1
|
Zhang Y, Liang Y, Gu Y. The dopaminergic system and Alzheimer's disease. Neural Regen Res 2025; 20:2495-2512. [PMID: 39314145 PMCID: PMC11801300 DOI: 10.4103/nrr.nrr-d-24-00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/21/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Alzheimer's disease is a common neurodegenerative disorder in older adults. Despite its prevalence, its pathogenesis remains unclear. In addition to the most widely accepted causes, which include excessive amyloid-beta aggregation, tau hyperphosphorylation, and deficiency of the neurotransmitter acetylcholine, numerous studies have shown that the dopaminergic system is also closely associated with the occurrence and development of this condition. Dopamine is a crucial catecholaminergic neurotransmitter in the human body. Dopamine-associated treatments, such as drugs that target dopamine receptor D and dopamine analogs, can improve cognitive function and alleviate psychiatric symptoms as well as ameliorate other clinical manifestations. However, therapeutics targeting the dopaminergic system are associated with various adverse reactions, such as addiction and exacerbation of cognitive impairment. This review summarizes the role of the dopaminergic system in the pathology of Alzheimer's disease, focusing on currently available dopamine-based therapies for this disorder and the common side effects associated with dopamine-related drugs. The aim of this review is to provide insights into the potential connections between the dopaminergic system and Alzheimer's disease, thus helping to clarify the mechanisms underlying the condition and exploring more effective therapeutic options.
Collapse
Affiliation(s)
- Yuhan Zhang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Yuan Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yixue Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
2
|
Hutmacher F, Aufschnaiter S. An Art Exhibition on Creative Activities of Family Members of Persons with Dementia as an Effective Tool for Science Communication: A Qualitative Assessment Study. HEALTH COMMUNICATION 2025:1-11. [PMID: 39898520 DOI: 10.1080/10410236.2025.2460849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Dementia poses a huge challenge - not only to the persons living with the condition but also to their family and friends. Recent research has demonstrated that engaging in creative activities can serve as a coping mechanism to deal with the dementia of a loved one. An art exhibition was created to communicate this insight to a broader audience. As indicated by interviews with exhibitors and visitors as well as an analysis of notes that visitors left in the exhibition, the exhibition helped generating important knowledge regarding the usefulness of creative activities, opened new perspectives on dementia, and provided a platform for exchange and solidarity that inspired individuals to think and behave differently. In sum, this suggests that arts-based exhibitions can be a powerful tool for health communication and science communication and for broadening the societal discourse in the context of dementia.
Collapse
|
3
|
Zhou J, Kim YK, Li C, Park S. Natural compounds for Alzheimer's prevention and treatment: Integrating SELFormer-based computational screening with experimental validation. Comput Biol Med 2025; 185:109523. [PMID: 39657444 DOI: 10.1016/j.compbiomed.2024.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND This study aimed to develop and apply a novel computational pipeline combining SELFormer, a transformer architecture-based chemical language model, with advanced deep learning techniques to predict natural compounds (NCs) with potential in Alzheimer's disease (AD) treatment. The NCs were identified based on activity related to seven AD-specific genes, including acetylcholinesterase (AChE), amyloid precursor protein (APP), beta-secretase 1 (BACE1), and presenilin-1 (PSEN1). METHODS We implemented a computational pipeline using SELFormer and deep learning techniques, conducted optimal clustering and quantitative structure-activity relationship (QSAR) analyses, and performed a uniform manifold approximation and projection (UMAP) to categorize compounds based on bioactivity levels. Molecular docking analysis was carried out on selected compounds. To validate the computational predictions, we conducted in vitro studies using nerve growth factor (NGF)-differentiated PC12 cells. Finally, we mapped the relationships between food sources containing the identified compounds and their target proteins. RESULTS Optimal clustering analysis revealed five distinct groups of NCs, while QSAR analysis highlighted variations in molecular properties across clusters. The UMAP projection identified 17 highly active NCs (pIC50>7). Molecular docking analysis showed that cowanin, β-caryophyllene, and L-citronellol demonstrated decreased binding energy across target proteins. In vitro studies confirmed significant biological activities of these compounds, including increased cell viability, decreased AChE activity, reduced lipid peroxidation and tumor necrosis factor (TNF)-α mRNA expression, and increased brain-derived neurotrophic factor (BDNF) mRNA expression compared to the control. The study also identified natural sources of these compounds, such as anatidae, mangosteen, and celery, providing insights into potential dietary interventions. CONCLUSION This integrated computational and experimental approach offers a promising framework for identifying potential NCs for AD treatment. The results contribute to exploring effective therapeutic strategies against AD.
Collapse
Affiliation(s)
- Junyu Zhou
- Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China; Department of Bioconvergence, Hoseo University, Asan, South Korea
| | - Yong Kwan Kim
- Department of Information and Communication Engineering, Hoseo University, Asan, South Korea
| | - Chen Li
- Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China
| | - Sunmin Park
- Department of Bioconvergence, Hoseo University, Asan, South Korea; Dept. of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea.
| |
Collapse
|
4
|
Vahid ZF, Eskandani M, Dadashi H, Vandghanooni S, Rashidi MR. Recent advances in potential enzymes and their therapeutic inhibitors for the treatment of Alzheimer's disease. Heliyon 2024; 10:e40756. [PMID: 39717593 PMCID: PMC11664286 DOI: 10.1016/j.heliyon.2024.e40756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Alzheimer's disease (AD), a chronic neurodegenerative disease, is clinically characterized by loss of memory and learning ability among other neurological deficits. Amyloid plaques, hyperphosphorylated tau protein, and neurofibrillary tangles involve in AD etiology. Meanwhile, enzymes and their inhibitors have become the focus of research in AD treatment. In this review, the molecular mechanisms involved in the pathogenesis of AD were overviewed and various enzymes such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), β-secretase, γ-secretase, monoamine oxidase (MAO), and receptor of advanced glycation end products (RAGE) were highlighted as potential targets for AD treatment. Several hybrid molecules with essential substructures derived from various chemotypes have demonstrated desired pharmacological activity. It is envisioned that the development of new drugs that inhibit enzymes involved in AD is a future trend in the management of the disease.
Collapse
Affiliation(s)
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Dadashi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Medicinal Chemistry Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Thawabteh AM, Ghanem AW, AbuMadi S, Thaher D, Jaghama W, Karaman D, Karaman R. Recent Advances in Therapeutics for the Treatment of Alzheimer's Disease. Molecules 2024; 29:5131. [PMID: 39519769 PMCID: PMC11547905 DOI: 10.3390/molecules29215131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The most prevalent chronic neurodegenerative illness in the world is Alzheimer's disease (AD). It results in mental symptoms including behavioral abnormalities and cognitive impairment, which have a substantial financial and psychological impact on the relatives of the patients. The review discusses various pathophysiological mechanisms contributing to AD, including amyloid beta, tau protein, inflammation, and other factors, while emphasizing the need for effective disease-modifying therapeutics that alter disease progression rather than merely alleviating symptoms. This review mainly covers medications that are now being studied in clinical trials or recently approved by the FDA that fall under the disease-modifying treatment (DMT) category, which alters the progression of the disease by targeting underlying biological mechanisms rather than merely alleviating symptoms. DMTs focus on improving patient outcomes by slowing cognitive decline, enhancing neuroprotection, and supporting neurogenesis. Additionally, the review covers amyloid-targeting therapies, tau-targeting therapies, neuroprotective therapies, and others. This evaluation specifically looked at studies on FDA-approved novel DMTs in Phase II or III development that were carried out between 2021 and 2024. A thorough review of the US government database identified clinical trials of biologics and small molecule drugs for 14 agents in Phase I, 34 in Phase II, and 11 in Phase III that might be completed by 2028.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Department of Chemistry, Birzeit University, Birzeit P.O. Box 14, West Bank, Palestine;
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, West Bank, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Aseel Wasel Ghanem
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, West Bank, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Sara AbuMadi
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, West Bank, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Dania Thaher
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, West Bank, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Weam Jaghama
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, West Bank, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Donia Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
6
|
Escamilla S, Sáez-Valero J, Cuchillo-Ibáñez I. NMDARs in Alzheimer's Disease: Between Synaptic and Extrasynaptic Membranes. Int J Mol Sci 2024; 25:10220. [PMID: 39337704 PMCID: PMC11431980 DOI: 10.3390/ijms251810220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamate receptors with key roles in synaptic communication and plasticity. The activation of synaptic NMDARs initiates plasticity and stimulates cell survival. In contrast, the activation of extrasynaptic NMDARs can promote cell death underlying a potential mechanism of neurodegeneration occurring in Alzheimer's disease (AD). The distribution of synaptic versus extrasynaptic NMDARs has emerged as an important parameter contributing to neuronal dysfunction in neurodegenerative diseases including AD. Here, we review the concept of extrasynaptic NMDARs, as this population is present in numerous neuronal cell membranes but also in the membranes of various non-neuronal cells. Previous evidence regarding the membranal distribution of synaptic versus extrasynaptic NMDRs in relation to AD mice models and in the brains of AD patients will also be reviewed.
Collapse
Affiliation(s)
- Sergio Escamilla
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d’Alacant, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d’Alacant, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Inmaculada Cuchillo-Ibáñez
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d’Alacant, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
7
|
Chen H, Zeng Y, Wang D, Li Y, Xing J, Zeng Y, Liu Z, Zhou X, Fan H. Neuroinflammation of Microglial Regulation in Alzheimer's Disease: Therapeutic Approaches. Molecules 2024; 29:1478. [PMID: 38611758 PMCID: PMC11013124 DOI: 10.3390/molecules29071478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Alzheimer's disease (AD) is a complex degenerative disease of the central nervous system that is clinically characterized by a progressive decline in memory and cognitive function. The pathogenesis of AD is intricate and not yet fully understood. Neuroinflammation, particularly microglial activation-mediated neuroinflammation, is believed to play a crucial role in increasing the risk, triggering the onset, and hastening the progression of AD. Modulating microglial activation and regulating microglial energy metabolic disorder are seen as promising strategies to intervene in AD. The application of anti-inflammatory drugs and the targeting of microglia for the prevention and treatment of AD has emerged as a new area of research interest. This article provides a comprehensive review of the role of neuroinflammation of microglial regulation in the development of AD, exploring the connection between microglial energy metabolic disorder, neuroinflammation, and AD development. Additionally, the advancements in anti-inflammatory and microglia-regulating therapies for AD are discussed.
Collapse
Affiliation(s)
- Haiyun Chen
- College of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.C.)
| | - Yuhan Zeng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (Y.Z.)
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Dan Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (Y.Z.)
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Yichen Li
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China;
| | - Jieyu Xing
- College of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.C.)
| | - Yuejia Zeng
- College of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.C.)
| | - Zheng Liu
- School of Medicine, Foshan University, Foshan 528000, China;
| | - Xinhua Zhou
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Hui Fan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (Y.Z.)
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
8
|
Zhu Y, Wang Z, Gao C, Zhang L, Sui R. Oxymatrine-mediated prevention of amyloid β-peptide-induced apoptosis on Alzheimer's model PC12 cells: in vitro cell culture studies and in vivo cognitive assessment in rats. Inflammopharmacology 2023; 31:2685-2699. [PMID: 37515653 DOI: 10.1007/s10787-023-01291-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/03/2023] [Indexed: 07/31/2023]
Abstract
Alzheimer's disease (AD) is a major neurological disease affecting elderly individuals worldwide. Existing drugs only reduce the symptoms of the disease without addressing the underlying causes. Commonly, Aβ25-35 peptide aggregation is the main reason for AD development. Recently, the discovery of multiple protein-targeting molecules has provided a new strategy for treating AD. This study demonstrates the neuroprotective potential of oxymatrine against multiple mechanisms, such as acetylcholinesterase, mitochondrial damage, and β-amyloid-induced cell toxicity. The in vitro cell culture studies showed that oxymatrine possesses significant potential to inhibit acetylcholine esterase and promotes antioxidant, antiapoptotic effects while preventing Aβ25-35 peptide aggregation in PC12 cells. Furthermore, oxymatrine protects PC12 cells against Aβ25-35-induced cytotoxicity and down-regulates the reactive oxygen species generation. The in vivo acute toxicological studies confirm the safety of oxymatrine without causing organ damage or death in animals. Overall, this study provided evidence that oxymatrine is an efficient neuroprotective agent, with a potential to be a multifunctional drug for Alzheimer's disease treatment. These findings present a reliable and synergistic approach for treating AD.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, No.2, Section.5, Renmin Street, Jinzhou, 121000, People's Republic of China
| | - Zhuo Wang
- School of Nursing, Jinzhou Medical University, Jinzhou, 121099, China
| | - Chao Gao
- School of Nursing, Jinzhou Medical University, Jinzhou, 121099, China
| | - Lei Zhang
- School of Nursing, Jinzhou Medical University, Jinzhou, 121099, China
| | - Rubo Sui
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, No.2, Section.5, Renmin Street, Jinzhou, 121000, People's Republic of China.
| |
Collapse
|
9
|
Wu M, Li Y, Miao Y, Qiao H, Wang Y. Exploring the efficient natural products for Alzheimer's disease therapy via Drosophila melanogaster (fruit fly) models. J Drug Target 2023; 31:817-831. [PMID: 37545435 DOI: 10.1080/1061186x.2023.2245582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Alzheimer's disease (AD) is a grievous neurodegenerative disorder and a major form of senile dementia, which is partially caused by abnormal amyloid-beta peptide deposition and Tau protein phosphorylation. But until now, the exact pathogenesis of AD and its treatment strategy still need to investigate. Fortunately, natural products have shown potential as therapeutic agents for treating symptoms of AD due to their neuroprotective activity. To identify the excellent lead compounds for AD control from natural products of herbal medicines, as well as, detect their modes of action, suitable animal models are required. Drosophila melanogaster (fruit fly) is an important model for studying genetic and cellular biological pathways in complex biological processes. Various Drosophila AD models were broadly used for AD research, especially for the discovery of neuroprotective natural products. This review focused on the research progress of natural products in AD disease based on the fruit fly AD model, which provides a reference for using the invertebrate model in developing novel anti-AD drugs.
Collapse
Affiliation(s)
- Mengdi Wu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Ying Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
10
|
Passero M, Zhai T, Huang Z. Investigation of Potential Drug Targets for Cholesterol Regulation to Treat Alzheimer's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6217. [PMID: 37444065 PMCID: PMC10341567 DOI: 10.3390/ijerph20136217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
Despite extensive research and seven approved drugs, the complex interplay of genes, proteins, and pathways in Alzheimer's disease remains a challenge. This implies the intricacies of the mechanism for Alzheimer's disease, which involves the interaction of hundreds of genes, proteins, and pathways. While the major hallmarks of Alzheimer's disease are the accumulation of amyloid plaques and tau protein tangles, excessive accumulation of cholesterol is reportedly correlated with Alzheimer's disease patients. In this work, protein-protein interaction analysis was conducted based upon the genes from a clinical database to identify the top protein targets with most data-indicated involvement in Alzheimer's disease, which include ABCA1, CYP46A1, BACE1, TREM2, GSK3B, and SREBP2. The reactions and pathways associated with these genes were thoroughly studied for their roles in regulating brain cholesterol biosynthesis, amyloid beta accumulation, and tau protein tangle formation. Existing clinical trials for each protein target were also investigated. The research indicated that the inhibition of SREBP2, BACE1, or GSK3B is beneficial to reduce cholesterol and amyloid beta accumulation, while the activation of ABCA1, CYP46A1, or TREM2 has similar effects. In this study, Sterol Regulatory Element-Binding Protein 2 (SREBP2) emerged as the primary protein target. SREBP2 serves a pivotal role in maintaining cholesterol balance, acting as a transcription factor that controls the expression of several enzymes pivotal for cholesterol biosynthesis. Novel studies suggest that SREBP2 performs a multifaceted role in Alzheimer's disease. The hyperactivity of SREBP2 may lead to heightened cholesterol biosynthesis, which suggested association with the pathogenesis of Alzheimer's disease. Lowering SREBP2 levels in an Alzheimer's disease mouse model results in reduced production of amyloid-beta, a major contributor to Alzheimer's disease progression. Moreover, its thoroughly analyzed crystal structure allows for computer-aided screening of potential inhibitors; SREBP2 is thus selected as a prospective drug target. While more protein targets can be added onto the list in the future, this work provides an overview of key proteins involved in the regulation of brain cholesterol biosynthesis that may be further investigated for Alzheimer's disease intervention.
Collapse
Affiliation(s)
| | | | - Zuyi Huang
- Department of Chemical Engineering, Villanova University, Villanova, PA 19085, USA
| |
Collapse
|
11
|
Ajenikoko MK, Ajagbe AO, Onigbinde OA, Okesina AA, Tijani AA. Review of Alzheimer's disease drugs and their relationship with neuron-glia interaction. IBRO Neurosci Rep 2023; 14:64-76. [PMID: 36593897 PMCID: PMC9803919 DOI: 10.1016/j.ibneur.2022.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. Because Alzheimer's disease has no known treatment, sufferers and their caregivers must concentrate on symptom management. Astrocytes and microglia are now known to play distinct physiological roles in synaptic function, the blood-brain barrier, and neurovascular coupling. Consequently, the search for drugs that can slow the degenerative process in dementia sufferers continues because existing drugs are designed to alleviate the symptoms of Alzheimer's disease. Drugs that address pathological changes without interfering with the normal function of glia, such as eliminating amyloid-beta deposits, are prospective treatments for neuroinflammatory illnesses. Because neuron-astrocytes-microglia interactions are so complex, developing effective, preventive, and therapeutic medications for AD will necessitate novel methodologies and strategic targets. This review focused on existing medications used in treating AD amongst which include Donepezil, Choline Alphoscerate, Galantamine, Dextromethorphan, palmitoylethanolamide, citalopram, resveratrol, and solanezumab. This review summarizes the effects of these drugs on neurons, astrocytes, and microglia interactions based on their pharmacokinetic properties, mechanism of action, dosing, and clinical presentations.
Collapse
Affiliation(s)
- Michael Kunle Ajenikoko
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Ishaka, Uganda
| | - Abayomi Oyeyemi Ajagbe
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, P.M.B. 900001 Abuja, Nigeria
| | - Oluwanisola Akanji Onigbinde
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, P.M.B. 900001 Abuja, Nigeria
| | - Akeem Ayodeji Okesina
- Department of Clinical Medicine and Community Health, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Ahmad Adekilekun Tijani
- Department of Anatomy, Faculty of Basic Medical Sciences, Modibbo Adama University, Yola, Nigeria
| |
Collapse
|
12
|
Orzeł U, Pasznik P, Miszta P, Lorkowski M, Niewieczerzał S, Jakowiecki J, Filipek S. GS-SMD server for steered molecular dynamics of peptide substrates in the active site of the γ-secretase complex. Nucleic Acids Res 2023:7173862. [PMID: 37207343 DOI: 10.1093/nar/gkad409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/15/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023] Open
Abstract
Despite recent advances in research, the mechanism of Alzheimer's disease is not fully understood yet. Understanding the process of cleavage and then trimming of peptide substrates, can help selectively block γ-secretase (GS) to stop overproduction of the amyloidogenic products. Our GS-SMD server (https://gs-smd.biomodellab.eu/) allows cleaving and unfolding of all currently known GS substrates (more than 170 peptide substrates). The substrate structure is obtained by threading of the substrate sequence into the known structure of GS complex. The simulations are performed in an implicit water-membrane environment so they are performed rather quickly, 2-6 h per job, depending on the mode of calculations (part of GS complex or the whole structure). It is also possible to introduce mutations to the substrate and GS and pull any part of the substrate in any direction using the steered molecular dynamics (SMD) simulations with constant velocity. The obtained trajectories are visualized and analyzed in the interactive way. One can also compare multiple simulations using the interaction frequency analysis. GS-SMD server can be useful for revealing mechanisms of substrate unfolding and role of mutations in this process.
Collapse
Affiliation(s)
- Urszula Orzeł
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Paweł Pasznik
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Przemysław Miszta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Marcin Lorkowski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Szymon Niewieczerzał
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Jakub Jakowiecki
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Anti-Neuroinflammatory Potential of Natural Products in the Treatment of Alzheimer's Disease. Molecules 2023; 28:molecules28031486. [PMID: 36771152 PMCID: PMC9920976 DOI: 10.3390/molecules28031486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related chronic progressive neurodegenerative disease, which is the main cause of dementia in the elderly. Much evidence shows that the onset and late symptoms of AD are caused by multiple factors. Among them, aging is the main factor in the pathogenesis of AD, and the most important risk factor for AD is neuroinflammation. So far, there is no cure for AD, but the relationship between neuroinflammation and AD may provide a new strategy for the treatment of AD. We herein discussed the main etiology hypothesis of AD and the role of neuroinflammation in AD, as well as anti-inflammatory natural products with the potential to prevent and alleviate AD symptoms, including alkaloids, steroids, terpenoids, flavonoids and polyphenols, which are available with great potential for the development of anti-AD drugs.
Collapse
|
14
|
Gupta DP, Lee YS, Choe Y, Kim KT, Song GJ, Hwang SC. Knee osteoarthritis accelerates amyloid beta deposition and neurodegeneration in a mouse model of Alzheimer's disease. Mol Brain 2023; 16:1. [PMID: 36593507 PMCID: PMC9809050 DOI: 10.1186/s13041-022-00986-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/10/2022] [Indexed: 01/03/2023] Open
Abstract
Knee osteoarthritis (OA) is characterized by knee cartilage degeneration and secondary bone hyperplasia, resulting in pain, stiffness, and gait disturbance. The relationship between knee OA and neurodegenerative diseases is still unclear. This study used an Alzheimer's disease (AD) mouse model to observe whether osteoarthritis accelerates dementia progression by analyzing brain histology and neuroinflammation. Knee OA was induced by destabilizing the medial meniscus (DMM) in control (WT) and AD (5xFAD) mice before pathological symptoms. Mouse knee joints were scanned with a micro-CT scanner. A sham operation was used as control. Motor and cognitive abilities were tested after OA induction. Neurodegeneration, β-amyloid plaque formation, and neuroinflammation were analyzed by immunostaining, Western blotting, and RT-PCR in brain tissues. Compared with sham controls, OA in AD mice increased inflammatory cytokine levels in brain tissues. Furthermore, OA significantly increased β-amyloid deposition and neuronal loss in AD mice compared to sham controls. In conclusion, knee OA accelerated amyloid plaque deposition and neurodegeneration in AD-OA mice, suggesting that OA is a risk factor for AD.
Collapse
Affiliation(s)
- Deepak Prasad Gupta
- grid.411199.50000 0004 0470 5702Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-Do Republic of Korea ,grid.411199.50000 0004 0470 5702Translational Brain Research Center, International St. Mary’s Hospital, Catholic Kwandong University, Incheon, Republic of Korea
| | - Young-Sun Lee
- grid.411199.50000 0004 0470 5702Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-Do Republic of Korea ,grid.411199.50000 0004 0470 5702Translational Brain Research Center, International St. Mary’s Hospital, Catholic Kwandong University, Incheon, Republic of Korea
| | - Youngshik Choe
- grid.452628.f0000 0004 5905 0571Korea Brain Research Institute, Daegu, Republic of Korea
| | - Kun-Tae Kim
- grid.411899.c0000 0004 0624 2502Department of Orthopaedic Surgery, Gyeongsang National University College of Medicine, Gyeongsang National University Hospital, Jinju-Si, Gyeongsangnam-Do Republic of Korea
| | - Gyun Jee Song
- grid.411199.50000 0004 0470 5702Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-Do Republic of Korea ,grid.411199.50000 0004 0470 5702Translational Brain Research Center, International St. Mary’s Hospital, Catholic Kwandong University, Incheon, Republic of Korea
| | - Sun-Chul Hwang
- grid.411899.c0000 0004 0624 2502Department of Orthopaedic Surgery, Gyeongsang National University College of Medicine, Gyeongsang National University Hospital, Jinju-Si, Gyeongsangnam-Do Republic of Korea
| |
Collapse
|
15
|
Kosagisharaf JR, Hegde ML. Introduction to The Special Issue: Novel Molecular Pathways and Therapeutic Challenges in Neurodegenerative Diseases. J Alzheimers Dis 2023; 94:S3-S7. [PMID: 37393511 PMCID: PMC10473067 DOI: 10.3233/jad-230622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Affiliation(s)
- Jagannatha Rao Kosagisharaf
- Koneru Lakshmaiah Education Foundation (KLEF) Deemed to be University, Vaddeswaram, Andhra Pradesh, India
- SNI, INDICASAT AIP, Panama
| | - Muralidhar L. Hegde
- Department of Neurosurgery, Division of DNA Repair Research, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
16
|
Gribaldo L, Dura A. EURL ECVAM Literature Review Series on Advanced Non-Animal Models for Respiratory Diseases, Breast Cancer and Neurodegenerative Disorders. Animals (Basel) 2022; 12:ani12172180. [PMID: 36077900 PMCID: PMC9454965 DOI: 10.3390/ani12172180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
In vivo models are used in biomedical research to reproduce human disease and develop new drugs. However, they do not mimic the disease as it occurs in humans, and their use has failed to identify novel therapies effective for many highly prevalent non-communicable diseases, such as Alzheimer’s disease. Indeed, the clinical failure rate in drug development remains very high, with an overall likelihood of approval from Phase I of about 9.6%. On the other hand, human-based models, advanced imaging techniques and human epidemiological studies may increase our understanding of disease aetiology and pathogenesis and enable the advance of safe and effective therapies. Particularly when human tissues are used, they may produce faster, cheaper results, more predictive for humans, whilst yielding greater comprehensions of human biochemical processes. A first effort to collect existing knowledge about non-animal models of highly prevalent human diseases was made by the Joint Research Centre of the European Commission. The final aim was to identify and share information on the capabilities and limits of human-based models at different levels: scientific communities, universities and secondary schools, national committees for animal welfare and the public at large.
Collapse
|
17
|
Li RY, Xie JL, Meng D, Deng P. Virtual screening of lead compounds for the treatment of Alzheimer’s disease based on multi-target strategy. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2104453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Ruo-yu Li
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing, People’s Republic of China
| | - Jia-li Xie
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing, People’s Republic of China
| | - Dan Meng
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing, People’s Republic of China
| | - Ping Deng
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing, People’s Republic of China
- Chongqing Key Research Laboratory for Quality Evaluation and Safety Research of APIs, Chongqing, People’s Republic of China
| |
Collapse
|
18
|
Morgan SL, Naderi P, Koler K, Pita-Juarez Y, Prokopenko D, Vlachos IS, Tanzi RE, Bertram L, Hide WA. Most Pathways Can Be Related to the Pathogenesis of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:846902. [PMID: 35813951 PMCID: PMC9263183 DOI: 10.3389/fnagi.2022.846902] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a complex neurodegenerative disorder. The relative contribution of the numerous underlying functional mechanisms is poorly understood. To comprehensively understand the context and distribution of pathways that contribute to AD, we performed text-mining to generate an exhaustive, systematic assessment of the breadth and diversity of biological pathways within a corpus of 206,324 dementia publication abstracts. A total of 91% (325/335) of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways have publications containing an association via at least 5 studies, while 63% of pathway terms have at least 50 studies providing a clear association with AD. Despite major technological advances, the same set of top-ranked pathways have been consistently related to AD for 30 years, including AD, immune system, metabolic pathways, cholinergic synapse, long-term depression, proteasome, diabetes, cancer, and chemokine signaling. AD pathways studied appear biased: animal model and human subject studies prioritize different AD pathways. Surprisingly, human genetic discoveries and drug targeting are not enriched in the most frequently studied pathways. Our findings suggest that not only is this disorder incredibly complex, but that its functional reach is also nearly global. As a consequence of our study, research results can now be assessed in the context of the wider AD literature, supporting the design of drug therapies that target a broader range of mechanisms. The results of this study can be explored at www.adpathways.org.
Collapse
Affiliation(s)
- Sarah L. Morgan
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Blizard Institute, Department of Neuroscience, Surgery and Trauma, Queen Mary University of London, London, United Kingdom
| | - Pourya Naderi
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Katjuša Koler
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
| | - Yered Pita-Juarez
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Dmitry Prokopenko
- Harvard Medical School, Boston, MA, United States
- Genetics and Aging Research Unit, The Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Ioannis S. Vlachos
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Rudolph E. Tanzi
- Harvard Medical School, Boston, MA, United States
- Genetics and Aging Research Unit, The Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Winston A. Hide
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Winston A. Hide,
| |
Collapse
|
19
|
Wong DR, Conrad J, Johnson N, Ayers J, Laeremans A, Lee JC, Lee J, Prusiner SB, Bandyopadhyay S, Butte AJ, Paras NA, Keiser MJ. Trans-channel fluorescence learning improves high-content screening for Alzheimer's disease therapeutics. NAT MACH INTELL 2022; 4:583-595. [PMID: 36276634 PMCID: PMC9585544 DOI: 10.1038/s42256-022-00490-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/19/2022] [Indexed: 02/07/2023]
Abstract
In microscopy-based drug screens, fluorescent markers carry critical information on how compounds affect different biological processes. However, practical considerations, such as the labor and preparation formats needed to produce different image channels, hinders the use of certain fluorescent markers. Consequently, completed screens may lack biologically informative but experimentally impractical markers. Here, we present a deep learning method for overcoming these limitations. We accurately generated predicted fluorescent signals from other related markers and validated this new machine learning (ML) method on two biologically distinct datasets. We used the ML method to improve the selection of biologically active compounds for Alzheimer's disease (AD) from a completed high-content high-throughput screen (HCS) that had only contained the original markers. The ML method identified novel compounds that effectively blocked tau aggregation, which had been missed by traditional screening approaches unguided by ML. The method improved triaging efficiency of compound rankings over conventional rankings by raw image channels. We reproduced this ML pipeline on a biologically independent cancer-based dataset, demonstrating its generalizability. The approach is disease-agnostic and applicable across diverse fluorescence microscopy datasets.
Collapse
Affiliation(s)
- Daniel R. Wong
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA, 94158, USA
- Center for Data-Driven Insights and Innovation, University of California, Office of the President, Oakland, CA, 94607, USA
| | - Jay Conrad
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
| | - Noah Johnson
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
- University of Colorado Alzheimer’s and Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jacob Ayers
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
| | - Annelies Laeremans
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Joanne C. Lee
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
| | - Jisoo Lee
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
| | - Stanley B. Prusiner
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
| | - Sourav Bandyopadhyay
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Atul J. Butte
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA, 94158, USA
- Center for Data-Driven Insights and Innovation, University of California, Office of the President, Oakland, CA, 94607, USA
| | - Nick A. Paras
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
| | - Michael J. Keiser
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, 94158, USA
| |
Collapse
|
20
|
Li DQ, Jiang F, Zhang HS, Zheng LJ, Wang QJ, Fu R, Liu XG, Gao PY. Network pharmacology-based approach to investigate the mechanisms of Zingiber officinale Roscoe in the treatment of neurodegenerative diseases. J Food Biochem 2022; 46:e14068. [PMID: 35128682 DOI: 10.1111/jfbc.14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
Neurodegenerative diseases (NDDs) are chronic neurological disorders associated with cognitive or motor dysfunction. As a common spice, Zingiber officinale Roscoe has been used as a medicine to treat a variety of NDDs. However, at the molecular level, the mechanisms of Z. officinale in treating of NDDs have not been deeply investigated. In this study, network pharmacology method, molecular docking, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to predict the mechanisms of Z. officinale in the treatment of NDDs. After a series of biological information analyses, five core targets were obtained, including heme oxygenase 1 (HMOX1), acetylcholinesterase (AChE), nitric oxide synthase (NOS), catechol-O-methyl-transferase (COMT), and metabotropic glutamate receptor 5 (mGluR5). Compounds 75, 68, 46, 67, 69, 49, 66, 50, 34, and 64 were identified as the main components of Z. officinale in the treatment of NDDs. The crucial pathways mainly include neuroactive ligand-receptor signaling pathways, cyclic adenosine monophosphate signaling pathways, dopamine synaptic signaling pathways, and so on. Besides, in vitro experiments by AChE inhibitory activities assay and neuroprotective activities against H2 O2 -induced injury in human neuroblastoma SH-SY5Y cells validated the reliability of the results of network analysis. PRACTICAL APPLICATIONS: Zingiber officinale Roscoe is widely used as a traditional spice and herbal medicine. It contains a number of active ingredients, which have shown activities on anti-neurodegenerative diseases (NDDs). In this paper, the potential mechanism of Z. officinale in the treatment of NDDs is explored through network pharmacology, and it was verified by in vitro experiments. The mechanism was not only clarified at the system level but also proved to be effective at the biological level. The results can be used as a reference for Z. officinale in the treating of NDDs.
Collapse
Affiliation(s)
- Dan-Qi Li
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, PR China
- Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Fan Jiang
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Han-Shuo Zhang
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Lian-Jun Zheng
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Qing-Jie Wang
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Ran Fu
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Xue-Gui Liu
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, PR China
- National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology, Shenyang University of Chemical Technology, Shenyang, PR China
| | - Pin-Yi Gao
- Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang University of Chemical Technology, Shenyang, PR China
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, PR China
| |
Collapse
|
21
|
Kwon LN, Yang DH, Hwang MG, Lim SJ, Kim YK, Kim JG, Cho KH, Chun HW, Park KW. Automated Classification of Normal Control and Early-Stage Dementia Based on Activities of Daily Living (ADL) Data Acquired from Smart Home Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413235. [PMID: 34948842 PMCID: PMC8701739 DOI: 10.3390/ijerph182413235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 11/26/2022]
Abstract
With the global trend toward an aging population, the increasing number of dementia patients and elderly living alone has emerged as a serious social issue in South Korea. The assessment of activities of daily living (ADL) is essential for diagnosing dementia. However, since the assessment is based on the ADL questionnaire, it relies on subjective judgment and lacks objectivity. Seven healthy seniors and six with early-stage dementia participated in the study to obtain ADL data. The derived ADL features were generated by smart home sensors. Statistical methods and machine learning techniques were employed to develop a model for auto-classifying the normal controls and early-stage dementia patients. The proposed approach verified the developed model as an objective ADL evaluation tool for the diagnosis of dementia. A random forest algorithm was used to compare a personalized model and a non-personalized model. The comparison result verified that the accuracy (91.20%) of the personalized model was higher than that (84.54%) of the non-personalized model. This indicates that the cognitive ability-based personalization showed encouraging performance in the classification of normal control and early-stage dementia and it is expected that the findings of this study will serve as important basic data for the objective diagnosis of dementia.
Collapse
Affiliation(s)
- Lee-Nam Kwon
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea; (L.-N.K.); (S.-J.L.)
- Future Information Research Center, Korea Institute of Science and Technology Information, Seoul 02456, Korea
- Department of Computer Science and Engineering, Chungnam National University, Daejeon 34134, Korea;
| | - Dong-Hun Yang
- Department of Data and HPC Science, University of Science and Technology, Daejeon 34113, Korea; (D.-H.Y.); (M.-G.H.)
- Artificial Intelligence Technology Research Center, Korea Institute of Science and Technology Information, Daejeon 34141, Korea
| | - Myung-Gwon Hwang
- Department of Data and HPC Science, University of Science and Technology, Daejeon 34113, Korea; (D.-H.Y.); (M.-G.H.)
- Artificial Intelligence Technology Research Center, Korea Institute of Science and Technology Information, Daejeon 34141, Korea
| | - Soo-Jin Lim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea; (L.-N.K.); (S.-J.L.)
- Future Information Research Center, Korea Institute of Science and Technology Information, Seoul 02456, Korea
| | - Young-Kuk Kim
- Department of Computer Science and Engineering, Chungnam National University, Daejeon 34134, Korea;
| | - Jae-Gyum Kim
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Korea;
| | - Kwang-Hee Cho
- Department of Biomedical Research Center, Korea University Anam Hospital, Seoul 02841, Korea;
| | - Hong-Woo Chun
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea; (L.-N.K.); (S.-J.L.)
- Future Information Research Center, Korea Institute of Science and Technology Information, Seoul 02456, Korea
- Correspondence: (H.-W.C.); (K.-W.P.); Tel.: +82-2-3299-6298 (H.-W.C.)
| | - Kun-Woo Park
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Korea;
- Correspondence: (H.-W.C.); (K.-W.P.); Tel.: +82-2-3299-6298 (H.-W.C.)
| |
Collapse
|
22
|
Ogidigo JO, Anosike CA, Joshua PE, Ibeji CU, Nwanguma BC, Nwodo OFC. Neuroprotective effect of Bryophyllum pinnatum flavonoids against aluminum chloride-induced neurotoxicity in rats. Toxicol Mech Methods 2021; 32:243-258. [PMID: 34663170 DOI: 10.1080/15376516.2021.1995557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Toxic metals such as aluminum accumulation in the brain have been associated with the pathophysiology of several neurodegenerative disorders. Bryophyllum pinnatum leaves contain a vast array of polyphenols, particularly flavonoids, that may play a role in the prevention of toxic and degenerative effects in the brain. This study assessed the neuro-restorative potential of leaves of B. pinnatum enriched flavonoid fraction (BPFRF) in aluminum-induced neurotoxicity in rats. Neurotoxicity was induced in male Wistar rats by oral administration of 150 mg/kg body weight of aluminum chloride (AlCl3) for 21 days. Rats were grouped into five (n = 6); Control (untreated), Rivastigmine group, AlCl3 group and BPFRF group (50 and 100 mg/kg b.wt.) for 21 days. Neuronal changes in the hippocampus and cortex were biochemically and histologically evaluated. Expression patterns of acetylcholinesterase (AChE) mRNA were assessed using semi-quantitative reverse-transcription-polymerase chain reaction protocols. Molecular interactions of BPFRF compounds were investigated in silico. The results revealed that oral administration of BPFRF ameliorated oxidative imbalance by augmenting antioxidant systems and decreasing lipid peroxidation caused by AlCl3. BPFRF administration also contributed to the down-regulation of AChE mRNA transcripts and improved histological features in the hippocampus and cortex. Molecular docking studies revealed strong molecular interactions between BPFRF compounds, catalase, superoxide dismutase and glutathione peroxidase Overall, these findings suggest the neuroprotective effect of Bryophyllum pinnatum against aluminum-induced neurotoxicity.
Collapse
Affiliation(s)
- Joyce Oloaigbe Ogidigo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria.,Bio-resources Centre Abuja, National Biotechnology Development Agency, Abuja, Nigeria
| | - Chioma Assumpta Anosike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Parker Elijah Joshua
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Collins U Ibeji
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria
| | - Bennett C Nwanguma
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Okwesili Fred Chiletugo Nwodo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria.,Department of Biochemistry, Mkar University, Benue State, Nigeria
| |
Collapse
|
23
|
Guo X, Bao X, Wang X, Liu D, Liu P, Chi T, Ji X, Zheng Z, Chen G, Zou L. OAB-14 Effectively Ameliorates the Dysfunction of the Endosomal-Autophagic-Lysosomal Pathway in APP/PS1 Transgenic Mice. ACS Chem Neurosci 2021; 12:3985-3993. [PMID: 34652916 DOI: 10.1021/acschemneuro.1c00209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Alzheimer's disease (AD), damaged Aβ clearance contributes to elevated levels of Aβ that cause a series of cytotoxic cascade reactions. Thus, targeting Aβ clearance has now been considered a valid therapeutic approach for AD. Cellular uptake and degradation are important mechanisms for Aβ clearance, which are mainly performed by the endosomal-autophagic-lysosomal (EAL) pathway. Our previous study showed that OAB-14, a novel small molecule designed with bexarotene as the lead compound, treatment for 3 months significantly alleviated cognitive disorders and remarkably reduced the deposition of Aβ without affecting its production in APP/PS1 transgenic mice. Here, we further revealed that enhancement of the EAL activity is one of the mechanisms that increases Aβ clearance after OAB-14 administration for 3 months. OAB-14 facilitates receptor-mediated endocytosis and restores autophagy flux via the AMPK/mTOR pathway. Meanwhile, OAB-14 enhances the lysosomal activity, and reduced Aβ accumulation in lysosomes was observed in OAB-14-treated AD mice. These results suggest that OAB-14 may promote Aβ clearance in lysosomes by alleviating the EAL dysfunction in AD mice.
Collapse
Affiliation(s)
- Xiaoli Guo
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Xuefei Bao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Xiaojuan Wang
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Danyang Liu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Peng Liu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Tianyan Chi
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Xuefei Ji
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Zhonghui Zheng
- Shandong Xinhua Pharmaceutical Co., Ltd., Zibo, Shandong 255086, P. R. China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Libo Zou
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| |
Collapse
|
24
|
Malik AA, Ojha SC, Schaduangrat N, Nantasenamat C. ABCpred: a webserver for the discovery of acetyl- and butyryl-cholinesterase inhibitors. Mol Divers 2021; 26:467-487. [PMID: 34609711 DOI: 10.1007/s11030-021-10292-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia and is associated with a decline in cognitive function and language ability. The deficiency of the cholinergic neurotransmitter known as acetylcholine (ACh) is associated with AD. Acetylcholinesterase (AChE) hydrolyses ACh and inhibits the cholinergic transmission. Furthermore, both AChE and butyrylcholinesterase (BChE) plays important roles in early and late stages of AD. Therefore, the inhibition of either or both cholinesterase enzymes represent a promising therapeutic route for treating AD. In this study, a large-scale classification structure-activity relationship model was developed to predict cholinesterase inhibitory activities as well as revealing important substructures governing their activities. Herein, a non-redundant dataset constituting 985 and 1056 compounds for AChE and BChE, respectively, was obtained from the ChEMBL database. These inhibitors were described by 12 sets of molecular fingerprints and predictive models were developed using the random forest algorithm. Evaluation of the model performance by means of Matthews correlation coefficient and consideration of the model's interpretability indicated that the SubstructureCount fingerprint was the most robust with five-fold cross-validated MCC of [0.76, 0.82] for AChE and BChE, respectively, and test MCC of [0.73, 0.97]. Feature interpretation revealed that the aromatic ring system, heterocyclic nitrogen containing compounds and amines are important for cholinesterase inhibition. Finally, the model was deployed as a publicly available webserver called the ABCpred at http://codes.bio/abcpred/ .
Collapse
Affiliation(s)
- Aijaz Ahmad Malik
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Nalini Schaduangrat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
25
|
Pople CB, Meng Y, Li DZ, Bigioni L, Davidson B, Vecchio LM, Hamani C, Rabin JS, Lipsman N. Neuromodulation in the Treatment of Alzheimer's Disease: Current and Emerging Approaches. J Alzheimers Dis 2021; 78:1299-1313. [PMID: 33164935 DOI: 10.3233/jad-200913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuromodulation as a treatment strategy for psychiatric and neurological diseases has grown in popularity in recent years, with the approval of repetitive transcranial magnetic stimulation (rTMS) for the treatment of depression being one such example. These approaches offer new hope in the treatment of diseases that have proven largely intractable to traditional pharmacological approaches. For this reason, neuromodulation is increasingly being explored for the treatment of Alzheimer's disease. However, such approaches have variable, and, in many cases, very limited evidence for safety and efficacy, with most human evidence obtained in small clinical trials. Here we review work in animal models and humans with Alzheimer's disease exploring emerging neuromodulation modalities. Approaches reviewed include deep brain stimulation, transcranial magnetic stimulation, transcranial electrical stimulation, ultrasound stimulation, photobiomodulation, and visual or auditory stimulation. In doing so, we clarify the current evidence for these approaches in treating Alzheimer's disease and identify specific areas where additional work is needed to facilitate their clinical translation.
Collapse
Affiliation(s)
- Christopher B Pople
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ying Meng
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Daniel Z Li
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Luca Bigioni
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Benjamin Davidson
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Laura M Vecchio
- Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Jennifer S Rabin
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto ON, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
26
|
Lao K, Zhang R, Luan J, Zhang Y, Gou X. Therapeutic Strategies Targeting Amyloid-β Receptors and Transporters in Alzheimer's Disease. J Alzheimers Dis 2021; 79:1429-1442. [PMID: 33459712 DOI: 10.3233/jad-200851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that has been recognized as one of the most intractable medical problems with heavy social and economic costs. Amyloid-β (Aβ) has been identified as a major factor that participates in AD progression through its neurotoxic effects. The major mechanism of Aβ-induced neurotoxicity is by interacting with membrane receptors and subsequent triggering of aberrant cellular signaling. Besides, Aβ transporters also plays an important role by affecting Aβ homeostasis. Thus, these Aβ receptors and transporters are potential targets for the development of AD therapies. Here, we summarize the reported therapeutic strategies targeting Aβ receptors and transporters to provide a molecular basis for future rational design of anti-AD agents.
Collapse
Affiliation(s)
- Kejing Lao
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| | - Ruisan Zhang
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| | - Jing Luan
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| | - Yuelin Zhang
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| | - Xingchun Gou
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| |
Collapse
|
27
|
Wheate NJ. Comparative host–guest complex formation of the Alzheimer’s drug memantine with para-sulfonatocalix[n]arenes (n = 4 or 8). J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Orzeł U, Jakowiecki J, Młynarczyk K, Filipek S. The Role of Cholesterol in Amyloidogenic Substrate Binding to the γ-Secretase Complex. Biomolecules 2021; 11:biom11070935. [PMID: 34202467 PMCID: PMC8301813 DOI: 10.3390/biom11070935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease is the most common progressive neurodegenerative disorder and is characterized by the presence of amyloid β (Aβ) plaques in the brain. The γ-secretase complex, which produces Aβ, is an intramembrane-cleaving protease consisting of four membrane proteins. In this paper we investigated the amyloidogenic fragments of amyloid precursor protein (substrates Aβ43 and Aβ45, leading to less amyloidogenic Aβ40 and more amyloidogenic Aβ42, respectively) docked to the binding site of presenilin, the catalytic subunit of γ-secretase. In total, we performed 9 μs of all-atom molecular dynamics simulations of the whole γ-secretase complex with both substrates in low (10%) and high (50%) concentrations of cholesterol in the membrane. We found that, at the high cholesterol level, the Aβ45 helix was statistically more flexible in the binding site of presenilin than Aβ43. An increase in the cholesterol concentration was also correlated with a higher flexibility of the Aβ45 helix, which suggests incompatibility between Aβ45 and the binding site of presenilin potentiated by a high cholesterol level. However, at the C-terminal part of Aβ45, the active site of presenilin was more compact in the case of a high cholesterol level, which could promote processing of this substrate. We also performed detailed mapping of the cholesterol binding sites at low and high cholesterol concentrations, which were independent of the typical cholesterol binding motifs.
Collapse
|
29
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 451] [Impact Index Per Article: 112.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
30
|
Bekdash RA. The Cholinergic System, the Adrenergic System and the Neuropathology of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22031273. [PMID: 33525357 PMCID: PMC7865740 DOI: 10.3390/ijms22031273] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative diseases are a major public health problem worldwide with a wide spectrum of symptoms and physiological effects. It has been long reported that the dysregulation of the cholinergic system and the adrenergic system are linked to the etiology of Alzheimer’s disease. Cholinergic neurons are widely distributed in brain regions that play a role in cognitive functions and normal cholinergic signaling related to learning and memory is dependent on acetylcholine. The Locus Coeruleus norepinephrine (LC-NE) is the main noradrenergic nucleus that projects and supplies norepinephrine to different brain regions. Norepinephrine has been shown to be neuroprotective against neurodegeneration and plays a role in behavior and cognition. Cholinergic and adrenergic signaling are dysregulated in Alzheimer’s disease. The degeneration of cholinergic neurons in nucleus basalis of Meynert in the basal forebrain and the degeneration of LC-NE neurons were reported in Alzheimer’s disease. The aim of this review is to describe current literature on the role of the cholinergic system and the adrenergic system (LC-NE) in the pathology of Alzheimer’s disease and potential therapeutic implications.
Collapse
Affiliation(s)
- Rola A Bekdash
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
31
|
Moezzi SMI, Mozafari N, Fazel-Hoseini SM, Nadimi-Parashkoohi S, Abbasi H, Ashrafi H, Azadi A. Apolipoprotein J in Alzheimer's Disease: Shedding Light on Its Role with Cell Signaling Pathway Perspective and Possible Therapeutic Approaches. ACS Chem Neurosci 2020; 11:4060-4072. [PMID: 33251792 DOI: 10.1021/acschemneuro.0c00637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Apolipoprotein J (ApoJ), or clusterin, is one of the main apolipoproteins in the brain. It is synthesized and released from astrocytes in a healthy brain, and its expression increases in neurodegenerative disorders. Genetic evidence has suggested an association between ApoJ polymorphism and the risk of Alzheimer's disease (AD)-it is now considered the third main genetic risk factor for late-onset AD. However, the role of ApoJ overexpression in the state of disorder, toxicity, or protection is not yet clear. Since ApoJ plays different roles in AD, we review the function of ApoJ using different cell signaling pathways in AD and outline its paradoxical roles in AD. ApoJ helps in amyloid-beta (Aβ) clearance. Vice versa, ApoJ gene knock-out causes fibrillary Aβ reduction and prevents Aβ-induced neuron cell death. Understanding ApoJ, through various cellular signaling pathways, creates a new perspective on AD's cellular principles. The overall message is that ApoJ can be a valuable tool in controlling AD.
Collapse
Affiliation(s)
| | - Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sadra Nadimi-Parashkoohi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hosein Abbasi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
32
|
Ju Y, Tam KY. 9R, the cholinesterase and amyloid beta aggregation dual inhibitor, as a multifunctional agent to improve cognitive deficit and neuropathology in the triple-transgenic Alzheimer's disease mouse model. Neuropharmacology 2020; 181:108354. [DOI: 10.1016/j.neuropharm.2020.108354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
|
33
|
Huang N, Li W, Rong X, Champ M, Wei L, Li M, Mu H, Hu Y, Ma Z, Lyu J. Effects of a Modified Tai Chi Program on Older People with Mild Dementia: A Randomized Controlled Trial. J Alzheimers Dis 2020; 72:947-956. [PMID: 31743998 DOI: 10.3233/jad-190487] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Tai Chi exercise is a non-pharmacological therapy that has received increased attention in recent years. A Tai Chi program has been specifically modified for older people with cognitive impairments by the research team. OBJECTIVE We aim to assess the effects of this Tai Chi program on mild dementia. METHODS Eighty older people with mild dementia were recruited and randomly assigned to a Tai Chi group or a control group. The Tai Chi group practiced the Tai Chi program three times a week for 10 months, while the control group continued receiving routine treatments. All participants were assessed for cognitive function, behavior/mood, and activities of daily living at baseline, 5 months, and 10 months. RESULTS The Tai Chi group performed better than the control group. Repeated measures ANOVA revealed a significant group×time interaction in the Montreal Cognitive Assessment (MoCA). Further analysis of sub-items of the MoCA showed a significant time effect in naming and abstraction. It was statistically significant in both main effect of time and group×time interaction in the Neuropsychiatric Inventory (NPI) and Geriatric Depression Scale (GDS). Paired sample t test showed the Tai Chi group scored lower at 5 and 10 months in the NPI and at 10 months in the GDS compared with baseline. The Tai Chi group scored lower than the control group at 10 months in the NPI and GDS. CONCLUSION The results suggest this Tai Chi program may help improve cognitive function and mental well-being for older adults with mild dementia.
Collapse
Affiliation(s)
- Nayan Huang
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China.,Center for Brain Disorders Research, Capital Medical University; Beijing Institute of Brain Disorders, Beijing, China
| | - Wenjie Li
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Xiangjiang Rong
- School of Kinesiology and Health, Capital University of Physical Education and Sport, Beijing, China
| | - Mei Champ
- Department of Nursing and Midwifery, University of the West of England, Bristol, UK
| | - Lian Wei
- Graduate School, Capital University of Physical Education and Sport, Beijing, China
| | - Mo Li
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Haiyan Mu
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Yueqing Hu
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Zongjuan Ma
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Jihui Lyu
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China.,Center for Brain Disorders Research, Capital Medical University; Beijing Institute of Brain Disorders, Beijing, China
| |
Collapse
|
34
|
Lambrinoudaki I, Delialis D, Georgiopoulos G, Tual-Chalot S, Vlachogiannis NI, Patras R, Aivalioti E, Armeni E, Augoulea A, Tsoltos N, Soureti A, Stellos K, Stamatelopoulos K. Circulating Amyloid Beta 1-40 Is Associated with Increased Rate of Progression of Atherosclerosis in Menopause: A Prospective Cohort Study. Thromb Haemost 2020; 121:650-658. [PMID: 33202443 DOI: 10.1055/s-0040-1721144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Accumulating evidence suggests that circulating amyloidβ 1-40 (Αβ1-40), a proatherogenic aging peptide, may serve as a novel biomarker in cardiovascular disease (CVD). We aimed to explore the role of plasma Αβ1-40 and its patterns of change over time in atherosclerosis progression in postmenopausal women, a population with substantial unrecognized CVD risk beyond traditional risk factors (TRFs). METHODS In this prospective study, Αβ1-40 was measured in plasma by enzyme-linked immunosorbent assay and atherosclerosis was assessed using carotid high-resolution ultrasonography at baseline and after a median follow-up of 28.2 months in 152 postmenopausal women without history or symptoms of CVD. RESULTS At baseline, high Αβ1-40 was independently associated with higher carotid bulb intima-media thickness (cbIMT) and the sum of maximal wall thickness in all carotid sites (sumWT) (p < 0.05). Αβ1-40 levels increased over time and were associated with decreasing renal function (p < 0.05 for both). Women with a pattern of increasing or persistently high Αβ1-40 levels presented accelerated progression of cbIMT and maximum carotid wall thickness and sumWT (p < 0.05 for all) after adjustment for baseline Αβ1-40 levels, TRFs, and renal function. CONCLUSION In postmenopausal women, a pattern of increasing or persistently high Αβ1-40 was associated with the rate of progression of subclinical atherosclerosis irrespective of its baseline levels. These findings provide novel insights into a link between Αβ1-40 and atherosclerosis progression in menopause and warrant further research to clarify the clinical value of monitoring its circulating levels as an atherosclerosis biomarker in women without clinically overt CVD.
Collapse
Affiliation(s)
- Irene Lambrinoudaki
- Menopause Clinic, 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Delialis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.,School of Biomedical Engineering & Imaging Sciences, Rayne Institute, St. Thomas' Hospital, London, United Kingdom
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nikolaos I Vlachogiannis
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Raphael Patras
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Evmorfia Aivalioti
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Eleni Armeni
- Menopause Clinic, 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Areti Augoulea
- Menopause Clinic, 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Tsoltos
- Menopause Clinic, 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Soureti
- Menopause Clinic, 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Cardiology, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Kimon Stamatelopoulos
- Menopause Clinic, 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
35
|
Choi J, Kwon LN, Lim H, Chun HW. Gender-Based Analysis of Risk Factors for Dementia Using Senior Cohort. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7274. [PMID: 33027971 PMCID: PMC7579641 DOI: 10.3390/ijerph17197274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
Globally, one of the biggest problems with the increase in the elderly population is dementia. However, dementia still has no fundamental cure. Therefore, it is important to predict and prevent dementia early. For early prediction of dementia, it is crucial to find dementia risk factors that increase a person's risk of developing dementia. In this paper, the subject of dementia risk factor analysis and discovery studies were limited to gender, because it is assumed that the difference in the prevalence of dementia in men and women will lead to differences in the risk factors for dementia among men and women. This study analyzed the Korean National Health Information System-Senior Cohort using machine-learning techniques. By using the machine-learning technique, it was possible to reveal a very small causal relationship between data that are ignored using existing statistical techniques. By using the senior cohort, it was possible to analyze 6000 data that matched the experimental conditions out of 558,147 sample subjects over 14 years. In order to analyze the difference in dementia risk factors between men and women, three machine-learning-based dementia risk factor analysis models were constructed and compared. As a result of the experiment, it was found that the risk factors for dementia in men and women are different. In addition, not only did the results include most of the known dementia risk factors, previously unknown candidates for dementia risk factors were also identified. We hope that our research will be helpful in finding new dementia risk factors.
Collapse
Affiliation(s)
- Jaekue Choi
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.C.); (L.-N.K.)
- Future Information Research Center, Korea Institute of Science and Technology Information, Seoul 02456, Korea
- Department of Computer Science and Engineering, Korea University, Seoul 02855, Korea;
| | - Lee-Nam Kwon
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.C.); (L.-N.K.)
- Future Information Research Center, Korea Institute of Science and Technology Information, Seoul 02456, Korea
| | - Heuiseok Lim
- Department of Computer Science and Engineering, Korea University, Seoul 02855, Korea;
| | - Hong-Woo Chun
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.C.); (L.-N.K.)
- Future Information Research Center, Korea Institute of Science and Technology Information, Seoul 02456, Korea
| |
Collapse
|
36
|
Goswami S, Kareem O, Goyal RK, Mumtaz SM, Tonk RK, Gupta R, Pottoo FH. Role of Forkhead Transcription Factors of the O Class (FoxO) in Development and Progression of Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:709-721. [PMID: 33001019 DOI: 10.2174/1871527319666201001105553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 07/20/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
In the Central Nervous System (CNS), a specific loss of focal neurons leads to mental and neurological disorders like dementia, Alzheimer's Disease (AD), Huntington's disease, Parkinson's disease, etc. AD is a neurological degenerative disorder, which is progressive and irreversible in nature and is the widely recognized reason for dementia in the geriatric populace. It affects 10% of people above the age of 65 and is the fourth driving reason for death in the United States. Numerous evidence suggests that the neuronal compartment is not the only genesis of AD, but transcription factors also hold significant importance in the occurrence and advancement of the disease. It is the need of the time to find the novel molecular targets and new techniques for treating or slowing down the progression of neurological disorders, especially AD. In this article, we summarised a conceivable association between transcriptional factors and their defensive measures against neurodegeneration and AD. The mammalian forkhead transcription factors of the class O (FoxO) illustrate one of the potential objectives for the development of new methodologies against AD and other neurocognitive disorders. The presence of FoxO is easily noticeable in the "cognitive centers" of the brain, specifically in the amygdala, hippocampus, and the nucleus accumbens. FoxO proteins are the prominent and necessary factors in memory formation and cognitive functions. FoxO also assumes a pertinent role in the protection of multiple cells in the brain by controlling the involving mechanism of autophagy and apoptosis and also modulates the process of phosphorylation of the targeted protein, thus FoxO must be a putative target in the mitigation of AD. This review features the role of FoxO as an important biomarker and potential new targets for the treatment of AD.
Collapse
Affiliation(s)
- Shikha Goswami
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Ozaifa Kareem
- Department of Pharmaceutical Sciences, Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, JK, India
| | - Ramesh K Goyal
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Sayed M Mumtaz
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Rajiv K Tonk
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Rahul Gupta
- Delhi Pharmaceutical Sciences and Research University, Mehrauli- Badarpur Rd, Sector 3, PushpVihar, New Delhi, India
| | - Faheem H Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University P.O.BOX 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
37
|
Kumar A, Bagri K, Nimbhal M, Kumar P. In silico exploration of the fingerprints triggering modulation of glutaminyl cyclase inhibition for the treatment of Alzheimer's disease using SMILES based attributes in Monte Carlo optimization. J Biomol Struct Dyn 2020; 39:7181-7193. [PMID: 32795153 DOI: 10.1080/07391102.2020.1806111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease is the most common neurodegenerative disorder and being a social burden Alzheimer's has become an economic liability on developing countries. With limited understanding regarding the cause of disease, it is commonly identified by extracellular deposit of amyloid β (Aβ) peptides as senile plaques. Pyroglutamated Aβ is identified from the brain of AD patients and constituted the majority of total Aβ present. The formation of Pyroglutamated Aβ could be hindered by the use of Glutaminyl cyclase inhibitors and could efficiently improve the symptoms of Alzheimer's. The literature revealed the competence of quantitative structure activity/property relationship studies in drug discovery. The present work explores the efficiency of Monte Carlo based QSAR modelling studies on a dataset of 125 Glutaminyl cyclase inhibitors with pKi taken as the endpoint for QSAR analysis. The dataset is divided into training, subtraining, calibration and validation sets resulting in the generation of five random splits. The validation is performed in accordance with the Organization of Economic Corporation and Development principles. The values of R2, Q2, index of ideality of correlation, concordance correlation coefficient, av. rm2 and delta rm2 of calibration set of the best split are found to be 0.9012, 0.8775, 0.9479, 0.9435, 0.8347 and 0.0847, respectively. The structural features responsible for increasing the inhibitory activity are identified. These structural features are added to a base compound from the dataset to design six novel molecules. These new molecules possess improved inhibitory activity as compare to the base compound. The results are further supported by docking studies.Communicated by Vsevolod Makeev.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Kiran Bagri
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Manisha Nimbhal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
38
|
Yang D, Zhu W, Wang Y, Tan F, Ma Z, Gao J, Lin X. Selection of mutant µplasmin for amyloid-β cleavage in vivo. Sci Rep 2020; 10:12117. [PMID: 32694536 PMCID: PMC7374754 DOI: 10.1038/s41598-020-69079-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022] Open
Abstract
One of the main culprits of Alzheimer's disease (AD) is the formation of toxic amyloid-β (Aβ) peptide polymers and the aggregation of Aβ to form plaques in the brain. We have developed techniques to purify the catalytic domain of plasmin, micro-plasmin (µPlm), which can be used for an Aβ-clearance based AD therapy. However, in serum, µPlm is irreversibly inhibited by its principal inhibitor α2-antiplasmin (α2-AP). In this study, we engineered and selected mutant forms of µPlm that are both catalytically active and insensitive to α2-AP inhibition. We identified surface residues of μPlm that might interact and bind α2-AP, and used an alanine-scanning mutagenesis method to select residues having higher activity but lower α2-AP inhibition. Then we employed saturation mutagenesis for further optimize both properties. Modeled complex structure of µPlm/α2-AP shows that F587 is a critical contact residue, which can be used as a starting position for further investigation.
Collapse
Affiliation(s)
- Dongying Yang
- Shandong Provincial Key Laboratory of Biophysics, Shandong Key Laboratory in University of Functional Bioresource Utilization, School of Medicine and Nursing, Dezhou University, Daxuexi Road 566#, Dezhou, 253023, Shandong, China
| | - Wei Zhu
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Yingjie Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Fangmei Tan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zhiping Ma
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Xinli Lin
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities, Wuhan, China.
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
39
|
Khalifeh M, Read MI, Barreto GE, Sahebkar A. Trehalose against Alzheimer's Disease: Insights into a Potential Therapy. Bioessays 2020; 42:e1900195. [PMID: 32519387 DOI: 10.1002/bies.201900195] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Trehalose is a natural disaccharide with a remarkable ability to stabilize biomolecules. In recent years, trehalose has received growing attention as a neuroprotective molecule and has been tested in experimental models for different neurodegenerative diseases. Although the underlying neuroprotective mechanism of trehalose's action is unclear, one of the most important hypotheses is autophagy induction. The chaperone-like activity of trehalose and the ability to modulate inflammatory responses has also been reported. There is compelling evidence that the dysfunction of autophagy and aggregation of misfolded proteins contribute to the pathogenesis of Alzheimer's disease (AD) and other neurodegenerative disorders. Therefore, given the linking between trehalose and autophagy induction, it appears to be a promising therapy for AD. Herein, the published studies concerning the use of trehalose as a potential therapy for AD are summarized, providing a rationale for applying trehalose to reduce Alzheimer's pathology.
Collapse
Affiliation(s)
- Masoomeh Khalifeh
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morgayn I Read
- Department of Pharmacology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
40
|
Zhang X, Lao K, Qiu Z, Rahman MS, Zhang Y, Gou X. Potential Astrocytic Receptors and Transporters in the Pathogenesis of Alzheimer's Disease. J Alzheimers Dis 2020; 67:1109-1122. [PMID: 30741675 DOI: 10.3233/jad-181084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is characterized by the progressive loss of memory and cognition in the aging population. However, the etiology of and therapies for AD remain far from understood. Astrocytes, the most abundant neuroglia in the brain, have recently aroused substantial concern due to their involvement in synaptotoxicity, amyloidosis, neuroinflammation, and oxidative stress. In this review, we summarize the candidate molecules of astrocytes, especially receptors and transporters, that may be involved in AD pathogenesis. These molecules include excitatory amino acid transporters (EAATs), metabotropic glutamate receptor 5 (mGluR5), the adenosine 2A receptor (A2AR), the α7-nicotinic acetylcholine receptor (α7-nAChR), the calcium-sensing receptor (CaSR), S100β, and cannabinoid receptors. We describe the characteristics of these molecules and the neurological and pharmacological underpinnings of these molecules in AD. Among these molecules, EAATs, A2AR, and mGluR5 are strongly related to glutamate-mediated synaptotoxicity and are involved in glutamate transmission or the clearance of extrasynaptic glutamate in the AD brain. The α7-nAChR, CaSR, and mGluR5 are receptors of Aβ and can induce a plethora of toxic effects, such as the production of excess Aβ, synaptotoxicity, and NO production triggered by changes in intracellular calcium signaling. Antagonists or positive allosteric modulators of these receptors can repair cognitive ability and modify neurobiological changes. Moreover, blocking S100β or activating cannabinoid receptors reduces neuroinflammation, oxidative stress, and reactive astrogliosis. Thus, targeting these molecules might provide alternative approaches for treating AD.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, P.R. China
| | - Kejing Lao
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, P.R. China
| | - Zhongying Qiu
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, P.R. China
| | - Md Saidur Rahman
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, P.R. China.,Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Yuelin Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, P.R. China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, P.R. China
| |
Collapse
|
41
|
Mechanisms of Electroacupuncture on Alzheimer’s Disease: A Review of Animal Studies. Chin J Integr Med 2020; 26:473-480. [DOI: 10.1007/s11655-020-3092-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2019] [Indexed: 12/22/2022]
|
42
|
Cavalcante SFDA, Simas ABC, Barcellos MC, de Oliveira VGM, Sousa RB, Cabral PADM, Kuča K, França TCC. Acetylcholinesterase: The "Hub" for Neurodegenerative Diseases and Chemical Weapons Convention. Biomolecules 2020; 10:E414. [PMID: 32155996 PMCID: PMC7175162 DOI: 10.3390/biom10030414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
This article describes acetylcholinesterase (AChE), an enzyme involved in parasympathetic neurotransmission, its activity, and how its inhibition can be pharmacologically useful for treating dementia, caused by Alzheimer's disease, or as a warfare method due to the action of nerve agents. The chemical concepts related to the irreversible inhibition of AChE, its reactivation, and aging are discussed, along with a relationship to the current international legislation on chemical weapons.
Collapse
Affiliation(s)
- Samir F. de A. Cavalcante
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Rio de Janeiro 21941-902, Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic
| | - Alessandro B. C. Simas
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Rio de Janeiro 21941-902, Brazil
| | - Marcos C. Barcellos
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Victor G. M. de Oliveira
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Roberto B. Sousa
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Paulo A. de M. Cabral
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic
| | - Tanos C. C. França
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic
- Laboratory of Molecular Modelling Applied to Chemical and Biological Defense (LMACBD), Military Institute of Engineering (IME), Praça General Tibúrcio 80, Rio de Janeiro 22290-270, Brazil
| |
Collapse
|
43
|
Gorantla NV, Balaraman E, Chinnathambi S. Cobalt-based metal complexes prevent Repeat Tau aggregation and nontoxic to neuronal cells. Int J Biol Macromol 2020; 152:171-179. [PMID: 32105696 DOI: 10.1016/j.ijbiomac.2020.02.278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disorder with an alarming increase in the death rate every year. AD is characterised by an aberrant accumulation of proteins in the form of aggregates. The axonal microtubule-associated protein Tau and amyloid-β undergo structural transition to β-sheet rich structure and form aggregates in neuronal soma as well as in the extracellular region. The loss of Tau from microtubules leads to the disintegration of axon and causing neuronal degeneration. This led to the development of effective drugs against AD, to prevent Tau aggregation. Here, we synthesized and screen metal-based complexes to prevent Tau protein aggregation. ThS fluorescence and TEM suggested the role of synthetic cobalt complexes in inhibiting Tau aggregation. CD spectroscopy showed that these complexes prevented conformational changes in Tau to β-sheet. CBMCs were not toxic at lower concentrations and formed non-toxic Tau species. L1 and L2 prevented membrane leakage; whereas, higher concentrations of L3 caused membrane leakage as observed by LDH release assay. The overall results indicate the synthetic cobalt complexes to be a promising molecule against AD.
Collapse
Affiliation(s)
- Nalini V Gorantla
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008 Pune, India.
| | - Ekambaram Balaraman
- Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008 Pune, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008 Pune, India.
| |
Collapse
|
44
|
Pham PH, Thien Nguyen PT, Bui TT, Tra HN, Nguyen TT, Son Phan NT. Homo-condensation of acetophenones toward imidazothiones. RSC Adv 2020; 10:40225-40228. [PMID: 35520859 PMCID: PMC9057481 DOI: 10.1039/d0ra03047c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 01/20/2021] [Accepted: 10/30/2020] [Indexed: 11/22/2022] Open
Abstract
Direct synthesis of imidazothiones from simple, commercial substrates is not known. We report a method for the condensation of acetophenones, elemental sulfur, and ammonium acetate as a nitrogen source to obtain the hitherto challenging five-membered heterocycles. Functionalities such as halogen, trifluoromethyl, cyano, methylthio, and heteroaryl groups were well tolerated. Synthesis of imidazothiones from acetophenones is reported for the first time. The use of a wide range of functionalities and heterocycles was well tolerated.![]()
Collapse
Affiliation(s)
- Phuc Hoang Pham
- Faculty of Chemical Engineering
- Ho Chi Minh City University of Technology (HCMUT)
- Ho Chi Minh City
- Vietnam
- Vietnam National University Ho Chi Minh City
| | - Phuc Thai Thien Nguyen
- Faculty of Chemical Engineering
- Ho Chi Minh City University of Technology (HCMUT)
- Ho Chi Minh City
- Vietnam
- Vietnam National University Ho Chi Minh City
| | - Thuy Thu Bui
- Faculty of Chemical Engineering
- Ho Chi Minh City University of Technology (HCMUT)
- Ho Chi Minh City
- Vietnam
- Vietnam National University Ho Chi Minh City
| | - Hien Nhat Tra
- Faculty of Chemical Engineering
- Ho Chi Minh City University of Technology (HCMUT)
- Ho Chi Minh City
- Vietnam
- Vietnam National University Ho Chi Minh City
| | - Tung Thanh Nguyen
- Faculty of Chemical Engineering
- Ho Chi Minh City University of Technology (HCMUT)
- Ho Chi Minh City
- Vietnam
- Vietnam National University Ho Chi Minh City
| | - Nam Thanh Son Phan
- Faculty of Chemical Engineering
- Ho Chi Minh City University of Technology (HCMUT)
- Ho Chi Minh City
- Vietnam
- Vietnam National University Ho Chi Minh City
| |
Collapse
|
45
|
The Environment Is a Key Factor in Determining the Anti-Amyloid Efficacy of EGCG. Biomolecules 2019; 9:biom9120855. [PMID: 31835741 PMCID: PMC6995563 DOI: 10.3390/biom9120855] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/06/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
Millions of people around the world suffer from amyloid-related disorders, including Alzheimer's and Parkinson's diseases. Despite significant and sustained efforts, there are still no disease-modifying drugs available for the majority of amyloid-related disorders, and the overall failure rate in clinical trials is very high, even for compounds that show promising anti-amyloid activity in vitro. In this study, we demonstrate that even small changes in the chemical environment can strongly modulate the inhibitory effects of anti-amyloid compounds. Using one of the best-established amyloid inhibitory compounds, epigallocatechin-3-gallate (EGCG), as an example, and two amyloid-forming proteins, insulin and Parkinson's disease-related α -synuclein, we shed light on the previously unexplored sensitivity to solution conditions of the action of this compound on amyloid fibril formation. In the case of insulin, we show that the classification of EGCG as an amyloid inhibitor depends on the experimental conditions select, on the method used for the evaluation of the efficacy, and on whether or not EGCG is allowed to oxidise before the experiment. For α -synuclein, we show that a small change in pH value, from 7 to 6, transforms EGCG from an efficient inhibitor to completely ineffective, and we were able to explain this behaviour by the increased stability of EGCG against oxidation at pH 6.
Collapse
|
46
|
Suppressing aberrant phospholipase D1 signaling in 3xTg Alzheimer's disease mouse model promotes synaptic resilience. Sci Rep 2019; 9:18342. [PMID: 31797996 PMCID: PMC6892889 DOI: 10.1038/s41598-019-54974-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/21/2019] [Indexed: 02/08/2023] Open
Abstract
Current approaches in treatment of Alzheimer's disease (AD) is focused on early stages of cognitive decline. Identifying therapeutic targets that promote synaptic resilience during early stages may prevent progressive memory deficits by preserving memory mechanisms. We recently reported that the inducible isoform of phospholipase D (PLD1) was significantly increased in synaptosomes from post-mortem AD brains compared to age-matched controls. Using mouse models, we reported that the aberrantly elevated neuronal PLD1 is key for oligomeric amyloid driven synaptic dysfunction and underlying memory deficits. Here, we demonstrate that chronic inhibition using a well-tolerated PLD1 specific small molecule inhibitor is sufficient to prevent the progression of synaptic dysfunction during early stages in the 3xTg-AD mouse model. Firstly, we report prevention of cognitive decline in the inhibitor-treated group using novel object recognition (NOR) and fear conditioning (FC). Secondly, we provide electrophysiological assessment of better synaptic function in the inhibitor-treated group. Lastly, using Golgi staining, we report that preservation of dendritic spine integrity as one of the mechanisms underlying the action of the small molecule inhibitor. Collectively, these studies provide evidence for inhibition of PLD1 as a potential therapeutic strategy in preventing progression of cognitive decline associated with AD and related dementia.
Collapse
|
47
|
Meilandt WJ, Maloney JA, Imperio J, Lalehzadeh G, Earr T, Crowell S, Bainbridge TW, Lu Y, Ernst JA, Fuji RN, Atwal JK. Characterization of the selective in vitro and in vivo binding properties of crenezumab to oligomeric Aβ. ALZHEIMERS RESEARCH & THERAPY 2019; 11:97. [PMID: 31787113 PMCID: PMC6886224 DOI: 10.1186/s13195-019-0553-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/06/2019] [Indexed: 02/01/2023]
Abstract
Background Accumulation of amyloid β (Aβ) in the brain is proposed as a cause of Alzheimer’s disease (AD), with Aβ oligomers hypothesized to be the primary mediators of neurotoxicity. Crenezumab is a humanized immunoglobulin G4 monoclonal antibody that has been shown to bind to synthetic monomeric and aggregated Aβ in vitro; however, less is known about the binding characteristic in vivo. In this study, we evaluated the binding patterns of crenezumab to synthetic and native forms of Aβ both in vitro and in vivo. Methods Crenezumab was used to immunoprecipitate Aβ from synthetic Aβ preparations or brain homogenates from a PS2APP mouse model of AD to determine the forms of Aβ that crenezumab interacts with. Following systemic dosing in PS2APP or nontransgenic control mice, immunohistochemistry was used to localize crenezumab and assess its relative distribution in the brain, compared with amyloid plaques and markers of neuritic dystrophies (BACE1; LAMP1). Pharmacodynamic correlations were performed to investigate the relationship between peripheral and central target engagement. Results In vitro, crenezumab immunoprecipitated Aβ oligomers from both synthetic Aβ preparations and endogenous brain homogenates from PS2APP mice. In vivo studies in the PS2APP mouse showed that crenezumab localizes to regions surrounding the periphery of amyloid plaques in addition to the hippocampal mossy fibers. These regions around the plaques are reported to be enriched in oligomeric Aβ, actively incorporate soluble Aβ, and contribute to Aβ-induced neurotoxicity and axonal dystrophy. In addition, crenezumab did not appear to bind to the dense core region of plaques or vascular amyloid. Conclusions Crenezumab binds to multiple forms of amyloid β (Aβ), particularly oligomeric forms, and localizes to brain areas rich in Aβ oligomers, including the halo around plaques and hippocampal mossy fibers, but not to vascular Aβ. These insights highlight a unique mechanism of action for crenezumab of engaging Aβ oligomers.
Collapse
Affiliation(s)
- William J Meilandt
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Janice A Maloney
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jose Imperio
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Guita Lalehzadeh
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Tim Earr
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Susan Crowell
- Department of Preclinical and Translational Pharmacokinetics/Pharmacodynamics, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Travis W Bainbridge
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Yanmei Lu
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - James A Ernst
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Reina N Fuji
- Department of Safety Assessment Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Jasvinder K Atwal
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
48
|
Denes V, Geck P, Mester A, Gabriel R. Pituitary Adenylate Cyclase-Activating Polypeptide: 30 Years in Research Spotlight and 600 Million Years in Service. J Clin Med 2019; 8:jcm8091488. [PMID: 31540472 PMCID: PMC6780647 DOI: 10.3390/jcm8091488] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging from the depths of evolution, pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors (i.e., PAC1, VPAC1, VPAC2) are present in multicellular organisms from Tunicates to humans and govern a remarkable number of physiological processes. Consequently, the clinical relevance of PACAP systems spans a multifaceted palette that includes more than 40 disorders. We aimed to present the versatility of PACAP1-38 actions with a focus on three aspects: (1) when PACAP1-38 could be a cause of a malfunction, (2) when PACAP1-38 could be the cure for a malfunction, and (3) when PACAP1-38 could either improve or impair biology. PACAP1-38 is implicated in the pathophysiology of migraine and post-traumatic stress disorder whereas an outstanding protective potential has been established in ischemia and in Alzheimer’s disease. Lastly, PACAP receptors could mediate opposing effects both in cancers and in inflammation. In the light of the above, the duration and concentrations of PACAP agents must be carefully set at any application to avoid unwanted consequences. An enormous amount of data accumulated since its discovery (1989) and the first clinical trials are dated in 2017. Thus in the field of PACAP research: “this is not the end, not even the beginning of the end, but maybe the end of the beginning.”
Collapse
Affiliation(s)
- Viktoria Denes
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Peter Geck
- Department of Immunology, School of Medicine, Tufts University, Boston, MA 02111, USA.
| | - Adrienn Mester
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| |
Collapse
|
49
|
Sivakumar M, Saravanan K, Saravanan V, Sugarthi S, kumar SM, Alhaji Isa M, Rajakumar P, Aravindhan S. Discovery of new potential triplet acting inhibitor for Alzheimer’s disease via X-ray crystallography, molecular docking and molecular dynamics. J Biomol Struct Dyn 2019; 38:1903-1917. [DOI: 10.1080/07391102.2019.1620128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Kandasamy Saravanan
- X-Ray Crystallography and Computational Molecular Biology Lab, Department of Physics, Periyar University, Salem, India
| | | | - Srinivasan Sugarthi
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, Tamil Nadu, India
| | | | - Mustafa Alhaji Isa
- Bioinformatics and Computational Biology Lab, Department of Microbiology, Faculty of Sciences, University of Maiduguri, Maiduguri, Nigeria
| | - Perumal Rajakumar
- Department of Organic Chemistry, University of Madras, Chennai, India
| | | |
Collapse
|
50
|
Yakoub KM, Lazzarino G, Amorini AM, Caruso G, Scazzone C, Ciaccio M, Tavazzi B, Lazzarino G, Belli A, Di Pietro V. Fructose-1,6-Bisphosphate Protects Hippocampal Rat Slices from NMDA Excitotoxicity. Int J Mol Sci 2019; 20:2239. [PMID: 31067671 PMCID: PMC6540300 DOI: 10.3390/ijms20092239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 12/18/2022] Open
Abstract
Effects of fructose 1,6-bisphosphate (F-1,6-P2) towards N-methyl-d-aspartate NMDA excitotoxicity were evaluated in rat organotypic hippocampal brain slice cultures (OHSC) challenged for 3 h with 30 μM NMDA, followed by incubations (24, 48, and 72 h) without (controls) and with F-1,6-P2 (0.5, 1 or 1.5 mM). At each time, cell necrosis was determined by measuring LDH in the medium. Energy metabolism was evaluated by measuring ATP, GTP, ADP, AMP, and ATP catabolites (nucleosides and oxypurines) in deproteinized OHSC extracts. Gene expressions of phosphofructokinase, aldolase, and glyceraldehyde-3-phosphate dehydrogenase were also measured. F-1,6-P2 dose-dependently decreased NMDA excitotoxicity, abolishing cell necrosis at the highest concentration tested (1.5 mM). Additionally, F-1,6-P2 attenuated cell energy imbalance caused by NMDA, ameliorating the mitochondrial phosphorylating capacity (increase in ATP/ADP ratio) Metabolism normalization occurred when using 1.5 mM F-1,6-P2. Remarkable increase in expressions of phosphofructokinase, aldolase and glyceraldehyde-3-phosphate dehydrogenase (up to 25 times over the values of controls) was also observed. Since this phenomenon was recorded even in OHSC treated with F-1,6-P2 with no prior challenge with NMDA, it is highly conceivable that F-1,6-P2 can enter into intact cerebral cells producing significant benefits on energy metabolism. These effects are possibly mediated by changes occurring at the gene level, thus opening new perspectives for F-1,6-P2 application as a useful adjuvant to rescue mitochondrial metabolism of cerebral cells under stressing conditions.
Collapse
Affiliation(s)
- Kamal M Yakoub
- Neurotrauma and Ophthalmology Research Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2TH, UK.
| | - Giacomo Lazzarino
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Largo F. Vito 1, 00168 Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy.
| | - Angela M Amorini
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Giuseppe Caruso
- Oasi Research Institute⁻IRCCS, Via Conte Ruggero 73, 94018 Troina (EN), Italy.
| | - Concetta Scazzone
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, Via del Vespro 129, 90127 Palermo, Italy.
| | - Marcello Ciaccio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, Via del Vespro 129, 90127 Palermo, Italy.
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Largo F. Vito 1, 00168 Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy.
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Antonio Belli
- Neurotrauma and Ophthalmology Research Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2TH, UK.
| | - Valentina Di Pietro
- Neurotrauma and Ophthalmology Research Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2TH, UK.
| |
Collapse
|