties of Mineral trioxide aggregate on mesenchymal stem cells. J Dent Sci 2022; 17:225-232. [PMID: 35028042 PMCID: PMC8739256 DOI: 10.1016/j.jds.2021.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/28/2021] [Indexed: 12/30/2022] Open
Abstract
Background/purpose Iloprost has been proposed as a potential biomaterial owing to angiogenic and odontogenic properties. However, the liquid form can limit its use during clinical applications. Mineral trioxide aggregate (MTA) has been used for various dental applications in which cell–material interaction is essential. This study aimed to investigate additive effects of iloprost on the biological properties of MTA on the viability, attachment, migration and differentiation of human mesenchymal stem cells (hMSCs). Materials and methods Standardized human dentin disks were prepared. MTA was prepared by mixing distilled water or iloprost solution, and the lumen of the disks was filled with MTA or MTA-iloprost. hMSCs on disk alone and hMSCs on culture plates were used as controls. Cell viability and attachment were measured after 1, 7 and 14 days using AlamarBlue assay and scanning electron microscopy (SEM). Cell migration in MTA or MTA-iloprost extracts was determined using a wound-healing model. Osteogenic differentiation was evaluated by real-time reverse transcriptase polymerase chain reaction for alkaline phosphatase (ALP), bone sialoprotein (BSP), osteocalcin (OCN), and osteopontin (OSP) gene expressions after 7 and 14 days of osteogenic induction. Results Cells on MTA-iloprost surface showed similar viability with MTA at 1 and 14 days but enhanced cellular viability and cell spreading compared to MTA at 7 days (p < 0.05). Cell migration was similar by MTA-iloprost and MTA extracts (p > 0.05). MTAiloprost significantly upregulated BSP, OCN and OSP expressions compared to MTA (p < 0.05). Conclusion The addition of iloprost to MTA improved the initial cell viability and osteogenic potential of hMSCs.
Collapse
|
23
|
Sharifi S, Sharifi H, Akbari A, Chodosh J. Systematic optimization of visible light-induced crosslinking conditions of gelatin methacryloyl (GelMA). Sci Rep 2021; 11:23276. [PMID: 34857867 PMCID: PMC8640009 DOI: 10.1038/s41598-021-02830-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/18/2021] [Indexed: 11/09/2022] Open
Abstract
Gelatin methacryloyl (GelMA) is one of the most widely used photo-crosslinkable biopolymers in tissue engineering. In in presence of an appropriate photoinitiator, the light activation triggers the crosslinking process, which provides shape fidelity and stability at physiological temperature. Although ultraviolet (UV) has been extensively explored for photo-crosslinking, its application has been linked to numerous biosafety concerns, originated from UV phototoxicity. Eosin Y, in combination with TEOA and VC, is a biosafe photoinitiation system that can be activated via visible light instead of UV and bypasses those biosafety concerns; however, the crosslinking system needs fine-tuning and optimization. In order to systematically optimize the crosslinking conditions, we herein independently varied the concentrations of Eosin Y [(EY)], triethanolamine (TEOA), vinyl caprolactam (VC), GelMA precursor, and crosslinking times and assessed the effect of those parameters on the properties the hydrogel. Our data showed that except EY, which exhibited an optimal concentration (~ 0.05 mM), increasing [TEOA], [VA], [GelMA], or crosslinking time improved mechanical (tensile strength/modulus and compressive modulus), adhesion (lap shear strength), swelling, biodegradation properties of the hydrogel. However, increasing the concentrations of crosslinking reagents ([TEOA], [VA], [GelMA]) reduced cell viability in 3-dimensional (3D) cell culture. This study enabled us to optimize the crosslinking conditions to improve the properties of the GelMA hydrogel and to generate a library of hydrogels with defined properties essential for different biomedical applications.
Collapse
Affiliation(s)
- Sina Sharifi
- Disruptive Technology Laboratory, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, MA, USA.
| | - Hannah Sharifi
- Disruptive Technology Laboratory, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, MA, USA
| | - Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - James Chodosh
- Disruptive Technology Laboratory, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, MA, USA
| |
Collapse
|
24
|
Nkune NW, Simelane NWN, Montaseri H, Abrahamse H. Photodynamic Therapy-Mediated Immune Responses in Three-Dimensional Tumor Models. Int J Mol Sci 2021; 22:12618. [PMID: 34884424 PMCID: PMC8657498 DOI: 10.3390/ijms222312618] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising non-invasive phototherapeutic approach for cancer therapy that can eliminate local tumor cells and produce systemic antitumor immune responses. In recent years, significant efforts have been made in developing strategies to further investigate the immune mechanisms triggered by PDT. The majority of in vitro experimental models still rely on the two-dimensional (2D) cell cultures that do not mimic a three-dimensional (3D) cellular environment in the human body, such as cellular heterogeneity, nutrient gradient, growth mechanisms, and the interaction between cells as well as the extracellular matrix (ECM) and therapeutic resistance to anticancer treatments. In addition, in vivo animal studies are highly expensive and time consuming, which may also show physiological discrepancies between animals and humans. In this sense, there is growing interest in the utilization of 3D tumor models, since they precisely mimic different features of solid tumors. This review summarizes the characteristics and techniques for 3D tumor model generation. Furthermore, we provide an overview of innate and adaptive immune responses induced by PDT in several in vitro and in vivo tumor models. Future perspectives are highlighted for further enhancing PDT immune responses as well as ideal experimental models for antitumor immune response studies.
Collapse
Affiliation(s)
| | | | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (N.W.N.); (N.W.N.S.); (H.M.)
| |
Collapse
|
25
|
Vinje JB, Guadagno NA, Progida C, Sikorski P. Analysis of Actin and Focal Adhesion Organisation in U2OS Cells on Polymer Nanostructures. NANOSCALE RESEARCH LETTERS 2021; 16:143. [PMID: 34524556 PMCID: PMC8443752 DOI: 10.1186/s11671-021-03598-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND In this work, we explore how U2OS cells are affected by arrays of polymer nanopillars fabricated on flat glass surfaces. We focus on describing changes to the organisation of the actin cytoskeleton and in the location, number and shape of focal adhesions. From our findings we identify that the cells can be categorised into different regimes based on their spreading and adhesion behaviour on nanopillars. A quantitative analysis suggests that cells seeded on dense nanopillar arrays are suspended on top of the pillars with focal adhesions forming closer to the cell periphery compared to flat surfaces or sparse pillar arrays. This change is analogous to similar responses for cells seeded on soft substrates. RESULTS In this work, we explore how U2OS cells are affected by arrays of polymer nanopillars fabricated on flat glass surfaces. We focus on describing changes to the organisation of the actin cytoskeleton and in the location, number and shape of focal adhesions. From our findings we identify that the cells can be categorised into different regimes based on their spreading and adhesion behaviour on nanopillars. A quantitative analysis suggests that cells seeded on dense nanopillar arrays are suspended on top of the pillars with focal adhesions forming closer to the cell periphery compared to flat surfaces or sparse pillar arrays. This change is analogous to similar responses for cells seeded on soft substrates. CONCLUSION Overall, we show that the combination of high throughput nanofabrication, advanced optical microscopy, molecular biology tools to visualise cellular processes and data analysis can be used to investigate how cells interact with nanostructured surfaces and will in the future help to create culture substrates that induce particular cell function.
Collapse
Affiliation(s)
- Jakob B Vinje
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
- Department of Electronic Systems, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | | | - Cinzia Progida
- Department of Biosciences, University of Oslo (UiO), Oslo, Norway
| | - Pawel Sikorski
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
26
|
Ray SK, Mukherjee S. Imitating Hypoxia and Tumor Microenvironment with Immune Evasion by Employing Three Dimensional in vitro Cellular Models: Impressive Tool in Drug Discovery. Recent Pat Anticancer Drug Discov 2021; 17:80-91. [PMID: 34323197 DOI: 10.2174/1574892816666210728115605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 11/22/2022]
Abstract
The heterogeneous tumor microenvironment is exceptionally perplexing and not wholly comprehended. Different multifaceted alignments lead to the generation of oxygen destitute situations within the tumor niche that modulate numerous intrinsic tumor microenvironments. Disentangling these communications is vital for scheming practical therapeutic approaches that can successfully decrease tumor allied chemotherapy resistance by utilizing the innate capability of the immune system. Several research groups have concerned with a protruding role for oxygen metabolism along with hypoxia in the immunity of healthy tissue. Hypoxia in addition to hypoxia-inducible factors (HIFs) in the tumor microenvironment plays an important part in tumor progression and endurance. Although numerous hypoxia-focused therapies have shown promising outcomes both in vitro and in vivo these outcomes have not effectively translated into clinical preliminaries. Distinctive cell culture techniques have utilized as an in vitro model for tumor niche along with tumor microenvironment and proficient in more precisely recreating tumor genomic profiles as well as envisaging therapeutic response. To study the dynamics of tumor immune evasion, three-dimensional (3D) cell cultures are more physiologically important to the hypoxic tumor microenvironment. Recent research has revealed new information and insights into our fundamental understanding of immune systems, as well as novel results that have been established as potential therapeutic targets. There are a lot of patented 3D cell culture techniques which will be highlighted in this review. At present notable 3D cell culture procedures in the hypoxic tumor microenvironment, discourse open doors to accommodate both drug repurposing, advancement, and divulgence of new medications and will deliberate the 3D cell culture methods into standard prescription disclosure especially in the field of cancer biology which will be discussing here.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Department of Applied Sciences. Indira Gandhi Technological and Medical Sciences University, Ziro, Arunachal Pradesh-791120, India
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
27
|
Ata FK, Yalcin S. The Cisplatin, 5-fluorouracil, Irinotecan, and Gemcitabine Treatment in Resistant 2D and 3D Model Triple Negative Breast Cancer Cell Line: ABCG2 Expression Data. Anticancer Agents Med Chem 2021; 22:371-377. [PMID: 34315389 DOI: 10.2174/1871520621666210727105431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/04/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chemotherapeutics have been commonly used in cancer treatment. OBJECTIVE In this study, the effects of Cisplatin, 5-fluorouracil, Irinotecan, and Gemcitabine have been evaluated on two-dimensional (2D) (sensitive and resistance) cell lines and three dimensional (3D) spheroid structure of MDA-MB-231. The 2D cell culture lacks a natural tissue-like structural so, using 3D cell culture has an important role in the development of effective drug testing models. Furthermore, we analyzed the ATP Binding Cassette Subfamily G Member 2 (ABCG2) gene and protein expression profile in this study. We aimed to establish a 3D breast cancer model that can mimic the in vivo 3D breast cancer microenvironment. METHODS The 3D spheroid structures were multiplied (globally) using the three-dimensional hanging drop method. The cultures of the parental cell line MDA-MB-231 served as the controls. After adding the drugs in different amounts we observed a clear and well-differentiated spheroid formation for 24 h. The viability and proliferation capacity of 2D (sensitive and resistant) cell lines and 3D spheroid cell treatment were assessed by the XTT assay. RESULTS Cisplatin, Irinotecan, 5-Fu, and Gemcitabine-resistant MDA-MB-231 cells were observed to begin to disintegrate in a three-dimensional clustered structure at 24 hours. Additionally, RT-PCR and protein assay showed overexpression of ABCG2 when compared to the parental cell line. Moreover, MDA-MB-231 cells grown in 3D showed decreased sensitivity to chemotherapeutics treatment. CONCLUSION More resistance to chemotherapeutics and altered gene expression profile was shown in 3D cell cultures when compared with the 2D cells. These results might play an important role to evaluate the efficacy of anticancer drugs, explore mechanisms of MDR in the 3D spheroid forms.
Collapse
Affiliation(s)
- Fatma Kubra Ata
- Department of Genetics and Bioengineering, Kırsehir Ahi Evran University, TR-40100, Turkey
| | - Serap Yalcin
- Department of Molecular Biology and Genetics, Kırsehir Ahi Evran University, TR-40100 , Turkey
| |
Collapse
|
28
|
Bang S, Lee S, Choi N, Kim HN. Emerging Brain-Pathophysiology-Mimetic Platforms for Studying Neurodegenerative Diseases: Brain Organoids and Brains-on-a-Chip. Adv Healthc Mater 2021; 10:e2002119. [PMID: 34028201 DOI: 10.1002/adhm.202002119] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases are a group of disorders characterized by progressive degeneration of the structural and functional integrity of the central and peripheral nervous systems. Millions of people suffer from degenerative brain diseases worldwide, and the mortality continues to increase every year, causing a growing demand for knowledge of the underlying mechanisms and development of therapeutic targets. Conventional 2D-based cell culture platforms and animal models cannot fully recapitulate the pathophysiology, and this has limited the capability for estimating drug efficacy. Recently, engineered platforms, including brain organoids and brain-on-a-chip, have emerged. They mimic the physiology of brain tissue and reflect the fundamental pathophysiological signatures of neurodegenerative diseases, such as the accumulation of neurotoxic proteins, structural abnormalities, and functional loss. In this paper, recent advances in brain-mimetic platforms and their potential for modeling features of neurodegenerative diseases in vitro are reviewed. The development of a physiologically relevant model should help overcome unresolved neurodegenerative diseases.
Collapse
Affiliation(s)
- Seokyoung Bang
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
| | - Songhyun Lee
- Department of Medical Engineering Yonsei University College of Medicine Seoul 03722 Republic of Korea
| | - Nakwon Choi
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- KU‐KIST Graduate School of Converging Science and Technology Korea University Seoul 02841 Republic of Korea
| | - Hong Nam Kim
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Division of Bio‐Medical Science & Technology KIST School Korea University of Science and Technology (UST) Seoul 02792 Republic of Korea
| |
Collapse
|
29
|
Emmert M, Somorowsky F, Ebert J, Görick D, Heyn A, Rosenberger E, Wahl M, Heinrich D. Modulation of Mammalian Cell Behavior by Nanoporous Glass. Adv Biol (Weinh) 2021; 5:e2000570. [PMID: 33960740 DOI: 10.1002/adbi.202000570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/31/2021] [Indexed: 11/08/2022]
Abstract
The introduction of novel bioactive materials to manipulate living cell behavior is a crucial topic for biomedical research and tissue engineering. Biomaterials or surface patterns that boost specific cell functions can enable innovative new products in cell culture and diagnostics. This study investigates the influence of the intrinsically nano-patterned surface of nanoporous glass membranes on the behavior of mammalian cells. Three different cell lines and primary human mesenchymal stem cells (hMSCs) proliferate readily on nanoporous glass membranes with mean pore sizes between 10 and 124 nm. In both proliferation and mRNA expression experiments, L929 fibroblasts show a distinct trend toward mean pore sizes >80 nm. For primary hMSCs, excellent proliferation is observed on all nanoporous surfaces. hMSCs on samples with 17 nm pore size display increased expression of COL10, COL2A1, and SOX9, especially during the first two weeks of culture. In the upside down culture, SK-MEL-28 cells on nanoporous glass resist the gravitational force and proliferate well in contrast to cells on flat references. The effect of paclitaxel treatment of MDA-MB-321 breast cancer cells is already visible after 48 h on nanoporous membranes and strongly pronounced in comparison to reference samples, underlining the material's potential for functional drug screening.
Collapse
Affiliation(s)
- Martin Emmert
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany.,Julius-Maximilians-Universität Würzburg, Chemical Technology of Material Synthesis, Röntgenring 11, 97070, Würzburg, Germany
| | - Ferdinand Somorowsky
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Jutta Ebert
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Dominik Görick
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Andreas Heyn
- Julius-Maximilians-Universität Würzburg, Chemical Technology of Material Synthesis, Röntgenring 11, 97070, Würzburg, Germany
| | - Eva Rosenberger
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Moritz Wahl
- Julius-Maximilians-Universität Würzburg, Chemical Technology of Material Synthesis, Röntgenring 11, 97070, Würzburg, Germany
| | - Doris Heinrich
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany.,Leiden University, LION Leiden Institute of Physics, Niels Bohrweg 2, Leiden, 2333 CA, The Netherlands
| |
Collapse
|
30
|
Pape J, Stamati K, Al Hosni R, Uchegbu IF, Schatzlein AG, Loizidou M, Emberton M, Cheema U. Tissue-Engineering the Fibrous Pancreatic Tumour Stroma Capsule in 3D Tumouroids to Demonstrate Paclitaxel Response. Int J Mol Sci 2021; 22:4289. [PMID: 33924238 PMCID: PMC8074746 DOI: 10.3390/ijms22084289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is a unique cancer in that up to 90% of its tumour mass is composed of a hypovascular and fibrotic stroma. This makes it extremely difficult for chemotherapies to be delivered into the core of the cancer mass. We tissue-engineered a biomimetic 3D pancreatic cancer ("tumouroid") model comprised of a central artificial cancer mass (ACM), containing MIA Paca-2 cells, surrounded by a fibrotic stromal compartment. This stromal compartment had a higher concentration of collagen type I, fibronectin, laminin, and hyaluronic acid (HA) than the ACM. The incorporation of HA was validated with alcian blue staining. Response to paclitaxel was determined in 2D MIA Paca-2 cell cultures, the ACMs alone, and in simple and complex tumouroids, in order to demonstrate drug sensitivity within pancreatic tumouroids of increasing complexity. The results showed that MIA Paca-2 cells grew into the complex stroma and invaded as cell clusters with a maximum distance of 363.7 µm by day 21. In terms of drug response, the IC50 for paclitaxel for MIA Paca-2 cells increased from 0.819 nM in 2D to 3.02 nM in ACMs and to 5.87 nM and 3.803 nM in simple and complex tumouroids respectively, indicating that drug penetration may be significantly reduced in the latter. The results demonstrate the need for biomimetic models during initial drug testing and evaluation.
Collapse
Affiliation(s)
- Judith Pape
- Centre for 3D Models of Health and Disease, Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, London W1W 7TS, UK; (J.P.); (R.A.H.)
| | - Katerina Stamati
- Research Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital Campus, University College London, Rowland Hill Street, London NW3 2PF, UK; (K.S.); (M.L.)
| | - Rawiya Al Hosni
- Centre for 3D Models of Health and Disease, Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, London W1W 7TS, UK; (J.P.); (R.A.H.)
| | - Ijeoma F. Uchegbu
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (I.F.U.); (A.G.S.)
| | - Andreas G. Schatzlein
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (I.F.U.); (A.G.S.)
| | - Marilena Loizidou
- Research Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital Campus, University College London, Rowland Hill Street, London NW3 2PF, UK; (K.S.); (M.L.)
| | - Mark Emberton
- Faculty of Medical Sciences, University College London, Maple House, 149 Tottenham Court Road, London W1T 7TNF, UK;
| | - Umber Cheema
- Centre for 3D Models of Health and Disease, Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, London W1W 7TS, UK; (J.P.); (R.A.H.)
| |
Collapse
|
31
|
Savic LJ, Schobert IT, Hamm CA, Adam LC, Hyder F, Coman D. A high-throughput imaging platform to characterize extracellular pH in organotypic three-dimensional in vitro models of liver cancer. NMR IN BIOMEDICINE 2021; 34:e4465. [PMID: 33354836 DOI: 10.1002/nbm.4465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Given the extraordinary nature of tumor metabolism in hepatocellular carcinoma and its impact on oncologic treatment response, this study introduces a novel high-throughput extracellular pH (pHe ) mapping platform using magnetic resonance spectroscopic imaging in a three-dimensional (3D) in vitro model of liver cancer. pHe mapping was performed using biosensor imaging of redundant deviation in shifts (BIRDS) on 9.4 T and 11.7 T MR scanners for validation purposes. 3D cultures of four liver cancer (HepG2, Huh7, SNU475, VX2) and one hepatocyte (THLE2) cell line were simultaneously analyzed (a) without treatment, (b) supplemented with 4.5 g/L d-glucose, and (c) treated with anti-glycolytic 3-bromopyruvate (6.25, 25, 50, 75, and 100 μM). The MR results were correlated with immunohistochemistry (GLUT-1, LAMP-2) and luminescence-based viability assays. Statistics included the unpaired t-test and ANOVA test. High-throughput pHe imaging with BIRDS for in vitro 3D liver cancer models proved feasible. Compared with non-tumorous hepatocytes (pHe = 7.1 ± 0.1), acidic pHe was revealed in liver cancer (VX2, pHe = 6.7 ± 0.1; HuH7, pHe = 6.8 ± 0.1; HepG2, pHe = 6.9 ± 0.1; SNU475, pHe = 6.9 ± 0.1), in agreement with GLUT-1 upregulation. Glucose addition significantly further decreased pHe in hyperglycolytic cell lines (VX2, HepG2, and Huh7, by 0.28, 0.06, and 0.11, respectively, all p < 0.001), whereas 3-bromopyruvate normalized tumor pHe in a dose-dependent manner without affecting viability. In summary, this study introduces a non-invasive pHe imaging platform for high-yield screening using a translational 3D liver cancer model, which may help reveal and target mechanisms of therapy resistance and inform personalized treatment of patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Lynn Jeanette Savic
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Isabel Theresa Schobert
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Charlie Alexander Hamm
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
- Institute of Diagnostic Radiology and Neuroradiology, Greifswald University Hospital, Greifswald, Germany
| | - Lucas Christoph Adam
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
32
|
Doctor A, Seifert V, Ullrich M, Hauser S, Pietzsch J. Three-Dimensional Cell Culture Systems in Radiopharmaceutical Cancer Research. Cancers (Basel) 2020; 12:cancers12102765. [PMID: 32993034 PMCID: PMC7600608 DOI: 10.3390/cancers12102765] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
In preclinical cancer research, three-dimensional (3D) cell culture systems such as multicellular spheroids and organoids are becoming increasingly important. They provide valuable information before studies on animal models begin and, in some cases, are even suitable for reducing or replacing animal experiments. Furthermore, they recapitulate microtumors, metastases, and the tumor microenvironment much better than monolayer culture systems could. Three-dimensional models show higher structural complexity and diverse cell interactions while reflecting (patho)physiological phenomena such as oxygen and nutrient gradients in the course of their growth or development. These interactions and properties are of great importance for understanding the pathophysiological importance of stromal cells and the extracellular matrix for tumor progression, treatment response, or resistance mechanisms of solid tumors. Special emphasis is placed on co-cultivation with tumor-associated cells, which further increases the predictive value of 3D models, e.g., for drug development. The aim of this overview is to shed light on selected 3D models and their advantages and disadvantages, especially from the radiopharmacist's point of view with focus on the suitability of 3D models for the radiopharmacological characterization of novel radiotracers and radiotherapeutics. Special attention is paid to pancreatic ductal adenocarcinoma (PDAC) as a predestined target for the development of new radionuclide-based theranostics.
Collapse
Affiliation(s)
- Alina Doctor
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Verena Seifert
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
- Correspondence: ; Tel.: +49-351-260-2622
| |
Collapse
|
33
|
Kumari N, Bhargava A, Rath SN. T-type calcium channel antagonist, TTA-A2 exhibits anti-cancer properties in 3D spheroids of A549, a lung adenocarcinoma cell line. Life Sci 2020; 260:118291. [PMID: 32810510 DOI: 10.1016/j.lfs.2020.118291] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022]
Abstract
AIMS Despite the advanced cancer treatments, there is increased resistance to chemotherapy and subsequent mortality. In lack of reliable data in monolayer cultures and animal models, researchers are shifting to 3D cancer spheroids, which represents the in vivo robust tumour morphology. Calcium is essential in cell signalling and proliferation. It is found that T-type calcium channels (TTCCs) are overexpressed in various cancer cells, supporting their increased proliferation. Many of the TTCCs blockers available could target other channels besides TTCCs, which can cause adverse effects. Therefore, we hypothesise that TTA-A2, a highly selective blocker towards TTCCs, can inhibit the growth of cancer spheroids, and provide an anti-cancer and an adjuvant role in cancer therapy. METHODS We studied TTA-A2 and paclitaxel (PTX-control drug) in lung adenocarcinoma cell line- A549, cancer cells and human embryonic kidney cell line- HEK 293, control cell, in their monolayer and spheroids forms for viability, proliferation, morphology change, migration, and invasion-after 48-96 h of treatment. KEY FINDINGS Though the results varied between the monolayer and spheroids studies, we found both anti-cancer as well as adjuvant effect of TTA-A2 in both the studies. TTA-A2 was able to inhibit the growth, viability, and metastasis of the cancer cells and spheroids. Differences in the results of two modes might explain that why drugs tested successfully in monolayer culture fail in clinical trials. SIGNIFICANCE This study establishes the role of TTA-A2, a potent TTCC blocker as an anti-cancer and adjuvant drug in reducing the viability and metastasis of the cancer cells.
Collapse
Affiliation(s)
- Neema Kumari
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India; Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India
| | - Anamika Bhargava
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India
| | - Subha Narayan Rath
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India.
| |
Collapse
|
34
|
Balaji P, Murugadas A, Ramkumar A, Thirumurugan R, Shanmugaapriya S, Akbarsha MA. Characterization of Hen's Egg White To Use It as a Novel Platform To Culture Three-Dimensional Multicellular Tumor Spheroids. ACS OMEGA 2020; 5:19760-19770. [PMID: 32803071 PMCID: PMC7424746 DOI: 10.1021/acsomega.0c02508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
We are standardizing protocols to develop egg white (EW) as a cost-effective platform for culture of three-dimensional (3-D) multicellular tumor spheroids for application in understanding tumor microenvironments and drug screening. In this article, we describe several physical and physiological characteristics of EW to use it as 3-D cell culture platform. Field emission scanning electron microscopy revealed the presence of different microstructures. Hydrodynamic size distribution data indicated nano- and micron-sized particles. Rheological measurements revealed the viscosity and viscoelastic behavior appropriate for maintaining cell viability and supporting 3-D cell growth under high-sheer conditions. It was found that thereis no autofluorescence, a requirement for imparting transparency and for microscopic observations of the spheroids. The EW facilitated the development of 3-D tumor spheroids, with an emphasis of difference in cell proliferation and intercellular cytoskeletal organization between two-dimensional and 3-D spheroid cultures. Put together, EW proves to be a cost-affordable and simple platform for 3-D culture of tumor spheroids.
Collapse
Affiliation(s)
- Perumalsamy Balaji
- Department of Biomedical
Science, Bharathidasan University, Tiruchirapalli 620024, India
- National
Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Anbazhagan Murugadas
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
- National
Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Arunachalam Ramkumar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirapalli 620024, India
- National
Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Ramasamy Thirumurugan
- Department of Animal Science, Bharathidasan University, Tiruchirapalli 620024, India
- National
Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli 620 024, India
| | | | - Mohammad Abdulkader Akbarsha
- National
College (Autonomous), Tiruchirappalli 620001, India
- Mahatma Gandhi-Doerenkamp
Centre for Alternatives, Bharathidasan University, Tiruchirappalli 620 024, India
| |
Collapse
|
35
|
Wong JS, Cheah YK. Potential miRNAs for miRNA-Based Therapeutics in Breast Cancer. Noncoding RNA 2020; 6:E29. [PMID: 32668603 PMCID: PMC7549352 DOI: 10.3390/ncrna6030029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that can post-transcriptionally regulate the genes involved in critical cellular processes. The aberrant expressions of oncogenic or tumor suppressor miRNAs have been associated with cancer progression and malignancies. This resulted in the dysregulation of signaling pathways involved in cell proliferation, apoptosis and survival, metastasis, cancer recurrence and chemoresistance. In this review, we will first (i) provide an overview of the miRNA biogenesis pathways, and in vitro and in vivo models for research, (ii) summarize the most recent findings on the roles of microRNAs (miRNAs) that could potentially be used for miRNA-based therapy in the treatment of breast cancer and (iii) discuss the various therapeutic applications.
Collapse
Affiliation(s)
- Jun Sheng Wong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| |
Collapse
|
36
|
Kang SM, Lee JH, Huh YS, Takayama S. Alginate Microencapsulation for Three-Dimensional In Vitro Cell Culture. ACS Biomater Sci Eng 2020; 7:2864-2879. [PMID: 34275299 DOI: 10.1021/acsbiomaterials.0c00457] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Advances in microscale 3D cell culture systems have helped to elucidate cellular physiology, understand mechanisms of stem cell differentiation, produce pathophysiological models, and reveal important cell-cell and cell-matrix interactions. An important consideration for such studies is the choice of material for encapsulating cells and associated extracellular matrix (ECM). This Review focuses on the use of alginate hydrogels, which are versatile owing to their simple gelation process following an ionic cross-linking mechanism in situ, with no need for procedures that can be potentially toxic to cells, such as heating, the use of solvents, and UV exposure. This Review aims to give some perspectives, particularly to researchers who typically work more with poly(dimethylsiloxane) (PDMS), on the use of alginate as an alternative material to construct microphysiological cell culture systems. More specifically, this Review describes how physicochemical characteristics of alginate hydrogels can be tuned with regards to their biocompatibility, porosity, mechanical strength, ligand presentation, and biodegradability. A number of cell culture applications are also described, and these are subcategorized according to whether the alginate material is used to homogeneously embed cells, to micropattern multiple cellular microenvironments, or to provide an outer shell that creates a space in the core for cells and other ECM components. The Review ends with perspectives on future challenges and opportunities for 3D cell culture applications.
Collapse
Affiliation(s)
- Sung-Min Kang
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, 30332, United States of America.,The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 30332, United States of America.,NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Ji-Hoon Lee
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, 30332, United States of America.,The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 30332, United States of America
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Shuichi Takayama
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, 30332, United States of America.,The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 30332, United States of America
| |
Collapse
|
37
|
Hakobyan D, Médina C, Dusserre N, Stachowicz ML, Handschin C, Fricain JC, Guillermet-Guibert J, Oliveira H. Laser-assisted 3D bioprinting of exocrine pancreas spheroid models for cancer initiation study. Biofabrication 2020; 12:035001. [PMID: 32131058 DOI: 10.1088/1758-5090/ab7cb8] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common malignancy of the pancreas. It has shown a poor prognosis and a rising incidence in the developed world. Other pathologies associated with this tissue include pancreatitis, a risk condition for pancreatic cancer. The onset of both pancreatitis and pancreatic cancer follows a common pattern: exocrine pancreatic acinar cells undergo a transdifferentiation to duct cells that triggers a 3D restructuration of the pancreatic tissue. However, the exact mechanism underlying this process remains partially undefined. Further understanding the cellular events leading to PDAC could open new avenues in the development of novel therapeutic approaches. Since current 2D cell culture models fail to mimic the tridimensional complexity of the pancreatic tissue, new in vitro models are urgently needed. Here, we generated 3D pancreatic cell spheroid arrays using laser-assisted bioprinting and characterized their phenotypic evolution over time through image analysis and phenotypic characterization. We show that these bioprinted spheroids, composed of both acinar and ductal cells, can replicate the initial stages of PDAC development. This bioprinted miniaturized spheroid-based array model should prove useful for the study of the internal and external factors that contribute to the formation of precursor PDAC lesions and to cancer progression, and may therefore shed light on future PDAC therapy strategies.
Collapse
Affiliation(s)
- Davit Hakobyan
- Bioingénierie tissulaire, Université de Bordeaux, 146, rue Léo Saignat 33076, Bordeaux, France. Bioingénierie tissulaire, Inserm U1026, 146, rue Léo Saignat 33076, Bordeaux, France. Both authors have contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Lin Z, Luo G, Du W, Kong T, Liu C, Liu Z. Recent Advances in Microfluidic Platforms Applied in Cancer Metastasis: Circulating Tumor Cells' (CTCs) Isolation and Tumor-On-A-Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903899. [PMID: 31747120 DOI: 10.1002/smll.201903899] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/13/2019] [Indexed: 05/03/2023]
Abstract
Cancer remains the leading cause of death worldwide despite the enormous efforts that are made in the development of cancer biology and anticancer therapeutic treatment. Furthermore, recent studies in oncology have focused on the complex cancer metastatic process as metastatic disease contributes to more than 90% of tumor-related death. In the metastatic process, isolation and analysis of circulating tumor cells (CTCs) play a vital role in diagnosis and prognosis of cancer patients at an early stage. To obtain relevant information on cancer metastasis and progression from CTCs, reliable approaches are required for CTC detection and isolation. Additionally, experimental platforms mimicking the tumor microenvironment in vitro give a better understanding of the metastatic microenvironment and antimetastatic drugs' screening. With the advancement of microfabrication and rapid prototyping, microfluidic techniques are now increasingly being exploited to study cancer metastasis as they allow precise control of fluids in small volume and rapid sample processing at relatively low cost and with high sensitivity. Recent advancements in microfluidic platforms utilized in various methods for CTCs' isolation and tumor models recapitulating the metastatic microenvironment (tumor-on-a-chip) are comprehensively reviewed. Future perspectives on microfluidics for cancer metastasis are proposed.
Collapse
Affiliation(s)
- Zhengjie Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guanyi Luo
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Weixiang Du
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
39
|
Akther F, Little P, Li Z, Nguyen NT, Ta HT. Hydrogels as artificial matrices for cell seeding in microfluidic devices. RSC Adv 2020; 10:43682-43703. [PMID: 35519701 PMCID: PMC9058401 DOI: 10.1039/d0ra08566a] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Hydrogel-based artificial scaffolds and its incorporation with microfluidic devices play a vital role in shifting in vitro models from two-dimensional (2D) cell culture to in vivo like three-dimensional (3D) cell culture
Collapse
Affiliation(s)
- Fahima Akther
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
- Queensland Micro- and Nanotechnology Centre
| | - Peter Little
- School of Pharmacy
- The University of Queensland
- Brisbane
- Australia
| | - Zhiyong Li
- School of Mechanical Medical & Process Engineering
- Queensland University of Technology
- Brisbane
- Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Brisbane
- Australia
| | - Hang T. Ta
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
- Queensland Micro- and Nanotechnology Centre
| |
Collapse
|
40
|
Chaicharoenaudomrung N, Kunhorm P, Noisa P. Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling. World J Stem Cells 2019; 11:1065-1083. [PMID: 31875869 PMCID: PMC6904866 DOI: 10.4252/wjsc.v11.i12.1065] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 10/09/2019] [Accepted: 11/05/2019] [Indexed: 02/06/2023] Open
Abstract
Three-dimensional (3D) culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures. In cancer and stem cell research, the natural cell characteristics and architectures are closely mimicked by the 3D cell models. Thus, the 3D cell cultures are promising and suitable systems for various proposes, ranging from disease modeling to drug target identification as well as potential therapeutic substances that may transform our lives. This review provides a comprehensive compendium of recent advancements in culturing cells, in particular cancer and stem cells, using 3D culture techniques. The major approaches highlighted here include cell spheroids, hydrogel embedding, bioreactors, scaffolds, and bioprinting. In addition, the progress of employing 3D cell culture systems as a platform for cancer and stem cell research was addressed, and the prominent studies of 3D cell culture systems were discussed.
Collapse
Affiliation(s)
- Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
41
|
Alizadeh A, Rezakhani L, Anjom Shoa M, Ghasemi S. Frequency of CD44 positive cells in MKN45 cell line after treatment with docetaxel in two and three-dimensional cell cultures. Tissue Cell 2019; 63:101324. [PMID: 32223952 DOI: 10.1016/j.tice.2019.101324] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/30/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022]
Abstract
Three-dimensional (3D) cell culture is more similar to in vivo studies and suitable for studies of interactions between cells and extracellular matrix. CD44 is a cell surface receptor that can relate with the extracellular matrix molecules. CD44 in gastric cancer (GC) is a metastatic and drug resistance marker. In this study the quantity of CD44+ cells in MKN-45 cell line in response to half maximal inhibitory concentration (IC50) dose of Docetaxel (DOC) was measured in 2D and 3D cultures. MKN-45 cell line was cultured in 2D and 3D environments. For 3D culture, rat gastric tissue was separated and decellularized and MKN-45 cells were injected and cultured in the prepared matrix. The frequency of CD44+ cells in 2D and 3D cultures were analyzed before and after treatment with IC50 of DOC by flow cytometry and immunohistochemistry. Despite different environmental conditions, The frequency of CD44+ cells increased significantly in 2D and 3D environments after treatment with IC50 of DOC (P < 0.05). Given the advantages of 3D, this environment seems more appropriate for study about CD44+ cells and drug resistance in GC.
Collapse
Affiliation(s)
- Akram Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Leila Rezakhani
- Department of Tissue Engineering, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Anjom Shoa
- Department of Anatomical Sciences, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
42
|
Structure establishment of three-dimensional (3D) cell culture printing model for bladder cancer. PLoS One 2019; 14:e0223689. [PMID: 31639124 PMCID: PMC6804961 DOI: 10.1371/journal.pone.0223689] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/25/2019] [Indexed: 01/03/2023] Open
Abstract
Purpose Two-dimensional (2D) cell culture is a valuable method for cell-based research but can provide unpredictable, misleading data about in vivo responses. In this study, we created a three-dimensional (3D) cell culture environment to mimic tumor characteristics and cell-cell interactions to better characterize the tumor formation response to chemotherapy. Materials and methods We fabricated the 3D cell culture samples using a 3D cell bio printer and the bladder cancer cell line 5637. T24 cells were used for 2D cell culture. Then, rapamycin and Bacillus Calmette-Guérin (BCG) were used to examine their cancer inhibition effects using the two bladder cancer cell lines. Cell-cell interaction was measured by measuring e-cadherin and n-cadherin secreted via the epithelial-mesenchymal transition (EMT). Results We constructed a 3D cell scaffold using gelatin methacryloyl (GelMA) and compared cell survival in 3D and 2D cell cultures. 3D cell cultures showed higher cancer cell proliferation rates than 2D cell cultures, and the 3D cell culture environment showed higher cell-to-cell interactions through the secretion of E-cadherin and N-cadherin. Assessment of the effects of drugs for bladder cancer such as rapamycin and BCG showed that the effect in the 2D cell culture environment was more exaggerated than that in the 3D cell culture environment. Conclusions We fabricated 3D scaffolds with bladder cancer cells using a 3D bio printer, and the 3D scaffolds were similar to bladder cancer tissue. This technique can be used to create a cancer cell-like environment for a drug screening platform.
Collapse
|
43
|
Lee SY, Doh I, Lee DW. A High Throughput Apoptosis Assay using 3D Cultured Cells. Molecules 2019; 24:molecules24183362. [PMID: 31527418 PMCID: PMC6767243 DOI: 10.3390/molecules24183362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022] Open
Abstract
A high throughput apoptosis assay using 3D cultured cells was developed with a micropillar/microwell chip platform. Live cell apoptosis assays based on fluorescence detection have been useful in high content screening. To check the autofluorescence of drugs, controls (no caspase-3/7 reagent in the assay) for the drugs are necessary which require twice the test space. Thus, a high throughput capability and highly miniaturized format for reducing reagent usage are necessary in live cell apoptosis assays. Especially, the expensive caspase-3/7 reagent should be reduced in a high throughput screening system. To solve this issue, we developed a miniaturized apoptosis assay using micropillar/microwell chips for which we tested seventy drugs (six replicates) per chip and reduced the assay volume to 1 µL. This reduced assay volume can decrease the assay costs compared to the 10–40 µL assay volumes used in 384 well plates. In our experiments, among the seventy drugs, four drugs (Cediranib, Cabozatinib, Panobinostat, and Carfilzomib) induced cell death by apoptosis. Those results were confirmed with western blot assays and proved that the chip platform could be used to identify high potency apoptosis-inducing drugs in 3D cultured cells with alginate.
Collapse
Affiliation(s)
- Sang-Yun Lee
- Department of Health sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea.
- Medical & Bio Device (MBD), Suwon 16229, Korea.
| | - Il Doh
- Center for Medical Convergence Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Korea.
| | - Dong Woo Lee
- Department of Biomedical Engineering, Konyang University, Daejon 35365, Korea.
| |
Collapse
|
44
|
Xu J, Qi G, Sui C, Wang W, Sun X. 3D h9e peptide hydrogel: An advanced three-dimensional cell culture system for anticancer prescreening of chemopreventive phenolic agents. Toxicol In Vitro 2019; 61:104599. [PMID: 31306737 DOI: 10.1016/j.tiv.2019.104599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/28/2019] [Accepted: 07/10/2019] [Indexed: 01/06/2023]
Abstract
Traditional 2D monolayer cell culture model may overestimate chemopreventive agent's response due to lacking physiological relevance in three-dimensional microenvironment. This study was aimed to apply a novel 3D h9e peptide hydrogel cell culture system to evaluate the anticancer efficacy of chemopreventive phenolic acid on hepatocarcinoma HepG2 and colon adenocarcinoma SW480 cells. Both cell lines grew better in this 3D system with better cell growth and longer exponential phase than that in 2D model. Chlorogenic acid (CGA), known as a chemopreventive phenolic acid, at 0-40 μM for 72 h inhibited cell growth but not viability in both HepG2 and SW480 cells. The inhibition was much less potent in 3D system with an IC50 value of 58.0 ± 15.8 or 285.6 ± 75.4 μM when compared with 2D model with IC50 of 5.3 ± 0.3 or 12.0 ± 2.5 μM for HepG2 or SW480, respectively. Furthermore, the recovery of cells grown in 3D system after post-CGA appeared faster than 2D model. Taken together, an advanced 3D model has been established with favoring cell growth and less susceptible to inhibitory treatments in contrast to 2D model, thus predict closely to in vivo situation and may bridge the gap of in vitro to in vivo for prescreening chemopreventive agents for cancer prevention.
Collapse
Affiliation(s)
- Jingwen Xu
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA
| | - Guangyan Qi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Chunxia Sui
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Weiqun Wang
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA.
| | - Xiuzhi Sun
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA; Department of Biological and Agriculture Engineering, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
45
|
Silvani S, Figliuzzi M, Remuzzi A. Toxicological evaluation of airborne particulate matter. Are cell culture technologies ready to replace animal testing? J Appl Toxicol 2019; 39:1484-1491. [PMID: 31025406 DOI: 10.1002/jat.3804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/23/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022]
Abstract
Exposure to atmospheric particulate matter (PM) can affect human health, causing asthma, atherosclerosis, renal disease and cancer. In the last few years, outdoor air pollution has increased globally, leading to a public health emergency. Epidemiological studies have reported a correlation between the development of severe respiratory and systemic diseases and exposure to PM. To evaluate the toxic effect of PM of different origins, conventional experimental toxicological investigations have been conducted in animals; however, animal experimentation poses major ethical issues and usually differs from human conditions. As an alternative, human cell cultures are increasingly being used to investigate cellular and molecular mechanisms of PM toxicity. Although 2D cell cultures have been proven helpful, they are far from being a valid alternative to animal tests. Recently, 3D cell culture and organ-on-chip technology have provided systems that are more complex and that can be more informative for toxicity studies. In this review, the results of the 2D systems that are most frequently used for PM toxicity evaluations are summarized with a special focus on their limitations. We also examined to which extent 3D cell culture and particularly the organ-on-chip technology may overcome these limitations and represent effective tools to improve airborne PM toxicity evaluations.
Collapse
Affiliation(s)
- Sara Silvani
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Bergamo, Italy
| | - Marina Figliuzzi
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Bergamo, Italy
| | - Andrea Remuzzi
- Department of Management, Information and Production Engineering, University of Bergamo, Dalmine (BG), Italy.,Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Bergamo, Italy
| |
Collapse
|
46
|
Evaluation of Cyclosaplin Efficacy Using a Silk Based 3D Tumor Model. Biomolecules 2019; 9:biom9040123. [PMID: 30925799 PMCID: PMC6523308 DOI: 10.3390/biom9040123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
Development of novel anti-cancer peptides requires a rapid screening process which can be accelerated by using appropriate in vitro tumor models. Breast carcinoma tissue is a three-dimensional (3D) microenvironment, which contains a hypoxic center surrounded by dense proliferative tissue. Biochemical clues provided by such a 3D cell mass cannot be recapitulated in conventional 2D culture systems. In this experiment, we evaluate the efficacy of the sandalwood peptide, cyclosaplin, on an established in vitro 3D silk breast cancer model using the invasive MDA-MB-231 cell line. The anti-proliferative effect of the peptide on the 3D silk tumor model is monitored by alamarBlue assay, with conventional 2D culture as control. The proliferation rate, glucose consumed, lactate dehydrogenase (LDH), and matrix metalloproteinase 9 (MMP-9) activity of human breast cancer cells are higher in 3D constructs compared to 2D. A higher concentration of drug is required to achieve 50% cell death in 3D culture than in 2D culture. The cyclosaplin treated MDA-MB-231 cells showed a significant decrease in MMP-9 activity in 3D constructs. Microscopic analysis revealed the formation of cell clusters evenly distributed in the scaffolds. The drug treated cells were less in number, smaller and showed unusual morphology. Overall, these findings indicate the role of cyclosaplin as a promising anti-cancer therapeutic.
Collapse
|
47
|
Peter M, Singh A, Mohankumar K, Jeenger R, Joge PA, Gatne MM, Tayalia P. Gelatin-Based Matrices as a Tunable Platform To Study in Vitro and in Vivo 3D Cell Invasion. ACS APPLIED BIO MATERIALS 2019; 2:916-929. [PMID: 35016295 DOI: 10.1021/acsabm.8b00767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogels have been used as synthetic mimics of 3D extracellular matrices (ECM) and their physical properties like stiffness, degradability, and porosity have been known to influence the behavior of encapsulated cells. However, to understand the role of individual properties, the influence of biophysical cues should be decoupled from biochemical ones. In this study, we have used hydrogels as a tunable model matrix to develop a 3D cell culture platform for studying cell invasion. Inert polyethylene (glycol) diacrylate (PEGDA) and cell adhesive gelatin methacryloyl (GELMA) were blended in varying compositions, followed by UV-mediated photo polymerization to obtain hydrogels with varying stiffness, degradation, and cell adhesive properties. We developed two hydrogel matrix systems, namely, PEGDA-GELMA (containing a larger proportion of PEGDA) and GELMA-PEGDA (containing predominantly GELMA), and characterized them for differences in pore size, swelling ratio, storage modulus, degradability, and biocompatibility of the matrix. Both hydrogel systems had similar pore dimensions and swelling behavior, but PEGDA-GELMA was found to be stiffer and nondegradable, while GELMA-PEGDA was softer and degradable. Accordingly, MDA-MB-231 breast cancer cells encapsulated in these matrices showed a spheroidal morphology in PEGDA-GELMA hydrogels and were more spindle-shaped in GELMA-PEGDA hydrogels, confirming that size and extent of spreading of cells were influenced by the type of these hydrogels. The softer GELMA-PEGDA matrices readily allowed invasion of MDA-MB-231 cells in 3D and showed differences in epithelial-mesenchymal transition (EMT) gene expression of these cells. We further demonstrated the invasion and sprouting of endothelial cells using a chick aortic arch assay, exhibiting the utility of softer matrices to study 3D cell invasion for multiple applications. We also implanted these matrices in mice and showed that soft gelatin-based hydrogels allow cell infiltration in vivo. Results from our study highlight the tunability of this matrix system and the role of matrix constitution in influencing cell invasion in a 3D microenvironment.
Collapse
Affiliation(s)
- Mathew Peter
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.,Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Archana Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kumaravel Mohankumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.,Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Rajeev Jeenger
- Department of Veterinary Pharmacology and Toxicology, Bombay Veterinary College, Parel, Mumbai 400012, India
| | - Puja Arun Joge
- Department of Veterinary Pharmacology and Toxicology, Bombay Veterinary College, Parel, Mumbai 400012, India
| | - Madhumanjiri Mukulesh Gatne
- Department of Veterinary Pharmacology and Toxicology, Bombay Veterinary College, Parel, Mumbai 400012, India
| | - Prakriti Tayalia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
48
|
Pallante P, Pisapia P, Bellevicine C, Malapelle U, Troncone G. Circulating Tumour Cells in Predictive Molecular Pathology: Focus on Drug-Sensitive Assays and 3D Culture. Acta Cytol 2019; 63:171-181. [PMID: 30759433 DOI: 10.1159/000496213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/13/2018] [Indexed: 12/19/2022]
Abstract
Molecular cytopathology is a rapidly evolving field of cytopathology that provides biological information about the response to personalised therapy and about the prognosis of neoplasms diagnosed on cytological samples. Biomarkers such as circulating tumour cells and circulating tumour DNA are increasingly being evaluated in blood and in other body fluids. Such liquid biopsies are non-invasive, repeatable, and feasible also in patients with severe comorbidities. However, liquid biopsy may be challenging due to a low concentration of biomarkers. In such cases, biomarkers can be detected with highly sensitive molecular techniques, which in turn should be validated and integrated in a complex algorithm that includes tissue-based molecular assessments. The aim of this review is to provide the cytopathologist with practical information that is relevant to daily practice, particularly regarding the emerging role of circulating tumour cells in the field of predictive molecular pathology.
Collapse
Affiliation(s)
- Pierlorenzo Pallante
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore," National Research Council (CNR), Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy,
| |
Collapse
|
49
|
Chang FC, Levengood SL, Cho N, Chen L, Wang E, Yu JS, Zhang M. Crosslinked Chitosan-PEG Hydrogel for Culture of Human Glioblastoma Cell Spheroids and Drug Screening. ADVANCED THERAPEUTICS 2018; 1:1800058. [PMID: 31435500 PMCID: PMC6703847 DOI: 10.1002/adtp.201800058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Indexed: 12/11/2022]
Abstract
Two-dimensional monolayer cell cultures are routinely utilized for preclinical cancer drug screening, but the results often do not translate well when drugs are tested in vivo. To address this limitation, a biocompatible chitosan-PEG hydrogel (CSPG gel) was synthesized to create a gel that can be easily dispensed into 96-well plates at room temperature and neutral pH. The stiffness of this gel was tailored to be within the stiffness range of human glioblastoma tissue to promote the formation of tumor spheroids. Differences in cell morphology, proliferation rate, and dose-dependent drug cytotoxicity were compared among cell spheroids grown on CSPG gels, cells in monolayer culture on tissue culture polystyrene and cells cultured on Matrigel. Tumor spheroids on CSPG gels displayed statistically significantly greater resistance to chemotherapeutics than in the conditions where cells did not form spheroids. Gene expression analysis suggests that resistance of cells on CSPG gels to the therapy may be partially attributed to upregulation of ATP-binding cassette transporters and downregulation of DNA mismatch repair genes, which was stimulated by spheroid formation. These findings suggest CSPG gel generates tumor spheroids that better reflect the malignant behavior of GBM and provides a cost-effective substrate for preclinical, high-throughput screening of potential cancer therapeutics.
Collapse
Affiliation(s)
- Fei-Chien Chang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Sheeny Lan Levengood
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Nick Cho
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Likai Chen
- Department of Bioengineering Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Everet Wang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - John S. Yu
- Department of Neurosurgery, Maxine-Dunitz Neurosurgical Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
50
|
Lee SY, Doh I, Nam DH, Lee DW. 3D Cell-Based High-Content Screening (HCS) Using a Micropillar and Microwell Chip Platform. Anal Chem 2018; 90:8354-8361. [DOI: 10.1021/acs.analchem.7b05328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Sang-Yun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, 06351, Republic of Korea
- Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
- Central R & D Center, Medical & Bio Device (MBD) Co., Ltd, Suwon, 16229, Republic of Korea
| | - Il Doh
- Center for Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Do-Hyun Nam
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, 06351, Republic of Korea
- Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Dong Woo Lee
- Department of Biomedical Engineering, Konyang University, Daejeon, 35365, Republic of Korea
| |
Collapse
|