1
|
Fu B, Lin K, Yu S, Ge Y, Li X, Zhu W, Tan L, Wang R, Ou J, Lu S. Inorganic arsenic in aquatic products in Shenzhen, China from 2018 to 2024: Levels, temporal variation and health risk assessment. Food Chem Toxicol 2025; 200:115353. [PMID: 40024563 DOI: 10.1016/j.fct.2025.115353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/26/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Aquatic products are a significant source of arsenic exposure, with inorganic arsenic (iAs) posing a significant risk to humans. This study assessed iAs levels in 1191 aquatic products from Shenzhen, China (2018-2024), and estimated health risks. Shellfish had lower mean iAs levels (0.01 mg/kg ∼ 0.07 mg/kg), while crab, fish, and shrimp had higher levels (0.04 mg/kg ∼ 0.06 mg/kg). The iAs levels in shellfish were stable from 2018 to 2024. Health risk assessments showed estimated daily intake values ranging from 0.01 μg/kg·bw/day to 0.39 μg/kg·bw/day, with children having the highest exposure. The target hazard quotient exceeded 1 for fish and shrimp in high-consumption scenarios for children, indicating potential non-carcinogenic risks. Cancer risk estimates surpassed acceptable thresholds, especially for children and adolescents, suggesting an increased cancer risk with high consumption. Authorities should strengthen surveillance of iAs in aquatic products, especially shellfish and shrimp, and enhance environmental monitoring in Shenzhen.
Collapse
Affiliation(s)
- Bo Fu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Kai Lin
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Sisi Yu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yiming Ge
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinjie Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenchao Zhu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Lei Tan
- Shenzhen Inspection and Testing Center of Agricultural Product Quality and Safety, Shenzhen, 518055, China
| | - Rui Wang
- Shenzhen Inspection and Testing Center of Agricultural Product Quality and Safety, Shenzhen, 518055, China
| | - Jixi Ou
- Shenzhen Inspection and Testing Center of Agricultural Product Quality and Safety, Shenzhen, 518055, China.
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
2
|
Chao CN, Hung CF, Lai WH, Tung CL, Yeh WY, Yang KW, Wang M, Lai YY, Chen PL, Shen CH. Clinical and molecular analysis of JCPyV and BKPyV infection and associated risk of urothelial carcinoma development in the upper tract. Virol J 2025; 22:32. [PMID: 39923063 PMCID: PMC11806556 DOI: 10.1186/s12985-025-02643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/24/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Human polyomaviruses (HPyVs), JC polyomavirus (JCPyV) and BK polyomavirus (BKPyV), have been found in upper tract urothelial carcinoma UTUC; however, the association of the viral oncogenic factors and clinical characteristics of UTUC remains unclear. This study aimed to investigate the prevalence of JCPyV and BKPyV in UTUC and their correlation with cancer progression among the southwest Taiwanese population from 2020 to 2022. METHODS A total of 72 paraffin-embedded UTUC tissue samples and 41 adjacent tissue samples were collected from 72 patients. Nested polymerase chain reaction and DNA sequencing were used to detect viral DNA and genotypes. Immunohistochemistry was performed using anti- large T (LT) and anti-p53 monoclonal antibodies to detect the expression of viral early LT protein and cellular p53 protein, respectively. RESULTS The overall prevalence of JCPyV and BKPyV were higher in UTUC than in adjacent tissue samples (65.3% [47/72] vs. 17.1% [7/41]). JCPyV and BKPyV were detected in 95.7% (45/47) and 4.3% (2/47) of the HPyVs-positive UTUC samples, respectively. JCPyV-TW-3 was the predominant strain of JCPyV infection. In UTUC samples, the LT protein of JCPyV and BKPyV positivity rate was 65.3%, while that of mutant p53 protein was 52.7%. JCPyV infection and LT protein expression increased the odds ratio (OR) of UTUC by 9.13-fold. The OR of UTUC was higher by 10.34-fold in patients with mutant p53 and by 10.37-fold in those with simultaneous LT and mutant p53 expression. The presence of LT protein in UTUC patients may increase the OR of mutant p53 protein expression by 2.93-fold compared to its absence. Women had a 5.19-fold higher superiority of JCPyV infection and LT expression than men. Patients with chronic kidney disease (CKD) had a 3.15-fold higher OR for mutant p53 protein expression than those without it. In the UTUC advanced stages, the OR of virus and LT expression was 3.18-fold higher compared to those who do not require chemotherapy. CONCLUSIONS JCPyV infection is highly prevalent in UTUC, and the presence of CKD concurrent with high expressions of LT and mutant p53 proteins in patients may be a useful indicator for chemotherapy and poor prognosis.
Collapse
Affiliation(s)
- Chun-Nun Chao
- Department of Pediatrics, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Chi-Feng Hung
- Department of Urology, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Wei-Hong Lai
- Department of Urology, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Chun-Liang Tung
- Department of Pathology, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Wan-Yun Yeh
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, 666, Buzih Road, Beitun District, Taichung, 406053, Taiwan
| | - Kai-Wu Yang
- Department of Urology, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Meilin Wang
- Department of Microbiology and Immunology, School of Medicine, Chung-Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung-Shan Medical University Hospital, Taichung, Taiwan
| | - Ya-Yan Lai
- Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Pei-Lain Chen
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, 666, Buzih Road, Beitun District, Taichung, 406053, Taiwan.
| | - Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan.
- Department of Biomedical Sciences, National Chung Cheng University, Min‑Hsiung, Chiayi, Taiwan.
| |
Collapse
|
3
|
Zhang WY, Zhang XN, Zhang CG, Jia XR, Li H, Yue XZ, Wu DD, Zhu JK, Zhang WQ, Qin YH, Fan YC. Spatial and temporal distribution of arsenic concentration in rural drinking water and health risk assessment in Northern China from 2013 to 2022: a case study of Inner Mongolia Autonomous Region. BMC Public Health 2024; 24:3529. [PMID: 39696121 DOI: 10.1186/s12889-024-20776-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND By monitoring arsenic levels in rural drinking water in Inner Mongolia Autonomous Region from 2013 to 2022 and evaluating their health risks, this study provides a basis for further developing strategies to promote public health. METHODS One stable centralized water supply point was randomly selected in each township of Inner Mongolia Autonomous Region. One finished water sample and 1-3 tap water samples were collected at each supply point. Water samples were collected once during the dry season (May) and once during the rainy season (August-September). Mann-Whitney U test was used to compare arsenic concentrations in drinking water from different types of water sources, and Kruskal-Wallis test was used to compare arsenic concentrations in drinking water across different years. Environmental health risk assessment was conducted using the health risk assessment model recommended by the US Environmental Protection Agency (USEPA). RESULTS Overall, arsenic concentrations in rural drinking water were higher in the central-western part of Inner Mongolia Autonomous Region compared to the eastern part. From 2013 to 2022, there was a notable decreasing trend in arsenic concentrations in rural drinking water, with over 98% of water samples meeting arsenic standards by 2022. During 2013-2019, arsenic concentrations in drinking water sourced from groundwater were consistently higher than those from surface water sources (P < 0.05). Hazard quotient (HQ) values for the entire population were below 1, and lifetime cancer risk (LCR) values exceeded 1 × 10- 6. Sensitivity analysis indicated that drinking water arsenic concentration contributed the most to health risks for the population. CONCLUSION During 2013-2022, through concerted efforts by the government and the people, excessive arsenic levels in rural drinking water have been significantly reduced, resulting in decreased health risks for the population. However, some carcinogenic risks still exist.Therefore, the next critical step in improving water quality in the region involves further optimizing methods such as coagulation, adsorption, or ion exchange to remove arsenic from drinking water.
Collapse
Affiliation(s)
- Wen-Yu Zhang
- Inner Mongolia Medical University, Inner Mongolia, Hohhot, The People's Republic of China
| | - Xiang-Nan Zhang
- Inner Mongolia Center for Disease Control and Prevention (Inner Mongolia Academy of Preventive Medicine), Inner Mongolia, Hohhot, The People's Republic of China
| | - Chen-Guang Zhang
- Inner Mongolia Center for Disease Control and Prevention (Inner Mongolia Academy of Preventive Medicine), Inner Mongolia, Hohhot, The People's Republic of China
| | - Xin-Rui Jia
- Inner Mongolia Medical University, Inner Mongolia, Hohhot, The People's Republic of China
| | - Huan Li
- Inner Mongolia Medical University, Inner Mongolia, Hohhot, The People's Republic of China
| | - Xuan-Zhi Yue
- Inner Mongolia Medical University, Inner Mongolia, Hohhot, The People's Republic of China
| | - Duo-Duo Wu
- Baotou Medical College, Baotou, The People's Republic of China
| | - Jia-Ke Zhu
- Inner Mongolia Medical University, Inner Mongolia, Hohhot, The People's Republic of China
| | - Wen-Qian Zhang
- Inner Mongolia Medical University, Inner Mongolia, Hohhot, The People's Republic of China
- Inner Mongolia Center for Disease Control and Prevention (Inner Mongolia Academy of Preventive Medicine), Inner Mongolia, Hohhot, The People's Republic of China
| | - Yu-Han Qin
- Inner Mongolia Center for Disease Control and Prevention (Inner Mongolia Academy of Preventive Medicine), Inner Mongolia, Hohhot, The People's Republic of China.
| | - Yao-Chun Fan
- Inner Mongolia Medical University, Inner Mongolia, Hohhot, The People's Republic of China.
- Inner Mongolia Center for Disease Control and Prevention (Inner Mongolia Academy of Preventive Medicine), Inner Mongolia, Hohhot, The People's Republic of China.
- Inner Mongolia Engineering and Technical Research Center for personalized Medicine, Inner Mongolia, Tongliao, The People's Republic of China.
| |
Collapse
|
4
|
De Pretis F, Zhou Y, Shao K. Benchmark dose modeling for epidemiological dose-response assessment using case-control studies. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024. [PMID: 39489609 DOI: 10.1111/risa.17671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Following a previous article that focused on integrating epidemiological data from prospective cohort studies into toxicological risk assessment, this paper shifts the focus to case-control studies. Specifically, it utilizes the odds ratio (OR) as the main epidemiological measure, aligning it with the benchmark dose (BMD) methodology as the standard dose-response modeling approach to determine chemical toxicity values for regulatory risk assessment. A standardized BMD analysis framework has been established for toxicological data, including input data requirements, dose-response models, definitions of benchmark response, and consideration of model uncertainty. This framework has been enhanced by recent methods capable of handling both cohort and case-control studies using summary data that have been adjusted for confounders. The present study aims to investigate and compare the "effective count" based BMD modeling approach, merged with an algorithm used for converting odds ratio to relative risk in cohort studies with partial data information (i.e., the Wang algorithm), with the adjusted OR-based BMD analysis approach. The goal is to develop an adequate BMD modeling framework that can be generalized for analyzing published case-control study data. As in the previous study, these methods were applied to a database examining the association between bladder and lung cancer and inorganic arsenic exposure. The results indicate that estimated BMDs and BMDLs are relatively consistent across both methods. However, modeling adjusted OR values as continuous data for BMD estimation aligns better with established practices in toxicological BMD analysis, making it a more generalizable approach.
Collapse
Affiliation(s)
- Francesco De Pretis
- Department of Environmental and Occupational Health, School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA
- Department of Communication and Economics, University of Modena and Reggio Emilia, Reggio Emilia, Modena, Emilia-Romagna, Italy
| | - Yun Zhou
- Department of Environmental and Occupational Health, School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
5
|
Yadav SK, Dutta TK, Chatterjee A, Dutta S, Mohammad A, Das AK. Environmental contamination of arsenic: pathway analysis through water-soil-feed-livestock in Nadia District (India) and potential human health risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57832-57855. [PMID: 39294538 DOI: 10.1007/s11356-024-34956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024]
Abstract
This study investigated arsenic (As) concentrations in diverse environmental components and their potential impact on the health risks faced by residents of the arsenic (As)-contaminated Nadia district in West Bengal, India. A random selection of 182 cattle and 255 goats from 40 livestock farmers in the district revealed that both animals and humans were naturally exposed to elevated arsenic levels through contaminated drinking water, foods, grasses, concentrate feeds, various fodder tree leaves, and other food/feed resources. The mean As concentration in roughages (483.18 µg/kg DM) was significantly higher (p < 0.001) than in tree leaves (391.53 µg/kg DM), and concentrate feed/ingredients (186.66 µg/kg DM). Pond water exhibited higher arsenic levels (106.11 µg/L) compared to shallow tube well water (47.96 µg/L) and deep tube well water/tap water (10.64 µg/L and 10.04 µg/L, respectively). The mean arsenic concentration in soils DM of fodder fields, crop fields, and grassland was 10.25, 10.58, and 10.20 mg/kg, respectively. It was observed that protein-rich feeds had lower levels of arsenic accumulation (p < 0.048), while fiber-rich feeds containing more cellulose, hemicellulose, and lignin had higher arsenic levels (p < 0.017). Goats consumed 73.46% more arsenic per kg body weight compared to dairy cows. Although chronic and sub-chronic arsenic exposure in the district did not typically manifest symptoms or visible signs in ruminant animals, concentrations in the hair and feces of both cattle and goats exceeded normal values. Cattle feces had significantly higher arsenic (410.43 µg/kg DM) levels (p < 0.001) than goat feces (227.00 µg/kg DM), and arsenic concentration in cattle hair (1917.74 µg/kg DM) was also significantly greater (p < 0.001) than goat hair (1435.74 µg/kg DM). Arsenic levels in milk samples from both species were below 10 µg/kg. Liver (356.02 µg/kg DM) and kidney (317.22 µg/kg DM) contained significantly higher (p < 0.001) levels of arsenic compared to muscle (204.23 µg/kg DM), and bone (161.98 µg/kg DM) in local meat-type adult male goats. The skin accumulated the highest amount of arsenic (576.24 µg/kg DM) among the non-edible parts of the goat carcass. The cumulative cancer risk value for adults was 4.96 × 10-3, exceeding the threshold value (1 × 10-6). This suggests a significant risk of cancer development for the population in arsenic-affected areas. Non-cancer risks (hazard indexes) were estimated at 11.01 for adults. Our observations revealed that the highest bioaccumulation of arsenic occurred in the hair of cows, and goats in the examined localities. The biotransformation factor (BTF) for hair was much higher compared to other excreted samples from both species. The calculated BTF followed the order: hair > feces > milk for cows and goats. Livestock farmers in Nadia district are advised to carefully select feed resources, prioritizing those high in crude protein and low in neutral detergent fiber, and they should provide drinking water from deep aquifers to ensure the safety of milk and meat for human consumption.
Collapse
Affiliation(s)
- Sushil Kumar Yadav
- ICAR-National Dairy Research Institute, Eastern Regional Station, Kalyani, West Bengal, 751235, India
| | - Tapas Kumar Dutta
- ICAR-National Dairy Research Institute, Eastern Regional Station, Kalyani, West Bengal, 751235, India.
| | - Anupam Chatterjee
- ICAR-National Dairy Research Institute, Eastern Regional Station, Kalyani, West Bengal, 751235, India
| | - Sneha Dutta
- All India Institute of Medical Sciences, Bhubaneswar, Odissa, 751019, India
| | - Asif Mohammad
- ICAR-National Dairy Research Institute, Eastern Regional Station, Kalyani, West Bengal, 751235, India
| | - Arun Kumar Das
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, Kolkata, West Bengal, 700037, India
| |
Collapse
|
6
|
De Pretis F, Zhou Y, Xun P, Shao K. Benchmark dose modeling for epidemiological dose-response assessment using prospective cohort studies. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024; 44:743-756. [PMID: 37496455 PMCID: PMC10817999 DOI: 10.1111/risa.14196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Benchmark dose (BMD) methodology has been employed as a default dose-response modeling approach to determine the toxicity value of chemicals to support regulatory chemical risk assessment. Especially, a relatively standardized BMD analysis framework has been established for modeling toxicological data regarding the formats of input data, dose-response models, definitions of benchmark response, and model uncertainty consideration. However, the BMD approach has not been well developed for epidemiological data mainly because of the diverse designs of epidemiological studies and various formats of data reported in the literature. Although most of the epidemiological BMD analyses were developed to solve a particular question, the methods proposed in two recent studies are able to handle cohort and case-control studies using summary data with consideration of adjustments for confounders. Therefore, the purpose of the present study is to investigate and compare the "effective count"-based BMD modeling approach and adjusted relative risk (RR)-based BMD analysis approach to identify an appropriate BMD modeling framework that can be generalized for analyzing published data of prospective cohort studies for BMD analysis. The two methods were applied to the same set of studies that investigated the association between bladder and lung cancer and inorganic arsenic exposure for BMD estimation. The results suggest that estimated BMDs and BMDLs are relatively consistent; however, with the consideration of established common practice in BMD analysis, modeling adjusted RR values as continuous data for BMD estimation is a more generalizable approach harmonized with the BMD approach using toxicological data.
Collapse
Affiliation(s)
- Francesco De Pretis
- Department of Environmental and Occupational Health, School of Public Health, Indiana University Bloomington, Bloomington, IN 47405, USA
- Department of Communication and Economics, University of Modena and Reggio Emilia, Reggio Emilia, RE 42124, Italy
| | - Yun Zhou
- Department of Environmental and Occupational Health, School of Public Health, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Pengcheng Xun
- Department of Global Value Access and Outcomes, Atara Biotherapeutics Inc., Thousand Oaks, CA 91320, USA
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health, Indiana University Bloomington, Bloomington, IN 47405, USA
| |
Collapse
|
7
|
Chen X, Cheng Y, Tian X, Li J, Ying X, Zhao Q, Wang M, Liu Y, Qiu Y, Yan X, Ren X. Urinary microbiota and metabolic signatures associated with inorganic arsenic-induced early bladder lesions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115010. [PMID: 37211000 DOI: 10.1016/j.ecoenv.2023.115010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
Inorganic arsenic (iAs) contamination in drinking water is a global public health problem, and exposure to iAs is a known risk factor for bladder cancer. Perturbation of urinary microbiome and metabolome induced by iAs exposure may have a more direct effect on the development of bladder cancer. The aim of this study was to determine the impact of iAs exposure on urinary microbiome and metabolome, and to identify microbiota and metabolic signatures that are associated with iAs-induced bladder lesions. We evaluated and quantified the pathological changes of bladder, and performed 16S rDNA sequencing and mass spectrometry-based metabolomics profiling on urine samples from rats exposed to low (30 mg/L NaAsO2) or high (100 mg/L NaAsO2) iAs from early life (in utero and childhood) to puberty. Our results showed that iAs induced pathological bladder lesions, and more severe effects were noticed in the high-iAs group and male rats. Furthermore, six and seven featured urinary bacteria genera were identified in female and male offspring rats, respectively. Several characteristic urinary metabolites, including Menadione, Pilocarpine, N-Acetylornithine, Prostaglandin B1, Deoxyinosine, Biopterin, and 1-Methyluric acid, were identified significantly higher in the high-iAs groups. In addition, the correlation analysis demonstrated that the differential bacteria genera were highly correlated with the featured urinary metabolites. Collectively, these results suggest that exposure to iAs in early life not only causes bladder lesions, but also perturbs urinary microbiome composition and associated metabolic profiles, which shows a strong correlation. Those differential urinary genera and metabolites may contribute to bladder lesions, suggesting a potential for development of urinary biomarkers for iAs-induced bladder cancer.
Collapse
Affiliation(s)
- Xushen Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Ying Cheng
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolin Tian
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jia Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaodong Ying
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qiuyi Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meng Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuefeng Ren
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
8
|
Kanel SR, Das TK, Varma RS, Kurwadkar S, Chakraborty S, Joshi TP, Bezbaruah AN, Nadagouda MN. Arsenic Contamination in Groundwater: Geochemical Basis of Treatment Technologies. ACS ENVIRONMENTAL AU 2023; 3:135-152. [PMID: 37215436 PMCID: PMC10197174 DOI: 10.1021/acsenvironau.2c00053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 05/24/2023]
Abstract
Arsenic (As) is abundant in the environment and can be found in both organic (e.g., methylated) and inorganic (e.g., arsenate and arsenite) forms. The source of As in the environment is attributed to both natural reactions and anthropogenic activities. As can also be released naturally to groundwater through As-bearing minerals including arsenopyrites, realgar, and orpiment. Similarly, agricultural and industrial activities have elevated As levels in groundwater. High levels of As in groundwater pose serious health risks and have been regulated in many developed and developing countries. In particular, the presence of inorganic forms of As in drinking water sources gained widespread attention due to their cellular and enzyme disruption activities. The research community has primarily focused on reviewing the natural occurrence and mobilization of As. Yet, As originating from anthropogenic activities, its mobility, and potential treatment techniques have not been covered. This review summarizes the origin, geochemistry, occurrence, mobilization, microbial interaction of natural and anthropogenic-As, and common remediation technologies for As removal from groundwater. In addition, As remediation methods are critically evaluated in terms of practical applicability at drinking water treatment plants, knowledge gaps, and future research needs. Finally, perspectives on As removal technologies and associated implementation limitations in developing countries and small communities are discussed.
Collapse
Affiliation(s)
- Sushil R. Kanel
- Department
of Chemistry, Wright State University, Dayton, Ohio 45435, United States
| | - Tonoy K. Das
- Nanoenvirology
Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Rajender S. Varma
- Office
of Research & Development, Center for Environmental Solutions
and Emergency Response (CESER), United States
Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Sudarshan Kurwadkar
- Department
of Civil and Environmental Engineering, California State University, Fullerton, California 92831, United States
| | - Sudip Chakraborty
- Laboratory
of Transport Phenomena & Biotechnology, Department of DIMES, Universita della Calabria, Via Pietro Bucci, Cubo 42/a, Rende 87036, (CS), Italy
| | - Tista Prasai Joshi
- Environment
and Climate Study Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Lalitpur 44700, Khumaltar, Nepal
| | - Achintya N. Bezbaruah
- Nanoenvirology
Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mallikarjuna N. Nadagouda
- Office
of Research & Development, Center for Environmental Solutions
and Emergency Response (CESER), United States
Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| |
Collapse
|
9
|
Global trends in the epidemiology of bladder cancer: challenges for public health and clinical practice. Nat Rev Clin Oncol 2023; 20:287-304. [PMID: 36914746 DOI: 10.1038/s41571-023-00744-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/16/2023]
Abstract
Bladder cancer is among the ten most common cancers globally, causes considerable morbidity and mortality and is, therefore, a substantial burden for health-care systems. The incidence of bladder cancer is affected by demographic trends, most notably population growth and ageing, as well as exposure to risk factors, especially tobacco smoking. Consequently, the incidence has not been stable throughout the world over time, nor will it be in the near future. Further primary prevention efforts are of the utmost importance to reduce the medical and financial burden of bladder cancer on populations and health-care systems. Simultaneously, less-invasive and lower-cost approaches for the diagnosis of both primary and recurrent bladder cancers are required to address challenges posed by the increasing shortage of health-care professionals and limited financial resources worldwide. In this regard, urinary biomarkers have demonstrated promising diagnostic accuracy and efficiency. Awareness of the risk factors and symptoms of bladder cancer should also be increased in society, particularly among health-care professionals and high-risk groups. Studies investigating the associations between lifestyle factors and bladder cancer outcomes are scarce and should be a research priority. In this Review, we outline global trends in bladder cancer incidence and mortality, and discuss the main risk factors influencing bladder cancer occurrence and outcomes. We then discuss the implications, challenges and opportunities of these epidemiological trends for public health and clinical practice.
Collapse
|
10
|
Jin P, Zhou Q, Xi S. Low-dose arsenite causes overexpression of EGF, TGFα, and HSP90 through Trx1-TXNIP-NLRP3 axis mediated signaling pathways in the human bladder epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114263. [PMID: 36343453 DOI: 10.1016/j.ecoenv.2022.114263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Epidemiological studies have demonstrated an increased incidence of bladder cancer in arseniasis- endemic areas; however, the precise molecular mechanisms remain unknown. Our previous results have shown that the protein levels of EGF, TGFα, and HSP90 in arsenite-treated bladder uroepithelial cells increased markedly and contributed to hyperactivation of EGF receptors. The aim of this study was to further explore the regulatory ways underlying overexpression of EGF, TGFα, and HSP90 in these cells. The present results showed that both Trx and GSH systems were stimulated in arsenite-treated cells, and ROS levels in 2 μM arsenite-treated cells did not changed obviously; however, ROS levels in 4 μM arsenite-treated cells increased significantly. By using the antioxidant and specific inhibitors, we found that in 2 μM arsenite-treated cells, JNK/NF-κB signaling pathway was involved in overexpression of EGF and TGFα, and ERK/NF-κB signaling pathway contributed to HSP90 overexpression, however in 4 μM arsenite-treated cells, both ERK/ and JNK/NF-κB signaling pathways were involved in overexpression of EGF, TGFα, and HSP90, and PI3K/AKT/NF-κB signaling pathway contributed to overexpression of EGF and TGFα. Furthermore, our results also showed that the Trx1-TXNIP-NLRP3 axis was activated in arsenite-treated cells, and played a pivotal role in activation of the signaling pathways involved in overexpression of EGF, TGFα, and HSP90. In conclusion, the Trx1-TXNIP-NLRP3 axis might be activated by arsenite-induced redox imbalance in bladder uroepithelial cells, and mediate the activation of signaling pathways involved in overexpression of EGF, TGFα, and HSP90.
Collapse
Affiliation(s)
- Peiyu Jin
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Qing Zhou
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, PR China
| | - Shuhua Xi
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, PR China.
| |
Collapse
|
11
|
Smith N, Luethcke KR, Craun K, Trepanier L. Risk of bladder cancer and lymphoma in dogs is associated with pollution indices by county of residence. Vet Comp Oncol 2022; 20:246-255. [PMID: 34480391 PMCID: PMC9969847 DOI: 10.1111/vco.12771] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
Human urothelial cell carcinoma (UCC) and non-Hodgkin lymphoma are considered environmental cancers in people, but less is known about environment risk for UCC and lymphoma in dogs. The objective of this study was to determine whether dogs with these cancers, compared to unaffected control dogs, live in counties with higher tap water contaminants or higher levels of air pollution as measured by the Environmental Protection Agency (EPA) and by National Air Toxics Assessment chemical exposure risk estimates. Dogs with available home addresses from two previously published case-control populations were included: 66 dogs with UCC and 70 unaffected controls; and 56 boxer dogs with lymphoma and 84 unaffected boxer controls. Tap water total trihalomethanes, which are water disinfection by-products, were more than threefold higher in UCC case counties of residence compared to controls (p < .0001), and a higher proportion of dogs with UCC lived in counties exceeding EPA ozone limits (41.8%) compared to controls (13.6% p = .0008). More boxers with lymphoma lived in counties exceeding EPA ozone limits (52.1%) compared to controls (29.0%; p = .018), with higher exposure risk estimates for airborne 1,3-butadiene and formaldehyde (p = .004-.005). These data support the hypothesis that tap water contaminants and airborne environmental pollutants contribute to the risk of both urothelial carcinoma and lymphoma in dogs. If these findings reflect causal relationships, then it is possible that tap water filtration units and more effective air pollution controls could decrease the overall incidence of these cancers in dogs.
Collapse
Affiliation(s)
- Natalie Smith
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kristofer Ross Luethcke
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kaitlyn Craun
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lauren Trepanier
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Imputation of Below Detection Limit Missing Data in Chemical Mixture Analysis with Bayesian Group Index Regression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031369. [PMID: 35162406 PMCID: PMC8835633 DOI: 10.3390/ijerph19031369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 02/01/2023]
Abstract
There is growing scientific interest in identifying the multitude of chemical exposures related to human diseases through mixture analysis. In this paper, we address the issue of below detection limit (BDL) missing data in mixture analysis using Bayesian group index regression by treating both regression effects and missing BDL observations as parameters in a model estimated through a Markov chain Monte Carlo algorithm that we refer to as pseudo-Gibbs imputation. We compare this with other Bayesian imputation methods found in the literature (Multiple Imputation by Chained Equations and Sequential Full Bayes imputation) as well as with a non-Bayesian single-imputation method. To evaluate our proposed method, we conduct simulation studies with varying percentages of BDL missingness and strengths of association. We apply our method to the California Childhood Leukemia Study (CCLS) to estimate concentrations of chemicals in house dust in a mixture analysis of potential environmental risk factors for childhood leukemia. Our results indicate that pseudo-Gibbs imputation has superior power for exposure effects and sensitivity for identifying individual chemicals at high percentages of BDL missing data. In the CCLS, we found a significant positive association between concentrations of polycyclic aromatic hydrocarbons (PAHs) in homes and childhood leukemia as well as significant positive associations for polychlorinated biphenyls (PCBs) and herbicides among children from the highest quartile of household income. In conclusion, pseudo-Gibbs imputation addresses a commonly encountered problem in environmental epidemiology, providing practitioners the ability to jointly estimate the effects of multiple chemical exposures with high levels of BDL missingness.
Collapse
|
13
|
An assessment of heavy metal level in infant formula on the market in Turkey and the hazard index. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Poonia T, Singh N, Garg MC. Contamination of Arsenic, Chromium and Fluoride in the Indian groundwater: a review, meta-analysis and cancer risk assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2021; 18:2891-2902. [DOI: 10.1007/s13762-020-03043-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/09/2020] [Accepted: 11/23/2020] [Indexed: 08/20/2024]
|
15
|
Kenyon EM. Arsenic toxicokinetic modeling and risk analysis: Progress, needs and applications. Toxicology 2021; 457:152809. [PMID: 33965444 DOI: 10.1016/j.tox.2021.152809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/05/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023]
Abstract
Arsenic (As) poses unique challenges in PBTK model development and risk analysis applications. Arsenic metabolism is complex, adequate information to attribute specific metabolites to particular adverse effects in humans is sparse, and measurement of relevant metabolites in biological media can be difficult. Multiple As PBTK models have been published and used or adapted for use in various exposure and risk analysis applications. These applications illustrate the broad utility of PBTK models for exposure and dose-response analysis, particularly for arsenic where multi-pathway, multi-route exposures and multiple toxic effects are of concern. Arsenic PBTK models have been used together with exposure reconstruction and dose-response functions to estimate risk of specific adverse health effects due to drinking water exposure and consumption of specific foodstuffs (e.g. rice, seafood), as well as to derive safe exposure levels and develop consumption advisories. Future refinements to arsenic PBTK models can enhance the confidence in such analyses. Improved estimates for methylation biotransformation parameters based on in vitro to in vivo extrapolation (IVIVE) methods and estimation of interindividual variability in key model parameters for specific toxicologically relevant metabolites are two important areas for consideration.
Collapse
Affiliation(s)
- Elaina M Kenyon
- Center for Computational Toxicology and Exposure, U.S. EPA, Office of Research and Development, Research Triangle Park, NC, United States.
| |
Collapse
|
16
|
T helper 2-driven immune dysfunction in chronic arsenic-exposed individuals and its link to the features of allergic asthma. Toxicol Appl Pharmacol 2021; 420:115532. [PMID: 33845054 DOI: 10.1016/j.taap.2021.115532] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022]
Abstract
Limited information is available regarding the effects of arsenic exposure on immune function. We have recently reported that chronic exposure to As was associated asthma, as determined by spirometry and respiratory symptoms. Because T helper 2 (Th2)-driven immune responses are implicated in the pathogenesis of allergic diseases, including asthma, we studied the associations of serum Th1 and Th2 mediators with the As exposure markers and the features of asthma among individuals exposed to As. A total of 553 blood samples were selected from the same study subjects recruited in our previous asthma study. Serum levels of Th1 and Th2 cytokines were analyzed by immunoassay. Subjects' arsenic exposure levels (drinking water, hair and nail arsenic concentrations) were determined by inductively coupled plasma mass spectroscopy. Arsenic exposure levels of the subjects showed significant positive associations with serum Th2-mediators- interleukin (IL)-4, IL-5, IL-13, and eotaxin without any significant changes in Th1 mediators- interferon-γ and tumor necrosis factor-α. The ratios of Th2 to Th1 mediators were significantly increased with increasing exposure to As. Notably, most of the Th2 mediators were positively associated with serum levels of total immunoglobulin E and eotaxin. The serum levels of Th2 mediators were significantly higher in the subjects with asthma than those without asthma. The results of our study suggest that the exacerbated Th2-driven immune responses are involved in the increased susceptibility to allergic asthma among individuals chronically exposed to As.
Collapse
|
17
|
Rouprêt M, Neuzillet Y, Pignot G, Compérat E, Audenet F, Houédé N, Larré S, Masson-Lecomte A, Colin P, Brunelle S, Xylinas E, Roumiguié M, Méjean A. French ccAFU guidelines – Update 2018–2020: Bladder cancer. Prog Urol 2020; 28:R48-R80. [PMID: 32093463 DOI: 10.1016/j.purol.2019.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022]
Abstract
Objective To propose updated French guidelines for non-muscle invasive (NMIBC) and muscle-invasive (MIBC) bladder cancers. Methods A Medline search was achieved between 2015 and 2018, as regards diagnosis, options of treatment and follow-up of bladder cancer, to evaluate different references with levels of evidence. Results Diagnosis of NMIBC (Ta, T1, CIS) is based on a complete deep resection of the tumor. The use of fluorescence and a second-look indication are essential to improve initial diagnosis. Risks of both recurrence and progression can be estimated using the EORTC score. A stratification of patients into low, intermediate and high risk groups is pivotal for recommending adjuvant treatment: instillation of chemotherapy (immediate post-operative, standard schedule) or intravesical BCG (standard schedule and maintenance). Cystectomy is recommended in BCG-refractory patients. Extension evaluation of MIBC is based on contrast-enhanced pelvic-abdominal and thoracic CT-scan. Multiparametric MRI can be an alternative. Cystectomy associated with extended lymph nodes dissection is considered the gold standard for non-metastatic MIBC. It should be preceded by cisplatin-based neoadjuvant chemotherapy in eligible patients. An orthotopic bladder substitution should be proposed to both male and female patients with no contraindication and in cases of negative frozen urethral samples; otherwise transileal ureterostomy is recommended as urinary diversion. All patients should be included in an Early Recovery After Surgery (ERAS) protocol. For metastatic MIBC, first-line chemotherapy using platin is recommended (GC or MVAC), when performans status (PS < 1) and renal function (creatinine clearance > 60 mL/min) allow it (only in 50 % of cases). In second line treatment, immunotherapy with pembrolizumab demonstrated a significant improvement in overall survival. Conclusion These updated French guidelines will contribute to increase the level of urological care for the diagnosis and treatment for NMIBC and MIBC.
Collapse
Affiliation(s)
- M Rouprêt
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,GRC no 5, ONCOTYPE-URO, hôpital Pitié-Salpêtrière, Sorbonne université, AP–HP, 75013 Paris, France
| | - Y Neuzillet
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,Service d’urologie, hôpital Foch, université de Versailles-Saint-Quentin-en-Yvelines, 92150 Suresnes, France
| | - G Pignot
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,Service de chirurgie oncologique 2, institut Paoli-Calmettes, 13008 Marseille, France
| | - E Compérat
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,Service d’anatomie pathologique, GRC no 5, ONCOTYPE-URO, hôpital Tenon, HUEP, Sorbonne université, AP-HP, 75020 Paris, France
| | - F Audenet
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,Service d’urologie, hôpital européen Georges-Pompidou, université Paris Descartes, AP–HP, 75015 Paris, France
| | - N Houédé
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,Département d’oncologie médicale, CHU Caremaux, Montpellier université, 30000 Nîmes, France
| | - S Larré
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,Service d’urologie, CHU de Reims, Reims, 51100 France
| | - A Masson-Lecomte
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,Service d’urologie, hôpital Saint-Louis, université Paris-Diderot, AP–HP, 75010 Paris, France
| | - P Colin
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,Service d’urologie, hôpital privé de la Louvière, 59800 Lille, France
| | - S Brunelle
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,Service de radiologie, institut Paoli-Calmettes, 13008 Marseille, France
| | - E Xylinas
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,Service d’urologie de l’hôpital Bichat-Claude-Bernard, université Paris-Descartes, AP–HP, 75018 Paris, France
| | - M Roumiguié
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,Département d’urologie, CHU Rangueil, Toulouse, 31000 France
| | - A Méjean
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,Service d’urologie, hôpital européen Georges-Pompidou, université Paris Descartes, AP–HP, 75015 Paris, France
| |
Collapse
|
18
|
Messing EM. Arsenic Induced Bladder Cancer. Bladder Cancer 2020. [DOI: 10.3233/blc-200003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Vicuña L, Fernandez MI, Vial C, Valdebenito P, Chaparro E, Espinoza K, Ziegler A, Bustamante A, Eyheramendy S. Adaptation to Extreme Environments in an Admixed Human Population from the Atacama Desert. Genome Biol Evol 2020; 11:2468-2479. [PMID: 31384924 PMCID: PMC6733355 DOI: 10.1093/gbe/evz172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Inorganic arsenic (As) is a toxic xenobiotic and carcinogen associated with severe health conditions. The urban population from the Atacama Desert in northern Chile was exposed to extremely high As levels (up to 600 µg/l) in drinking water between 1958 and 1971, leading to increased incidence of urinary bladder cancer (BC), skin cancer, kidney cancer, and coronary thrombosis decades later. Besides, the Andean Native-American ancestors of the Atacama population were previously exposed for millennia to elevated As levels in water (∼120 µg/l) for at least 5,000 years, suggesting adaptation to this selective pressure. Here, we performed two genome-wide selection tests—PBSn1 and an ancestry-enrichment test—in an admixed population from Atacama, to identify adaptation signatures to As exposure acquired before and after admixture with Europeans, respectively. The top second variant selected by PBSn1 was associated with LCE4A-C1orf68, a gene that may be involved in the immune barrier of the epithelium during BC. We performed association tests between the top PBSn1 hits and BC occurrence in our population. The strongest association (P = 0.012) was achieved by the LCE4A-C1orf68 variant. The ancestry-enrichment test detected highly significant signals (P = 1.3 × 10−9) mapping MAK16, a gene with important roles in ribosome biogenesis during the G1 phase of the cell cycle. Our results contribute to a better understanding of the genetic factors involved in adaptation to the pathophysiological consequences of As exposure.
Collapse
Affiliation(s)
- Lucas Vicuña
- Department of Statistics, Faculty of Mathematics, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario I Fernandez
- Department of Urology, Clínica Alemana, Santiago, Chile.,Center for Genetics and Genomics, Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Cecilia Vial
- Center for Genetics and Genomics, Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | | | | | | | - Annemarie Ziegler
- Center for Genetics and Genomics, Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | | | - Susana Eyheramendy
- Department of Statistics, Faculty of Mathematics, Pontificia Universidad Católica de Chile, Santiago, Chile.,Faculty of Engineering and Sciences, Universidad Adolfo Ibañez, Peñalolén, Santiago, Chile
| |
Collapse
|
20
|
Chen H, Sharma SK, Sharma PR, Yeh H, Johnson K, Hsiao BS. Arsenic(III) Removal by Nanostructured Dialdehyde Cellulose-Cysteine Microscale and Nanoscale Fibers. ACS OMEGA 2019; 4:22008-22020. [PMID: 31891081 PMCID: PMC6933794 DOI: 10.1021/acsomega.9b03078] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/25/2019] [Indexed: 05/15/2023]
Abstract
Arsenite (As(III)) contamination in drinking water has become a worldwide problem in recent years, which leads to development of various As(III) remediation approaches. In this study, two biomass-based nanostructured materials, microscale dialdehyde cellulose-cysteine (MDAC-cys) and nanoscale dialdehyde cellulose-cysteine (NDAC-cys) fibers, have been prepared from wood pulp. Their As(III) removal efficiencies and mechanism were determined by combined adsorption, atomic fluorescence spectrometry, microscopy (scanning electron microscopy, transmission electron microscopy, and atomic force microscopy), and spectroscopy (Fourier transform infrared, 13C CPMAS NMR) methods. The adsorption results of these materials could be well described by the Freundlich isotherm model, where the maximum adsorption capacities estimated by the Langmuir isotherm model were 344.82 mg/g for MDAC-cys and 357.14 mg/g for NDAC-cys, respectively. Both MDAC-cys and NDAC-cys materials were further characterized by X-ray diffraction and thermogravimetric analysis, where the results indicated that the thiol groups (the S content in MDAC-cys was 12.70 and NDAC-cys was 17.15%) on cysteine were primarily responsible for the adsorption process. The nanostructured MDAC-cys system appeared to be more suitable for practical applications because of its high cost-effectiveness.
Collapse
Affiliation(s)
| | | | | | - Heidi Yeh
- Department of Chemistry, Stony
Brook University, Stony
Brook, New York 11794, United States
| | - Ken Johnson
- Department of Chemistry, Stony
Brook University, Stony
Brook, New York 11794, United States
| | - Benjamin S. Hsiao
- Department of Chemistry, Stony
Brook University, Stony
Brook, New York 11794, United States
| |
Collapse
|
21
|
Arsenic exposure: A public health problem leading to several cancers. Regul Toxicol Pharmacol 2019; 110:104539. [PMID: 31765675 DOI: 10.1016/j.yrtph.2019.104539] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022]
Abstract
Arsenic, a metalloid and naturally occurring element, is one of the most abundant elements in the earth's crust. Water is contaminated by arsenic through natural sources (underground water, minerals and geothermal processes) and anthropogenic sources such as mining, industrial processes, and the production and use of pesticides. Humans are exposed to arsenic mainly by drinking contaminated water, and secondarily through inhalation and skin contact. Arsenic exposure is associated with the development of vascular disease, including stroke, ischemic heart disease and peripheral vascular disease. Also, arsenic increases the risk of tumors of bladder, lungs, kidneys and liver, according to the International Agency for Research on Cancer and the Food and Drug Administration. Once ingested, an estimated 70-90% of inorganic arsenic is absorbed by the gastrointestinal tract and widely distributed through the blood to different organs, primarily to the liver, kidneys, lungs and bladder and secondarily to muscle and nerve tissue. Arsenic accumulates in the organs, especially in the liver. Its excretion mostly takes place through urination. The toxicokinetics of arsenic depends on the duration of exposure, pathway of ingestion, physicochemical characteristics of the compound, and affected biological species. The present review outlines of arsenic toxic effects focusing on different cancer types whit highest prevalence's by exposure to this metalloid and signaling pathways of carcinogenesis.
Collapse
|
22
|
Fernández MI, Valdebenito P, Delgado I, Segebre J, Chaparro E, Fuentealba D, Castillo M, Vial C, Barroso JP, Ziegler A, Bustamante A. Impact of arsenic exposure on clinicopathological characteristics of bladder cancer: A comparative study between patients from an arsenic-exposed region and nonexposed reference sites. Urol Oncol 2019; 38:40.e1-40.e7. [PMID: 31630994 DOI: 10.1016/j.urolonc.2019.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/15/2019] [Accepted: 09/19/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Beyond exposure to arsenic in drinking-water, there is few information about demographic and clinicopathological features of patients with bladder cancer living in arsenic-exposed regions. The aim of the study was to assess the impact of arsenic exposure on clinicopathological characteristics in patients with bladder cancer from a contaminated region compared to those of 2 reference areas. METHODS Data of 285 patients with bladder cancer (83 with arsenic exposure from Antofagasta and 202 controls from 2 different sites in Santiago) were obtained through personal interviews and from review of medical records. Demographic, clinicopathological parameters, and information on relevant environmental risk factors were compared with parametric and nonparametric tests as needed. Multivariable analysis was performed to identify independent predictors for high grade and muscle-invasive disease (T2-4). RESULTS We found no significant differences between groups regarding age at presentation (66.4 vs. 66.5 and 67.2 years; P = 0.69, for exposed vs. the 2 nonexposed groups, respectively) and female gender (28.9% vs. 29.8% and 26.2%; P = 0.84). Proportion of current smokers was significantly lower in the exposed population (10.7% vs. 38.6% and 26.9%; P < 0.001). There was a significantly higher proportion of locally advanced (10.8 vs. 1.8 and 0.7% T3/4; P = 0.002) and high-grade tumors (79.5% vs. 63.2% and 64.1%; P = 0.001) within arsenic-exposed patients. Arsenic exposure was the only significant predictor for the presence of high-grade tumors (adjusted OR: 5.10; 95%CI: 2.03-12.77) on multivariable analysis. CONCLUSIONS Our study revealed relevant clinical differences in bladder cancer patients with a history of arsenic exposure as compared to nonexposed cases. The more aggressive phenotype associated to arsenic-related bladder cancer should be considered when designing efficient screening strategies for this high-risk population.
Collapse
Affiliation(s)
- Mario I Fernández
- Department of Urology, Clínica Alemana de Santiago, Vitacura, Santiago, Chile; Center for Genetics and Genomics, Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Lo Barnechea, Santiago, Chile.
| | | | - Iris Delgado
- Center for Public Policies, Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Lo Barnechea, Santiago, Chile
| | - Jorge Segebre
- Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Lo Barnechea, Santiago, Chile
| | - Eduardo Chaparro
- Department of Urology, Hospital Regional de Antofagasta, Antofagasta, Chile
| | - David Fuentealba
- Department of Urology, Hospital Regional de Antofagasta, Antofagasta, Chile
| | - Martín Castillo
- Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Lo Barnechea, Santiago, Chile
| | - Cecilia Vial
- Center for Genetics and Genomics, Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Lo Barnechea, Santiago, Chile
| | - Juan P Barroso
- Department of Urology, Clínica Alemana de Santiago, Vitacura, Santiago, Chile; Department of Urology, Hospital Padre Hurtado, Santiago, Chile; Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Lo Barnechea, Santiago, Chile
| | - Annemarie Ziegler
- Center for Genetics and Genomics, Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Lo Barnechea, Santiago, Chile
| | - Alberto Bustamante
- Department of Urology, Clínica Alemana de Santiago, Vitacura, Santiago, Chile; Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Lo Barnechea, Santiago, Chile
| |
Collapse
|
23
|
Wojtczyk-Miaskowska A, Schlichtholz B. Tobacco carcinogens and the methionine metabolism in human bladder cancer. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2019; 782:108281. [PMID: 31843138 DOI: 10.1016/j.mrrev.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/29/2019] [Accepted: 06/03/2019] [Indexed: 01/08/2023]
Abstract
Cigarette smoking is a strong risk factor for bladder cancer. It has been shown that the duration of smoking is associated with a poor prognosis and a higher risk of recurrence. This is due to tobacco carcinogens forming adducts with DNA and proteins that participate in the DNA repair mechanisms. Additionally, polymorphisms of genes responsible for methyl group transfer in the methionine cycle and dosages of vitamins (from diet and supplements) can cause an increased risk of bladder cancer. Upregulated DNA methyltransferase 1 expression and activity results in a high level of methylated products of metabolism, as well as hypermethylation of tumor suppressor genes. The development of a market that provides new inhibitors of DNA methyltransferase or alternatives for current smokers is essential not only for patients but also for people who are under the danger of secondhand smoking and can experience its long-term exposure consequences.
Collapse
Affiliation(s)
- A Wojtczyk-Miaskowska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland.
| | - B Schlichtholz
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| |
Collapse
|
24
|
Lu H, Li J, Liu X, Yu Z, Liu R. Removal of Fluoride and Arsenic by a Hybrid Constructed Wetland System. Chem Biodivers 2019; 16:e1900078. [PMID: 31141309 DOI: 10.1002/cbdv.201900078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/28/2019] [Indexed: 11/11/2022]
Abstract
A pilot-scale hybrid wetland system was constructed for the removal of fluoride and arsenic from synthetic wastewater. After five months of operation, the fluoride and arsenic removal rate were at the value of 65 % and 90 %, respectively. Through calculation, the accumulation of fluoride in plants only accounted for 1.63 % of the accumulation in substrates, and the accumulation of arsenic in plants accounted for 3.3 % of that in substrates. Both the accumulation of fluoride and arsenic in plants were much higher in roots than that in leaves. And for substrates, the accumulation in the first layer was higher than the second layer. The changes of microbial community in the substrate of the wetland during the operation were also analyzed to investigate the effects of operating condition on the microbial community and to study the role of microorganism on the removal of fluoride and arsenic. The results showed that the relative abundance of Firmicutes reduced, while the relative abundance of Proteobacteria increased, indicating that the fluoride and arsenic in solution had a great influence on the microbial community. Findings of this study suggest that the hybrid constructed wetland system may be a promising process for the removal of fluoride and arsenic from synthetic wastewater.
Collapse
Affiliation(s)
- Han Lu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Jüan Li
- Chinese Research Academy of Environmental Sciences, Dayangfang 8, Chaoyang District, Beijing, 100012, P. R. China
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China.,Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, P. R. China
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China.,Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, P. R. China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China.,Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, P. R. China
| |
Collapse
|
25
|
Perry A, Lynch RM, Rusyn I, Threadgill DW. Long-Term Combinatorial Exposure to Trichloroethylene and Inorganic Arsenic in Genetically Heterogeneous Mice Results in Renal Tubular Damage and Cancer-Associated Molecular Changes. G3 (BETHESDA, MD.) 2019; 9:1729-1737. [PMID: 30898898 PMCID: PMC6505147 DOI: 10.1534/g3.119.400161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/20/2019] [Indexed: 11/23/2022]
Abstract
Trichloroethylene (TCE) and inorganic arsenic (iAs) are environmental contaminants that can target the kidney. Chronic exposure to TCE is associated with increased incidence of renal cell carcinoma, while co-exposure to TCE and iAs likely occurs in exposed human populations, such as those near Superfund sites. In order to better understand the kidney health consequences of TCE and/or iAs exposure, a genetically heterogeneous mouse population derived from FVB/NJ and CAST/EiJ mouse strains and deficient for multidrug resistance genes (Abcb1atm1Bor , Abcb1btm1Bor ) was chronically exposed for 52-weeks to varying concentrations of TCE and iAs. Although no exposure group resulted in primary renal cell tumors, kidneys from exposed mice did have significant increases in histologic and biochemical evidence of renal tubular disease with each toxicant alone and with combined exposure, with males having significantly higher levels of damage. Although no added increase in tubular disease was observed with combination exposure compared to single toxicants, molecular changes in kidneys from mice that had the combined exposure were similar to those previous observed in an embryonic stem cell assay for the P81S TCE-induced renal cell carcinoma mutation in the Von Hippel-Lindau syndrome (VHL) gene. While this model more accurately reflects human exposure conditions, development of primary renal tumors observed in humans following chronic TCE exposure was not reproduced even after inclusion of genetic heterogeneity and co-carcinogenic iAs.
Collapse
Affiliation(s)
- Amie Perry
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Rachel M Lynch
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843
| | - Ivan Rusyn
- Department of Veterinary Integrative Bioscience, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - David W Threadgill
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843
| |
Collapse
|
26
|
Oberoi S, Devleesschauwer B, Gibb HJ, Barchowsky A. Global burden of cancer and coronary heart disease resulting from dietary exposure to arsenic, 2015. ENVIRONMENTAL RESEARCH 2019; 171:185-192. [PMID: 30665120 DOI: 10.1016/j.envres.2019.01.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
Arsenic is a ubiquitous, naturally occurring metalloid that poses a significant risk for human cancer and non-cancer diseases. It is now evident that arsenic contamination in food, especially rice and grains, presents a significant exposure to hundreds of millions of individuals worldwide. However, the disease risk from chronic exposure to the low amounts of arsenic found in food remains to be established. Thus, this research estimates the global burdens of disease expressed as Disability-Adjusted Life Years (DALYs) for lung, skin and bladder cancers, as well as coronary heart disease (CHD) attributable to inorganic arsenic in food. To determine foodborne inorganic arsenic exposures worldwide, we used the World Health Organization (WHO) estimates of food consumption in 17 country clusters, in conjunction with the reported measurements of total and inorganic arsenic in different foods. We estimated cancer potency factors for arsenic related bladder and lung cancers, and from US Environmental Protection Agency risk estimates for skin cancer to calculate the cancer incidence in males and females within each of the WHO member states. Summary relative risk estimates and population attributable fractions were developed to estimate the YLD, YLL, and DALYs for arsenic-induced CHD. The findings indicate that, globally, each year the combined DALYs for all cancers attributable to inorganic arsenic in food are approximately 1.4 million with variation in global distribution based on population and food consumption patterns. The global burden of CHD attributable to foodborne inorganic arsenic also varied with WHO region and may contribute as much as 49 million DALYs. However, in contrast to cancer burden, there is a threshold effect for arsenic-associated CHD with no increased risk of heart disease at the expected lower bound of arsenic consumption in food. These estimates indicate that foodborne arsenic exposure causes a significant yet avoidable global burden of human disease.
Collapse
Affiliation(s)
- Shilpi Oberoi
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brecht Devleesschauwer
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium; Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Herman J Gibb
- Gibb Epidemiology Consulting LLC, Arlington, VA, USA; George Washington University Milken Institute School of Public Health, Washington, D.C., USA
| | - Aaron Barchowsky
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Rouprêt M, Neuzillet Y, Pignot G, Compérat E, Audenet F, Houédé N, Larré S, Masson-Lecomte A, Colin P, Brunelle S, Xylinas E, Roumiguié M, Méjean A. RETRACTED: Recommandations françaises du Comité de Cancérologie de l’AFU — Actualisation 2018—2020 : tumeurs de la vessie French ccAFU guidelines — Update 2018—2020: Bladder cancer. Prog Urol 2018; 28:S46-S78. [PMID: 30366708 DOI: 10.1016/j.purol.2018.07.283] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 12/24/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). Cet article est retiré de la publication à la demande des auteurs car ils ont apporté des modifications significatives sur des points scientifiques après la publication de la première version des recommandations. Le nouvel article est disponible à cette adresse: doi:10.1016/j.purol.2019.01.006. C’est cette nouvelle version qui doit être utilisée pour citer l’article. This article has been retracted at the request of the authors, as it is not based on the definitive version of the text because some scientific data has been corrected since the first issue was published. The replacement has been published at the doi:10.1016/j.purol.2019.01.006. That newer version of the text should be used when citing the article.
Collapse
Affiliation(s)
- M Rouprêt
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Sorbonne université, GRC no5, ONCOTYPE-URO, hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France.
| | - Y Neuzillet
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service d'urologie, hôpital Foch, université de Versailles-Saint-Quentin-en-Yvelines, 92150 Suresnes, France
| | - G Pignot
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service de chirurgie oncologique 2, institut Paoli-Calmettes, 13008 Marseille, France
| | - E Compérat
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service d'anatomie pathologique, hôpital Tenon, HUEP, Sorbonne université, GRC no5, ONCOTYPE-URO, 75020 Paris, France
| | - F Audenet
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service d'urologie, hôpital européen Georges-Pompidou, université Paris Descartes, AP-HP, 75015 Paris, France
| | - N Houédé
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Département d'oncologie médicale, CHU Caremaux, Montpellier université, 30000 Nîmes, France
| | - S Larré
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service d'urologie, CHU de Reims, Reims, 51100 France
| | - A Masson-Lecomte
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service d'urologie, hôpital Saint-Louis, université Paris-Diderot, 75010 Paris, France
| | - P Colin
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service d'urologie, hôpital privé de la Louvière, 59800 Lille, France
| | - S Brunelle
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service de radiologie, institut Paoli-Calmettes, 13008 Marseille, France
| | - E Xylinas
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service d'urologie de l'hôpital Bichat-Claude-Bernard, université Paris-Descartes, Assistance publique-Hôpitaux de Paris, 75018 Paris, France
| | - M Roumiguié
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Département d'urologie, CHU Rangueil, Toulouse, 31000 France
| | - A Méjean
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service d'urologie, hôpital européen Georges-Pompidou, université Paris Descartes, AP-HP, 75015 Paris, France
| |
Collapse
|
28
|
Wei M, Guo F, Rui D, Wang H, Feng G, Li S, Song G. Alleviation of Arsenic-Induced Pulmonary Oxidative Damage by GSPE as Shown during In vivo and In vitro Experiments. Biol Trace Elem Res 2018; 183:80-91. [PMID: 28803342 DOI: 10.1007/s12011-017-1111-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/27/2017] [Indexed: 12/29/2022]
Abstract
A long-term exposure to arsenic may lead to lung damage due to oxidative stress. In this context, GSPE can play a major role as a strong antioxidant. Our study attempted to reveal the connection between arsenic-induced lung injury and the antagonistic effect of GSPE. For this purpose, BEAS-2B cells and Kunming mice were exposed to different dosages of As2O3 and GSPE. Oxidative stress indicators were detected both in vivo and in vitro. Cell survival rate and morphological changes in the lung tissue (H&E staining) were evaluated as well. It was exhibited that As2O3 increased oxidative stress both in vivo and in vitro and decreased cells viability. In contrast, higher cell survival rate was revealed in the group treated with arsenic plus GSPE after 24 h as compared to that in the arsenic group. GSPE effectively reduced oxidative stress levels, along with increasing antioxidant capacity. In vivo experiments in arsenic-exposed group showed alveolar septum to be significantly thickened with considerable capillary congestion and invasion by inflammatory cells. After the intervention with GSPE, there seemed to be a dramatic reversal of morphology with thinning of the alveolar septum, decrease in capillary congestion, and number of inflammatory cells. This had shown that GSPE can effectively reduce the levels of oxidative stress, induced by arsenic in mice lung tissue. Conversely, antioxidant enzymes or products were increased. The experiment proved that GSPE can protect the lungs from oxidative damage induced by arsenic, and it may also be used as an antagonist against arsenic injuries.
Collapse
Affiliation(s)
- Meng Wei
- Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China
| | - Fangming Guo
- Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China
| | - Dongsheng Rui
- Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China
| | - Haixia Wang
- Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China
| | - Gangling Feng
- Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China
| | - Shugang Li
- Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.
| | - Guanling Song
- Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
29
|
Wei B, Yu J, Wang J, Li H, Yang L, Kong C. Trace Metals in the Urine and Hair of a Population in an Endemic Arsenism Area. Biol Trace Elem Res 2018; 182:209-216. [PMID: 28756600 DOI: 10.1007/s12011-017-1108-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/25/2017] [Indexed: 12/24/2022]
Abstract
There have been few investigations of trace elements in the urine and hair of populations exposed to high levels of arsenic (As) in drinking water. Therefore, concentrations of selected metals in urine and hair samples from a population in a study area where arsenism was endemic and a control area were determined. It was found that the median concentrations of barium (Ba), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), zinc (Zn), and As in the urine samples from the population in the study area were 3.87, 0.47, 0.50, 61.84, 26.82, 1.33, 128.45, 7.05, 1.10, 233.75, and 339.63 μg/L, respectively. The corresponding values in the urine samples from a population in the control area were 29.08, 0.19, 0.21, 27.77, 10.32, 4.61, 14.01, 2.19, 3.90, 113.92, and 20.28 μg/L, respectively. In the study area, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, and Zn excreted in the urine were likely to be mainly derived from drinking water with high levels of arsenic. The median concentrations of Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Zn, and As in the hair samples from the study area were 4.16, 0.03, 0.09, 1.09, 6.54, 1.97, 0.06, 0.53, 1.64, 144.28, and 1.67 mg/kg, respectively. The corresponding values from the control area were 4.76, 0.03, 0.02, 1.41, 8.31, 1.34, 0.07, 0.39, 0.86, 154.58, and 0.29 mg/kg, respectively. Significant positive correlations were observed between As and Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, and Zn in the urine in the study area. However, As was not positively associated with these metals in the hair samples. Exposure to high levels of As in drinking water increased the accumulation of Ba and Mn in the hair and the excretion of Cd, Cu, and Mo in the urine in the study area. The population in the study area might experience Cu and Mo deficiencies for an increasing excretion of Cu and Mo.
Collapse
Affiliation(s)
- Binggan Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
| | - Jing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hairong Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Chang Kong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11 A Datun Road, Beijing, 100101, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Liu S, Wang F, Liu J, Jin P, Wang X, Yang L, Xi S. ATF2 partly mediated the expressions of proliferative factors and inhibited pro-inflammatory factors' secretion in arsenite-treated human uroepithelial cells. Toxicol Res (Camb) 2017; 6:468-476. [PMID: 30090515 PMCID: PMC6062379 DOI: 10.1039/c6tx00407e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/28/2017] [Indexed: 11/21/2022] Open
Abstract
Inorganic arsenic (iAs) could induce the expression of activating transcription factor-2 (ATF2) in the human urinary bladder epithelial cell line (SV-HUC-1 cells). ATF2, as a member of the bZIP transcription factor family, has been implicated in a transcriptional response leading to cell growth, migration and malignant tumor progression. However, little is known about the effects of ATF2 on proliferative factors in iAs treated human urothelial cells. In this study, ATF2 siRNA was employed to investigate the relationship between ATF2 activation and the expressions of proliferative factors, such as BCL2, cyclin D1, COX-2, MMP1 and PCNA, and pro-inflammatory factors (TNFα, TGFα and IL-8) in SV-HUC-1 cells. The results showed that low concentration arsenite increased the expressions of proliferative factors BCL2, cyclin D1, COX-2, MMP1 and PCNA in SV-HUC-1 cells, and ATF2 siRNA partly decreased the expressions of BCL2, cyclin D1, and COX-2. A neutralizing antibody of IL-8 was used for attenuating the levels of IL-8 and neutralizing antibody of IL-8 did not relieve the expressions of ATF2 and proliferative factors induced by arsenite in SV-HUC-1 cells. In addition, ATF2 knockdown did not decrease the expressions of pro-inflammatory cytokines induced by arsenite in SV-HUC-1 cells, but dramatically increased mRNA expressions of TNFα, TGFα and IL-8 under arsenite and non-arsenite conditions. In conclusion, our present study indicated that ATF2, but not IL-8, played a partial role in the expressions of proliferative factors induced by arsenite in human uroepithelial cells.
Collapse
Affiliation(s)
- Shengnan Liu
- Department of Environmental and Occupational Health , School of Public Health , China Medical University , No. 77 Puhe Road , Shenyang North New Area , Shenyang , Liaoning Province 110122 , People's Republic of China .
| | - Fei Wang
- Department of Environmental and Occupational Health , School of Public Health , China Medical University , No. 77 Puhe Road , Shenyang North New Area , Shenyang , Liaoning Province 110122 , People's Republic of China .
| | - Jieyu Liu
- Department of Environmental and Occupational Health , School of Public Health , China Medical University , No. 77 Puhe Road , Shenyang North New Area , Shenyang , Liaoning Province 110122 , People's Republic of China .
| | - Peiyu Jin
- Department of Environmental and Occupational Health , School of Public Health , China Medical University , No. 77 Puhe Road , Shenyang North New Area , Shenyang , Liaoning Province 110122 , People's Republic of China .
| | - Xiaoyan Wang
- Department of Environmental and Occupational Health , School of Public Health , China Medical University , No. 77 Puhe Road , Shenyang North New Area , Shenyang , Liaoning Province 110122 , People's Republic of China .
| | - Li Yang
- Department of Environmental and Occupational Health , School of Public Health , China Medical University , No. 77 Puhe Road , Shenyang North New Area , Shenyang , Liaoning Province 110122 , People's Republic of China .
| | - Shuhua Xi
- Department of Environmental and Occupational Health , School of Public Health , China Medical University , No. 77 Puhe Road , Shenyang North New Area , Shenyang , Liaoning Province 110122 , People's Republic of China .
| |
Collapse
|
31
|
Polo A, Crispo A, Cerino P, Falzone L, Candido S, Giudice A, De Petro G, Ciliberto G, Montella M, Budillon A, Costantini S. Environment and bladder cancer: molecular analysis by interaction networks. Oncotarget 2017; 8:65240-65252. [PMID: 29029427 PMCID: PMC5630327 DOI: 10.18632/oncotarget.18222] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022] Open
Abstract
Bladder cancer (BC) is the 9th most common cancer worldwide, and the 6th most common cancer in men. Its development is linked to chronic inflammation, genetic susceptibility, smoking, occupational exposures and environmental pollutants. Aim of this work was to identify a sub-network of genes/proteins modulated by environmental or arsenic exposure in BC by computational network approaches. Our studies evidenced the presence of HUB nodes both in "BC and environment" and "BC and arsenicals" networks. These HUB nodes resulted to be correlated to circadian genes and targeted by some miRNAs already reported as involved in BC, thus suggesting how they play an important role in BC development due to environmental or arsenic exposure. Through data-mining analysis related to putative effect of the identified HUB nodes on survival we identified genes/proteins and their mutations on which it will be useful to focus further experimental studies related to the evaluation of their expression in biological matrices and to their utility as biomarkers of BC development.
Collapse
Affiliation(s)
- Andrea Polo
- Epidemiology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Napoli, Italia
| | - Anna Crispo
- Epidemiology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Napoli, Italia
| | - Pellegrino Cerino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), Napoli, Italia
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Section of General and Clinical Pathology and Oncology - Translational Oncology and Functional Genomics Laboratory, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Section of General and Clinical Pathology and Oncology - Translational Oncology and Functional Genomics Laboratory, University of Catania, Catania, Italy
| | - Aldo Giudice
- Epidemiology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Napoli, Italia
| | - Giuseppina De Petro
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Brescia, Italia
| | - Gennaro Ciliberto
- Scientific Directorate, Istituto Nazionale Tumori "Regina Elena", IRCCS, Roma, Italia
| | - Maurizio Montella
- Epidemiology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Napoli, Italia
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Napoli, Italia
| | - Susan Costantini
- Experimental Pharmacology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Napoli, Italia
| |
Collapse
|
32
|
Liu Q, Liao B, Tian Y, Chen Y, Luo D, Lin Y, Li H, Wang KJ. Total fluid consumption and risk of bladder cancer: a meta-analysis with updated data. Oncotarget 2017; 8:55467-55477. [PMID: 28903434 PMCID: PMC5589673 DOI: 10.18632/oncotarget.18100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 05/04/2017] [Indexed: 02/05/2023] Open
Abstract
With meta-analysis we tented to reveal the potential relationship between daily fluid consumption and bladder cancer risk, and to find out a recommendation on daily fluid intake. Databases of the Web of Science, PubMed and EMBASE were searched then 21 case-control and 5 cohort studies were included. Stratified analyses on gender, region, time of subjects recruiting and fluid quantity were performed as well as dose-response meta-analysis. Comparing the highest exposure category with the lowest in each study, no association appeared when all data pooled together (p=0.50), but a significant OR of 1.46 (1.02-2.08, p=0.04) was found in male subgroup. For different regions, the summarized OR was 1.44 (1.10-1.89) in American case-control studies, 1.87 (1.20-2.90) in European male subgroup and 0.24 (0.10-0.60) in Asia. There was a significant relationship that each increment 1000ml daily consumption would increase the risk by 28.6% in European male (p=0.007). Similarly every additional 1000ml consumption may increase the OR by 14.9% in American people but the association wasn't that strong (p=0.057). Stratified analyses showed fluid consumption over 3000ml/day in American residents and 2000ml/day in European male resulted in OR>1 with statistical significance. In conclusion, a relationship between higher fluid intake and higher bladder cancer risk was observed in European male and American residents and a limitation to <2000ml and <3000ml per day are recommended respectively.
Collapse
Affiliation(s)
- Qinyu Liu
- Urology Department, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Banghua Liao
- Urology Department, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ye Tian
- Urology Department, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yuntian Chen
- Urology Department, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Deyi Luo
- Urology Department, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yifei Lin
- Urology Department, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Li
- Urology Department, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kun-Jie Wang
- Urology Department, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
33
|
de Namor AFD, Hakawati NA, Hamdan WA, Soualhi R, Korfali S, Valiente L. Calix[4]pyrrole for the removal of arsenic (III) and arsenic (V) from water. JOURNAL OF HAZARDOUS MATERIALS 2017; 326:61-68. [PMID: 27987451 DOI: 10.1016/j.jhazmat.2016.11.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/02/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
Although extensive research has been carried on anion complexation reactions involving calix[4]pyrrole, nothing has been reported regarding this receptor and its interaction with arsenic species. The fact that a single step reaction is required for the synthesis of this receptor, calls upon the need to explore its removal ability for these species from water as a starting point for the development of a new technological approach for water remediation purposes based on Supramolecular Chemistry. This paper reports a detailed study on the interactions involving calix[4]pyrrole with As(III) and As(V). The interaction of As species and calix[4]pyrrole was assessed by 1H NMR using a phase transfer approach aided by molecular simulation studies. The X-ray spectrum confirms the presence of arsenic species in the solid receptor. Optimal conditions for removing As(III) and As(V) from water were established. The kinetics of extraction is fast and calix[4]pyrrole is able to remove 15.28 and 14.29mg/g of arsenate and arsenite respectively. Material was tested for removing arsenic species from real samples collected from different contaminated sites in Argentina. Percentages of arsenate, arsenite and organic arsenic removed from these samples are higher than 85%.
Collapse
Affiliation(s)
- Angela F Danil de Namor
- Laboratory of Thermochemistry, Department of Chemistry, FEPS, University of Surrey, Guildford, Surrey GU2 7XH, UK; Instituto Nacional de Tecnologia Industrial, Av. General Paz 5445; Ciudad Autónoma de Buenos Aires, Argentina.
| | - Nawal Al Hakawati
- Laboratory of Thermochemistry, Department of Chemistry, FEPS, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Weam Abou Hamdan
- Laboratory of Thermochemistry, Department of Chemistry, FEPS, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Rachida Soualhi
- Laboratory of Thermochemistry, Department of Chemistry, FEPS, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Samira Korfali
- Lebanese American University, West Beirut, Beirut, Lebanon
| | - Liliana Valiente
- Instituto Nacional de Tecnologia Industrial, Av. General Paz 5445; Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
34
|
Rouprêt M, Neuzillet Y, Masson-Lecomte A, Colin P, Compérat E, Dubosq F, Houédé N, Larré S, Pignot G, Puech P, Roumiguié M, Xylinas E, Méjean A. Recommandations en onco-urologie 2016-2018 du CCAFU : Tumeurs de la vessie. Prog Urol 2016; 27 Suppl 1:S67-S91. [DOI: 10.1016/s1166-7087(16)30704-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Alamgir A, Khan MA, Schilling J, Shaukat SS, Shahab S. Assessment of groundwater quality in the coastal area of Sindh province, Pakistan. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:78. [PMID: 26739008 DOI: 10.1007/s10661-015-5061-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
Groundwater is a highly important resource, especially for human consumption and agricultural production. This study offers an assessment of groundwater quality in the coastal areas of Sindh province in Pakistan. Fifty-six samples of groundwater were taken at depths ranging from 30 to 50 m. Bacteriological and physico-chemical analyses were performed using the Standard Methods for the Examination of Water and Wastewater. These were supplemented with expert interviews and observations to identify the usage of water and potential sources of pollution. The quality of the groundwater was found to be unsuitable for human consumption, despite being used for this purpose. The concentrations of sulfate and phosphate were well within the tolerance limits. Most critical were the high levels of organic and fecal pollution followed by turbidity and salinity. Metal concentrations (As, Ca, Cr, Cu, Fe, Mg, Mn, Ni, Pb, and Zn) were also determined, and Ni and Pb strongly exceeded health standards. The study stresses the need for significant improvements of the irrigation, sanitation, and sewage infrastructure.
Collapse
Affiliation(s)
- Aamir Alamgir
- Institute of Environmental Studies, University of Karachi, Karachi, 75270, Pakistan
| | - Moazzam Ali Khan
- Institute of Environmental Studies, University of Karachi, Karachi, 75270, Pakistan
| | - Janpeter Schilling
- University of Hamburg, CliSAP, Climate Change and Security, Hamburg, Germany.
- International Alert, London, UK.
| | - S Shahid Shaukat
- Institute of Environmental Studies, University of Karachi, Karachi, 75270, Pakistan
| | - Shoaib Shahab
- Institute of Environmental Studies, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
36
|
Arsenic in Drinking Water, Transition Cell Cancer and Chronic Cystitis in Rural Bangladesh. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:13739-49. [PMID: 26516891 PMCID: PMC4661611 DOI: 10.3390/ijerph121113739] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 11/17/2022]
Abstract
In earlier analyses, we demonstrated dose-response relationships between renal and lung cancer and local arsenic concentrations in wells used by Bangladeshi villagers. We used the same case-referent approach to examine the relation of arsenic to biopsy confirmed transition cell cancer (TCC) of the ureter, bladder or urethra in these villagers. As the International Agency for Research on Cancer (IARC) has conclude that arsenic in drinking water causes bladder cancer, we expected to find higher risk with increasing arsenic concentration. We used histology/cytology results from biopsies carried out at a single clinic in Dhaka, Bangladesh from January 2008 to October 2011. We classified these into four groups, TCC (n = 1466), other malignancies (n = 145), chronic cystitis (CC) (n = 844) and other benign (n = 194). Arsenic concentration was estimated from British Geological Survey reports. Odds ratios were calculated by multilevel logistic regression adjusted for confounding and allowing for geographic clustering. We found no consistent trend for TCC with increasing arsenic concentration but the likelihood of a patient with benign disease having CC was significantly increased at arsenic concentrations >100 µg/L. We conclude that the expected relationship of TCC to arsenic was masked by over-matching that resulted from the previously unreported relationship between arsenic and CC. We hypothesize that CC may be a precursor of TCC in high arsenic areas.
Collapse
|
37
|
Increased risk of bladder cancer in critical areas at high pressure of pollution of the Campania region in Italy: A systematic review. Crit Rev Oncol Hematol 2015; 96:534-41. [PMID: 26520458 DOI: 10.1016/j.critrevonc.2015.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/04/2015] [Accepted: 07/07/2015] [Indexed: 11/27/2022] Open
Abstract
During the past three decades, large areas of the Naples and the Caserta provinces of the Campania region in Italy have been extensively contaminated by the widespread burial and open-air dumping and incineration of industrial toxic waste. On the basis of the finding that the incidence of bladder cancer appears remarkably high in the Naples province with respect to the rest of Europe and of a potential causative role of environmental contaminants, we sought associations between exposure to toxic agents and increased mortality/incidence of bladder cancer by performing a systematic search of epidemiology and human biomonitoring studies conducted in the provinces of Naples and Caserta. The data show that the incidence of bladder cancer is higher than expected on the basis of regional data in the province of Naples and in certain areas of the province of Caserta, even after accounting for social deprivation, with two clusters of increased mortality rate located in the north-western part of Naples province and in the south-eastern part of the Caserta province. The biomonitoring studies conducted focused on the levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs), which are generated by the uncontrolled combustion of refuse abandoned in the territory and have been shown to enter the food chain. While the average values of PCDD/F and PCBs reported in blood serum and human milk of the area population are in accordance with those expected on the basis of studies conducted at a national and international level, five municipalities assessed in the province of Naples, that is Brusciano, Caivano, Giugliano, Mugnano, and Qualiano-Villaricca were clearly characterized by the presence of arsenic, with 62% samples showing serum arsenic levels higher than the 95th percentile of the national distribution. The potential negative synergism of social deprivation, environmental pressure and arsenic contamination may account for the higher than expected bladder cancer incidence and mortality in certain areas of the Campania region and remains to be elucidated via the conduction of ad hoc population-based studies.
Collapse
|
38
|
Chen CL, Chung T, Wu CC, Ng KF, Yu JS, Tsai CH, Chang YS, Liang Y, Tsui KH, Chen YT. Comparative Tissue Proteomics of Microdissected Specimens Reveals Novel Candidate Biomarkers of Bladder Cancer. Mol Cell Proteomics 2015; 14:2466-78. [PMID: 26081836 DOI: 10.1074/mcp.m115.051524] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Indexed: 12/22/2022] Open
Abstract
More than 380,000 new cases of bladder cancer are diagnosed worldwide, accounting for ∼150,200 deaths each year. To discover potential biomarkers of bladder cancer, we employed a strategy combining laser microdissection, isobaric tags for relative and absolute quantitation labeling, and liquid chromatography-tandem MS (LC-MS/MS) analysis to profile proteomic changes in fresh-frozen bladder tumor specimens. Cellular proteins from four pairs of surgically resected primary bladder cancer tumor and adjacent nontumorous tissue were extracted for use in two batches of isobaric tags for relative and absolute quantitation experiments, which identified a total of 3220 proteins. A DAVID (database for annotation, visualization and integrated discovery) analysis of dysregulated proteins revealed that the three top-ranking biological processes were extracellular matrix organization, extracellular structure organization, and oxidation-reduction. Biological processes including response to organic substances, response to metal ions, and response to inorganic substances were highlighted by up-expressed proteins in bladder cancer. Seven differentially expressed proteins were selected as potential bladder cancer biomarkers for further verification. Immunohistochemical analyses showed significantly elevated levels of three proteins-SLC3A2, STMN1, and TAGLN2-in tumor cells compared with noncancerous bladder epithelial cells, and suggested that TAGLN2 could be a useful tumor tissue marker for diagnosis (AUC = 0.999) and evaluating lymph node metastasis in bladder cancer patients. ELISA results revealed significantly increased urinary levels of both STMN1 and TAGLN2 in bladder cancer subgroups compared with control groups. In comparisons with age-matched hernia urine specimens, urinary TAGLN2 in bladder cancer samples showed the largest fold change (7.13-fold), with an area-under-the-curve value of 0.70 (p < 0.001, n = 205). Overall, TAGLN2 showed the most significant overexpression in individual bladder cancer tissues and urine specimens, and thus represents a potential biomarker for noninvasive screening for bladder cancer. Our findings highlight the value of bladder tissue proteome in providing valuable information for future validation studies of potential biomarkers in urothelial carcinoma.
Collapse
Affiliation(s)
- Chien-Lun Chen
- From the ‡Department of Urology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; §School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting Chung
- ¶Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Ching Wu
- ¶Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; ‖Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kwai-Fong Ng
- **Department of Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jau-Song Yu
- ¶Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; ‡‡Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Han Tsai
- ‡‡Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Sun Chang
- ¶Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; ‡‡Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying Liang
- ¶Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Ke-Hung Tsui
- From the ‡Department of Urology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; §School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ting Chen
- ¶Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; ‡‡Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; §§Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
39
|
Gong G, Basom J, Mattevada S, Onger F. Association of hypothyroidism with low-level arsenic exposure in rural West Texas. ENVIRONMENTAL RESEARCH 2015; 138:154-60. [PMID: 25721242 DOI: 10.1016/j.envres.2015.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/26/2015] [Accepted: 02/01/2015] [Indexed: 05/22/2023]
Abstract
It has been reported recently that a higher airborne arsenic level was correlated with higher urinary arsenic concentration and lower serum thyroxin level among urban policemen and rural highway workmen in Italy. The current study was to determine whether exposure to low-level arsenic groundwater (2-22µg/L) is associated with hypothyroidism among 723 participants (118 male and 267 female Hispanics; 108 male and 230 female non-Hispanic whites, NHW) living in rural West Texas counties. Arsenic and iodine levels in their groundwater used for drinking and or cooking were estimated by the inverse distance weighted (IDW) interpolation technique. Groundwater arsenic was ≥8µg/L in 36% of the subjects' wells while iodine concentration was <1µg/L in 91% of their wells. Logistic regression analysis showed that arsenic in groundwater ≥8µg/L and cumulative arsenic exposure (groundwater arsenic concentration multiplied by the number of years living in the current address) but not groundwater iodine concentration were significant predictors for hypothyroidism among Hispanics (p<0.05) but not NHW after adjusting for covariates such as age, gender, annual household income and health insurance coverage. The ethnic difference may be due to a marginally higher percentage of Hispanics (p=0.0622) who lived in areas with groundwater arsenic ≥8µg/L compared with NHW. The prevalence of hypothyroidism was significantly higher in Hispanics or NHW of this rural cohort than the national prevalence. Measures should be taken to reduce arsenic in drinking water in order to prevent hypothyroidism in rural areas.
Collapse
Affiliation(s)
- Gordon Gong
- F. Marie Hall Institute for Rural and Community Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Janet Basom
- F. Marie Hall Institute for Rural and Community Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Family and Community Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sravan Mattevada
- Department of Internal Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Frederick Onger
- Department of Family and Community Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
40
|
|
41
|
Huang L, Wu H, van der Kuijp TJ. The health effects of exposure to arsenic-contaminated drinking water: a review by global geographical distribution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2014; 25:432-452. [PMID: 25365079 DOI: 10.1080/09603123.2014.958139] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chronic arsenic exposure through drinking water has been a vigorously studied and debated subject. However, the existing literature does not allow for a thorough examination of the potential regional discrepancies that may arise among arsenic-related health outcomes. The purpose of this article is to provide an updated review of the literature on arsenic exposure and commonly discussed health effects according to global geographical distribution. This geographically segmented approach helps uncover the discrepancies in the health effects of arsenic. For instance, women are more susceptible than men to a few types of cancer in Taiwan, but not in other countries. Although skin cancer and arsenic exposure correlations have been discovered in Chile, Argentina, the United States, and Taiwan, no evident association was found in mainland China. We then propose several globally applicable recommendations to prevent and treat the further spread of arsenic poisoning and suggestions of future study designs and decision-making.
Collapse
Affiliation(s)
- Lei Huang
- a State Key Laboratory of Pollution Control & Resource Reuse , School of the Environment, Nanjing University , Nanjing , China
| | | | | |
Collapse
|
42
|
Bai Y, Yuan H, Li J, Tang Y, Pu C, Han P. Relationship between bladder cancer and total fluid intake: a meta-analysis of epidemiological evidence. World J Surg Oncol 2014; 12:223. [PMID: 25033957 PMCID: PMC4127191 DOI: 10.1186/1477-7819-12-223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 07/04/2014] [Indexed: 02/05/2023] Open
Abstract
Objectives Epidemiological findings regarding the association between total fluid intake and bladder cancer risk have yielded varying results. Our objective is to examine the possible associations between total fluid intake and bladder cancer risk. Methods Databases searched include the EMBASE and PUBMED, from inception to February 2014, with no limits on study language. We also reviewed the reference lists of identified studies. Stratified analyses were performed. A random-effect model was used to summarize the estimates of odds ratio (OR) with 95% confidence intervals (CI). Results Overall,17 case-control and four cohort studies were included. The overall OR of bladder cancer for the highest versus the lowest fluid intake was 1.06 (95% CI: 0.88-1.27). In the subgroup analyses, the overall ORs for coffee, green, and black tea intake were 1.17 (95% CI: 1.03-1.33), 0.76 (95% CI: 0.66-0.95), and 0.80 (95% CI: 0.65-0.97), respectively. A significantly decreased risk was observed in Asian people (OR 0.27; 95% CI: 0.10-0.72). Among smokers, a suggestive inverse association was observed between total fluid intake and overall bladder cancer risk (OR 0.80; 95% CI: 0.62-1.02). Conclusions Although this meta-analysis suggested that greater consumption of fluid may have a protective effect on bladder cancer in Asian people, there was no convincing evidence on this association because of the limitations of the individual trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Ping Han
- Department of Urology, West China Hospital, Sichuan University, Guoxue Xiang#37, Chengdu, Sichuan 610041, China.
| |
Collapse
|
43
|
Oberoi S, Barchowsky A, Wu F. The global burden of disease for skin, lung, and bladder cancer caused by arsenic in food. Cancer Epidemiol Biomarkers Prev 2014; 23:1187-94. [PMID: 24793955 PMCID: PMC4082465 DOI: 10.1158/1055-9965.epi-13-1317] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Arsenic is a ubiquitous, naturally occurring metalloid that poses a significant human cancer risk. While water consumption provides the majority of human exposure, millions of individuals worldwide are significantly exposed to arsenic through naturally occurring levels of arsenic in grains, vegetables, meats and fish, as well as through food processed with water containing arsenic. Thus, we estimated the global burdens of disease for bladder, lung, and skin cancers attributable to inorganic arsenic in food. METHODS To determine foodborne inorganic arsenic exposures worldwide, we used World Health Organization estimates of food consumption in thirteen country clusters, in conjunction with reported measurements of total and inorganic arsenic in different foods. We estimated slope factors for arsenic-related bladder and lung cancers, and used the U.S. Environmental Protection Agency skin cancer slope factor, to calculate the annual risk of the cancer incidence in males and females within each country cluster. RESULTS We estimated that each year 9,129 to 119,176 additional cases of bladder cancer, 11,844 to 121,442 of lung cancer, and 10,729 to 110,015 of skin cancer worldwide are attributable to inorganic arsenic in food. CONCLUSIONS These estimates indicate that foodborne arsenic exposure causes a significant global burden of human disease. IMPACT Estimating the global cancer burden caused by arsenic exposure in food will support policies that reduce exposure to disease-promoting environmental hazards.
Collapse
Affiliation(s)
- Shilpi Oberoi
- Authors' Affiliations: Departments of Environmental and Occupational Health and
| | - Aaron Barchowsky
- Authors' Affiliations: Departments of Environmental and Occupational Health and Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Felicia Wu
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan
| |
Collapse
|
44
|
Wang D, Li LJ, Liu J, Qiu MX. Long-term urodynamic evaluation of laparoscopic radical cystectomy with orthotopic ileal neobladder for bladder cancer. Oncol Lett 2014; 8:1031-1034. [PMID: 25120652 PMCID: PMC4114619 DOI: 10.3892/ol.2014.2281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 05/23/2014] [Indexed: 11/06/2022] Open
Abstract
The long-term urodynamics of laparoscopic radical cystectomy with orthotopic ileal neobladder for bladder cancer remain unclear in the clinical setting. The present prospective observational study was conducted between January 2010 and December 2012 to evaluate the 6-month and 12-month follow-up data of urodynamic changes of bladder cancer patients who were initially treated by laparoscopic radical cystectomy with orthotopic ileal neobladder. A total of 53 eligible patients were included, and all patients were followed up for at least 12 months, with a median time of 18 months. During the follow-up period, no patients reported difficulty urinating, and the daily frequency of urination and the urine output were gradually improved with time. Dynamic urodynamic examinations showed that the maximum flow rate (11.4±1.1 vs. 7.3±1.4 ml/sec; P<0.001), residual urine content (22.8±10.5 vs. 40.7±12.7 ml; P<0.001), maximum bladder capacity (373.8±62.2 vs. 229.7±56.3 ml; P<0.001) and maximum bladder pressure during filling (35.8±6.7 vs. 26.4±7.0 cm H2O; P<0.001) at 12 months were all improved significantly compared with that at 6 months after the initial surgical treatment. However, there were no significant differences in maximum bladder pressure during voiding (75.7±24.7 vs. 73.1±24.7 cm H2O; P=0.618) and bladder compliance (26.9±13 vs. 27.4±13.1 cm H2O; P=0.848) at 12 and 6 months after initial surgical treatment. In conclusion, the urodynamics of this orthotopic ileal neobladder gradually improve, and its long-term urine storage and voiding functions are acceptable.
Collapse
Affiliation(s)
- Dong Wang
- Department of Urology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Li-Jun Li
- Department of Urology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Jing Liu
- Department of Urology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Ming-Xing Qiu
- Department of Urology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
45
|
Saint-Jacques N, Parker L, Brown P, Dummer TJB. Arsenic in drinking water and urinary tract cancers: a systematic review of 30 years of epidemiological evidence. Environ Health 2014; 13:44. [PMID: 24889821 PMCID: PMC4088919 DOI: 10.1186/1476-069x-13-44] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 03/05/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Arsenic in drinking water is a public health issue affecting hundreds of millions of people worldwide. This review summarizes 30 years of epidemiological studies on arsenic exposure in drinking water and the risk of bladder or kidney cancer, quantifying these risks using a meta-analytical framework. METHODS Forty studies met the selection criteria. Seventeen provided point estimates of arsenic concentrations in drinking water and were used in a meta-analysis of bladder cancer incidence (7 studies) and mortality (10 studies) and kidney cancer mortality (2 studies). Risk estimates for incidence and mortality were analyzed separately using Generalized Linear Models. Predicted risks for bladder cancer incidence were estimated at 10, 50 and 150 μg/L arsenic in drinking water. Bootstrap randomizations were used to assess robustness of effect size. RESULTS Twenty-eight studies observed an association between arsenic in drinking water and bladder cancer. Ten studies showed an association with kidney cancer, although of lower magnitude than that for bladder cancer. The meta-analyses showed the predicted risks for bladder cancer incidence were 2.7 [1.2-4.1]; 4.2 [2.1-6.3] and; 5.8 [2.9-8.7] for drinking water arsenic levels of 10, 50, and 150 μg/L, respectively. Bootstrapped randomizations confirmed this increased risk, but, lowering the effect size to 1.4 [0.35-4.0], 2.3 [0.59-6.4], and 3.1 [0.80-8.9]. The latter suggests that with exposures to 50 μg/L, there was an 83% probability for elevated incidence of bladder cancer; and a 74% probability for elevated mortality. For both bladder and kidney cancers, mortality rates at 150 ug/L were about 30% greater than those at 10 μg/L. CONCLUSION Arsenic in drinking water is associated with an increased risk of bladder and kidney cancers, although at lower levels (<150 μg/L), there is uncertainty due to the increased likelihood of exposure misclassification at the lower end of the exposure curve. Meta-analyses suggest exposure to 10 μg/L of arsenic in drinking water may double the risk of bladder cancer, or at the very least, increase it by about 40%. With the large number of people exposed to these arsenic concentrations worldwide the public health consequences of arsenic in drinking water are substantial.
Collapse
Affiliation(s)
- Nathalie Saint-Jacques
- Cancer Care Nova Scotia, Surveillance and Epidemiology Unit, Room 560 Bethune Building, 1276 South Street, Halifax B3H 2Y9, Nova Scotia, Canada
- Interdisciplinary PhD program, Dalhousie University, 6299 South Street, Room 314, PO Box 15000, Halifax B3H 4R2, Nova Scotia, Canada
| | - Louise Parker
- Department of Pediatrics and Population Cancer Research Program, Dalhousie University, 1494 Carlton Street, PO Box 15000, Halifax B3H 4R2, Nova Scotia, Canada
| | - Patrick Brown
- Population Studies and Surveillance, Cancer Care Ontario, 620 University Ave, Toronto M5G 2 L7 Ontario, Canada
| | - Trevor JB Dummer
- Department of Pediatrics and Population Cancer Research Program, Dalhousie University, 1494 Carlton Street, PO Box 15000, Halifax B3H 4R2, Nova Scotia, Canada
| |
Collapse
|
46
|
Bui HTT, Fujimoto N, Kubo T, Inatomi H, Matsumoto T. SLCO1B1, SLCO2B1, and SLCO1B3 polymorphisms and susceptibility to bladder cancer risk. Cancer Invest 2014; 32:256-61. [PMID: 24762081 DOI: 10.3109/07357907.2014.907421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A variety of carcinogens are excreted in urine and may be actively transported by organic anion-transporting polypeptides that encoded by SLCOs. In this study, we evaluated whether single nucleotide polymorphisms (SNPs) in SLCO1B1, SLCO2B1, and SLCO1B3 are associated with bladder cancer susceptibility. Our results, for the first time, indicated that polymorphisms of SLCO1B1 rs2306283 might be associated with bladder cancer risk. Therefore, SNPs in SLCO1B1 may be potential biomarkers for assessing the risk of bladder cancer.
Collapse
|