1
|
Eryilmaz M, Ilbasmis-Tamer S, Panhwar S, Tayyarcan EK, Boyaci İH, Suludere Z, Çetin D, Zengin A, Yıldırım E, Tamer U. Rapid bacterial detection through microfluidic integration with a glucometer. Bioelectrochemistry 2025; 164:108936. [PMID: 39946868 DOI: 10.1016/j.bioelechem.2025.108936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/03/2025]
Abstract
We present a novel approach for sensitive and portable detection of pathogenic bacteria, which is crucial for household and clinical practice. Our method employs immunoliposomes, antibodies, and microchip to detect specific pathogens quantitatively. Gold and metal metal-organic nanoparticles and liposomes were characterized using high-resolution techniques like TEM and SEM. Utilizing a commercial, personal glucose meter (PGM), we initially detected released glucose from antibody-modified liposomes and microchips with MOF-NPs. Detection on the microchip was achieved within 30 min, while the PGM analysis took only one minute for targeted bacteria, yielding glucose signals of 66 mg/dL and 69 mg/dL, respectively. Serial dilutions with group A-Streptococcus pyogenes (GAS) (1.4 × 10^4-1.4 × 10^8 CFU/mL) demonstrated quantitative measurement applicability. This innovative approach and a portable PGM hold promise for various industries, including physician labs, hospitals, and households.
Collapse
Affiliation(s)
- Merve Eryilmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University 06330 Ankara, Turkey
| | - Sibel Ilbasmis-Tamer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University 06330 Ankara, Turkey
| | - Sallahuddin Panhwar
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University 06330 Ankara, Turkey; Department of Civil Engineering, National University of Sciences and Technology, Quetta 24090 Balochistan, Pakistan
| | - Emine Kübra Tayyarcan
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe 06800 Ankara, Türkiye
| | - İsmail Hakkı Boyaci
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe 06800 Ankara, Türkiye
| | - Zekiye Suludere
- Faculty of Science, Department of Biology, Gazi University, 06500 Ankara, Turkey
| | - Demet Çetin
- Department of Mathematics and Science Education, Gazi Faculty of Education, Gazi University, Besevler, Ankara 06500, Turkey
| | - Adem Zengin
- Van Yüzüncü Yil University, Department of Chemistry, 65090 Tuşba/Van, Turkey
| | - Ender Yıldırım
- Department of Mechanical Engineering, Faculty of Engineering, Middle East Technical University, 06800, Çankaya, Ankara, Turkey; ODTU MEMS Center, 06530, Cankaya, Ankara, Turkey
| | - Uğur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University 06330 Ankara, Turkey; ODTU MEMS Center, 06530, Cankaya, Ankara, Turkey.
| |
Collapse
|
2
|
Vikal A, Maurya R, Patel BB, Sharma R, Patel P, Patil UK, Das Kurmi B. Protacs in cancer therapy: mechanisms, design, clinical trials, and future directions. Drug Deliv Transl Res 2025; 15:1801-1827. [PMID: 39614036 DOI: 10.1007/s13346-024-01754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
Cancer develops as a result of changes in both genetic and epigenetic mechanisms, which lead to the activation of oncogenes and the suppression of tumor suppressor genes. Despite advancements in cancer treatments, the primary approach still involves a combination of chemotherapy, radiotherapy, and surgery, typically providing a median survival of approximately five years for patients. Unfortunately, these therapeutic interventions often bring about substantial side effects and toxicities, significantly impacting the overall quality of life for individuals undergoing treatment. Therefore, urgent need of research required which comes up with effective treatment of cancer. This review explores the transformative role of Proteolysis-Targeting Chimeras (PROTACs) in cancer therapy. PROTACs, an innovative drug development strategy, utilize the cell's protein degradation machinery to selectively eliminate disease-causing proteins. The review covers the historical background, mechanism of action, design, and structure of PROTACs, emphasizing their precision in targeting oncogenic proteins. The discussion extends to the challenges, nanotechnology applications, and ongoing clinical trials, showcasing promising results and clinical progress. The review concludes with insights into patents, future directions, and the potential impact of PROTACs in addressing dysregulated protein expression across various diseases. Overall, it provides a concise yet comprehensive overview for researchers, clinicians, and industry professionals involved in developing targeted therapies.
Collapse
Affiliation(s)
- Akash Vikal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Rashmi Maurya
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Brij Bihari Patel
- Department of Respiratory Medicine, School of Excellence in Pulmonary Medicines, Netaji Subhash Chandra Bose Medical College, Jabalpur, 482003, Madhya Pradesh, India
| | - Rajeev Sharma
- Department of Pharmacy, Amity University, Gwalior, 474005, Madhya Pradesh, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Umesh K Patil
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, 470003, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
3
|
Barut G, Çelik A. Gene expression profiles related to apoptosis and levels of DNA oxidative damage in primary dermal fibroblast cells (ATCC® PCS-201-012TM) treated with zirconium oxide nanoparticles. Food Chem Toxicol 2025:115446. [PMID: 40252907 DOI: 10.1016/j.fct.2025.115446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/11/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
Nanoparticles have attracted growing interest in recent years. They are small and can easily penetrate into cells. We investigated the genotoxic, cytotoxic, and apoptotic effects of zirconium nanoparticles on dermal fibroblast cells, the comet assay, Xcelligence system, and apoptotic gene expression, respectively. The comet assay analysis showed an non-signifcant increase in the genetic damage index and the percentage of damaged cells in the groups exposed to 10 and 20-nm zirconium oxide nanoparticles. Xcelligence system analysis observed a decrease in the indices of cells exposed to 10 and 20 nm zirconium oxide nanoparticles in the 48th-hour, 72th-hour, and 96th-hour data. It was observed that caspase 3 and caspase 8 gene expression levels were suppressed in cells exposed to 10 and 20 nm zirconium oxide nanoparticles. Compared to the negative control group, this suppression was significant in the 10 nm groups (p<0.01) while it was not significant in the 20 nm groups. Although zirconium oxide nanoparticles do not show toxicity and genotoxicity at a given concentration, but the overall mechanism is still not clear regarding the consequences of these nanoparticles use and its efect on living system. However, our apoptotic gene expression studies concluded that the nanoparticle size, particularly 10 nm, had an impact on gene expression.
Collapse
Affiliation(s)
- Gizem Barut
- Department of Biology, Postgraduate School of Natural and Applied Science, Mersin University, Mersin, Turkey
| | - Ayla Çelik
- Department of Biology(,) Faculty of Science Mersin University, Mersin, Turkey.
| |
Collapse
|
4
|
Verma M, Randhawa S, Bathla M, Teji N, Acharya A. Strategic use of nanomaterials as double-edged therapeutics to control carcinogenesis via regulation of dysbiosis and bacterial infection: current status and future prospects. J Mater Chem B 2025; 13:4770-4790. [PMID: 40192037 DOI: 10.1039/d4tb02409e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The human microbiome plays a crucial role in modulating health and disease susceptibility through a complex network of interactions with the host. When the delicate balance of this microbial ecosystem is disrupted, it often correlates with the onset of systemic diseases. An over-abundance of pathogenic microorganisms within the microbiome has been implicated as a driving factor in the development of disease conditions such as diabetes, obesity, and chronic infections. It has been observed that microbiome dysbiosis perturbs metabolic, inflammatory, and immunological pathways, potentially facilitating carcinogenesis. Furthermore, the metabolites associated with microbial dysbiosis exert multifaceted effects, including metabolic interference, host DNA damage, and tumor promotion, further underscoring the microbiome's significance in several of the cancers. This new exploration of microbiome involvement in carcinogenesis needs additional patient sample analysis, which could provide new insights into cancer diagnosis and treatment. However, treating these diseases using drugs, traditional methods, etc. has resulted in multi-drug resistance, and this has eventually made the situation worrisome. This review highlights the importance of nanotechnology, which may tackle these pathogenic conditions simultaneously by targeting common receptors present in bacteria and cancer. Herein, we have explained how nanotechnology may come to the forefront for these treatments. It explores the potential of non-antibiotic disinfectants, i.e., nanoparticles (NPs) with dual targeting capabilities against microbes and cancer cells, using mechanisms such as ROS generation and DNA damage while minimizing the chances of drug resistance.
Collapse
Affiliation(s)
- Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Manik Bathla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Nandini Teji
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
5
|
Ahmadishoar S, Mones Saeed S, Salih Mahdi M, Mohammed Taher W, Alwan M, Jasem Jawad M, Khdyair Hamad A, Gandomkar H. The potential use of bacteria and their derivatives as delivery systems for nanoparticles in the treatment of cancer. J Drug Target 2025:1-34. [PMID: 40186857 DOI: 10.1080/1061186x.2025.2489979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Cancer is a leading cause of mortality and morbidity worldwide. Nanomaterials, unique optical, magnetic, and electrical properties at the nanoscale (1-100 nm), have been engineered to improve drug capacity, bioavailability, and specificity in cancer treatment. These advancements address toxicity and lack of selectivity in conventional therapies, enabling precise targeting of cancer cells, the tumour microenvironment, and the immune system. Among emerging approaches, bacterial treatment shows promise due to its natural ability to target cancer and its diverse therapeutic mechanisms, which nanotechnology can further enhance. Bacteria-based drug delivery systems leverage bacteria's adaptability and survival strategies within the human body. Bacterial derivatives, such as bacterial ghosts (BGs), bacterial extracellular vesicles (BEVs), and dietary toxins, are recognised as effective biological nanomaterials capable of carrying nanoparticles (NPs). These systems have attracted increasing attention for their potential in targeted NP delivery for cancer treatment. This study explores the use of various bacteria and their byproducts as NP delivery vehicles, highlighting their potential in treating different types of cancer. By combining the strengths of nanotechnology and bacterial therapy, these innovative approaches aim to revolutionise cancer treatment with improved precision and efficacy.
Collapse
Affiliation(s)
- Shiva Ahmadishoar
- Department of Microbiology, Male.C., Islamic Azad University, Malekan, Iran
| | - Samaa Mones Saeed
- Dental Prosthetics Techniques Department, Health and Medical Techniques College/AlNoor University, Mosul, Iraq
| | | | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | | - Hossein Gandomkar
- Department of Surgical Oncology, Tehran University of Medical Medicine, Tehran, Iran
| |
Collapse
|
6
|
Barik P, Mondal S. Immunomodulatory effects of metal nanoparticles: current trends and future prospects. NANOSCALE 2025. [PMID: 40202489 DOI: 10.1039/d5nr01030f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The advent of nanotechnology has steered into a new era of medical advancements, with metal nanoparticles (MNPs) emerging as potent agents for precise regulation of the immune system. This review provides a comprehensive overview of the immunomodulatory roles of MNPs, including gold, silver, and metal oxide nanoparticles, in regulating innate and adaptive immunity. Additionally, we discuss the immunological effects of metal ions and metal complexes, offering a comparative analysis with nanoparticulate systems. We analyse cutting-edge strategies utilising MNPs to optimise vaccine efficacy, achieve targeted delivery to immune cells, and orchestrate inflammatory responses. Additionally, we discuss the therapeutic potential of MNPs in combating autoimmune diseases, cancers, and infectious agents, which is evaluated within the framework of precision medicine. Furthermore, we critically assess challenges such as biocompatibility, potential toxicity, and regulatory hurdles. Finally, we propose future directions for integrating MNPs with advanced delivery systems and other nanomaterials to propel the frontiers of immunotherapy. This review aims to provide a foundational understanding of MNP-mediated immunomodulation, inspiring further research and development in this burgeoning field.
Collapse
Affiliation(s)
- Puspendu Barik
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates
- Department of Physics, College of Arts and Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Samiran Mondal
- Department of Chemistry, Rammohan College (University of Calcutta), 102/1-Raja Rammohan Sarani, Kolkata 700009, West Bengal, India.
| |
Collapse
|
7
|
Ling B, Wang Y, Dong H, Chen H, Wang L. Enzyme-triggered aggregation of upconversion nanoparticles for targeted photodynamic therapy via NIR irradiation. NANOSCALE ADVANCES 2025:d4na01050g. [PMID: 40201571 PMCID: PMC11974261 DOI: 10.1039/d4na01050g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
A core-shell-shell nanoplatform responsive to alkaline phosphatase (ALP) was developed for efficient tumor targeting and near-infrared (NIR)-activated photodynamic therapy (PDT). Specifically, UCNP@SiO2-Bodipy@FFYp was synthesized by encapsulating upconversion nanoparticles (UCNPs) within a silica shell, embedding bodipy derivatives as photosensitizers, and covalently attaching a phosphorylated peptide (FFYp). Förster resonance energy transfer (FRET) from the UCNP emission at 550 nm to bodipy facilitated reactive oxygen species (ROS) generation upon NIR excitation. In the tumor microenvironment, ALP-triggered dephosphorylation converted UCNP@SiO2-Bodipy@FFYp into the more hydrophobic UCNP@SiO2-Bodipy@FFY, thereby promoting tumor cell uptake and tumor-specific accumulation. By leveraging this ALP-responsive targeting strategy alongside the deep-tissue penetration of NIR light, significant tumor growth inhibition was achieved both in vitro and in vivo. Notably, after 15 days of treatment in Balb/c mice bearing HeLa tumors, the tumor volume was reduced by over 95%. Taken together, these results highlight the promise of UCNP@SiO2-Bodipy@FFYp as a tumor-responsive nanoplatform for highly effective, targeted PDT in cancer therapy.
Collapse
Affiliation(s)
- Bo Ling
- Department of Chemistry and Pharmaceutical Engineering, Hefei Normal University Hefei 230061 China
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Yaguang Wang
- Department of Anesthesia and Perioperative Medicine, The Second Affiliated Hospital Anhui Medical University Hefei 230000 China
| | - Huaze Dong
- Department of Chemistry and Pharmaceutical Engineering, Hefei Normal University Hefei 230061 China
| | - Hongqi Chen
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Lun Wang
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| |
Collapse
|
8
|
Kumar P, Ashique S, Sharma H, Yasmin S, Islam A, Mandal S, Gowda BHJ, Khalid M, Ansari MY, Singh M, Ehsan I, Taj T, Taghizadeh-Hesary F. A narrative review on the use of Green synthesized metallic nanoparticles for targeted cancer therapy. Bioorg Chem 2025; 157:108305. [PMID: 40022847 DOI: 10.1016/j.bioorg.2025.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Cancer is a leading cause of death worldwide. While traditional and synthetic medical therapies are in place for cancer treatment, their effectiveness is hindered by various limitations, such as toxic side effects, limited availability, and high costs. In recent years, a promising alternative approach has emerged in the form of green-synthesized metallic nanoparticles (MNPs), which offer targeted cancer therapy. These nanoparticles (NPs) have garnered significant attention from cancer researchers owing to their natural or surface-induced anticancer properties, versatility of metals as agents, and eco-friendly nature. This approach may positively impact healthy cells surrounding the cancerous cells. Green-synthesized MNPs have gained popularity in cancer management because of their ease of handling in the laboratory and the affordability of starting materials compared to synthetic methods. This review analyzes green-synthesized MNPs for targeted cancer therapy, highlighting tumor-targeting strategies, synthesis methods, and clinical challenges. Unlike general reviews, it compares plant-, microbial-, and enzyme-mediated synthesis approaches, emphasizing their impact on nanoparticle stability, functionalization, and interactions with the tumor microenvironment for enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Prashant Kumar
- SRM Modinagar College of Pharmacy, SRMIST Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Sumel Ashique
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, West Bengal 711316, India.
| | - Himanshu Sharma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, (UP), India
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Subhajit Mandal
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Mohammad Khalid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Mohammad Yousuf Ansari
- MM college of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India; Ibne Seena College of Pharmacy, Azmi Vidya Nagri Anjhi Shahabad, Hardoi-241124 Uttar Pradesh (U.P.) India.
| | - Mansi Singh
- Research Scholar, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Iman Ehsan
- School of Pharmacy Sister Nivedita University, Kolkata-700156, WB, India
| | - Tahreen Taj
- Research Scholar, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India; Department of Pharmacology, Yenepoya Pharmacy college and research centre, Yenepoya (Deemed to be) university, Mangalore 575018, India
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Clinical Oncology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Baidoo I, Sarbadhikary P, Abrahamse H, George BP. Metal-based nanoplatforms for enhancing the biomedical applications of berberine: current progress and future directions. Nanomedicine (Lond) 2025; 20:851-868. [PMID: 40110809 PMCID: PMC11999359 DOI: 10.1080/17435889.2025.2480051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
The isoquinoline alkaloid berberine, a bioactive compound derived from various plants, has demonstrated extensive therapeutic potential. However, its clinical application is hindered by poor water solubility, low bioavailability, rapid metabolism, and insufficient targeting. Metal-based nanoplatforms offer promising solutions, enhancing drug stability, controlled release, and targeted delivery. This review comprehensively explores the synthesis, physicochemical properties, and biomedical applications of metal-based nanocarriers, including gold, silver, iron oxide, zinc oxide, selenium, and magnetic nanoparticles, for berberine delivery to improve berberine's therapeutic efficacy. Recent advancements in metal-based nanocarrier systems have significantly improved berberine delivery by enhancing cellular uptake, extending circulation time, and enabling site-specific targeting. However, metal-based nanoplatforms encounter several limitations of potential toxicity, limited large-scale productions, and regulatory constraints. Addressing these limitations necessitates extensive studies on biocompatibility, long-term safety, and clinical translation. By summarizing the latest innovations and clinical perspectives, this review aims to guide future research toward optimizing berberine-based nanomedicine for improved therapeutic efficacy.
Collapse
Affiliation(s)
- Isaac Baidoo
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Paromita Sarbadhikary
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
10
|
Qian Z, Qi S, Yuan W. Injectable, self-healing and phase change nanocomposite gels loaded with two nanotherapeutic agents for mild-temperature, precise and synergistic photothermal-thermodynamic tumor therapy. J Colloid Interface Sci 2025; 683:877-889. [PMID: 39752936 DOI: 10.1016/j.jcis.2024.12.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
Hyperthermia has emerged as a popular treatment option due to its high efficacy and seamless integration with other therapeutic approaches. To enhance treatment outcomes, hydrogels loaded with photothermal agents and activated by near-infrared (NIR) light for localized tumor therapy have attracted considerable attention. This approach minimizes drug dosage and mitigates the adverse effects of systemic drug delivery on healthy tissues. However, a challenge arises when NIR light sources inadvertently expose hydrogels loaded with high concentrations of photothermal agents, potentially causing localized overheating. Such overheating may trigger issues like inflammation, severe burns, and tissue crusting. To address this issue, the water in traditional hydrogels was substituted with the phase change material poly(ethylene glycol) (PEG), creating a phase change composite gel. This gel utilized PEG 2 M (PEG with a molecular weight of approximately 2,000,000 g/mol) as the gel scaffold and PEG 1.5 K (PEG with a molecular weight of approximately 1,500 g/mol) as the gel medium. Polydopamine modified with folic acid (PDA-FA) and MOF-199 loaded with 2, 2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH@MOF-199) were uniformly dispersed throughout the gel. Experimental results have demonstratedthat this system can extend the duration of photothermal therapy while effectively avoiding localized overheating. Additionally, it synergizes well with thermodynamic therapy.
Collapse
Affiliation(s)
- Zhiyi Qian
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, PR China
| | - Shengyang Qi
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, PR China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, PR China.
| |
Collapse
|
11
|
Batool A, Kopp I, Kubeil M, Bachmann M, Andrews PC, Stephan H. Targeted bismuth-based materials for cancer. Dalton Trans 2025; 54:5614-5639. [PMID: 40040450 DOI: 10.1039/d5dt00163c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The use of bismuth and its compounds in biomedicine has developed rapidly in recent years. Due to their unique properties, there are great opportunities for the development of new non-invasive strategies for the early diagnosis and effective treatment of cancers. This perspective highlights key fabrication methods to generate well-defined and clinically relevant bismuth materials of varying characteristics. On the one hand, this opens up a wide range of possibilities for unimodal and multimodal imaging. On the other hand, effective treatment strategies, which are increasingly based on combinatorial therapies, are given a great deal of attention. One of the biggest challenges remains the selective tumour targeting, whether active or passive. Here we present an overview on new developments of bismuth based materials moving forward from a simple enrichment at the tumour site via uptake by the mononuclear phagocytic system (MPS) to a more active tumour specific targeting via covalent modification with tumour-seeking molecules based on either small or antibody-derived molecules.
Collapse
Affiliation(s)
- Amna Batool
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Ina Kopp
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Manja Kubeil
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Philip C Andrews
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| |
Collapse
|
12
|
Wang W, Xu Y, Tang Y, Li Q. Self-Assembled Metal Complexes in Biomedical Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416122. [PMID: 39713915 DOI: 10.1002/adma.202416122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Indexed: 12/24/2024]
Abstract
Cisplatin is widely used in clinical cancer treatment; however, its application is often hindered by severe side effects, particularly inherent or acquired resistance of target cells. To address these challenges, an effective strategy is to modify the metal core of the complex and introduce alternative coordination modes or valence states, leading to the development of a series of metal complexes, such as platinum (IV) prodrugs and cyclometalated complexes. Recent advances in nanotechnology have facilitated the development of multifunctional nanomaterials that can selectively deliver drugs to tumor cells, thereby overcoming the pharmacological limitations of metal-based drugs. This review first explores the self-assembly of metal complexes into spherical, linear, and irregular nanoparticles in the context of biomedical applications. The mechanisms underlying the self-assembly of metal complexes into nanoparticles are subsequently analyzed, followed by a discussion of their applications in biomedical fields, including detection, imaging, and antitumor research.
Collapse
Affiliation(s)
- Wenting Wang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yang Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
13
|
Xu R, Wang S, Guo Q, Zhong R, Chen X, Xia X. Anti-Tumor Strategies of Photothermal Therapy Combined with Other Therapies Using Nanoplatforms. Pharmaceutics 2025; 17:306. [PMID: 40142970 PMCID: PMC11944535 DOI: 10.3390/pharmaceutics17030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/02/2025] [Accepted: 02/15/2025] [Indexed: 03/28/2025] Open
Abstract
Conventional cancer treatments often have complications and serious side effects, with limited improvements in 5-year survival and quality of life. Photothermal therapy (PTT) employs materials that convert light to heat when exposed to near-infrared light to raise the temperature of the tumor site to directly ablate tumor cells, induce immunogenic cell death, and improve the tumor microenvironment. This therapy has several benefits, including minimal invasiveness, high efficacy, reduced side effects, and robust targeting capabilities. Beyond just photothermal conversion materials, nanoplatforms significantly contribute to PTT by supplying effective photothermal conversion materials and bolstering tumor targeting to amplify anti-tumor effects. However, the anti-tumor effects of PTT alone are ultimately limited and often need to be combined with other therapies. This narrative review describes the recent progress of PTT combined with chemotherapy, radiotherapy, photodynamic therapy, immunotherapy, gene therapy, gas therapy, chemodynamic therapy, photoacoustic imaging, starvation therapy, and multimodal therapy. Studies have shown that combining PTT with other treatments can improve efficacy, reduce side effects, and overcome drug resistance. Despite the encouraging results, challenges such as optimizing treatment protocols, addressing tumor heterogeneity, and overcoming biological barriers remain. This paper highlights the potential for personalized, multimodal approaches to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Rubing Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China (Q.G.)
| | - Shengmei Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Qiuyan Guo
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China (Q.G.)
| | - Ruqian Zhong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China (Q.G.)
| | - Xi Chen
- Hunan Provincial Center for Drug Evaluation and Adverse Reaction Monitoring, Changsha 410013, China;
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China (Q.G.)
| |
Collapse
|
14
|
Saadh MJ, Khidr WA, Alfarttoosi KH, Bishoyi AK, Ganesan S, Shankhyan A, Gayathri S, Rizaev J, Taher WM, Alwan M, Jawad MJ, Al-Nuaimi AMA. Metal nanoparticles as a promising therapeutic approach for prostate cancer diagnosis and therapy: a comprehensive review. Med Oncol 2025; 42:83. [PMID: 39987535 DOI: 10.1007/s12032-025-02633-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025]
Abstract
Prostate cancer is a leading cause of mortality among men worldwide, particularly in the USA and European nations, with an estimated 1.9 million new cases and over 580,000 deaths annually, according to recent global statistics. The treatment of prostate tumors presents significant clinical challenges, due to the disease's high metastatic potential, specifically to vital organs, such as the liver, lungs, bones, and brain. The intrinsic heterogeneity of prostate cancer cells, characterized by diverse genetic, molecular, and phenotypic profiles, complicates conventional therapeutic strategies, highlighting the need for advanced diagnostic and treatment modalities. Nanoparticles play a critical role in oncology field due to their unique physicochemical properties, including high surface area-to-volume ratio and the ability to be functionalized with targeting ligands. Metallic-based nanoparticles exhibits significant potential for applications in field of nanomedicine, drug delivery systems, gene silencing methods, radiotherapy enhancement, cancer diagnostics, and targeted therapeutic interventions. Metal nanoparticles have substantially improved the sensitivity and specificity of major imaging modalities and have demonstrated remarkable efficacy as biosensors for the detection of prostate cancer-specific biomarkers. This review article provides an in-depth analysis of the utilization of metal nanomaterials in prostate cancer, focusing on their roles in enhancing therapeutic efficacy, advancing diagnostic precision, and supporting the development of novel treatment strategies.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Wajida Ataallah Khidr
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq.
| | | | - Ashok Kumar Bishoyi
- Department of Microbiology, Marwadi University Research Center, Faculty of Science, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Aman Shankhyan
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - S Gayathri
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Jasur Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
15
|
Zhou X, Zhang D, Han M, Ma Y, Li W, Yu N. Carbohydrate polymer-functionalized metal nanoparticles in cancer therapy: A review. Int J Biol Macromol 2025; 306:141235. [PMID: 39986501 DOI: 10.1016/j.ijbiomac.2025.141235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Metal nanoparticles have been emerged as promising candidates in cancer therapy because of their large surface area, optical properties and ROS generation. Therefore, these nanoparticles are able to mediate cell death through hyperthermia, photothermal therapy and ROS-triggered apoptosis. The various metal nanoparticles including gold, silver and iron oxide nanostructures have been exploited for the theranostic application. Moreover, precision oncology and off-targeting features can be improved by metal nanoparticles. The modification of metal nanoparticles with carbohydrate polymers including chitosan, hyaluronic acid, cellulose, agarose, starch and pectin, among others can significantly improve their anti-cancer activities. Carbohydrate polymers have been idea for the purpose of drug delivery due to their biocompatibility, biodegradability and increasing nanoparticle stability. In addition, carbohydrate polymers are able to improve drug delivery, cellular uptake and sustained release of cargo. Such nanoparticles are capable of responding to the specific stimuli in the tumor microenvironment including pH and light. Furthermore, the carbohydrate polymer-modified metal nanoparticles can be utilized for the combination of chemotherapy, phototherapy and immunotherapy. Since the biocompatibility and long-term safety are critical factors for the clinical translation of nanoparticles, the modification of metal nanoparticles with carbohydrate polymers can improve this way to the application in clinic.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China
| | - Dongbin Zhang
- Department of Anesthesiology, Affiliated Hospital Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mingming Han
- Department of Pharmacy and Medical Devices, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China
| | - Yanhong Ma
- Department of Rehabilitation, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| | - Wentao Li
- Department of Traditional Chinese Medicine, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| | - Ning Yu
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| |
Collapse
|
16
|
Zhou S, Qin Y, Lei A, Liu H, Sun Y, Zhang J, Deng C, Chen Y. The role of green synthesis metal and metal oxide nanoparticles in oral cancer therapy: a review. J Drug Target 2025:1-24. [PMID: 39883061 DOI: 10.1080/1061186x.2025.2461091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/09/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
There are 275,000 new cases of oral cancer (OC) per year, making it the sixth most common cancer in the world. Severe adverse effects, including loss of function, deformity, and systemic toxicity, are familiar with traditional therapies such as radiation, chemotherapy, and surgery; due to their unique properties, nanoparticles (NPs) have emerged as a superior alternative over chemo/radiotherapy and surgery due to their targeting capability, bioavailability, compatibility, and high solubility. Due to their unique properties, metallic NPs have garnered significant attention in OC control. In addition to the fact that metal NPs may be harmful to human cells, the reactive chemicals used to make them pose the same risk, which limits their use in medicine. Green synthesis (GS) is a novel strategy that uses biological materials like yeast, bacteria, fungi, and plant extracts. Compared to more traditional chemical synthesis processes, these are more environmentally benign and manageable for living organisms. This article summarises the GS of NPs made of metals and metal oxides and their anticancer effects on OC. The method's potential benefits and drawbacks in advancing metallic NPs' GS and shaping OC therapy's future were also discussed.
Collapse
Affiliation(s)
- Songlin Zhou
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
| | - Yutao Qin
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
| | - Anwen Lei
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China
- Xuancheng City People's Hospital, Xuancheng, Anhui Province, China
| | - Hai Liu
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
| | - Yi Sun
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
| | - Jue Zhang
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
| | - Chao Deng
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
| | - Yu Chen
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
| |
Collapse
|
17
|
Pyrczak-Felczykowska A, Herman-Antosiewicz A. Modification in Structures of Active Compounds in Anticancer Mitochondria-Targeted Therapy. Int J Mol Sci 2025; 26:1376. [PMID: 39941144 PMCID: PMC11818413 DOI: 10.3390/ijms26031376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer is a multifaceted disease characterised by uncontrolled cellular proliferation and metastasis, resulting in significant global mortality. Current therapeutic strategies, including surgery, chemotherapy, and radiation therapy, face challenges such as systemic toxicity and tumour resistance. Recent advancements have shifted towards targeted therapies that act selectively on molecular structures within cancer cells, reducing off-target effects. Mitochondria have emerged as pivotal targets in this approach, given their roles in metabolic reprogramming, retrograde signalling, and oxidative stress, all of which drive the malignant phenotype. Targeting mitochondria offers a promising strategy to address these mechanisms at their origin. Synthetic derivatives of natural compounds hold particular promise in mitochondrial-targeted therapies. Innovations in drug design, including the use of conjugates and nanotechnology, focus on optimizing these compounds for mitochondrial specificity. Such advancements enhance therapeutic efficacy while minimizing systemic toxicity, presenting a significant step forward in modern anticancer strategies.
Collapse
Affiliation(s)
| | - Anna Herman-Antosiewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland;
| |
Collapse
|
18
|
Pattadakal S, Ghatti V, Chapi S, G. V, Kumarswamy YK, Raghu MS, T. VG, Nandihalli N, Kasai DR. Poly(vinyl alcohol) Nanocomposites Reinforced with CuO Nanoparticles Extracted by Ocimum sanctum: Evaluation of Wound-Healing Applications. Polymers (Basel) 2025; 17:400. [PMID: 39940602 PMCID: PMC11820508 DOI: 10.3390/polym17030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
This study focused on the synthesis of plant-mediated copper-oxide nanoparticles (OsCuONPs) via the sol-gel technique and the fabrication of OsCuONP-infused PVA composite films (POsCuONPs) utilizing the solvent casting method for wound-healing applications. The prepared OsCuONPs and nanocomposite films were characterized using UV-visible spectra, FTIR, SEM, XRD, TGA, water contact-angle (WCA) measurements, and a Universal testing machine (UTM) for mechanical property measurements. The UV and FTIR tests showed that OsCuONPs were formed and were present in the PVA composite film. Moreover, the mechanical study confirmed that there is an increase in the tensile strength (TS) and Young's modulus (Ym) with 21.75 MPa to 32.50 MPa for TS and 24.80 MPa to 1128.36 MPa for Ym, and a decrease in the % elongation at break (Eb) (394.32 to 75.6). The TGA and WCA study results demonstrated that PVA films containing OsCuONPs are more stable when subjected to high temperatures and demonstrate a decreased hydrophilicity (60.89° to 89.62°). The cytotoxicity and hemolysis tests showed that the CuONPs-3 containing composite films (PVA/OsCuONPs with a wt. ratio of 1.94/0.06) are safe to use, have a good level of cell viability, and do not break down blood. This is true even at high concentrations. The study also discovered that cells moved considerably in 12 and 24 h (13.12 to 19.26 for OsCuONPs and 312.53 to 20.60 for POsCuONPs), suggesting that 60% of the gaps were filled. Therefore, the fabricated POsCuONP nanocomposites may serve as a promising option for applications in wound healing.
Collapse
Affiliation(s)
- Shrishail Pattadakal
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Jakkasandra, Bengaluru 562112, Karnataka, India; (S.P.); (V.G.); (Y.K.K.)
| | - Vanita Ghatti
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Jakkasandra, Bengaluru 562112, Karnataka, India; (S.P.); (V.G.); (Y.K.K.)
| | - Sharanappa Chapi
- Department of Physics, B.M.S. College of Engineering, Bengaluru 560019, Karnataka, India
| | - Vidya G.
- Department of Chemistry, Dayananda Sagar College of Engineering, SM Hills, Kumaraswamy Layout, Bengaluru 560011, Karnataka, India;
| | - Yogesh Kumar Kumarswamy
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Jakkasandra, Bengaluru 562112, Karnataka, India; (S.P.); (V.G.); (Y.K.K.)
| | - M. S. Raghu
- Department of Chemistry, New Horizon College of Engineering, Bengaluru 560103, Karnataka, India;
| | - Vidyavathi G. T.
- Department of Chemistry, RNS Institute of Technology, Rajarajeshwari Nagar, Bengaluru 560098, Karnataka, India;
| | - Nagaraj Nandihalli
- Critical Materials Innovation Hub, Ames National Laboratory, U.S. Department of Energy, Iowa State University, Ames, IA 50011, USA;
| | - Deepak R. Kasai
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Jakkasandra, Bengaluru 562112, Karnataka, India; (S.P.); (V.G.); (Y.K.K.)
| |
Collapse
|
19
|
Hashem AH, Saied E, Badr BM, Dora MS, Diab MA, Abdelaziz AM, Elkady FM, Ali MA, Issa NI, Hamdy ZA, Nafea ME, Khalifa AN, Adel A, Hasib A, Hawela AM, El-Gazzar MM, Nouh MA, Nahool AA, Attia MS. Biosynthesis of trimetallic nanoparticles and their biological applications: a recent review. Arch Microbiol 2025; 207:50. [PMID: 39891715 DOI: 10.1007/s00203-025-04237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Trimetallic nanoparticles (TMNPs) have emerged as a pivotal area of research due to their unique properties and diverse applications across medicine, agriculture, and environmental sciences. This review provides several novel contributions that distinguish it from existing literature on trimetallic nanoparticles (TMNPs). Firstly, it offers a focused exploration of TMNPs, specifically addressing their unique properties and applications, which have been less examined compared to other multimetallic nanoparticles. This targeted analysis fills a significant gap in current research. Secondly, the review emphasizes innovative biosynthesis methods utilizing microorganisms and plant extracts, positioning these green synthesis approaches as environmentally friendly alternatives to traditional chemical methods. This focus aligns with the increasing demand for sustainable practices in nanotechnology. Furthermore, the review integrates discussions on both medical and agricultural applications of TMNPs, highlighting their multifunctional potential across diverse fields. This comprehensive perspective enhances our understanding of how TMNPs can address various challenges. Additionally, the review explores the synergistic effects among the different metals in TMNPs, providing insights into how these interactions can be harnessed to optimize their properties for specific applications. Such discussions are often overlooked in existing studies. Moreover, this review identifies critical research gaps and challenges within the field, outlining future directions that encourage further investigation and innovation in TMNP development. By doing so, it proactively contributes to advancing the field. Finally, the review advocates for interdisciplinary collaboration among material scientists, biologists, and environmental scientists, emphasizing the importance of diverse expertise in enhancing the research and application of TMNPs.
Collapse
Affiliation(s)
- Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt.
| | - Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Bahaa M Badr
- Department of Basic and Clinical Medical Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
| | | | - Mahmoud A Diab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Amer Morsy Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt.
| | - Fathy M Elkady
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, P.O. Box 11884, Cairo, Egypt
| | - Mohamed Abdelrahman Ali
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Nasser Ibrahim Issa
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Ziad A Hamdy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Mohamed E Nafea
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Ahmed Nageh Khalifa
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Albraa Adel
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Abdulrahman Hasib
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Ahmed Mostafa Hawela
- Biochemistry Department, Faculty of Agriculture, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | | | - Mustafa A Nouh
- Research and Development Department, ALSALAM International for Development & Agricultural Investment, Giza, Egypt
| | - Ahmed Abdelhay Nahool
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| |
Collapse
|
20
|
Zeid LS, El-Masry HA, Mohamed HH, Hathout A, Younes AS, El-Kholy AA, Hamid AAMA, Elaziz NAA, Hafez FS, Mostafa MEE, Omar IMM, Ahmed TE, Darwish MSA. Review on macromolecule-based magnetic theranostic agents for biomedical applications: Targeted therapy and diagnostic imaging. J Pharm Sci 2025; 114:787-804. [PMID: 39710317 DOI: 10.1016/j.xphs.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/24/2024]
Abstract
Clinical diagnostics and biological research are advanced by magnetic theranostic, which uses macromolecule-based magnetic theranostic agents for targeted therapy and diagnostic imaging. Within this review, the interaction of magnetic nanoparticles (MNPs) with biological macromolecules will be covered. The exciting potential of macromolecule-based magnetic theranostic agents to be used as a tool in drug delivery, photothermally therapy (PTT), gene therapy, hyperthermia therapy and photodynamic therapy (PDT) will be discussed. Innovative imaging technique: magnetic resonance imaging (MRI), magnetic particle imaging (MPI), fluorescence scanning, and photoacoustic scanning are revolutionizing biological diagnosis by potentially overcoming historical limitations. This review will cover the challenge of fabricating of macromolecule-based magnetic theranostic agents as a promising platform for theranostic that can combine therapies with diagnostics at subcellular level. Additionally, it looks at several chemical pathways leading to the process for generating MNPs, including the co-precipitation, the sol-gel, the hydrothermal synthesis, the polyol route, and the microemulsion technique. Eventually, the demands and prospects for magnetic theranostic are discussed, focusing on the requirement of further investigation to improve MNP structure towards biocompatible material and translation of these promising theranostic agents into clinical applications.
Collapse
Affiliation(s)
- Laila S Zeid
- Chemistry Department, Faculty of Science, Cairo University, Giza 12555, Egypt.
| | - Heba A El-Masry
- Chemistry & Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32611, Egypt.
| | - Hend H Mohamed
- School of Biotechnology and Badr University in Cairo Research Center, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Amira Hathout
- School of Biotechnology and Badr University in Cairo Research Center, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt.
| | - Ahmed S Younes
- Nuclear and Radiation Engineering Department, Faculty of Engineering, Alexandria University, Luxor 85951, Egypt.
| | - Aya A El-Kholy
- Applied Medical Chemistry Department, Medical Research Institute - Alexandria University, Alexandria 21561,Egypt.
| | - Aya Ashraf Muhammad Abdel Hamid
- Biotechnology Department Faculty of Agriculture, Ain shams university, 5 neighboring 33 investors May 15, Cairo 11724, Egypt.
| | - Naira Ali Abd Elaziz
- Department of Chemistry & Zoology, Faculty of Science, Cairo University, Mansouriya_Mansheat, Al Qanater Giza 12962 Egypt.
| | - Fatma Shaban Hafez
- Chemistry and Zoology Department, Faculty of Science, menofia university. Mahallet sobk, Ashmoun, Menofia 32839, Egypt.
| | - May Emad Eldin Mostafa
- Biotechnology Department, Faculty of Agriculture, Cairo University, Helmytelzyton, Cairo 11724, Egypt,.
| | - Islam M M Omar
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, El-agezy, Tanta 11113, Egypt.
| | - Tasneem Elsayed Ahmed
- Biochemistry Department, Faculty of Science, Ain shams university, Cairo 11595, Egypt.
| | - Mohamed S A Darwish
- Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor Street, El Zohour Region, Nasr City, Cairo 11727, Egypt.
| |
Collapse
|
21
|
Benjamin AS, Nayak S. Iron oxide nanoparticles coated with bioactive materials: a viable theragnostic strategy to improve osteosarcoma treatment. DISCOVER NANO 2025; 20:18. [PMID: 39883285 PMCID: PMC11782756 DOI: 10.1186/s11671-024-04163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/04/2024] [Indexed: 01/31/2025]
Abstract
Osteosarcoma (OS) is distinguished as a high-grade malignant tumor, characterized by rapid systemic metastasis, particularly to the lungs, resulting in very low survival rates. Understanding the complexities of tumor development and mutation is the need of the hour for the advancement of targeted therapies in cancer care. A significant innovation in this area is the use of nanotechnology, specifically nanoparticles, to tackle various challenges in cancer treatment. Iron oxide nanoparticles stand out in both therapeutic and diagnostic applications, offering a versatile platform for targeted drug delivery, hyperthermia, magneto-thermal therapy, and combinational therapy using modulation of ferroptosis pathways. These nanoparticles are easy to synthesize, non-toxic, biocompatible, and display enhanced circulation time within the system. They can also be easily conjugated to anti-cancer drugs, targeting agents, or genetic vectors that respond to specific stimuli or pH changes. The surface functionalization of these nanoparticles using bioactive molecules unveils a promising and effective nanoparticle system for assisting osteosarcoma therapy. This review will summarize the current conventional therapies for osteosarcoma and their disadvantages, the synthesis and modification of iron oxide nanoparticles documented in the literature, cellular targeting and uptake mechanism, with focus on their functionalization using natural biomaterials and application strategies towards management of osteosarcoma. The review also compiles the translational challenges and future prospects that must be addressed for clinical advancements of iron oxide based osteosarcoma treatment in the future.
Collapse
Affiliation(s)
- Amy Sarah Benjamin
- School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sunita Nayak
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
22
|
Bisht A, Avinash D, Sahu KK, Patel P, Das Gupta G, Kurmi BD. A comprehensive review on doxorubicin: mechanisms, toxicity, clinical trials, combination therapies and nanoformulations in breast cancer. Drug Deliv Transl Res 2025; 15:102-133. [PMID: 38884850 DOI: 10.1007/s13346-024-01648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Doxorubicin is a key treatment for breast cancer, but its effectiveness often comes with significant side effects. Its actions include DNA intercalation, topoisomerase II inhibition, and reactive oxygen species generation, leading to DNA damage and cell death. However, it can also cause heart problems and low blood cell counts. Current trials aim to improve doxorubicin therapy by adjusting doses, using different administration methods, and combining it with targeted treatments or immunotherapy. Nanoformulations show promise in enhancing doxorubicin's effectiveness by improving drug delivery, reducing side effects, and overcoming drug resistance. This review summarizes recent progress and difficulties in using doxorubicin for breast cancer, highlighting its mechanisms, side effects, ongoing trials, and the potential impact of nanoformulations. Understanding these different aspects is crucial in optimizing doxorubicin's use and improving outcomes for breast cancer patients. This review examines the toxicity of doxorubicin, a drug used in breast cancer treatment, and discusses strategies to mitigate adverse effects, such as cardioprotective agents and liposomal formulations. It also discusses clinical trials evaluating doxorubicin-based regimens, the evolving landscape of combination therapies, and the potential of nanoformulations to optimize delivery and reduce systemic toxicity. The review also discusses the potential of liposomes, nanoparticles, and polymeric micelles to enhance drug accumulation within tumor tissues while sparing healthy organs.
Collapse
Affiliation(s)
- Anjali Bisht
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Dubey Avinash
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, 17 km Stone, NH-2, Chaumuhan, Mathura, 281406, UP, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
23
|
Wahengbam GS, Nirmal S, Nandwana J, Kar S, Kumari V, Mishra R, Singh A. Polymeric Nanoparticles Revolutionizing Brain Cancer Therapy: A Comprehensive Review of Strategies and Advances. Crit Rev Ther Drug Carrier Syst 2025; 42:73-106. [PMID: 39819464 DOI: 10.1615/critrevtherdrugcarriersyst.2024051822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Brain cancer continues to be one of the most formidable malignancies to manage, mainly attributable to the presence of the blood-brain barrier (BBB) limiting the permeability of drugs and the diverse characteristics of brain tumors complicating treatment. The management of brain tumors has been hampered by many different factors, including the impermeability of the BBB, which restricts the delivery of chemotherapeutic agents to the tumor site, as well as intertumoral heterogeneity and the influence of brain tumor stem cells. In addition, small molecular weight drugs cannot specifically accumulate in malignant cells and have a limited circulation half-life. Nanoparticles (NPs) can be engineered to traverse the BBB and transport therapeutic medications directly into the brain, enhancing their efficacy compared with the conventional delivery of unbound drugs. Surface modifications of NPs can boost their efficiency by increasing their selectivity towards tumor receptors. This review covers treatment methods for malignant gliomas, associated risk factors, and improvements in brain drug administration, emphasizing the future potential of polymeric NPs and their mechanism for crossing the BBB. To surmount these obstacles, the newly formulated drug-delivery approach utilizing NPs, particularly those coated with cell membranes, has demonstrated potential in treating brain cancer. These NPs provide targeted tumor specificity, biocompatibility, extended circulation, enhanced BBB penetration, and immune evasion. This review focuses on coating strategies for PLGA NPs, particularly dual-targeting methods, to enhance BBB permeability and tumor-targeted delivery of drugs in brain cancer.
Collapse
Affiliation(s)
| | - Sakshi Nirmal
- Cancer Research Laboratory, Department of Biosciences, Manipal University Jaipur, India
| | - Jai Nandwana
- Cancer Research Laboratory, Department of Biosciences, Manipal University Jaipur, India
| | - Swatileena Kar
- Cancer Research Laboratory, Department of Biosciences, Manipal University Jaipur, India
| | - Vandana Kumari
- Cancer Research Laboratory, Department of Biosciences, Manipal University Jaipur, India
| | - Rajeev Mishra
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | | |
Collapse
|
24
|
Sahu C, Sahu RK, Roy A. A Review on Nanotechnologically Derived Phytomedicines for the Treatment of Hepatocellular Carcinoma: Recent Advances in Molecular Mechanism and Drug Targeting. Curr Drug Targets 2025; 26:167-187. [PMID: 39385414 DOI: 10.2174/0113894501312571240920070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024]
Abstract
The second largest cause of cancer-related death worldwide, Hepatocellular Carcinoma (HCC) is also the most common primary liver cancer. HCC typically arises in patients with liver cirrhosis. Existing synthetic medicines for treating chronic liver disease are ineffective and come with undesirable side effects. Although herbal remedies have widespread popularity, there is still a long road ahead before they are fully accepted by the scientific community. Secondary metabolites and phytochemicals found in plants are abundant in both the human diet and the non-human environment. Natural plant chemicals have been shown to be beneficial as therapeutic and chemopreventive treatments for a wide variety of chronic disorders. Many diseases, including HCC, can be effectively treated with the help of phytochemicals found in food. Resveratrol, curcumin, urolithin A, silibinin, quercetin, N-trans-feruloyl octopamine, emodin, lycopene, caffeine, and phloretin are all examples. Approximately, 60% of all anticancer medications are determined to be derived from natural substances, according to recent studies. Plant derivatives have played an important role in cancer due to their capacity to scavenge free radicals, limit cell proliferation, and set off apoptosis. The progression of HCC is linked to inflammatory signaling pathways, and this study sought to look at how novel approaches, such as phytomedicines, are being used to fight cancer. Recent advancements in molecular mechanisms and drug targeting for HCC have been discussed in this review.
Collapse
Affiliation(s)
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal-249161, Uttarakhand, India
| | - Amit Roy
- Chhatrapati Shivaji Institute of Pharmacy, Bhilai, Chhattisgarh-491001, India
| |
Collapse
|
25
|
Afkhami H, Yarahmadi A, Bostani S, Yarian N, Haddad MS, Lesani SS, Aghaei SS, Zolfaghari MR. Converging frontiers in cancer treatment: the role of nanomaterials, mesenchymal stem cells, and microbial agents-challenges and limitations. Discov Oncol 2024; 15:818. [PMID: 39707033 DOI: 10.1007/s12672-024-01590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
Globally, people widely recognize cancer as one of the most lethal diseases due to its high mortality rates and lack of effective treatment options. Ongoing research into cancer therapies remains a critical area of inquiry, holding significant social relevance. Currently used treatment, such as chemotherapy, radiation, or surgery, often suffers from other problems like damaging side effects, inaccuracy, and the lack of ability to clear tumors. Conventional cancer therapies are usually imprecise and ineffective and usually develop resistance to treatments and cancer recurs. Cancer patients need fresh and innovative treatment that can reduce side effects while maximizing effectiveness. In recent decades several breakthroughs in these, and other areas of medical research, have paved the way for new avenues of fighting cancer including more focused and more effective alternatives. This study reviews exciting possibilities for mesenchymal stem cells (MSCs), nanomaterials, and microbial agents in the modern realm of cancer treatment. Nanoparticles (NPs) have demonstrated surprisingly high potential. They improve drug delivery systems (DDS) significantly, enhance imaging techniques remarkably, and target cancer cells selectively while protecting healthy tissues. MSCs play a double role in tissue repair and are a vehicle for novel cancer treatments such as gene treatments or NPs loaded with therapeutic agents. Additionally, therapies utilizing microbial agents, particularly those involving bacteria, offer an inventive approach to cancer treatment. This review investigates the potential of nanomaterials, MSCs, and microbial agents in addressing the shortcomings of conventional cancer therapies. We will also discuss the challenges and limitations of using these therapeutic approaches.
Collapse
Affiliation(s)
- Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Shoroq Bostani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nahid Yarian
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Shima Sadat Lesani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | | |
Collapse
|
26
|
Tiwari A, Tiwari V, Sharma A, Marrisetti AL, Kumar M, Rochani A, Kaushik D, Mittal V, Jyothi S R, Ali H, Hussain MS, Gupta G. Unlocking the potential: integrating phytoconstituents and nanotechnology in skin cancer therapy - A comprehensive review. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024:jcim-2024-0338. [PMID: 39668578 DOI: 10.1515/jcim-2024-0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
Skin carcinoma, which includes basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma, is influenced by various factors such as genetic predisposition, chemical exposures, immune system imbalances, and ultraviolet (UV) radiation. This review delves into the mechanisms behind the development of these cancers, exploring the therapeutic potential of microbial, plant derived compounds and nanoparticles in advancing skin cancer treatments. Special attention is given to the cytotoxic effects of anti-neoplastic agents from microbial sources on different cancer cell lines, particularly melanoma. Additionally, the review highlights the role of phytochemicals - such as quercetin, resveratrol, and curcumin alongside vitamins, terpenoids, and sulforaphane, in management of skin cancers through mechanisms like apoptosis induction and cell cycle regulation. Recent advancements in nanotechnology-based drug delivery systems, including NP and microemulsion formulations, are also discussed for their enhanced ability to specifically target cancer cells. The diverse roles of NPs in skin cancer therapy, especially in terms of targeted drug delivery and immune modulation, are reviewed. These innovative NPs formulations have showed improved skin penetration and tumor-specific delivery, reduced systemic toxicity and enhanced therapeutic effectiveness.
Collapse
Affiliation(s)
- Abhishek Tiwari
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, Noida, Uttar Pradesh, India
- Amity University Uttar Pradesh, Sector 125, Noida 201313, Uttar Pradesh, India
| | - Varsha Tiwari
- Department of Pharmacognosy Chemistry, Amity Institute of Pharmacy, Lucknow Campus, Lucknow, India
- Amity University Uttar Pradesh, Sector 125, Noida 201313, Uttar Pradesh, India
| | - Ajay Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, India
| | - Arya Lakshmi Marrisetti
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, India
| | - Manish Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Ankit Rochani
- Wegmans School of Pharmacy, St John Fisher University, Rochester, NY, USA
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| |
Collapse
|
27
|
Mashkoor NR, Abed SA, Davoudi A, Jassim ZAA, Faraj ZY, Akbari F, Bajgiran FA, Hedayati M, Salehzadeh A. Synthesis of platinum nanoparticles functionalized with glutamine and conjugated with thiosemicarbazone and their cytotoxic effects on MDA-MB-231 breast cancer cell line and evaluation of CASP-8 gene expression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03629-z. [PMID: 39665983 DOI: 10.1007/s00210-024-03629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Breast cancer (BC) is the most prevalent form of cancer among women and is a major contributor to cancer-related fatalities. Nanotechnology has provided novel approaches to drug delivery to cancer cells. In this work, we synthesized platinum (Pt) nanoparticles, functionalized them with glutamine, conjugated them with thiosemicarbazone (TSC), and characterized their anticancer effects on the MDA-MB-231 breast cancer cell line. Characteristics of the nanoparticles were assessed by FT-IR, XRD, EDS mapping, SEM, TEM, DLS, and zeta potential measurement. Cell viability was characterized by MTT assay, and cell necrosis/apoptosis levels were determined by flow cytometry. The expression level of the CASP-8 gene was investigated by real-time PCR. Pt@Gln-TSC nanoparticles are spherical, 20-70 nm in diameter in dry form, 662 nm after hydration, and their zeta potential was - 6.6 mV. The 50% inhibitory concentration (IC50) for MDA-MB-231 (breast cancer) and HDF (normal) cell lines was 170 and 348µg/ml, respectively. Also, the IC50 of oxaliplatin drug and TSC on MDA-MB-231 cells was 184 µg/ml and 307 µg/ml, respectively. Treatment with Pt@Gln-TSC nanoparticles caused an increase in cell necrosis and primary apoptosis and elevated the expression of the CASP-8 gene by 2.54 folds. This study shows that Pt@Gln-TSC nanoparticles are significantly more toxic to breast cancer cells than to normal cells and can inhibit MDA-MB-231 cells by activating extrinsic apoptosis.
Collapse
Affiliation(s)
- Nabeel Rahi Mashkoor
- Department of Pathological Analysis, College of Science, AL-Qadisiyah University, Al Diwaniyah, AL-Qadisiyah, Iraq
| | - Salwan Ali Abed
- Environmental Science Department, College of Science, AL-Qadisiyah University, Al Diwaniyah, AL-Qadisiyah, Iraq
| | - Arash Davoudi
- Division of Cytogenetic, Dr. Keshavarz Medical Genetics Lab, Rasht, Iran
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | | | - Zainab Yousif Faraj
- Scientific Affairs Department, AL-Qadisiyah University, Al Diwaniyah, AL-Qadisiyah, Iraq
| | - Fatemeh Akbari
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | | | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
| |
Collapse
|
28
|
Singh DD, Haque S, Kim Y, Han I, Yadav DK. Remodeling of tumour microenvironment: strategies to overcome therapeutic resistance and innovate immunoengineering in triple-negative breast cancer. Front Immunol 2024; 15:1455211. [PMID: 39720730 PMCID: PMC11666570 DOI: 10.3389/fimmu.2024.1455211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 12/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) stands as the most complex and daunting subtype of breast cancer affecting women globally. Regrettably, treatment options for TNBC remain limited due to its clinical complexity. However, immunotherapy has emerged as a promising avenue, showing success in developing effective therapies for advanced cases and improving patient outcomes. Improving TNBC treatments involves reducing side effects, minimizing systemic toxicity, and enhancing efficacy. Unlike traditional cancer immunotherapy, engineered nonmaterial's can precisely target TNBC, facilitating immune cell access, improving antigen presentation, and triggering lasting immune responses. Nanocarriers with enhanced sensitivity and specificity, specific cellular absorption, and low toxicity are gaining attention. Nanotechnology-driven immunoengineering strategies focus on targeted delivery systems using multifunctional molecules for precise tracking, diagnosis, and therapy in TNBC. This study delves into TNBC's tumour microenvironment (TME) remodeling, therapeutic resistance, and immunoengineering strategies using nanotechnology.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Youngsun Kim
- Department of Obstetrics and Gynecology, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Dharmendra Kumar Yadav
- Department of Biologics, College of Pharmacy, Hambakmoeiro 191, Yeonsu-gu, Incheon, Republic of Korea
| |
Collapse
|
29
|
Öztürk K, Kaplan M, Çalış S. Effects of nanoparticle size, shape, and zeta potential on drug delivery. Int J Pharm 2024; 666:124799. [PMID: 39369767 DOI: 10.1016/j.ijpharm.2024.124799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Nanotechnology has brought about a significant revolution in drug delivery, and research in this domain is increasingly focusing on understanding the role of nanoparticle (NP) characteristics in drug delivery efficiency. First and foremost, we center our attention on the size of nanoparticles. Studies have indicated that NP size significantly influences factors such as circulation time, targeting capabilities, and cellular uptake. Secondly, we examine the significance of nanoparticle shape. Various studies suggest that NPs of different shapes affect cellular uptake mechanisms and offer potential advantages in directing drug delivery. For instance, cylindrical or needle-like NPs may facilitate better cellular uptake compared to spherical NPs. Lastly, we address the importance of nanoparticle charge. Zeta potential can impact the targeting and cellular uptake of NPs. Positively charged NPs may be better absorbed by negatively charged cells, whereas negatively charged NPs might perform more effectively in positively charged cells. This review provides essential insights into understanding the role of nanoparticles in drug delivery. The properties of nanoparticles, including size, shape, and charge, should be taken into consideration in the rational design of drug delivery systems, as optimizing these characteristics can contribute to more efficient targeting of drugs to the desired tissues. Thus, research into nanoparticle properties will continue to play a crucial role in the future of drug delivery.
Collapse
Affiliation(s)
- Kıvılcım Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Türkiye
| | - Meryem Kaplan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Türkiye; Department of Pharmaceutical Technology, Faculty of Pharmacy, Süleyman Demirel University, 32260 Isparta, Türkiye
| | - Sema Çalış
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Türkiye.
| |
Collapse
|
30
|
Temiz E, Bostancıklıoğlu M. Electromagnetic Fields Trigger Cell Death in Glioblastoma Cells through Increasing miR-126-5p and Intracellular Ca 2+ Levels. Cell Biochem Biophys 2024; 82:3597-3605. [PMID: 39048853 DOI: 10.1007/s12013-024-01449-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Electromagnetic fields create potential negative implications on biological systems, including modifications to DNA structure, nuclear condensation, cellular ion transport, and intracellular Ca2+ accumulation. To explore these effects on cancer cells, we exposed prostate, glioblastoma and cervix cancer cell lines to electromagnetic fields of wireless and assessed its anti-proliferative effects. PC3, A172, and HeLa cancer cells were cultured and exposed to electromagnetic fields for 24, 48, and 72 h. We used the MTT assay to detect cell viability and proliferation, Annexin V staining to determine apoptotic cells, and confocal microscopy to measure apoptosis-mediated intracellular calcium signals. Additionally, we performed profiling for apoptosis-related miRNAs. The results indicated that the electromagnetic field triggers apoptosis in the glioblastoma cell line A172 by increasing level of miR-129-5p, a known tumor suppressor. In contrast, the cervix cancer cell line and the prostate cancer cell line remained largely unaffected. In summary, our investigation underscores that electromagnetic fields at a 2.4 GHz frequency may adversely affect certain cancer cell lines, notably triggering apoptosis in the glioblastoma cancer cell line.
Collapse
Affiliation(s)
- Ebru Temiz
- Departments of Endocrinology, Diabetes and Nutrition Center, Université Catholique de Louvain (UCLouvain), Brussels, Belgium.
- Medical Promotion and Marketing Program, Vocational School of Health Services, Harran University, Sanliurfa, Turkey.
| | - Mehmet Bostancıklıoğlu
- Departments of Endocrinology, Diabetes and Nutrition Center, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
31
|
Ashokkumar M, Palanisamy K, Ganesh Kumar A, Muthusamy C, Senthil Kumar KJ. Green synthesis of silver and copper nanoparticles and their composites using Ocimum sanctum leaf extract displayed enhanced antibacterial, antioxidant and anticancer potentials. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:438-448. [PMID: 39239690 DOI: 10.1080/21691401.2024.2399938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
Green-synthesized silver and copper nanoparticles (NPs), along with their composites, exhibit various biological activities. Ocimum sanctum (Holy basil), traditionally used as medicine in South Asia, treats respiratory disorders, digestive issues, skin diseases and inflammatory conditions. Modern scientific studies support these bioactivities; however, no studies have investigated their bioactivity in combination with NPs. In this study, silver and copper NPs were synthesized using AgNO3 and CuSO4·5H2O solutions, respectively, with Ocimum sanctum leaf extract, and their antibacterial, antioxidant and anticancer properties were examined. Spectroscopic analyses, including Fourier transform infra-red (FTIR), transmission electron microscopy (TEM) and X-ray diffraction (XRD), elucidated the physicochemical characteristics of the green-synthesized nanoparticles (Os-AgNPs and Os-CuNPs), revealing sizes of 11.7 and 13.1 nm, respectively. The Os-AgNPs:Os-CuNPs nano-composite with a 1:2 ratio exhibited a zone of inhibition ranging from 8 to 12 mm against tested bacterial pathogens. Additionally, the NPs and their composites demonstrated potent antioxidant activity, with notable 2-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity observed in composites with ratios of 2:1 and 1:2. Furthermore, they displayed potential anticancer activity against human leukaemia (Jurkat) cancer cells. Although no distinct difference in anticancer property was observed among the NPs and their composites, our study highlights their well-defined nanostructure and significant biological activity, suggesting their potential as therapeutic agents in the pharmaceutical industry.
Collapse
Affiliation(s)
- M Ashokkumar
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, India
| | - K Palanisamy
- Department of Chemistry, Srinivasan College of Arts and Science(Affiliated to Bharathidasan University, Tiruchirappalli), Perambalur, India
| | - A Ganesh Kumar
- Department of Microbiology, Centre for Research and Development, Hindustan College of Arts & Science, Kelambakkam, India
| | - C Muthusamy
- Department of Biotechnology, Srinivasan College of Arts and Science (Affiliated to Bharathidasan University, Tiruchirappalli), Perambalur, India
| | - K J Senthil Kumar
- Center for General Education, National Chung Hsing University, Taichung, Taiwan
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
32
|
Bostiog DI, Simionescu N, Coroaba A, Marinas IC, Chifiriuc MC, Gradisteanu Pircalabioru G, Maier SS, Pinteala M. Multi-shell gold nanoparticles functionalized with methotrexate: a novel nanotherapeutic approach for improved antitumoral and antioxidant activity and enhanced biocompatibility. Drug Deliv 2024; 31:2388624. [PMID: 39152905 PMCID: PMC11332291 DOI: 10.1080/10717544.2024.2388624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024] Open
Abstract
Methotrexate (MTX) is a folic acid antagonist routinely used in cancer treatment, characterized by poor water solubility and low skin permeability. These issues could be mitigated by using drug delivery systems, such as functionalized gold nanoparticles (AuNPs), known for their versatility and unique properties. This study aimed to develop multi-shell AuNPs functionalized with MTX for the improvement of MTX antitumoral, antioxidant, and biocompatibility features. Stable phosphine-coated AuNPs were synthesized and functionalized with tailored polyethylene glycol (PEG) and short-branched polyethyleneimine (PEI) moieties, followed by MTX covalent binding. Physicochemical characterization by UV-vis and Fourier-transform infrared spectroscopy (FTIR) spectroscopy, dynamic light scattering (DLS), scanning transmission electron microscopy (STEM), and X-ray photoelectron spectroscopy (XPS) confirmed the synthesis at each step. The antioxidant activity of functionalized AuNPs was determined using DPPH radical scavenging assay, ferric ions' reducing antioxidant power (FRAP), and cupric reducing antioxidant capacity (CUPRAC) assays. Biocompatibility and cytotoxicity were assessed using MTT and LDH assays on HaCaT human keratinocytes and CAL27 squamous cell carcinoma. MTX functionalized AuNPs demonstrated enhanced antioxidant activity and a pronounced cytotoxic effect on the tumoral cells compared to their individual components, highlighting their potential for improving cancer therapy.
Collapse
Affiliation(s)
- Denisse-Iulia Bostiog
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
| | - Natalia Simionescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
| | - Adina Coroaba
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
| | - Ioana C. Marinas
- Department of Microbiology and Immunology, Research Institute of the University of Bucharest-ICUB, Bucharest, Romania
| | - Mariana C. Chifiriuc
- Department of Microbiology and Immunology, Research Institute of the University of Bucharest-ICUB, Bucharest, Romania
| | | | - Stelian S. Maier
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
- Polymer Research Center, “Gheorghe Asachi” Technical University of Iasi, Iasi, Romania
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
| |
Collapse
|
33
|
Bhuyan T, Choudhury K, Das P, Sharma S, Mazumder JA, Mohanta YK. Biosynthesis of pH-Responsive Mesoporous Silica Nanoparticles from Cucumber Peels for Targeting 3D Lung Tumor Spheroids. ACS APPLIED BIO MATERIALS 2024; 7:7494-7508. [PMID: 39467160 DOI: 10.1021/acsabm.4c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Lung adenocarcinoma is considered to be one of the primary causes of cancer-related deaths globally. Conventional treatments, such as chemotherapy and radiation therapy taken together, have not significantly lowered mortality rates. Repositioning of authorized anticancer medications supported by nanotechnology has therefore emerged as an effective strategy to close such gaps. In this context, mesoporous silica nanoparticles (MSNs) were biosynthesized from cucumber peels and were loaded with doxorubicin, a common anticancer drug to form doxorubicin-bound mesoporous silica nanoparticles (DMSNs). The study addresses a sustainable method for turning waste materials into MSNs, which can be used to create multifunctional nanosystems. The therapeutic module (DMSNs) was designed specifically to target 2D monolayer cells and 3D tumor spheroids of lung adenocarcinoma cancer. The DMSNs demonstrated notable antiproliferative activity and effective intracellular localization in addition to being biocompatible and innately fluorescent. Subsequent investigations revealed significant antibacterial activity against Staphylococcal infection, which is primarily prevalent in lung cancer patients. Thus, the developed MSNs held promising potential for anticancer drug delivery systems and have antibacterial potential to treat bacterial infections in patients with lung cancer. Furthermore, the cucumber peel-mediated synthesis of MSNs could also aid in the management of food waste and promote the adoption of the waste-to-health paradigm for sustainable solutions.
Collapse
Affiliation(s)
- Tamanna Bhuyan
- Nanobiotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Ninth Mile, Technocity, Baridua, Ri-Bhoi, 793101 Meghalaya, India
| | - Konika Choudhury
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pranjoli Das
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sanathoibi Sharma
- Nanobiotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Ninth Mile, Technocity, Baridua, Ri-Bhoi, 793101 Meghalaya, India
| | - Jahirul Ahmed Mazumder
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Yugal Kishore Mohanta
- Nanobiotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Ninth Mile, Technocity, Baridua, Ri-Bhoi, 793101 Meghalaya, India
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam603103, Tamil Nadu, India
| |
Collapse
|
34
|
Chandra J, Nasir N, Wahab S, Sahebkar A, Kesharwani P. Harnessing the power of targeted metal nanocarriers mediated photodynamic and photothermal therapy. Nanomedicine (Lond) 2024:1-19. [PMID: 39545609 DOI: 10.1080/17435889.2024.2419820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024] Open
Abstract
The treatment of cancer has become a profoundly intricate procedure. Traditional treatment methods, including chemotherapy, surgery and radiotherapy, have been utilized, while notable progress has been achieved in recent years. Among targeted therapies for cancer, folic acid (FA) conjugated metal-based nanoparticles (NP) have emerged as an innovative strategy, namely for photodynamic therapy (PDT) and photothermal therapy (PTT). These NP exploit the strong attraction between FA and folate receptors, which are excessively produced in several cancer cells, in order to enable precise administration and improved effectiveness of treatment. During PDT, metal-based NP functionalized with FA are used as photosensitizers which are activated by light, and produce reactive oxygen species that cause cancer cells to undergo apoptosis. Within the framework of PTT, these NP effectively transform light energy into concentrated heat, specifically targeting and destroying tumor cells. This review examines the fundamental mechanisms by which these NP improve the effectiveness of PDT and PTT while simultaneously presenting important findings that demonstrate the effectiveness of FA-functionalized MNP in laboratory and animal models. In addition, the paper also discusses the problems and potential directions for their clinical translation.
Collapse
Affiliation(s)
- Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazim Nasir
- Department of Basic Medical Sciences, College of Applied Medical Sciences, Khamis Mushait, King Khalid University, Abha, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
35
|
Pu S, Song J, Lu H, Zhang W, Li L. High-sensitivity and spatial resolution benchtop cone beam XFCT imaging system with pixelated photon counting detectors using enhanced multipixel events correction method. Phys Med Biol 2024; 69:215039. [PMID: 39447605 DOI: 10.1088/1361-6560/ad8b0b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024]
Abstract
Objective.High atomic number element nanoparticles have shown potential in tumor diagnosis and therapy. X-ray fluorescence computed tomography (XFCT) technology enables quantitative imaging of high atomic number elements by specifically detecting characteristic x-ray signals. The potential for further biomedical applications of XFCT depends on balancing sensitivity, spatial resolution, and imaging speed in existing XFCT imaging systems.Approach.In this study, we utilized a high-energy resolution pixelated photon-counting detector for XFCT imaging. We tackled degradation caused by multi-pixel events in the photon-counting detector through energy and interaction position corrections. Sensitivity and spatial resolution imaging experiments were conducted using PMMA phantoms to validate the effectiveness of the multi-pixel events correction algorithm.Main results.After correction, the system's sensitivity and spatial resolution have both improved. Furthermore, XFCT/CBCT dual-modality imaging of gadolinium nanoparticles within mice subcutaneous tumor was successfully achieved.Significance.These results demonstrate the preclinical research application potential of the XFCT/CBCT dual-modality imaging system in high atomic number nanoparticle-based tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Shaozhou Pu
- Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China
- Key Laboratory of Particle and Radiation imaging (Tsinghua University), Ministry of Education, Beijing 100084, People's Republic of China
| | - Jiadan Song
- Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China
- Key Laboratory of Particle and Radiation imaging (Tsinghua University), Ministry of Education, Beijing 100084, People's Republic of China
| | - Hongbing Lu
- School of Biomedical Engineering, Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, The Fourth Military Medical University, 169th Changle West Road, Xi'an, Shaanxi 710032, People's Republic of China
| | - Wenli Zhang
- School of Biomedical Engineering, Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, The Fourth Military Medical University, 169th Changle West Road, Xi'an, Shaanxi 710032, People's Republic of China
| | - Liang Li
- Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China
- Key Laboratory of Particle and Radiation imaging (Tsinghua University), Ministry of Education, Beijing 100084, People's Republic of China
| |
Collapse
|
36
|
Yıldırım M, Acet BÖ, Dikici E, Odabaşı M, Acet Ö. Things to Know and Latest Trends in the Design and Application of Nanoplatforms in Cancer Treatment. BIONANOSCIENCE 2024; 14:4167-4188. [DOI: 10.1007/s12668-024-01582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 01/05/2025]
|
37
|
Rajaram J, Kuthati Y. Metal Peroxide Nanoparticles for Modulating the Tumor Microenvironment: Current Status and Recent Prospects. Cancers (Basel) 2024; 16:3581. [PMID: 39518022 PMCID: PMC11545372 DOI: 10.3390/cancers16213581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background: The significant expansion of nanobiotechnology and nanomedicine has led to the development of innovative and effective techniques to combat various pathogens, demonstrating promising results with fewer adverse effects. Metal peroxide nanoparticles stand out among the crucial yet often overlooked types of nanomaterials, including metals. These nanoparticles are key in producing oxygen (O2) and hydrogen peroxide (H2O2) through simple chemical reactions, which are vital in treating various diseases. These compounds play a crucial role in boosting the effectiveness of different treatment methods and also possess unique properties due to the addition of metal ions. Methods: This review discusses and analyzes some of the most common metal peroxide nanoparticles, including copper peroxide (CuO2), calcium peroxide (CaO2), magnesium peroxide (MgO2), zinc peroxide (ZnO2), barium peroxide (BaO2), and titanium peroxide (TiOx) nanosystems. These nanosystems, characterized by their greater potential and treatment efficiency, are primarily needed in nanomedicine to combat various harmful pathogens. Researchers have extensively studied the effects of these peroxides in various treatments, such as catalytic nanotherapeutics, photodynamic therapy, radiation therapy, and some combination therapies. The tumor microenvironment (TME) is particularly unique, making the impact of nanomedicine less effective or even null. The presence of high levels of reactive oxygen species (ROS), hypoxia, low pH, and high glutathione levels makes them competitive against nanomedicine. Controlling the TME is a promising approach to combating cancer. Results: Metal peroxides with low biodegradability, toxicity, and side effects could reduce their effectiveness in treating the TME. It is important to consider the distribution of metal peroxides to effectively target cancer cells while avoiding harm to nearby normal cells. As a result, modifying the surface of metal peroxides is a key strategy to enhance their delivery to the TME, thereby improving their therapeutic benefits. Conclusions: This review discussed the various aspects of the TME and the importance of modifying the surface of metal peroxides to enhance their therapeutic advantages against cancer, as well as address safety concerns. Additionally, this review covered the current challenges in translating basic research findings into clinical applications of therapies based on metal peroxide nanoparticles.
Collapse
Affiliation(s)
- Jagadeesh Rajaram
- Department of Biochemistry and Molecular Medicine, National Dong Hwa University, Hualien 974, Taiwan;
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan
| |
Collapse
|
38
|
Bemidinezhad A, Radmehr S, Moosaei N, Efati Z, Kesharwani P, Sahebkar A. Enhancing radiotherapy for melanoma: the promise of high-Z metal nanoparticles in radiosensitization. Nanomedicine (Lond) 2024; 19:2391-2411. [PMID: 39382020 PMCID: PMC11492696 DOI: 10.1080/17435889.2024.2403325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Melanoma is a type of skin cancer that can be challenging to treat, especially in advanced stages. Radiotherapy is one of the main treatment modalities for melanoma, but its efficacy can be limited due to the radioresistance of melanoma cells. Recently, there has been growing interest in using high-Z metal nanoparticles (NPs) to enhance the effectiveness of radiotherapy for melanoma. This review provides an overview of the current state of radiotherapy for melanoma and discusses the physical and biological mechanisms of radiosensitization through high-Z metal NPs. Additionally, it summarizes the latest research on using high-Z metal NPs to sensitize melanoma cells to radiation, both in vitro and in vivo. By examining the available evidence, this review aims to shed light on the potential of high-Z metal NPs in improving radiotherapy outcomes for patients with melanoma.
Collapse
Affiliation(s)
- Abolfazl Bemidinezhad
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Negin Moosaei
- Materials Science & Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| | - Zohreh Efati
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi110062, India
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Al-Samydai A, Abu Hajleh MN, Al-Sahlawi F, Nsairat H, Khatib AA, Alqaraleh M, Ibrahim AK. Advancements of metallic nanoparticles: A promising frontier in cancer treatment. Sci Prog 2024; 107:368504241274967. [PMID: 39370817 PMCID: PMC11459474 DOI: 10.1177/00368504241274967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The incidence of cancer is increasing and evolving as a major source of mortality. Nanotechnology has garnered considerable scientific interest in recent decades and can offer a promising solution to the challenges encountered with traditional chemotherapy. Nanoparticle utilization holds promise in combating cancer and other diseases, offering exciting prospects for drug delivery systems and medicinal applications. Metallic nanoparticles exhibit remarkable physical and chemical properties, such as their minute size, chemical composition, structure, and extensive surface area, rendering them versatile and cost-effective. Research has demonstrated their significant and beneficial impact on cancer treatment, characterized by enhanced targeting abilities, gene activity suppression, and improved drug delivery efficiency. By incorporating targeting ligands, functionalized metal nanoparticles ensure precise energy deposition within tumors, thereby augmenting treatment accuracy. Moreover, beyond their therapeutic efficacy, metal nanoparticles serve as valuable tools for cancer cell visualization, contributing to diagnostic techniques. Utilizing metal nanoparticles in therapeutic systems allows for simultaneous cancer diagnosis and treatment, while also facilitating controlled drug release, thus revolutionizing cancer care. This narrative review investigates the advancements of metal nanoparticles in cancer treatment, types and mechanisms in targeting cancer cells, application in clinical scenarios, and potential toxicity in medicine.
Collapse
Affiliation(s)
- Ali Al-Samydai
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Maha N. Abu Hajleh
- Department of Cosmetic Science, Pharmacological and Diagnostic Research Centre, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Farah Al-Sahlawi
- Department of Pharmaceutics at the College of Pharmacy, University of Alkafeel, AlNajaf, Iraq
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Arwa Al Khatib
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Moath Alqaraleh
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Alia K. Ibrahim
- Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| |
Collapse
|
40
|
Corciovă A, Mircea C, Fifere A, Turin-Moleavin IA, Roşca I, Macovei I, Ivănescu B, Vlase AM, Hăncianu M, Burlec AF. Biogenic Synthesis of Silver Nanoparticles Mediated by Aronia melanocarpa and Their Biological Evaluation. Life (Basel) 2024; 14:1211. [PMID: 39337993 PMCID: PMC11433241 DOI: 10.3390/life14091211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/07/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
In the present study, two A. melanocarpa berry extracts were used for the synthesis of silver nanoparticles (AgNPs). After the optimization of synthesis, the AgNPs were characterized using UV-Vis, FTIR, EDX, DLS, and STEM analyses. The stability in different media, phytotoxicity, as well as antimicrobial and antioxidant activities were also evaluated. The ideal synthesis conditions were represented by a 3 mM AgNO3 concentration, 1:9 extract:AgNO3 volume ratio, alkaline medium, and stirring at 40 °C for 120 min. The synthesis was confirmed by the surface plasmon resonance (SPR) peak at 403 nm, and the strong signal at 3 keV from the EDX spectra. FTIR analysis indicated that polyphenols, polysaccharides, and amino acids could be the compounds responsible for synthesis. Stability tests and the negative zeta potential values showed that phytocompounds also play a role in the stabilization and capping of AgNPs. The preliminary phytotoxicity studies on T. aestivum showed that both the extracts and their corresponding AgNPs had an impact on the growth of roots and shoots as well as on the microscopic structure of leaves. The synthesized AgNPs presented antimicrobial activity against S. aureus, E. coli, and C. albicans. Moreover, considering the results obtained in the lipoxygenase inhibition, the DPPH and hydroxyl scavenging activities, and the ferrous ion chelating assay, AgNPs exhibit promising antioxidant activity.
Collapse
Affiliation(s)
- Andreia Corciovă
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.C.); (C.M.); (M.H.); (A.F.B.)
| | - Cornelia Mircea
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.C.); (C.M.); (M.H.); (A.F.B.)
| | - Adrian Fifere
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.F.); (I.-A.T.-M.); (I.R.)
| | - Ioana-Andreea Turin-Moleavin
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.F.); (I.-A.T.-M.); (I.R.)
| | - Irina Roşca
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.F.); (I.-A.T.-M.); (I.R.)
| | - Irina Macovei
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.C.); (C.M.); (M.H.); (A.F.B.)
| | - Bianca Ivănescu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.C.); (C.M.); (M.H.); (A.F.B.)
| | - Ana-Maria Vlase
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Monica Hăncianu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.C.); (C.M.); (M.H.); (A.F.B.)
| | - Ana Flavia Burlec
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.C.); (C.M.); (M.H.); (A.F.B.)
| |
Collapse
|
41
|
Fawzy MP, Hassan HAFM, Sedky NK, Nafie MS, Youness RA, Fahmy SA. Revolutionizing cancer therapy: nanoformulation of miRNA-34 - enhancing delivery and efficacy for various cancer immunotherapies: a review. NANOSCALE ADVANCES 2024:d4na00488d. [PMID: 39309515 PMCID: PMC11414826 DOI: 10.1039/d4na00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
Despite recent advancements in cancer therapies, challenges such as severe toxic effects, non-selective targeting, resistance to chemotherapy and radiotherapy, and recurrence of metastatic tumors persist. Consequently, there has been considerable effort to explore innovative anticancer compounds, particularly in immunotherapy, which offer the potential for enhanced biosafety and efficacy in cancer prevention and treatment. One such avenue of exploration involves the miRNA-34 (miR-34) family, known for its ability to inhibit tumorigenesis across various cancers. Dysregulation of miR-34 has been observed in several human cancers, and it is recognized as a tumor suppressor microRNA due to its synergistic interaction with the well-established tumor suppressor p53. However, challenges have arisen with the therapeutic application of miR-34a. These include its susceptibility to degradation by RNase in serum, limiting its ability to penetrate capillary endothelium and reach target cells, as well as reports of immunoreactive adverse reactions. Furthermore, unexpected side effects may occur, such as the accumulation of therapeutic miRNAs in healthy tissues due to interactions with serum proteins on nano-vector surfaces, nanoparticle breakdown in the bloodstream due to shearing stress, and unsuccessful extravasation of nanocarriers to target cells owing to interstitial fluid pressure. Despite these challenges, miR-34a remains a promising candidate for cancer therapy, and other members of the miR-34 family have also shown potential in inhibiting tumor cell proliferation. While the in vivo applications of miR-34b/c are limited, they warrant further exploration for oncotherapy. Recently, procedures utilizing nanoparticles have been developed to address the challenges associated with the clinical use of miR-34, demonstrating efficacy both in vitro and in vivo. This review highlights emerging trends in nanodelivery systems for miR-34 targeting cancer cells, offering insights into novel nanoformulations designed to enhance the anticancer therapeutic activity and targeting precision of miR-34. As far as current knowledge extends, no similar recent review comprehensively addresses the diverse nanoformulations aimed at optimizing the therapeutic potential of miR-34 in anticancer strategies.
Collapse
Affiliation(s)
- Marola Paula Fawzy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt
| | - Hatem A F M Hassan
- Medway School of Pharmacy, University of Kent Central Avenue, Chatham Maritime Canterbury ME44TB UK
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University 11562 Cairo Egypt
| | - Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo 11835 Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah (P.O. 27272) Sharjah United Arab Emirates (UAE)
- Chemistry Department, Faculty of Science, Suez Canal University (P.O. 41522) Ismailia Egypt
| | - Rana A Youness
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg Robert-Koch-Str. 4 35037 Marburg Germany
| |
Collapse
|
42
|
Weng MT, Hsiung CY, Wei SC, Chen Y. Nanotechnology for Targeted Inflammatory Bowel Disease Therapy: Challenges and Opportunities. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1999. [PMID: 39439396 DOI: 10.1002/wnan.1999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
Inflammatory bowel disease (IBD) is a complex and recurring inflammatory disorder that affects the gastrointestinal tract and is influenced by genetic predisposition, immune dysregulation, the gut microbiota, and environmental factors. Advanced therapies, such as biologics and small molecules, target diverse immune pathways to manage IBD. Nanoparticle (NP)-based drugs have emerged as effective tools, offering controlled drug release and targeted delivery. This review highlights NP modifications for anti-inflammatory purposes, utilizing changes such as those in size, charge, redox reactions, and ligand-receptor interactions in drug delivery systems. By using pathological and microenvironmental cues to guide NP design, precise targeting can be achieved. In IBD, a crucial aspect of NP intervention is targeting specific types of cells, such as immune and epithelial cells, to address compromised intestinal barrier function and reduce overactive immune responses. This review also addresses current challenges and future prospects, with the goal of advancing the development of NP-mediated strategies for IBD treatment.
Collapse
Affiliation(s)
- Meng-Tzu Weng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan
| | - Chia-Yueh Hsiung
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
43
|
Talarposhti MV, Salehzadeh A, Jalali A. Comparing the toxicity effects of copper oxide nanoparticles conjugated with Lapatinib on breast (MDA-MB-231) and lung (A549) cancer cell lines. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6855-6866. [PMID: 38563880 DOI: 10.1007/s00210-024-03071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
In recent years, the increase in cancer morbidity and mortality has presented scientists with a major challenge in developing new therapeutic agents against cancer cells. This study aims to characterize the anticancer effects of copper oxide nanoparticles (NPs) conjugated with Lapatinib (CuO@Lapatinib) on breast and lung cancer cell lines. The physicochemical properties of the NPs were characterized by fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning and transmission electron microscopy, energy dispersive X-ray spectroscopy (EDS), dynamic light scattering (DLS), and zeta potential analyses. The antiproliferative potential of the NPs in the breast (MDA-MB-231) and lung (A549) cancer cell lines and a normal cell line (MRC5) was investigated by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. Flow cytometry and Hoechst staining were used to evaluate cell apoptosis and cell cycle analysis. The reactive oxygen species (ROS) levels in the treated and control cells were also determined. The NPs were spherical, with a size range of 20-59nm, a DLS size of 338nm, and a zeta potential of -42.9 mV. The half maximal inhibitory concentration (IC50) of CuO@Lapatinib NPs for the normal, breast cancer, and lung cancer cell lines was 105, 98, and 87 µg/ml, respectively. Treatment with CuO@Lapatinib NPs caused considerable apoptosis induction in breast cancer (from 0.65% to 68.96%) and lung cancer cell lines (from 1.11% to 44.11%). Also, an increased level of cell cycle arrest at the S phase was observed in both cancer cell lines. The ROS level in the breast and lung cancer cell lines after treatment with CuO@Lapatinib NPs increased by 3.45 and 21.04 folds, respectively. Nuclear morphological alterations, including chromatin condensation and fragmentation, were observed in both cancer cell lines. This study indicates CuO@Lapatinib is a potent antiproliferative compound with more efficient inhibitory effects on lung cancer than breast cancer cells, which can be related to the higher ROS generation in the A549 cell line.
Collapse
Affiliation(s)
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
| | - Amir Jalali
- Department of Biology, Faculty of Science, Arak University, Arak, 384817758, Iran
| |
Collapse
|
44
|
Londhe S, Tripathy S, Saha S, Patel A, Chandra Y, Patra CR. Therapeutic Potential of Silver Nitroprusside Nanoparticles for Melanoma. ACS APPLIED BIO MATERIALS 2024; 7:5057-5075. [PMID: 39115261 DOI: 10.1021/acsabm.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Melanoma has gained considerable attention due to its high mortality and morbidity rate worldwide. The currently available treatment options are associated with several limitations such as nonspecificity, drug resistance, easy clearance, low efficacy, toxicity-related issues, etc. To this end, nanotechnology has garnered significant attention for the treatment of melanoma. In the present manuscript, we have demonstrated the in vitro and in vivo anticancer activity of silver nitroprusside nanoparticles (abbreviated as AgNNPs) against melanoma. The AgNNPs exhibit cytotoxicity against B16F10 cells, which has been investigated by several in vitro experiments including [methyl 3H]-thymidine incorporation assay, cell cycle and apoptosis analysis by flow cytometry, and ROS generation through DCFDA, DHE, and DAF2A reagents. Further, the internalization of nanoparticles was determined by ICPOES analysis, while their colocalization was analyzed by confocal microscopy. Additionally, JC-1 staining is performed to examine mitochondrial membrane potential (MMP). Cytoskeleton integrity was observed by phalloidin staining. Expression of different markers (Ki-67, cytochrome c, and E-cadherin) was checked using an immunofluorescence assay. The in vivo therapeutic efficacy of AgNNPs has been validated in the melanoma model established by inoculating B16F10 cells into the dorsal right abdomen of C57BL/6J mice. The intraperitoneal administration of AgNNPs reduced melanoma growth and increased the survivability of tumor-bearing mice. The in vivo immunofluorescence studies (Ki-67, CD31, and E-cadherin) and TUNEL assay support the inhibitory and apoptotic nature of AgNNPs toward melanoma, respectively. Furthermore, the various signaling pathways and molecular mechanisms involved in anticancer activity are evaluated by Western blot analysis. These findings altogether demonstrate the promising anticancer potential of AgNNPs toward melanoma.
Collapse
Affiliation(s)
- Swapnali Londhe
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Sanchita Tripathy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Sudipta Saha
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| | - Arti Patel
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Yogesh Chandra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamala Nehru Nagar, Gaziabad 201002, U.P., India
| |
Collapse
|
45
|
Buddhiraju HS, Yadav DN, Dey S, Eswar K, Padmakumar A, Rengan AK. Advances in Peptide-Decorated Targeted Drug Delivery: Exploring Therapeutic Potential and Nanocarrier Strategies. ACS APPLIED BIO MATERIALS 2024; 7:4879-4893. [PMID: 37996391 DOI: 10.1021/acsabm.3c00711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Peptides are ideal biologicals for targeted drug delivery and have also been increasingly employed as theranostic tools in treating various diseases, including cancer, with minimal or no side effects. Owing to their receptor-specificity, peptide-mediated drug delivery aids in targeted drug delivery with better pharmacological biodistribution. Nanostructured self-assembled peptides and peptide-drug conjugates demonstrate enhanced stability and performance and captivating biological effects in comparison with conventional peptides. Moreover, they serve as valuable tools for establishing interfaces between drug carriers and biological systems, enabling the traversal of multiple biological barriers encountered by peptide-drug conjugates on their journeys to their intended targets. Peptide-based drugs play a pivotal role in the field of medicine and hold great promise for addressing a wide range of complex diseases such as cancer and autoimmune disorders. Nanotechnology has revolutionized the fields of medicine, biomedical engineering, biotechnology, and engineering sciences over the past two decades. With the help of nanotechnology, better delivery of peptides to the target site could be achieved by exploiting the small size, increased surface area, and passive targeting ability of the nanocarrier. Furthermore, nanocarriers also ensure safe delivery of the peptide moieties to the target site, protecting them from degradation. Nanobased peptide delivery systems would be of significant importance in the near future for the successful targeted and efficient delivery of peptides. This review focuses on peptide-drug conjugates and nanoparticle-mediated self-assembled peptide delivery systems in cancer therapeutics.
Collapse
Affiliation(s)
- Hima Sree Buddhiraju
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Dokkari Nagalaxmi Yadav
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Sreenath Dey
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Kalyani Eswar
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Ananya Padmakumar
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| |
Collapse
|
46
|
Ansari M, Shahlaei M, Hosseinzadeh S, Moradi S. Recent advances in nanostructured delivery systems for vancomycin. Nanomedicine (Lond) 2024; 19:1931-1951. [PMID: 39143926 PMCID: PMC11457640 DOI: 10.1080/17435889.2024.2377063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/30/2024] [Indexed: 08/16/2024] Open
Abstract
Despite the development of new generations of antibiotics, vancomycin remained as a high-efficacy antibiotic for treating the infections caused by MRSA. Researchers have explored various nanoformulations, aiming to enhance the therapeutic efficacy of vancomycin. Such novel formulations improve the effectiveness of drug cargoes in treating bacterial infections and minimizing the risk of adverse effects. The vast of researches have focuses on enhancing the permeation ability of vancomycin through different biological barriers especially those of gastrointestinal tract. Increasing the drug loading and tuning the drug release from nanocarrier are other important goal for many conducted studies. This study reviews the newest nano-based formulations for vancomycin as a key antibiotic in treating hospitalized bacterial infections.
Collapse
Affiliation(s)
- Mohabbat Ansari
- Department of Tissue Engineering & Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering & Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
47
|
Bhat SA, Kumar V, Dhanjal DS, Gandhi Y, Mishra SK, Singh S, Webster TJ, Ramamurthy PC. Biogenic nanoparticles: pioneering a new era in breast cancer therapeutics-a comprehensive review. DISCOVER NANO 2024; 19:121. [PMID: 39096427 PMCID: PMC11297894 DOI: 10.1186/s11671-024-04072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Breast cancer, a widespread malignancy affecting women globally, often arises from mutations in estrogen/progesterone receptors. Conventional treatments like surgery, radiotherapy, and chemotherapy face limitations such as low efficacy and adverse effects. However, nanotechnology offers promise with its unique attributes like targeted delivery and controlled drug release. Yet, challenges like poor size distribution and environmental concerns exist. Biogenic nanotechnology, using natural materials or living cells, is gaining traction for its safety and efficacy in cancer treatment. Biogenic nanoparticles synthesized from plant extracts offer a sustainable and eco-friendly approach, demonstrating significant toxicity against breast cancer cells while sparing healthy ones. They surpass traditional drugs, providing benefits like biocompatibility and targeted delivery. Thus, this current review summarizes the available knowledge on breast cancer (its types, stages, histopathology, symptoms, etiology and epidemiology) with the importance of using biogenic nanomaterials as a new and improved therapy. The novelty of this work lies in its comprehensive examination of the challenges and strategies for advancing the industrial utilization of biogenic metal and metal oxide NPs. Additionally; it underscores the potential of plant-mediated synthesis of biogenic NPs as effective therapies for breast cancer, detailing their mechanisms of action, advantages, and areas for further research.
Collapse
Affiliation(s)
- Shahnawaz Ahmad Bhat
- Jamia Milia Islamia, New Delhi, 110011, India
- Central Ayurveda Research Institute, Jhansi, U.P., 284003, India
| | - Vijay Kumar
- Central Ayurveda Research Institute, Jhansi, U.P., 284003, India.
| | | | - Yashika Gandhi
- Central Ayurveda Research Institute, Jhansi, U.P., 284003, India
| | - Sujeet K Mishra
- Central Ayurveda Research Institute, Jhansi, U.P., 284003, India
| | | | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- Program in Materials Science, UFPI, Teresina, Brazil
| | | |
Collapse
|
48
|
Pereira D, Alves N, Sousa Â, Valente JFA. Metal-based approaches to fight cervical cancer. Drug Discov Today 2024; 29:104073. [PMID: 38944184 DOI: 10.1016/j.drudis.2024.104073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Cervical cancer (CC) is one of the leading causes of death among women worldwide. The current treatments for this cancer consist of invasive methods such as chemotherapeutic drugs, radiation, immunotherapy and surgery, which could lead to severe side effects and hinder the patient's life quality. Although metal-based therapies, including cisplatin and ruthenium-based compounds, offer promising alternatives, they lack specificity and harm healthy cells. Combining metal nanoparticles with standard approaches has demonstrated remarkable efficacy and safety in the fight against CC. Overall, this review is intended to show the latest advancements and insights into metal-based strategies, creating a promising path for more effective and safer treatments in the battle against CC.
Collapse
Affiliation(s)
- Diana Pereira
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; CDRSP-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Marinha Grande, 2430-028 Leiria, Portugal
| | - Nuno Alves
- CDRSP-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Marinha Grande, 2430-028 Leiria, Portugal
| | - Ângela Sousa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Joana F A Valente
- CDRSP-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Marinha Grande, 2430-028 Leiria, Portugal.
| |
Collapse
|
49
|
Ahmad E, Athar A, Nimisha, Zia Q, Sharma AK, Sajid M, Bharadwaj M, Ansari MA, Saluja SS. Harnessing nature's potential: Alpinia galanga methanolic extract mediated green synthesis of silver nanoparticle, characterization and evaluation of anti-neoplastic activity. Bioprocess Biosyst Eng 2024; 47:1183-1196. [PMID: 38509420 DOI: 10.1007/s00449-024-02993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
With the advent of nanotechnology, the treatment of cancer is changing from a conventional to a nanoparticle-based approach. Thus, developing nanoparticles to treat cancer is an area of immense importance. We prepared silver nanoparticles (AgNPs) from methanolic extract of Alpinia galanga rhizome and characterized them by UV-Vis spectrophotometry, Fourier transform Infrared (FTIR) spectroscopy, Zetasizer, and Transmission electron Microscopy (TEM). UV-Vis spectrophotometry absorption spectrum showed surface plasmon between 400 and 480 nm. FTIR spectrum analysis implies that various phytochemicals/secondary metabolites are involved in the reduction, caping, and stabilization of AgNPs. The Zetasier result suggests that the particles formed are small in size with a low polydispersity index (PDI), suggesting a narrow range of particle distribution. The TEM image suggests that the particles formed are mostly of spherical morphology with nearly 20-25 nm. Further, the selected area electron diffraction (SAED) image showed five electron diffraction rings, suggesting the polycrystalline nature of the particles. The nanoparticles showed high anticancer efficacy against cervical cancer (SiHa) cell lines. The nanostructures showed dose-dependent inhibition with 40% killing observed at 6.25 µg/mL dose. The study showed an eco-friendly and cost-effective approach to the synthesis of AgNPs and provided insight into the development of antioxidant and anticancer agents.
Collapse
Affiliation(s)
- Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Alina Athar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Qamar Zia
- Department of Medical Laboratory Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Mohammed Sajid
- Division of Molecular Genetics & Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention & Research, Noida, Uttar Pradesh, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics & Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention & Research, Noida, Uttar Pradesh, India
| | | | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India.
- Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, 110002, India.
| |
Collapse
|
50
|
Eswar K, Sankaranarayanan SA, Srivastava R, Harijan D, Prabusankar G, Rengan AK. Omeprazole-Loaded Copper Nanoparticles for Mitochondrial Damage Mediated Synergistic Anticancer Activity against Melanoma Cells. ACS APPLIED BIO MATERIALS 2024; 7:4795-4803. [PMID: 38958186 DOI: 10.1021/acsabm.4c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Metallic nanoparticles are promising candidates for anticancer therapies. Among the different metallic systems studied, copper is an affordable and biologically available metal with a high redox potential. Copper-based nanoparticles are widely used in anticancer studies owing to their ability to react with intracellular glutathione (GSH) to induce a Fenton-like reaction. However, considering the high metastatic potential and versatility of the tumor microenvironment, modalities with a single therapeutic agent may not be effective. Hence, to enhance the efficiency of chemotherapeutic drugs, repurposing them or conjugating them with other modalities is essential. Omeprazole is an FDA-approved proton pump inhibitor used in clinics for the treatment of ulcers. Omeprazole has also been studied for its ability to sensitize cancer cells to chemotherapy and induce apoptosis. Herein, we report a nanosystem comprising of copper nanoparticles encapsulating omeprazole (CuOzL) against B16 melanoma cells. The developed nanoformulation exerted significant synergistic anticancer activity when compared with either copper nanoparticles or omeprazole alone by inducing cell death through excessive ROS generation and subsequent mitochondrial damage.
Collapse
Affiliation(s)
- Kalyani Eswar
- Centre for Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | | | - Rupali Srivastava
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Dinesh Harijan
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Ganesan Prabusankar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Aravind Kumar Rengan
- Centre for Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| |
Collapse
|