1
|
Gomomo Z, Fanadzo M, Mewa-Ngongang M, Chidi BS, Hoff JW, van der Rijst M, Mokwena L, Setati ME, du Plessis HW. The Use of Specific Non- Saccharomyces Yeasts as Sustainable Biocontrol Solutions Against Botrytis cinerea on Apples and Strawberries. J Fungi (Basel) 2025; 11:26. [PMID: 39852445 PMCID: PMC11766372 DOI: 10.3390/jof11010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025] Open
Abstract
Apples and strawberries hold significant commercial and nutritional value but face pre- and post-harvest spoilage due to infections by Botrytis cinerea. While spoilage is conventionally managed using synthetic chemicals, there is a growing interest in utilising yeasts as biological control agents. This study aimed to assess the antifungal potential of non-Saccharomyces yeasts Suhomyces pyralidae, Meyerozyma guilliermondii, Pichia kluyveri, Zygoascus hellenicus, and Aureobasidium melanogenum against three B. cinerea strains (B05.10, IWBT-FF1, and PPRI 30807) on agar plates and in post-harvest trials on apples and strawberries. Aureobasidium melanogenum exhibited a broad range of extracellular enzyme production and inhibition rates of 55%, 52%, and 40% against the strains. In volatile organic compound (VOC) assays, P. kluyveri and S. pyralidae achieved 79% and 56% inhibition, respectively, with VOCs like isobutanol, isoamyl alcohol, 2-phenylethanol, isoamyl acetate, and 2-phenethyl acetate identified. In post-harvest trials, S. pyralidae was most effective on apples, with inhibition rates up to of 64%. The commercial fungicide Captan and S. pyralidae and P. kluyveri achieved 100% inhibition against the B. cinerea strains B05.10 and IWBT-FF1 on strawberries. These findings highlight the potential of the selected yeast species as biological control agents against B. cinerea, warranting further research into their application in commercial fruit protection.
Collapse
Affiliation(s)
- Zukisani Gomomo
- Post-Harvest and Agro-Processing Technologies Division, ARC Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa; (M.M.-N.); (J.W.H.)
- Department of Agriculture, Cape Peninsula University of Technology, Wellington 7654, South Africa;
| | - Morris Fanadzo
- Department of Agriculture, Cape Peninsula University of Technology, Wellington 7654, South Africa;
| | - Maxwell Mewa-Ngongang
- Post-Harvest and Agro-Processing Technologies Division, ARC Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa; (M.M.-N.); (J.W.H.)
| | - Boredi Silas Chidi
- Department of Biotechnology and Consumer Sciences, Cape Peninsula University of Technology, Cape Town 8000, South Africa;
| | - Justin Wallace Hoff
- Post-Harvest and Agro-Processing Technologies Division, ARC Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa; (M.M.-N.); (J.W.H.)
| | | | - Lucky Mokwena
- Central Analytical Facilities, Stellenbosch University, Stellenbosch 7602, South Africa;
| | - Mathabatha Evodia Setati
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch 7602, South Africa;
| | - Heinrich Wilbur du Plessis
- Post-Harvest and Agro-Processing Technologies Division, ARC Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa; (M.M.-N.); (J.W.H.)
| |
Collapse
|
2
|
Khan AR, Ali Q, Ayaz M, Bilal MS, Tariq H, El-Komy MH, Gu Q, Wu H, Vater J, Gao X. Bio-perfume guns: Antifungal volatile activity of Bacillus sp. LNXM12 against postharvest pathogen Botrytis cinerea in tomato and strawberry. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105995. [PMID: 39084769 DOI: 10.1016/j.pestbp.2024.105995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024]
Abstract
Gray mold disease, caused by Botrytis cinerea is a major postharvest disease impacting fruits such as strawberries and tomatoes. This study explores the use of volatile organic compounds (VOCs) produced by Bacillus spp. as eco-friendly biocontrol agents against B. cinerea. In vitro experiments demonstrated that VOCs from Bacillus sp. LNXM12, B. thuringiensis GBAC46, and B. zhanghouensis LLTC93-VOCs inhibited fungal growth by 61.2%, 40.5%, and 21.6%, respectively, compared to the control. LNXM12 was selected for further experiments due to its highest control efficacy of 58.3% and 76.6% on tomato and strawberry fruits, respectively. The LNXM12 VOCs were identified through gas chromatography-mass spectrometry (GC-MS) analysis, and 22 VOCs were identified. Synthetic VOCs with the highest probability percentage, namely ethyloctynol, 3-methyl-2-pentanone (3M2P), 1,3-butadiene-N, N-dimethylformamide (DMF), and squalene were used in experiments. The results showed that the synthetic VOCs ethyloctynol and 3M2P were highly effective, with an inhibition rate of 56.8 and 57.1% against fungal mycelium radial growth at 120 μg/mL on agar plates. Trypan blue staining revealed strongly disrupted, deeper blue, and lysed mycelium in VOC-treated B. cinerea. The scanning and transmission electron microscope (SEM and TEM) results showed that fungal mycelium was smaller, irregular, and shrunken after synthetic VOC treatments. Furthermore, the synthetic VOCs Ethyloctynol and 3M2P revealed high control efficacy on tomatoes and strawberries infected by B. cinerea. The control efficacy on leaves was 67.2%, 66.1% and 64.5%, 78.4% respectively. Similarly, the control efficiency on fruits was 45.5%, 67.3% and 46.3% 65.1%. The expression of virulence genes in B. cinerea was analyzed, and the results revealed that selected genes BcSpl1, BcXyn11A, BcPG2, BcNoxB, BcNoxR, and BcPG1 were downregulated after VOCs treatment. The overall result revealed novel mechanisms by which Bacillus sp. volatiles control postharvest gray mold disease.
Collapse
Affiliation(s)
- Abdur Rashid Khan
- Department of Plant Pathology, College of Plant Protection, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Qurban Ali
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, Abu-Dhabi, United Arab Emirates
| | - Muhammad Ayaz
- Department of Plant Pathology, College of Plant Protection, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Muhammad Saqib Bilal
- Department of Plant Pathology, College of Plant Protection, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Hamza Tariq
- Department of Plant Pathology, College of Plant Protection, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Mahmoud H El-Komy
- Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Qin Gu
- Department of Plant Pathology, College of Plant Protection, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Joachim Vater
- Proteomics and Spectroscopy Unit (ZBS6), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Wockenfuss A, Chan K, Cooper JG, Chaya T, Mauriello MA, Yannarell SM, Maresca JA, Donofrio NM. A Bacillus velezensis strain shows antimicrobial activity against soilborne and foliar fungi and oomycetes. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1332755. [PMID: 38465255 PMCID: PMC10920214 DOI: 10.3389/ffunb.2024.1332755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024]
Abstract
Biological control uses naturally occurring antagonists such as bacteria or fungi for environmentally friendly control of plant pathogens. Bacillus spp. have been used for biocontrol of numerous plant and insect pests and are well-known to synthesize a variety of bioactive secondary metabolites. We hypothesized that bacteria isolated from agricultural soil would be effective antagonists of soilborne fungal pathogens. Here, we show that the Delaware soil isolate Bacillus velezensis strain S4 has in vitro activity against soilborne and foliar plant pathogenic fungi, including two with a large host range, and one oomycete. Further, this strain shows putative protease and cellulase activity, consistent with our prior finding that the genome of this organism is highly enriched in antifungal and antimicrobial biosynthetic gene clusters. We demonstrate that this bacterium causes changes to the fungal and oomycete hyphae at the inhibition zone, with some of the hyphae forming bubble-like structures and irregular branching. We tested strain S4 against Magnaporthe oryzae spores, which typically form germ tubes and penetration structures called appressoria, on the surface of the leaf. Our results suggest that after 12 hours of incubation with the bacterium, fungal spores form germ tubes, but instead of producing appressoria, they appear to form rounded, bubble-like structures. Future work will investigate whether a single antifungal molecule induces all these effects, or if they are the result of a combination of bacterially produced antimicrobials.
Collapse
Affiliation(s)
- Anna Wockenfuss
- Microbiology Graduate Program, University of Delaware, Newark, DE, United States
| | - Kevin Chan
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States
| | - Jessica G. Cooper
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States
| | - Timothy Chaya
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States
| | - Megan A. Mauriello
- Microbiology Graduate Program, University of Delaware, Newark, DE, United States
| | - Sarah M. Yannarell
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
| | - Julia A. Maresca
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE, United States
| | - Nicole M. Donofrio
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
4
|
Sun D, Li F, Wang L, Chen R, Liu F, Guo L, Li N, Zhang F, Lei L. Identification and application of an endophytic fungus Arcopilus aureus from Panax notoginseng against crop fungal disease. FRONTIERS IN PLANT SCIENCE 2024; 15:1305376. [PMID: 38384765 PMCID: PMC10880449 DOI: 10.3389/fpls.2024.1305376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
Endophytic fungi are important microbial resources for developing novel antibacterial and antifungal drugs to prevent and control crop diseases. Panax notoginseng has been used as a Chinese medicinal herb for a long time, as it has various bioactivities. However, information on endophytic fungi isolated from Panax notoginseng is rare. In this study, an endophytic fungus known as SQGX-6, which was later identified as the golden hair fungus Arcopilus aureus, was isolated from Panax notoginseng. SQGX-6 was extracted using ethyl acetate, and the active components of the fungus were identified using ultra-performance liquid chromatography-mass spectrometry (UHPLC-MS). The antifungal and antioxidant activities of the extract were determined and evaluated in vitro and in vivo. SQGX-6 and its extract inhibited the growth of Corn stalk rot (Fusarium graminearum), Corn southern leaf blight (Helminthosporium maydis), and Tomato gray mold (Botrytis cinerea) in vitro. The free radical scavenging rates for 2,2-Diphenyl-1-pyridinyl hydrazide (DPPH) radical scavenging activity, 3-Ethylbenzothiazoline-6-Sulfonic Acid Radical scavenging (ABTS) activity were also downregulated by the SQGX-6 extract. In vivo, the SQGX-6 extract inhibited the mycelial growth rates of the three aforementioned fungi and downregulated malondialdehyde (MDA) content and upregulated peroxidase (POD) and phenylalanine ammonia-lyase (PAL) content in fruits, leading to significant reduction in damage to cherry tomatoes caused by Botrytis cinerea. UHPLC-MS was performed to identify various active substances, including Alkaloids, Azoles, Benzofurans, Coumarins, Flavonoids, Organic acids, Phenols, and plant growth regulators contained in the extract. These results suggested that the endophytic fungus SQGX-6 of Panax notoginseng and its extract have excellent antifungal and antioxidant activities, and thus, it is an important microbial resource for the developing novel drugs against plant fungal infections.
Collapse
Affiliation(s)
- Diangang Sun
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Fengyang Li
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Lingling Wang
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Ruige Chen
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Feng Liu
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Liwei Guo
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Na Li
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Fuxian Zhang
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Liancheng Lei
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
5
|
Hu D, Maeno N, Minami N, Takahashi S, Yoshida K, Ohtani K, Funatsu Y, Kondo R, Yamaguchi A. Antifungal activities of vineyard-habitat wild yeast for grape gray-mold disease and its effects on spontaneous winemaking. Antonie Van Leeuwenhoek 2024; 117:27. [PMID: 38261019 DOI: 10.1007/s10482-023-01922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/20/2023] [Indexed: 01/24/2024]
Abstract
Microorganisms, including native yeasts, are abundant in vineyard fields. Herein, we studied the possibility of using vineyard-derived wild yeast as a microbial pesticide against Botrytis cinerea, a pathogen that causes grape gray mold disease, to boost the initial alcohol production of spontaneously fermented wine. We identified the Saccharomyces cerevisiae strain KONDO170908, which showed the most effective antifungal activity in an ex vivo yeast dripping experiment on grape berries. This strain was utilized in an in vivo spray test on grape bunches in vineyard fields and was proven to significantly suppress gray mold disease on the grape berries in test plot #16 when the yeast was sprayed during both the flowering and ripening periods (morbidity 11.2% against 15.3% of the control plot, χ2 test, p < 0.0001). However, in test plot #17, spraying the yeast during only the ripening period had no effect (morbidity 16.3%). The grapes from each test plot were also submitted for spontaneous wine fermentation. Alcoholic fermentation of the grapes from test plot #16 provided the most active bubbling of CO2 gas and the highest ethanol production and colony counts over seven days of fermentation. Unique changes in the different strains of S. cerevisiae among the plots were observed throughout the early fermentation stage. Thus, yeast spraying during the flowering period might trigger modification of the entire microbiota and could ultimately contribute to promoting alcohol production in the spontaneously fermented wine, although it decreased the grape yield by 20%.
Collapse
Affiliation(s)
- Dagula Hu
- Department of Food Science and Human Wellness, Rakuno Gakuen University, Midorimachi 582, Bunkyodai, Ebetsu-shi, Hokkaido, 069-8501, Japan
- Grass Industry Collaborative Innovation Research Center, Hulunbuir University, Hulunbuir, Inner Mongolia, China
| | - Naoko Maeno
- Department of Food Science and Human Wellness, Rakuno Gakuen University, Midorimachi 582, Bunkyodai, Ebetsu-shi, Hokkaido, 069-8501, Japan
| | - Noriko Minami
- Department of Food Science and Human Wellness, Rakuno Gakuen University, Midorimachi 582, Bunkyodai, Ebetsu-shi, Hokkaido, 069-8501, Japan
| | - Soichiro Takahashi
- Department of Food Science and Human Wellness, Rakuno Gakuen University, Midorimachi 582, Bunkyodai, Ebetsu-shi, Hokkaido, 069-8501, Japan
| | - Kuniko Yoshida
- Department of Food Science and Human Wellness, Rakuno Gakuen University, Midorimachi 582, Bunkyodai, Ebetsu-shi, Hokkaido, 069-8501, Japan
| | - Katsuki Ohtani
- Department of Food Science and Human Wellness, Rakuno Gakuen University, Midorimachi 582, Bunkyodai, Ebetsu-shi, Hokkaido, 069-8501, Japan
| | - Yasuhiro Funatsu
- Department of Food Science and Human Wellness, Rakuno Gakuen University, Midorimachi 582, Bunkyodai, Ebetsu-shi, Hokkaido, 069-8501, Japan
| | - Ryosuke Kondo
- Kurisawa Wines, Moseushi 774-2, Kurisawacho, Iwamizawa-shi, Hokkaido, 068-0114, Japan
| | - Akihiro Yamaguchi
- Department of Food Science and Human Wellness, Rakuno Gakuen University, Midorimachi 582, Bunkyodai, Ebetsu-shi, Hokkaido, 069-8501, Japan.
| |
Collapse
|
6
|
Li X, Li G, Yi L, Zeng K. Soft rot of postharvest pepper: bacterial pathogen, pathogenicity and its biological control using Lactobacillus farciminis LJLAB1. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:443-455. [PMID: 37638860 DOI: 10.1002/jsfa.12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Soft rot is the most important bacterial disease of postharvest pepper during storage and transportation. The main objectives of this study were to investigate the bacterial pathogen species causing pepper soft rot and seek for an antagonistic bacterium to control this disease. RESULTS Pathogens Pectobacterium carotovorum, Enterobacter sp., Klebsiella sp., Pseudomonas sp. and Bacillus sp. were verified to be the causes of soft rot which were isolated from rotten peppers. Among them, P. carotovorum had the highest prevalence, including P. carotovorum subsp. carotovorum (Pcc) and P. carotovorum subsp. brasilisesis (Pcb). The result of pathogenicity analysis showed that Pcb Jm2 had strong pathogenicity at 25 °C even at a cell concentration of 103 CFU mL-1 . Its pathogenicity decreased at 4 °C. Multiple pathogenic factors were identified in the draft genome of Pcb Jm2, including cellulase, pectinase, pectin methylesterase, pectinesterase, pectin lyase, polygalacturonase and so forth. Further, the disease control ability of Lactobacillus farciminis LJLAB1 was investigated. The cell-free supernatant (CFS) and crude bacteriocin of L. farciminis LJLAB1 had good antibacterial activities to Pcb Jm2 in vitro, but CFS exhibited a better disease control effect in vivo. CFS treatment prevented the damage of pepper epidermal structure caused by Pcb Jm2, and 99.26% of pathogen cells on pepper were killed by it. Moreover, CFS treatment delayed firmness decrease, soluble solid content loss, weight loss, yellowing and malonaldehyde accumulation of pepper during storage after pathogen infection. CONCLUSION L. farciminis LJLAB1 can be an effective biological control agent to control pepper soft rot caused by Pcb. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaofen Li
- College of Food Science, Southwest University, Chongqing, China
| | - Guang Li
- College of Food Science, Southwest University, Chongqing, China
| | - Lanhua Yi
- College of Food Science, Southwest University, Chongqing, China
- Research Center of Food Storage & Logistics, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, China
- Research Center of Food Storage & Logistics, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| |
Collapse
|
7
|
Srikamwang C, onsa NE, Sunanta P, Sangta J, Chanway CP, Thanakkasaranee S, Sommano SR. Role of Microbial Volatile Organic Compounds in Promoting Plant Growth and Disease Resistance in Horticultural Production. PLANT SIGNALING & BEHAVIOR 2023; 18:2227440. [PMID: 37366146 PMCID: PMC10730190 DOI: 10.1080/15592324.2023.2227440] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Microbial volatile organic compounds (MVOCs) are a diverse group of volatile organic compounds that microorganisms may produce and release into the environment. These compounds have both positive and negative effects on plants, as they have been shown to be effective at mitigating stresses and functioning as immune stimulants. Furthermore, MVOCs modulate plant growth and systemic plant resistance, while also serving as attractants or repellents for insects and other stressors that pose threats to plants. Considering the economic value of strawberries as one of the most popular and consumed fruits worldwide, harnessing the benefits of MVOCs becomes particularly significant. MVOCs offer cost-effective and efficient solutions for disease control and pest management in horticultural production, as they can be utilized at low concentrations. This paper provides a comprehensive review of the current knowledge on microorganisms that contribute to the production of beneficial volatile organic compounds for enhancing disease resistance in fruit products, with a specific emphasis on broad horticultural production. The review also identifies research gaps and highlights the functions of MVOCs in horticulture, along with the different types of MVOCs that impact plant disease resistance in strawberry production. By offering a novel perspective on the application and utilization of volatile organic compounds in sustainable horticulture, this review presents an innovative approach to maximizing the efficiency of horticultural production through the use of natural products.
Collapse
Affiliation(s)
- Chonlada Srikamwang
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttacha Eva onsa
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Science, Chiang Mai University, Chiang Mai, Thailand
| | - Piyachat Sunanta
- Department of Plant and Soil Science, Chiang Mai University, Chiang Mai, Thailand
- Postharvest Technology Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Jiraporn Sangta
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Christopher P. Chanway
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, Canada
| | - Sarinthip Thanakkasaranee
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro Industry, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
8
|
Sipiczki M. Identification of antagonistic yeasts as potential biocontrol agents: Diverse criteria and strategies. Int J Food Microbiol 2023; 406:110360. [PMID: 37591131 DOI: 10.1016/j.ijfoodmicro.2023.110360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Plant pathogenic and food spoilage microorganisms cause serious losses in crop production and severe damage during food manufacturing, transportation and storage. Synthetic antimicrobial agents are commonly used to control their propagation and harmful activities. However, the recent trend is shifting from chemicals towards safer and more eco-friendly alternatives. The use of antagonistic microorganisms as biological antimicrobial agents is becoming popular throughout the world to replace chemical agents. High numbers of microorganisms have turned out to exert adverse/inhibitory effects on other microorganisms including pathogens and spoiling strains. However, most of them are only active under laboratory conditions and their activity is sensitive to environmental changes. Only a small number of them can be used to manufacture biological protective products on an industrial scale. Therefore, there is a great need to identify additional antagonists. Yeasts have come to the forefront of attention because antimicrobial antagonism is fairly widespread among them. In the recent years, numerous excellent review articles covered various aspects of the phenomenon of antimicrobial antagonism of yeasts. However, none of them dealt with how antagonistic yeasts can be sought and identified, despite the high number and diverse efficiency of screening and identification procedures. As researchers working in different laboratories use different criteria and different experimental set-ups, a yeast strain found antagonistic in one laboratory may prove to be non-antagonistic in another laboratory. This review aims to provide a comprehensive and partially critical overview of the wide diversity of identification criteria and procedures to help researchers choose appropriate screening and identification strategies.
Collapse
Affiliation(s)
- M Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
9
|
Wadaan MA, Khattak B, Riaz A, Hussain M, Khan MJ, Fozia F, Iftikhar A, Ahmad I, Khan MF, Baabbad A, Ziaullah. Biological Control of Hyalomma Ticks in Cattle by Fungal Isolates. Vet Sci 2023; 10:684. [PMID: 38133234 PMCID: PMC10747915 DOI: 10.3390/vetsci10120684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Ticks pose a major threat to cattle health and production in Pakistan because they transmit pathogens of diseases like Babesiosis and Theileriosis. Hyalomma spp., found across Africa, Asia, and Europe, are especially problematic. This study explored biocontrol of Hyalomma spp. using spore-free fungal culture filtrates collected from dairy farm soil in Kohat, Pakistan. Three fungal species of the genera Alternaria, Aspergillus, and Penicillium were isolated, and their filtrates were tested against tick adults and larvae. Filtrate concentrations were prepared at different strengths. Data were taken after the exposure of adults and larvae ticks to various concentrations of the fungal filtrates. Results indicated that at 100% concentration, all fungal filtrates induced 100% mortality in adults and larvae. Decreasing filtrate concentration lowered tick mortality. The lowest concentration caused the least mortality. The effect was time- and dose-dependent. In conclusion, spore-free fungal culture filtrates can provide biocontrol of Hyalomma spp. in a time- and concentration-dependent manner. Further research should explore the active compounds causing mortality and optimal application methods. The process outlined here provides a natural biocontrol alternative to chemical pesticides to reduce tick infestations and associated cattle diseases in Pakistan.
Collapse
Affiliation(s)
- Mohammad Ahmad Wadaan
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Baharullah Khattak
- Department of Microbiology, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Aneela Riaz
- Department of Microbiology, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Mubbashir Hussain
- Department of Microbiology, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Muhammad Jamil Khan
- Department of Animal Sciences, Facility of Biological Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Fozia Fozia
- Department of Biochemistry, KMU Institute of Dental Sciences, Kohat 26000, Pakistan
| | - Anisa Iftikhar
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA
| | - Ijaz Ahmad
- Department of Chemistry, Kohat University of Sciences & Technology, Kohat 26000, Pakistan;
| | - Muhammad Farooq Khan
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Almohannad Baabbad
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ziaullah
- College of Professional Studies, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
10
|
Yang F, Jiang H, Ma K, Wang X, Liang S, Cai Y, Jing Y, Tian B, Shi X. Genome sequencing and analysis of Bacillus velezensis VJH504 reveal biocontrol mechanism against cucumber Fusarium wilt. Front Microbiol 2023; 14:1279695. [PMID: 37901818 PMCID: PMC10602789 DOI: 10.3389/fmicb.2023.1279695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
One major issue in reducing cucumber yield is the destructive disease Cucumber (Cucumis sativus L.) wilt disease caused by Fusarium oxysporum f. sp. cucumerinum (Foc). When using the isolate VJH504 isolated from cucumber rhizosphere soil and identified as Bacillus velezensis, the growth of Foc in the double culture experiment was effectively inhibited. Phenotypic, phylogenetic, and genomic analyses were conducted to enhance understanding of its biocontrol mechanism. According to the result of the phenotype analysis, B. velezensis VJH504 could inhibit cucumber fusarium wilt disease both in vitro and in vivo, and significantly promote cucumber seed germination and seedling growth. Additionally, the tests of growth-promoting and biocontrol characteristics revealed the secretion of proteases, amylases, β-1,3-glucanases, cellulases, as well as siderophores and indole-3-acetic acid by B. velezensis VJH504. Using the PacBio Sequel II system, we applied the complete genome sequencing for B. velezensis VJH504 and obtained a single circular chromosome with a size of 3.79 Mb. A phylogenetic tree was constructed based on the 16S rRNA gene sequences of B. velezensis VJH504 and 13 other Bacillus species, and Average Nucleotide Identity (ANI) analysis was performed using their whole-genome sequences, confirming isolateVJH504 as B. velezensis. Following this, based on the complete genome sequence od B. velezensis VJH504, specific functional analysis, Carbohydrate-Active Enzymes (CAZymes) analysis, and secondary metabolite analysis were carried out, predicting organism's abilities for biofilm formation, production of antifungal CAZymes, and synthesis of antagonistic secondary metabolites against pathogens. Afterwards, a comparative genomic analysis was performed between B. velezensis VJH504 and three other B. velezensis strains, revealing subtle differences in their genomic sequences and suggesting the potential for the discovery of novel antimicrobial substances in B. velezensis VJH504. In conclusion, the mechanism of B. velezensis VJH504 in controlling cucumber fusarium wilt was predicted to appear that B. velezensis VJH504is a promising biocontrol agent, showcasing excellent application potential in agricultural production.
Collapse
Affiliation(s)
- Fan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Huayan Jiang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Kai Ma
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shen Liang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuxin Cai
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Yancai Jing
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Baoming Tian
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuanjie Shi
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Iqbal M, Broberg A, Andreasson E, Stenberg JA. Biocontrol Potential of Beneficial Fungus Aureobasidium pullulans Against Botrytis cinerea and Colletotrichum acutatum. PHYTOPATHOLOGY 2023; 113:1428-1438. [PMID: 36945727 DOI: 10.1094/phyto-02-23-0067-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Biological control is a promising approach to reduce plant diseases caused by fungal pathogens and ensure high productivity in horticultural production. In the present study, we evaluated the biocontrol potential and underlying mechanisms of the beneficial fungus Aureobasidium pullulans against Botrytis cinerea and Colletotrichum acutatum, casual agents of gray mold and anthracnose diseases in strawberry. Notably, this is the first time that A. pullulans has been tested against C. acutatum in strawberry. A. pullulans strains (AP-30044, AP-30273, AP-53383, and AP-SLU6) showed significant variation in terms of growth and conidia production. An inverse relationship was found between the growth and conidiation rate, suggesting a trade-off between resource allocation for growth and conidial production. Dual plate co-culturing assays showed that mycelial growth of B. cinerea and C. acutatum was reduced by up to 35 and 18%, respectively, when challenged with A. pullulans compared with control treatments. Likewise, culture filtrates of A. pullulans showed varying levels of antifungal activity against B. cinerea and C. acutatum, reducing the mycelial biomass by up to 90 and 72%, respectively. Furthermore, milk powder plate assays showed that A. pullulans produced substantial amounts of extracellular proteases, which are known to degrade fungal cuticle. Ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) analyses revealed that A. pullulans produced exophilins, liamocins, and free fatty acids known to have antifungal properties. A. pullulans shows high potential for successful biological control of strawberry diseases and discuss opportunities for further optimization of this beneficial fungus.
Collapse
Affiliation(s)
- Mudassir Iqbal
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| | - Anders Broberg
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| | - Johan A Stenberg
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| |
Collapse
|
12
|
Castillo-Esparza JF, Mora-Velasco KA, Rosas-Saito GH, Rodríguez-Haas B, Sánchez-Rangel D, Ibarra-Juárez LA, Ortiz-Castro R. Microorganisms Associated with the Ambrosial Beetle Xyleborus affinis with Plant Growth-Promotion Activity in Arabidopsis Seedlings and Antifungal Activity Against Phytopathogenic Fungus Fusarium sp. INECOL_BM-06. MICROBIAL ECOLOGY 2023; 85:1396-1411. [PMID: 35357520 DOI: 10.1007/s00248-022-01998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/11/2022] [Indexed: 05/10/2023]
Abstract
Plants interact with a great diversity of microorganisms or insects throughout their life cycle in the environment. Plant and insect interactions are common; besides, a great variety of microorganisms associated with insects can induce pathogenic damage in the host, as mutualist phytopathogenic fungus. However, there are other microorganisms present in the insect-fungal association, whose biological/ecological activities and functions during plant interaction are unknown. In the present work evaluated, the role of microorganisms associated with Xyleborus affinis, an important beetle species within the Xyleborini tribe, is characterized by attacking many plant species, some of which are of agricultural and forestry importance. We isolated six strains of microorganisms associated with X. affinis shown as plant growth-promoting activity and altered the root system architecture independent of auxin-signaling pathway in Arabidopsis seedlings and antifungal activity against the phytopathogenic fungus Fusarium sp. INECOL_BM-06. In addition, evaluating the tripartite interaction plant-microorganism-fungus, interestingly, we found that microorganisms can induce protection against the phytopathogenic fungus Fusarium sp. INECOL_BM-06 involving the jasmonic acid-signaling pathway and independent of salicylic acid-signaling pathway. Our results showed the important role of this microorganisms during the plant- and insect-microorganism interactions, and the biological potential use of these microorganisms as novel agents of biological control in the crops of agricultural and forestry is important.
Collapse
Affiliation(s)
- J Francisco Castillo-Esparza
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, 91073, Veracruz, México
- Red de Biodiversidad Y Sistemática, Instituto de Ecología A.C, Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, México
| | - Karen A Mora-Velasco
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, 91073, Veracruz, México
| | - Greta H Rosas-Saito
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, 91073, Veracruz, México
| | - Benjamín Rodríguez-Haas
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, 91073, Veracruz, México
| | - Diana Sánchez-Rangel
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, 91073, Veracruz, México
| | - Luis A Ibarra-Juárez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, 91073, Veracruz, México
| | - Randy Ortiz-Castro
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, 91073, Veracruz, México.
- Cátedra CONACyT en el Instituto de Ecología, A.C., Carretera Antigua a Coatepec 351, El Haya, C.P. 91073, Xalapa, Veracruz, Mexico.
| |
Collapse
|
13
|
Alimadadi N, Pourvali Z, Nasr S, Fazeli SAS. Screening of antagonistic yeast strains for postharvest control of Penicillium expansum causing blue mold decay in table grape. Fungal Biol 2023; 127:901-908. [PMID: 36906380 DOI: 10.1016/j.funbio.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/15/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Blue mold decay caused by Penicillium expansum is one of the most important postharvest diseases of grapes, leading to considerable economic losses. Regarding the increasing demand for pesticide-free foods, this study aimed to find potential yeast strains for biological control of blue mold on table grapes. A total of 50 yeast strains were screened for antagonistic activity against P. expansum using the dual culture method and six strains significantly inhibited the fungal growth. All six yeast strains (Coniochaeta euphorbiae, Auerobasidium mangrovei, Tranzscheliella sp., Geotrichum candidum, Basidioascus persicus, and Cryptococcus podzolicus) reduced the fungal growth (29.6-85.0%) and the decay degree of wounded grape berries inoculated with P. expansum while G. candidum was found to be the most efficient biocontrol agent. On the basis of antagonistic activity, the strains were further characterized by in vitro assays involving inhibition of conidial germination, production of volatile compounds, iron competition, production of hydrolytic enzymes, biofilm-forming capacity, and exhibited three or more putative mechanisms. To our knowledge, the yeasts are reported for the first time as potential biocontrol agents against the blue mold of grapes but more study is required to evaluate their efficiency related to field application.
Collapse
Affiliation(s)
- Nayyereh Alimadadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Pourvali
- Department of Microbial Biotechnology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Shaghayegh Nasr
- Department of Microbial Biotechnology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran; Microorganisms Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran.
| | - Seyed Abolhassan Shahzadeh Fazeli
- Department of Molecular and Cellular Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran; Departement of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
14
|
Almeida OAC, de Araujo NO, Dias BHS, de Sant’Anna Freitas C, Coerini LF, Ryu CM, de Castro Oliveira JV. The power of the smallest: The inhibitory activity of microbial volatile organic compounds against phytopathogens. Front Microbiol 2023; 13:951130. [PMID: 36687575 PMCID: PMC9845590 DOI: 10.3389/fmicb.2022.951130] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/20/2022] [Indexed: 01/06/2023] Open
Abstract
Plant diseases caused by phytopathogens result in huge economic losses in agriculture. In addition, the use of chemical products to control such diseases causes many problems to the environment and to human health. However, some bacteria and fungi have a mutualistic relationship with plants in nature, mainly exchanging nutrients and protection. Thus, exploring those beneficial microorganisms has been an interesting and promising alternative for mitigating the use of agrochemicals and, consequently, achieving a more sustainable agriculture. Microorganisms are able to produce and excrete several metabolites, but volatile organic compounds (VOCs) have huge biotechnology potential. Microbial VOCs are small molecules from different chemical classes, such as alkenes, alcohols, ketones, organic acids, terpenes, benzenoids and pyrazines. Interestingly, volatilomes are species-specific and also change according to microbial growth conditions. The interaction of VOCs with other organisms, such as plants, insects, and other bacteria and fungi, can cause a wide range of effects. In this review, we show that a large variety of plant pathogens are inhibited by microbial VOCs with a focus on the in vitro and in vivo inhibition of phytopathogens of greater scientific and economic importance in agriculture, such as Ralstonia solanacearum, Botrytis cinerea, Xanthomonas and Fusarium species. In this scenario, some genera of VOC-producing microorganisms stand out as antagonists, including Bacillus, Pseudomonas, Serratia and Streptomyces. We also highlight the known molecular and physiological mechanisms by which VOCs inhibit the growth of phytopathogens. Microbial VOCs can provoke many changes in these microorganisms, such as vacuolization, fungal hyphal rupture, loss of intracellular components, regulation of metabolism and pathogenicity genes, plus the expression of proteins important in the host response. Furthermore, we demonstrate that there are aspects to investigate by discussing questions that are still not very clear in this research area, especially those that are essential for the future use of such beneficial microorganisms as biocontrol products in field crops. Therefore, we bring to light the great biotechnological potential of VOCs to help make agriculture more sustainable.
Collapse
Affiliation(s)
- Octávio Augusto Costa Almeida
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Natália Oliveira de Araujo
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Bruno Henrique Silva Dias
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Carla de Sant’Anna Freitas
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Luciane Fender Coerini
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea,Biosystems and Bioengineering Program, University of Science and Technology, Daejeon, South Korea
| | - Juliana Velasco de Castro Oliveira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil,*Correspondence: Juliana Velasco de Castro Oliveira,
| |
Collapse
|
15
|
Esteves M, Lage P, Sousa J, Centeno F, de Fátima Teixeira M, Tenreiro R, Mendes-Ferreira A. Biocontrol potential of wine yeasts against four grape phytopathogenic fungi disclosed by time-course monitoring of inhibitory activities. Front Microbiol 2023; 14:1146065. [PMID: 36960294 PMCID: PMC10028181 DOI: 10.3389/fmicb.2023.1146065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
Grapes' infection by phytopathogenic fungi may often lead to rot and impair the quality and safety of the final product. Due to the concerns associated with the extensive use of chemicals to control these fungi, including their toxicity for environment and human health, bio-based products are being highly preferred, as eco-friendlier and safer alternatives. Specifically, yeasts have shown to possess antagonistic activity against fungi, being promising for the formulation of new biocontrol products.In this work 397 wine yeasts, isolated from Portuguese wine regions, were studied for their biocontrol potential against common grapes phytopathogenic fungal genera: Aspergillus, Botrytis, Mucor and Penicillium. This set comprised strains affiliated to 32 species distributed among 20 genera. Time-course monitoring of mold growth was performed to assess the inhibitory activity resulting from either diffusible or volatile compounds produced by each yeast strain. All yeasts displayed antagonistic activity against at least one of the mold targets. Mucor was the most affected being strongly inhibited by 68% of the tested strains, followed by Botrytis (20%), Aspergillus (19%) and Penicillium (7%). More notably, the approach used allowed the detection of a wide array of yeast-induced mold response profiles encompassing, besides the decrease of mold growth, the inhibition or delay of spore germination and the complete arrest of mycelial extension, and even its stimulation at different phases. Each factor considered (taxonomic affiliation, mode of action and fungal target) as well as their interactions significantly affected the antagonistic activity of the yeast isolates. The highest inhibitions were mediated by volatile compounds. Total inhibition of Penicillium was achieved by a strain of Metschnikowia pulcherrima, while the best performing yeasts against Mucor, Aspergillus and Botrytis, belong to Lachancea thermotolerans, Hanseniaspora uvarum and Starmerella bacillaris, respectively. Notwithstanding the wide diversity of yeasts tested, only three strains were found to possess a broad spectrum of antagonistic activity, displaying strong or very strong inhibition against the four fungal targets tested. Our results confirm the potential of wine yeasts as biocontrol agents, while highlighting the need for the establishment of fit-for-purpose selection programs depending on the mold target, the timing, and the mode of application.
Collapse
Affiliation(s)
- Marcos Esteves
- WM&B—Laboratory of Wine Microbiology and Biotechnology, Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Patrícia Lage
- WM&B—Laboratory of Wine Microbiology and Biotechnology, Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - João Sousa
- WM&B—Laboratory of Wine Microbiology and Biotechnology, Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Filipe Centeno
- PROENOL—Indústria Biotecnológica, Lda, Canelas, Portugal
| | | | - Rogério Tenreiro
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Ana Mendes-Ferreira
- WM&B—Laboratory of Wine Microbiology and Biotechnology, Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- *Correspondence: Ana Mendes-Ferreira,
| |
Collapse
|
16
|
Bernal A, Jacob S, Andresen K, Yemelin A, Hartmann H, Antelo L, Thines E. Identification of the polyketide synthase gene responsible for the synthesis of tanzawaic acids in Penicillium steckii IBWF104-06. Fungal Genet Biol 2023; 164:103750. [PMID: 36379411 DOI: 10.1016/j.fgb.2022.103750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Microorganisms have been used as biological control agents (BCAs) in agriculture for a long time, but their importance has increased dramatically over the last few years. The Penicillium steckii IBWF104-06 strain has presented strong BCA activity in greenhouse experiments performed against phytopathogenic fungi and oomycetes. P. steckii strains generally produce different antifungal tanzawaic acids; interesting compounds known to be catalyzed by polyketide synthetases in other fungi. Since the decalin structure is characteristic for tanzawaic acids, two polyketide synthase genes (PsPKS1 and PsPKS2) were selected for further analysis, which have similarity in sequence and gene cluster structure with genes that are known to be responsible for the biosynthesis of decalin-containing compounds. Subsequently, gene-inactivation mutants of both PsPKS1 and PsPKS2 have been generated. It was found, that the ΔPspks1 mutant cannot produce tanzawaic acids any more, whereas reintegration of the original PsPKS1 gene into the genome of ΔPspks1 reestablished tanzawaic acid production. The mutant ΔPspks2 is not altered in tanzawaic acids production. Interestingly, both mutants ΔPsPKS1 and ΔPsPKS2 still display strong BCA activity, indicating that the mechanism of action is not related to the production of tanzawaic acids.
Collapse
Affiliation(s)
- Azahara Bernal
- Institute of Biotechnology and Drug Research gGmbH (IBWF), Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany
| | - Stefan Jacob
- Institute of Biotechnology and Drug Research gGmbH (IBWF), Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany
| | - Karsten Andresen
- Johannes Gutenberg-University Mainz, Microbiology and Biotechnology at the Institute of Molecular Physiology, Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany
| | - Alexander Yemelin
- Institute of Biotechnology and Drug Research gGmbH (IBWF), Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany
| | | | - Luis Antelo
- Institute of Biotechnology and Drug Research gGmbH (IBWF), Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany; Johannes Gutenberg-University Mainz, Microbiology and Biotechnology at the Institute of Molecular Physiology, Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany.
| | - Eckhard Thines
- Institute of Biotechnology and Drug Research gGmbH (IBWF), Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany; Johannes Gutenberg-University Mainz, Microbiology and Biotechnology at the Institute of Molecular Physiology, Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany.
| |
Collapse
|
17
|
Li X, Zeng S, Wisniewski M, Droby S, Yu L, An F, Leng Y, Wang C, Li X, He M, Liao Q, Liu J, Wang Y, Sui Y. Current and future trends in the biocontrol of postharvest diseases. Crit Rev Food Sci Nutr 2022; 64:5672-5684. [PMID: 36530065 DOI: 10.1080/10408398.2022.2156977] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Postharvest diseases of fruits and vegetables cause significant economic losses to producers and marketing firms. Many of these diseases are caused by necrotrophic fungal pathogens that require wounded or injured tissues to establish an infection. Biocontrol of postharvest diseases is an evolving science that has moved from the traditional paradigm of one organism controlling another organism to viewing biocontrol as a system involving the biocontrol agent, the pathogen, the host, the physical environment, and most recently the resident microflora. Thus, the paradigm has shifted from one of simplicity to complexity. The present review provides an overview of how the field of postharvest biocontrol has evolved over the past 40 years, a brief review of the biology of necrotrophic pathogens, the discovery of BCAs, their commercialization, and mechanisms of action. Most importantly, current research on the use of marker-assisted-selection, the fruit microbiome and its relationship to the pathobiome, and the use of double-stranded RNA as a biocontrol strategy is discussed. These latter subjects represent evolving trends in postharvest biocontrol research and suggestions for future research are presented.
Collapse
Affiliation(s)
- Xiaojiao Li
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Shixian Zeng
- College of Agriculture, Key Laboratory of Agricultural Microbiology of Guizhou Province, Guizhou University, Guiyang, Guizhou, China
| | - Michael Wisniewski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Samir Droby
- Department of Postharvest Science, ARO, the Volcani Center, Rishon LeZion, Israel
| | - Longfeng Yu
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Fuquan An
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Yan Leng
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Chaowen Wang
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Xiaojun Li
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Min He
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Qinhong Liao
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Yong Wang
- College of Agriculture, Key Laboratory of Agricultural Microbiology of Guizhou Province, Guizhou University, Guiyang, Guizhou, China
| | - Yuan Sui
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| |
Collapse
|
18
|
Yong D, Li Y, Gong K, Yu Y, Zhao S, Duan Q, Ren C, Li A, Fu J, Ni J, Zhang Y, Li R. Biocontrol of strawberry gray mold caused by Botrytis cinerea with the termite associated Streptomyces sp. sdu1201 and actinomycin D. Front Microbiol 2022; 13:1051730. [PMID: 36406410 PMCID: PMC9674021 DOI: 10.3389/fmicb.2022.1051730] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Strawberry gray mold caused by Botrytis cinerea is one of the most severe diseases in pre- and post-harvest periods. Although fungicides have been an effective way to control this disease, they can cause serious “3R” problems (Resistance, Resurgence and Residue). In this study, Streptomyces sp. sdu1201 isolated from the hindgut of the fungus-growing termite Odontotermes formosanus revealed significant antifungal activity against B. cinerea. Four compounds (1–4) were isolated from Streptomyces sp. sdu1201 and further identified as actinomycins by the HRMS and 1D NMR data. Among them, actinomycin D had the strongest inhibitory activity against B. cinerea with the EC50 value of 7.65 μg mL−1. The control effect of actinomycin D on strawberry gray mold was also tested on fruits and leaves in vitro, and its control efficiency on leaves was 78.77% at 3 d. Moreover, actinomycin D can also inhibit the polarized growth of germ tubes of B. cinerea. Therefore, Streptomyces sp. sdu1201 and actinomycin D have great potential to gray mold as biocontrol agents.
Collapse
Affiliation(s)
- Daojing Yong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Qingdao Zhongda Agritech Co., Ltd., Qingdao, China
| | - Yue Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kai Gong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yingying Yu
- Qingdao Zhongda Agritech Co., Ltd., Qingdao, China
| | - Shuai Zhao
- Qingdao Zhongda Agritech Co., Ltd., Qingdao, China
| | - Qiong Duan
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Cailing Ren
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jun Fu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jinfeng Ni
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- *Correspondence: Jinfeng Ni,
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Youming Zhang,
| | - Ruijuan Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Ruijuan Li,
| |
Collapse
|
19
|
Boro M, Sannyasi S, Chettri D, Verma AK. Microorganisms in biological control strategies to manage microbial plant pathogens: a review. Arch Microbiol 2022; 204:666. [PMID: 36214917 DOI: 10.1007/s00203-022-03279-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 01/01/2023]
Abstract
Chemical fertilizers and pesticides are an integral part of modern agriculture and are often associated with numerous environmental problems. Biological agents such as microorganisms can largely replace chemical fertilizers and pesticides. The proper use of selected microorganisms such as bacteria, fungi and viruses have several benefits for agriculture. These include a healthy soil microbiota, biological production of important compounds that promote plant health, and to be used as biocontrol agents (BCAs) that provide protection from plant pathogenic microorganisms. Scientists have found that several bacterial genera including Bacillus and Pseudomonas have antimicrobial activity against numerous pathogenic bacterial and fungal plant pathogens. Trichoderma, Aspergillus, and Penicillium are among the most common fungal genera used as BCAs against both bacterial and fungal plant pathogens. Several bacteriophages and mycoviruses are also found effective as BCAs against selective plant pathogens. Fusarium oxysporum is a commonly found microbial plant pathogen causing wilts and rots in plants. Overall, it can be concluded that the use of microbial BCAs is an effective practice against microbial plant pathogens.
Collapse
Affiliation(s)
- Manswama Boro
- Department of Microbiology, Sikkim University, Gangtok, Sikkim, 737102, India
| | - Shuvankar Sannyasi
- Department of Microbiology, Sikkim University, Gangtok, Sikkim, 737102, India
| | - Dixita Chettri
- Department of Microbiology, Sikkim University, Gangtok, Sikkim, 737102, India
| | - Anil Kumar Verma
- Department of Microbiology, Sikkim University, Gangtok, Sikkim, 737102, India.
| |
Collapse
|
20
|
Tančinová D, Mašková Z, Mendelová A, Foltinová D, Barboráková Z, Medo J. Antifungal Activities of Essential Oils in Vapor Phase against Botrytis cinerea and Their Potential to Control Postharvest Strawberry Gray Mold. Foods 2022; 11:foods11192945. [PMID: 36230021 PMCID: PMC9563059 DOI: 10.3390/foods11192945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
Essential oils (EOs) from aromatic plants seem to have the potential to control several fungal pathogens and food contaminants. Botrytis cinerea is the main strawberry fruit contaminant causing high losses during storage. Here, thirteen EOs applied in the vapor phase were evaluated for their potential to inhibit the growth of three different strains of B. cinerea isolated from strawberry fruits. Eight EOs (lemongrass, litsea, lavender, peppermint, mint, petitgrain, sage, and thyme) were able to completely inhibit the growth of B. cinerea for 7 days when applied at a concentration of 625 μL·L−1. Four EOs with the lowest minimal inhibition concentrations (thyme, peppermint, lemongrass, and litsea) have been tested on strawberry fruits intentionally inoculated by B. cinerea. All four EOs showed high inhibition at a concentration of 250 or 500 μL·L−1, but only peppermint EO was able to completely inhibit B. cinerea lesion development at a concentration of 125 μL·L−1. The sensory evaluation of strawberries treated by EOs at a concentration 125 μL·L−1 resulted in a statistically significant decrease in taste, aftertaste, aroma, and overall quality. Lemongrass and litsea EOs scored better than thyme and peppermint ones, thus forming two viable methods for B. cinerea suppression and the extension of packed strawberries’ shelf life.
Collapse
Affiliation(s)
- Dana Tančinová
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A Hlinku 2, 949 76 Nitra, Slovakia
| | - Zuzana Mašková
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A Hlinku 2, 949 76 Nitra, Slovakia
| | - Andrea Mendelová
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A Hlinku 2, 949 76 Nitra, Slovakia
| | - Denisa Foltinová
- The State Veterinary and Food Administration of the Slovak Republic, Botanická 17, 842 13 Bratislava, Slovakia
| | - Zuzana Barboráková
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A Hlinku 2, 949 76 Nitra, Slovakia
| | - Juraj Medo
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A Hlinku 2, 949 76 Nitra, Slovakia
- Correspondence:
| |
Collapse
|
21
|
Maluleke E, Jolly NP, Patterton HG, Setati ME. Antifungal activity of non-conventional yeasts against Botrytis cinerea and non-Botrytis grape bunch rot fungi. Front Microbiol 2022; 13:986229. [PMID: 36081805 PMCID: PMC9445577 DOI: 10.3389/fmicb.2022.986229] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Grapes harbour a plethora of non-conventional yeast species. Over the past two decades, several of the species have been extensively characterised and their contribution to wine quality is better understood. Beyond fermentation, some of the species have been investigated for their potential as alternative biological tools to reduce grape and wine spoilage. However, such studies remain limited to a few genera. This work aimed to evaluate the antagonistic activity of grape must-derived non-conventional yeasts against Botrytis cinerea and non-Botrytis bunch-rotting moulds and to further elucidate mechanisms conferring antifungal activity. A total of 31 yeast strains representing 21 species were screened on different agar media using a dual culture technique and liquid mixed cultures, respectively. Pichia kudriavzevii was the most potent with a minimum inhibitory concentration of 102 cells/mL against B. cinerea but it had a narrow activity spectrum. Twelve of the yeast strains displayed broad antagonistic activity, inhibiting three strains of B. cinerea (B05. 10, IWBT FF1 and IWBT FF2), a strain of Aspergillus niger and Alternaria alternata. Production of chitinases and glucanases in the presence of B. cinerea was a common feature in most of the antagonists. Volatile and non-volatile compounds produced by antagonistic yeast strains in the presence of B. cinerea were analysed and identified using gas and liquid chromatography mass spectrometry, respectively. The volatile compounds identified belonged mainly to higher alcohols, esters, organosulfur compounds and monoterpenes while the non-volatile compounds were cyclic peptides and diketopiperazine. To our knowledge, this is the first report to demonstrate inhibitory effect of the non-volatile compounds produced by various yeast species.
Collapse
Affiliation(s)
- Evelyn Maluleke
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Matieland, South Africa
| | - Neil Paul Jolly
- Post Harvest and Agro-Processing Technologies, ARC Infruitec-Nietvoorbij (The Fruit, Vine and Wine Institute of the Agricultural Research Council), Stellenbosch, South Africa
| | - Hugh George Patterton
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Matieland, South Africa
| | - Mathabatha Evodia Setati
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Matieland, South Africa
- *Correspondence: Mathabatha Evodia Setati,
| |
Collapse
|
22
|
Antifungal Activity and Plant Growth-Promoting Properties of Bacillus mojovensis B1302 against Rhizoctonia Cerealis. Microorganisms 2022; 10:microorganisms10081682. [PMID: 36014099 PMCID: PMC9413849 DOI: 10.3390/microorganisms10081682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/07/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Rhizoctonia cerealis is a worldwide soil-borne pathogenic fungus that significantly infects wheat and causes sharp eyespot in China. However, the biocontrol strains used for the control of Rhizoctonia cerealis are insufficient. In the present study, antagonistic strain B1302 from the rhizosphere of wheat were isolated and identified as Bacillus mojovensis based on their morphological, physiological, and biochemical characteristics, and their 16S rDNA sequence. Culture filtrate of strain B1302 had a broad antifungal spectrum. In order to improve the antifungal activity of B1302, response surface methodology (RSM) was used to optimize the culture conditions. The final medium composition and culture conditions were 13.2 g/L of wheat bran, 14.1 g/L of soybean meal, 224 r/min of rotation speed, 7.50 of initial pH, and 1.5 × 108 CFU/mL of inoculation amount at 35 °C for a culture duration of 72 h. B. mojavensis B1302 inhibited the hyphae growth of R.cerealis and produced hydrolytic enzymes (protease, chitinase, and glucanase), IAA, and had N-fixing potentiality and P-solubilisation capacity. It can also promote wheat seedling growth in potted plants. The disease incidence and index of wheat seedlings were consistent with the effect of commercial pesticides under treatment with culture filtrate. The biocontrol efficacy of culture filtrate was significant—up to 65.25%. An animal toxicological safety analysis suggested that culture filtrate was safe for use and could be developed into an effective microbial fungicide to control wheat sharp eyespot.
Collapse
|
23
|
Volatiles of antagonistic soil yeasts inhibit growth and aflatoxin production of Aspergillus flavus. Microbiol Res 2022; 263:127150. [DOI: 10.1016/j.micres.2022.127150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022]
|
24
|
Xu W, Yang Q, Yang F, Xie X, Goodwin PH, Deng X, Tian B, Yang L. Evaluation and Genome Analysis of Bacillus subtilis YB-04 as a Potential Biocontrol Agent Against Fusarium Wilt and Growth Promotion Agent of Cucumber. Front Microbiol 2022; 13:885430. [PMID: 35756052 PMCID: PMC9218633 DOI: 10.3389/fmicb.2022.885430] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Cucumber wilt caused by Fusarium oxysporum f.sp. cucumerinum (Foc) is a highly destructive disease that leads to reduced yield in cucumbers. In this study, strain YB-04 was isolated from wheat straw and identified as Bacillus subtilis. It displayed strong antagonistic activity against F. oxysporum f.sp. cucumerinum in dual culture and exhibited significant biocontrol of cucumber Fusarium wilt with a higher control effect than those of previously reported Bacillus strains and displayed pronounced growth promotion of cucumber seedlings. B. subtilis YB-04 could secrete extracellular protease, amylase, cellulose, and β-1,3-glucanase and be able to produce siderophores and indole acetic acid. Inoculation with B. subtilis YB-04 or Foc increased cucumber defense-related enzyme activities for PPO, SOD, CAT, PAL, and LOX. However, the greatest increase was with the combination of B. subtilis YB-04 and Foc. Sequencing the genome of B. subtilis YB-04 showed that it had genes for the biosynthesis of various secondary metabolites, carbohydrate-active enzymes, and assimilation of nitrogen, phosphorous, and potassium. B. subtilis YB-04 appears to be a promising biological control agent against the Fusarium wilt of cucumber and promotes cucumber growth by genomic, physiological, and phenotypic analysis.
Collapse
Affiliation(s)
- Wen Xu
- Henan International Joint Laboratory of Crop Protection, Henan Biopesticide Engineering Research Center, Institute of Plant Protection Research, Graduate T&R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qian Yang
- Henan International Joint Laboratory of Crop Protection, Henan Biopesticide Engineering Research Center, Institute of Plant Protection Research, Graduate T&R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Zhengzhou, China.,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Fan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xia Xie
- Henan International Joint Laboratory of Crop Protection, Henan Biopesticide Engineering Research Center, Institute of Plant Protection Research, Graduate T&R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Paul H Goodwin
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Xiaoxu Deng
- Henan International Joint Laboratory of Crop Protection, Henan Biopesticide Engineering Research Center, Institute of Plant Protection Research, Graduate T&R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Baoming Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lirong Yang
- Henan International Joint Laboratory of Crop Protection, Henan Biopesticide Engineering Research Center, Institute of Plant Protection Research, Graduate T&R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
25
|
Gomomo Z, Fanadzo M, Mewa-Ngongang M, Hoff J, Van der Rijst M, Okudoh V, Kriel J, du Plessis H. Control of Mould Spoilage on Apples Using Yeasts as Biological Control Agents. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/147913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Influence of Marine Yeast Debaryomyces hansenii on Antifungal and Physicochemical Properties of Chitosan-Based Films. J Fungi (Basel) 2022; 8:jof8040369. [PMID: 35448600 PMCID: PMC9029259 DOI: 10.3390/jof8040369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 01/28/2023] Open
Abstract
Chitosan-based film with and without antagonistic yeast was prepared and its effect against Penicillium italicum was evaluated. The biocompatibility of yeast cells in the developed films was assessed in terms of population dynamics. Furthermore, the impact on physicochemical properties of the prepared films with and without yeast cells incorporated were evaluated in terms of thickness, mechanical properties, color and opacity. Chitosan films with the antagonistic yeast entrapped exhibited strong antifungal activity by inhibiting the mycelial development (55%), germination (45%) and reducing the sporulation process (87%). Chitosan matrix at 0.5% and 1.0% was maintained over 9 days of cell viability. However, at 1.5% of chitosan the population dynamics was strongly affected. The addition of yeast cells only impacted color values such as a*, b*, chroma and hue angle when 1.0% of chitosan concentration was used. Conversely, luminosity was not affected in the presence of yeast cells as well as the opacity. Besides, the addition of antagonistic yeast improved the mechanical resistance of the films. The addition of D. hansenii in chitosan films improve their efficacy for controlling P. italicum, and besides showed desirable characteristics for future use as packaging for citrus products.
Collapse
|
27
|
Endophytic Fungi Isolated from Baccharis linearis and Echinopsis chiloensis with Antifungal Activity against Botrytis cinerea. J Fungi (Basel) 2022; 8:jof8020197. [PMID: 35205951 PMCID: PMC8878204 DOI: 10.3390/jof8020197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
Botrytis cinerea is one of the most important phytopathogens in agriculture worldwide, infecting economically important crops. The main control of this fungus is by synthetic fungicides, causing the selection of resistant isolates. Compounds produced by endophytic fungi have been shown to have antifungal activity against this pathogen and can be used as an alternative to synthetic fungicides. The aim of this work was to isolate endophytic fungi from Chilean foothills in the Metropolitan Region. Ten fungi were isolated from Echinopsis chiloensis and Baccharis linearis, however, only two isolates inhibited the mycelial growth of B. cinerea by antibiosis and were identified as Epicoccum sp. and Pleosporales sp. Extracts at 200 mg L−1 from Epicoccum sp. and Pleosporales sp. showed antifungal activity against B. cinerea of 54.6 and 44.6% respectively. Active compounds in the Epicoccum sp. extracts were mainly alkaloids and phenolic compounds; meanwhile, in the Pleosporales sp. extracts, terpenes and/or saponins were responsible for the antifungal activity.
Collapse
|
28
|
El-Mehy AA, El-Gendy HM, Aioub AA, Mahmoud SF, Abdel-Gawad S, Elesawy AE, Elnahal AS. Response of Faba bean to intercropping, biological and chemical control against broomrape and root rot diseases. Saudi J Biol Sci 2022; 29:3482-3493. [PMID: 35844392 PMCID: PMC9280308 DOI: 10.1016/j.sjbs.2022.02.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 02/20/2022] [Indexed: 11/18/2022] Open
Abstract
Multispecies cropping systems contribute to sustainable agriculture with multiple ecosystem services. Effects of intercropping of various crops with faba beans on growth and yield parameters and disease severity of root rot, damping off and broomrape were investigated. This study was implemented in the laboratory, greenhouse and field to investigate the effect of the intercropping systems (fenugreek + faba bean, lupine + faba bean, garlic + faba bean and sole faba bean). The intercropping systems were combined with the application of arbuscular mycorrhiza fungi (AMF) and yeast as bio-control agents, compared to chemical application of herbicides (Glyphosate) and fungicides (Rizolex-T50), to control rot root diseases and broomrape weeds, Orobanche spp., of faba bean plants in vivo and under the naturally infested field. In vitro, yeast and Rizolex-T50 significantly inhibited mycelial growth of root pathogenic fungi. Intercropping with garlic and/or application of Rizolex-T, significantly decreased the incidence and disease index of root rot and damping-off diseases, meanwhile increased percentage of survival plants. In vivo, intercropping with fenugreek and/or application of Glyphosate, significantly reduced the number/weight of spikes/plot of broomrapes. Intercropping with fenugreek combined with AMF application promoted crop growth and significantly increased yield components. The AMF enhanced seed yield/ha when applied to the intercropping of faba bean + fenugreek and faba bean + garlic, showing the highest seed yield/ha with 3.722 and 3.568 ton/ha, respectively. Intercropping of faba bean with garlic integrated with AMF revealed the highest values of LER, 2.45, and net return, 2341 US$/ha. Our results suggested that using faba bean–garlic intercrop along with AMF inoculation can reduce root rot disease, damping off and broomrapes, as well as enhance the profitability of Egyptian farmer and sustainable production.
Collapse
Affiliation(s)
- Amira A. El-Mehy
- Crop Intensification Res. Dep., Field Crops Res. Inst., Agricultural Research Center, Egypt
| | - Hala M. El-Gendy
- plant Pathology Research Institute, Agricultural Research Center, Egypt
| | - Ahmed A.A. Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Corresponding author.
| | - Samy F. Mahmoud
- Department of Biotechnology, College of Science,Taif University. P.O.Box 11099, Taif 21944. Saudi Arabia
| | - Shebl Abdel-Gawad
- Agriculture Microbiology Department Soil, Water and Environment institute Agriculture Research center, Giza, Egypt
| | - Ahmed E. Elesawy
- Department of Project Management and Sustainable Development - Arid Land Agriculture Research Institute - City of Scientific Research and Technological Applications, New Borg El-Arab, 21934 Alexandaria, Egypt
| | - Ahmed S.M. Elnahal
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
29
|
Hassan EA, Mostafa YS, Alamri S, Hashem M, Nafady NA. Biosafe Management of Botrytis Grey Mold of Strawberry Fruit by Novel Bioagents. PLANTS (BASEL, SWITZERLAND) 2021; 10:2737. [PMID: 34961208 PMCID: PMC8706406 DOI: 10.3390/plants10122737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 05/17/2023]
Abstract
Recently, there have been urgent economic and scientific demands to decrease the use of chemical fungicides during the treatment of phytopathogens, due to their human health and environmental impacts. This study explored the biocontrol efficacy of novel and eco-friendly preen (uropygial) oil and endophytic Bacillus safensis in managing postharvest Botrytis grey mold in strawberry fruit. The preen oil (25 μL/mL) showed high antifungal activity against B. cinerea Str5 in terms of the reduction in the fungal radial growth (41.3%) and the fungal colony-forming units (28.6%) compared to the control. A new strain of Bacillus safensis B3 had a good potential to produce chitinase enzymes (3.69 ± 0.31 U/mL), hydrolytic lipase (10.65 ± 0.51 U/mL), and protease enzymes (13.28 ± 0.65 U/mL), which are responsible for the hydrolysis of the B. cinerea Str5 cell wall and, consequently, restrict fungal growth. The in vivo experiment on strawberry fruit showed that preen (uropygial) oil reduced the disease severity by 87.25%, while the endophytic bacteria B. safensis B3 reduced it by 86.52%. This study reports the efficiency of individually applied bioagents in the control of phytopathogenic fungi for the first time and, consequently, encourages their application as a new and innovative strategy for prospective agricultural technology and food safety.
Collapse
Affiliation(s)
- Elhagag A. Hassan
- Botany Department, Faculty of Science, Assiut University, Assiut 71516, Egypt;
| | - Yasser S. Mostafa
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 10255, Abha 61321, Saudi Arabia; (Y.S.M.); (S.A.)
| | - Saad Alamri
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 10255, Abha 61321, Saudi Arabia; (Y.S.M.); (S.A.)
| | - Mohamed Hashem
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 10255, Abha 61321, Saudi Arabia; (Y.S.M.); (S.A.)
| | - Nivien A. Nafady
- Botany Department, Faculty of Science, Assiut University, Assiut 71516, Egypt;
| |
Collapse
|
30
|
Roca-Couso R, Flores-Félix JD, Rivas R. Mechanisms of Action of Microbial Biocontrol Agents against Botrytis cinerea. J Fungi (Basel) 2021; 7:1045. [PMID: 34947027 PMCID: PMC8707566 DOI: 10.3390/jof7121045] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 01/20/2023] Open
Abstract
Botrytis cinerea is a phytopathogenic fungus responsible for economic losses from USD 10 to 100 billion worldwide. It affects more than 1400 plant species, thus becoming one of the main threats to the agriculture systems. The application of fungicides has for years been an efficient way to control this disease. However, fungicides have negative environmental consequences that have changed popular opinion and clarified the need for more sustainable solutions. Biopesticides are products formulated based on microorganisms (bacteria or fungi) with antifungal activity through various mechanisms. This review gathers the most important mechanisms of antifungal activities and the microorganisms that possess them. Among the different modes of action, there are included the production of diffusible molecules, both antimicrobial molecules and siderophores; production of volatile organic compounds; production of hydrolytic enzymes; and other mechanisms, such as the competition and induction of systemic resistance, triggering an interaction at different levels and inhibition based on complex systems for the production of molecules and regulation of crop biology. Such a variety of mechanisms results in a powerful weapon against B. cinerea; some of them have been tested and are already used in the agricultural production with satisfactory results.
Collapse
Affiliation(s)
- Rocío Roca-Couso
- Department of Microbiology and Genetics, Edificio Departamental de Biología, University of Salamanca, 37007 Salamanca, Spain;
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
| | - José David Flores-Félix
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Raúl Rivas
- Department of Microbiology and Genetics, Edificio Departamental de Biología, University of Salamanca, 37007 Salamanca, Spain;
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
- Associated Unit, University of Salamanca-CSIC (IRNASA), 37008 Salamanca, Spain
| |
Collapse
|
31
|
Hernandez-Montiel LG, Droby S, Preciado-Rangel P, Rivas-García T, González-Estrada RR, Gutiérrez-Martínez P, Ávila-Quezada GD. A Sustainable Alternative for Postharvest Disease Management and Phytopathogens Biocontrol in Fruit: Antagonistic Yeasts. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122641. [PMID: 34961112 PMCID: PMC8708500 DOI: 10.3390/plants10122641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 05/06/2023]
Abstract
Postharvest diseases of fruits caused by phytopathogens cause losses up to 50% of global production. Phytopathogens control is performed with synthetic fungicides, but the application causes environmental contamination problems and human and animal health in addition to generating resistance. Yeasts are antagonist microorganisms that have been used in the last years as biocontrol agents and in sustainable postharvest disease management in fruits. Yeast application for biocontrol of phytopathogens has been an effective action worldwide. This review explores the sustainable use of yeasts in each continent, the main antagonistic mechanisms towards phytopathogens, their relationship with OMIC sciences, and patents at the world level that involve yeast-based-products for their biocontrol.
Collapse
Affiliation(s)
- Luis G. Hernandez-Montiel
- Centro de Investigaciones Biológicas del Noroeste, Calle Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, Mexico
- Correspondence: (L.G.H.-M.); (G.D.Á.-Q.)
| | - Samir Droby
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, Rishon LeZion 7505101, Israel;
| | - Pablo Preciado-Rangel
- Tecnológico Nacional de México, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro, Km 7.5, Ejido Ana, Torreón 27170, Mexico;
| | - Tomás Rivas-García
- Departamento de Sociología Rural, Universidad Autónoma Chapingo, Carr. Federal México-Texcoco, Km 38.5, San Diego 56230, Mexico;
| | - Ramsés R. González-Estrada
- Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Avenida Tecnológico 2595, Col. Lagos del Country, Tepic 63175, Mexico; (R.R.G.-E.); (P.G.-M.)
| | - Porfirio Gutiérrez-Martínez
- Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Avenida Tecnológico 2595, Col. Lagos del Country, Tepic 63175, Mexico; (R.R.G.-E.); (P.G.-M.)
| | - Graciela D. Ávila-Quezada
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Escorza 900, Col. Centro, Chihuahua 31000, Mexico
- Correspondence: (L.G.H.-M.); (G.D.Á.-Q.)
| |
Collapse
|
32
|
Drobek M, Cybulska J, Gałązka A, Feledyn-Szewczyk B, Marzec-Grządziel A, Sas-Paszt L, Gryta A, Trzciński P, Zdunek A, Frąc M. The Use of Interactions Between Microorganisms in Strawberry Cultivation ( Fragaria x ananassa Duch.). FRONTIERS IN PLANT SCIENCE 2021; 12:780099. [PMID: 34917112 PMCID: PMC8668414 DOI: 10.3389/fpls.2021.780099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
As the market indicates a growing interest in organically grown fruit, there is a need for biostimulants to counter the adverse effects of pathogenic fungi and fungal-like-pathogens. Four microbial pathogens (Botrytis cinerea, Verticillium sp., Phytophthora sp., and Colletotrichum sp.) which are the most often causes of strawberry diseases were selected. Five kinds of biostimulants (C1, C2, C3, C4, and C5) containing bacterial consortia were developed to combat the pathogens. The antagonistic effect of selected microorganisms against strawberry pathogens was observed. The effectiveness of various beneficial bacteria in combating fungal pathogens of cv. Honeoye strawberries was compared and the impact of their activity on fruit quality was assessed. The most significant effect on the strawberry firmness was found for the C2 consortium, which provided the strawberries infected with the pathogens group (MIX: B. cinerea, Verticillium sp., Phytophthora sp., and Colletotrichum sp.) with a 140% increase in maximum load in a puncture test compared to the positive control (C0). Strawberries contaminated with Phytophthora sp. after the application of Consortium C4 (C4) showed the largest increase (127%) in soluble solid content (SSC) when compared to the C0. Fruit contaminated with Colletotrichum sp. and B. cinerea after the application of C2 and Consortium 5 (C5), respectively, had the highest levels of anthocyanins and total phenolic content, when compared to C0. The largest increase, which reached as high as 25%, in D-galacturonic acid content was observed for the group of pathogens after Consortium 1 (C1) application. The extraction of strawberry pectin allowed for the study of the rheological properties of pectin solutions; on this basis, strawberry pectin from the control (NC) was distinguished as it showed the highest viscosity (0.137-0.415 Pas). Taking into account the individual effects of bacteria on strawberry pathogenic fungi and fungal-like-pathogens, it is possible to reduce the adverse effects of fungal disease and to improve the properties of strawberries by selecting the appropriate bacterial consortium. Interactions between microorganisms are often complex and not fully understood, which suggests the need for further research in this direction.
Collapse
Affiliation(s)
- Magdalena Drobek
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Anna Gałązka
- The Institute of Soil Science and Plant Cultivation (IUNG)–State Research Institute, Puławy, Poland
| | - Beata Feledyn-Szewczyk
- The Institute of Soil Science and Plant Cultivation (IUNG)–State Research Institute, Puławy, Poland
| | - Anna Marzec-Grządziel
- The Institute of Soil Science and Plant Cultivation (IUNG)–State Research Institute, Puławy, Poland
| | - Lidia Sas-Paszt
- National Institute of Horticultural Research, Skierniewice, Poland
| | - Agata Gryta
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Paweł Trzciński
- National Institute of Horticultural Research, Skierniewice, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| |
Collapse
|
33
|
Accoti A, Engdahl CS, Dimopoulos G. Discovery of Novel Entomopathogenic Fungi for Mosquito-Borne Disease Control. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:637234. [PMID: 37744144 PMCID: PMC10512396 DOI: 10.3389/ffunb.2021.637234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/28/2021] [Indexed: 09/26/2023]
Abstract
The increased application of chemical control programs has led to the emergence and spread of insecticide resistance in mosquitoes. Novel environmentally safe control strategies are currently needed for the control of disease vectors. The use of entomopathogenic fungi could be a suitable alternative to chemical insecticides. Currently, Beauveria spp. and Metarhizium spp. are the most widely used entomopathogenic fungi for mosquito control, but increasing the arsenal with additional fungi is necessary to mitigate the emergence of resistance. Entomopathogenic fungi are distributed in a wide range of habitats. We have performed a comprehensive screen for candidate mosquitocidal fungi from diverse outdoor environments in Maryland and Puerto Rico. An initial screening of 22 fungi involving exposure of adult Anopheles gambiae to 2-weeks-old fungal cultures identified five potent pathogenic fungi, one of which is unidentified and the remaining four belonging to the three genera Galactomyces sp., Isaria sp. and Mucor sp. These fungi were then screened against Aedes aegypti, revealing Isaria sp. as a potent mosquito killer. The entomopathogenic effects were confirmed through spore-dipping assays. We also probed further into the killing mechanisms of these fungi and investigated whether the mosquitocidal activities were the result of potential toxic fungus-produced metabolites. Preliminary assays involving the exposure of mosquitoes to sterile filtered fungal liquid cultures showed that Galactomyces sp., Isaria sp. and the unidentified isolate 1 were the strongest producers of factors showing lethality against An. gambiae. We have identified five fungi that was pathogenic for An. gambiae and one for Ae. aegypti, among these fungi, four of them (two strains of Galactomyces sp., Mucor sp., and the unidentified isolate 1) have never previously been described as lethal to insects. Further characterization of these entomopathogenic fungi and their metabolites needs to be done to confirm their potential use in biologic control against mosquitoes.
Collapse
Affiliation(s)
| | | | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
34
|
Isolation and Characterization of Lactic Acid Bacteria and Yeasts from Typical Bulgarian Sourdoughs. Microorganisms 2021; 9:microorganisms9071346. [PMID: 34206198 PMCID: PMC8306846 DOI: 10.3390/microorganisms9071346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022] Open
Abstract
Traditional sourdoughs in Bulgaria were almost extinct during the centralized food production system. However, a rapidly developing trend of sourdough revival in the country is setting the demand for increased production and use of commercial starter cultures. The selection of strains for such cultures is based on geographical specificity and beneficial technological properties. In this connection, the aim of this study was to isolate, identify and characterize lactic acid bacteria (LAB) and yeasts from typical Bulgarian sourdoughs for the selection of strains for commercial sourdough starter cultures. Twelve samples of typical Bulgarian sourdoughs were collected from different geographical locations. All samples were analyzed for pH, total titratable acidity and dry matter content. Enumeration of LAB and yeast was also carried out. Molecular identification by 16S rDNA sequence analysis was performed for 167 LAB isolates, and 106 yeast strains were identified by ITS1-5.8S-ITS2 rRNA gene partial sequence analysis. The LAB strains were characterized according to their amylolytic and proteolytic activity and acidification capacity, and 11 strains were selected for further testing of their antimicrobial properties. The strains with the most pronounced antibacterial and antifungal activity are listed as recommended candidates for the development of starter cultures for sourdoughs or other food products.
Collapse
|
35
|
|
36
|
Biological Control of Phytopathogenic Fungi by Kluyveromyces marxianus and Torulaspora delbrueckii Isolated from Iraqi Date Vinegar. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeasts are distributed in all environments and have been reported as potential biocontrol agents against various phytopathogenic fungi. To investigate their enzymatic and biological activities, 32 yeasts were isolated from 15 date vinegar samples. Evaluation of the antagonistic activities of isolated yeasts against the plant pathogens Fusarium oxysporium, Sclerotinia sclerotiorum, and Macrophomina phaseolina indicated that there are two yeasts had the highest inhibitory effect against plant pathogens, these yeasts identified as Kluyveromyces marxianus and Torulaspora delbrueckii using traditional and molecular methods. These yeast isolates were tested for fungal cell wall degrading enzymes (in vitro), and results indicated that the yeasts had strong protease and amylase enzyme activity and moderate chitinase and cellulase enzyme activity. The antagonistic activities of each yeast were evaluated using a dual culture technique. The results showed that K. marxianus inhibited the mycelial growth of F. oxysporium, S. sclerotiorum, and M. phaseolina by 70.5, 57.5, and 75.5%, respectively, whereas T. delbrueckii inhibited mycelial growth of F. oxysporum, S. sclerotiorum, and M. phaseolina by 55.3%, 66.2%, and 31.11%, respectively. The biofilm production assay indicated that the tested yeast could form biofilms as a mechanism of antagonistic activity against phytopathogenic fungi.
Collapse
|
37
|
From the vineyard to the cellar: new insights of Starmerella bacillaris (synonym Candida zemplinina) technological properties and genomic perspective. Appl Microbiol Biotechnol 2021; 105:493-501. [PMID: 33394145 DOI: 10.1007/s00253-020-11041-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
A large diversity of yeasts can be involved in alcoholic fermentation; however, Starmerella bacillaris strains have gained great attention due to their relevant and particular characteristics. S. bacillaris is commonly known as an osmotolerant, acidogenic, psychrotolerant, and fructophilic yeast. Most strains of this species are high producers of glycerol and show low ethanol production rates, being highlighted as promising alternatives to the manufacture of low-alcohol beverages. The increased production of high alcohols, such as benzyl alcohol that has antifungal and antibacterial properties, highlights S. bacillaris potential as a biocontrol agent. After harvest, antifungal yeasts become part of the must microbiota and may also improve the fermentation process. Moreover, during the fermentation, S. bacillaris releases important molecules with biotechnological properties, such as mannoproteins and glutathione. Considering the potential biotechnological properties of S. bacillaris strains, this review presents an overview of recent trends concerning the application of S. bacillaris in fermented beverages. KEY POINTS: •S. bacillaris as an alternative to the production of low-alcohol beverages. •S. bacillaris strains present biocontrol potential. •Molecules released by S. bacillaris may be of great biotechnological interest.
Collapse
|
38
|
Extremophilic Fungi and Their Role in Control of Pathogenic Microbes. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Strawberry FaWRKY25 Transcription Factor Negatively Regulated the Resistance of Strawberry Fruits to Botrytis cinerea. Genes (Basel) 2020; 12:genes12010056. [PMID: 33396436 PMCID: PMC7824073 DOI: 10.3390/genes12010056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/12/2020] [Accepted: 12/29/2020] [Indexed: 01/01/2023] Open
Abstract
WRKY genes and jasmonic acid (JA) play a crucial role in plants’ responses against biotic and abiotic stress. However, the regulating mechanism of WRKY genes on strawberry fruits’ resistance against Botrytis cinerea is largely unknown, and few studies have been performed on their effect on the JA-mediated defense mechanism against B. cinerea. This study explored the effect of FaWRKY25 on the JA-mediated strawberry resistance against B. cinerea. Results showed that the JA content decreased significantly as the fruits matured, whereas the FaWRKY25 expression rose substantially, which led to heightened susceptibility to B. cinerea and in strawberries. External JA treatment significantly increased the JA content in strawberries and reduced the FaWRKY25 expression, thereby enhancing the fruits’ resistance against B. cinerea. FaWRKY25 overexpression significantly lowered the fruits’ resistance against B. cinerea, whereas FaWRKY25 silencing significantly increased resistance. Moreover, FaWRKY25 overexpression significantly lowered the JA content, whereas FaWRKY25 silencing significantly increased it. FaWRKY25 expression level substantially affects the expression levels of genes related to JA biosynthesis and metabolism, other members of the WRKY family, and defense genes. Accordingly, FaWRKY25 plays a crucial role in regulating strawberries’ resistance against B. cinerea and may negatively regulate their JA-mediated resistance mechanism against B. cinerea.
Collapse
|
40
|
Cai ST, Chiu MC, Chou JY. Broad-Spectrum Activity of Volatile Organic Compounds from Three Yeast-like Fungi of the Galactomyces Genus Against Diverse Plant Pathogens. MYCOBIOLOGY 2020; 49:69-77. [PMID: 33536814 PMCID: PMC7832507 DOI: 10.1080/12298093.2020.1857042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The application of antagonistic fungi for plant protection has attracted considerable interest because they may potentially replace the use of chemical pesticides. Antipathogenic activities confirmed in volatile organic compounds (VOCs) from microorganisms have potential to serve as biocontrol agents against pre- and post-harvest diseases. In the present study, we investigated Galactomyces fungi isolated from rotten leaves and the rhizosphere of cherry tomato (Lycopersicon esculentum var. cerasiforme). VOCs produced by Galactomyces fungi negatively affected the growth of phytopathogenic fungi and the survival of nematodes. Mycelial growths of all nine examined phytopathogenic fungi were inhibited on agar plate, although the inhibition was more intense in Athelia rolfsii JYC2163 and Cladosporium cladosporioides JYC2144 and relatively moderate in Fusarium sp. JYC2145. VOCs also efficiently suppressed the spore germination and mycelial growth of A. rolfsii JYC2163 on tomatoes. The soil nematode Caenorhabditis elegans exhibited higher mortality in 24 h in the presence of VOCs. These results suggest the broad-spectrum activity of Galactomyces fungi against various plant pathogens and the potential to use VOCs from Galactomyces as biocontrol agents.
Collapse
Affiliation(s)
- Shu-Ting Cai
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Ming-Chung Chiu
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
41
|
Gil-Rodríguez AM, Garcia-Gutierrez E. Antimicrobial mechanisms and applications of yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2020; 114:37-72. [PMID: 33934852 DOI: 10.1016/bs.aambs.2020.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Yeasts and humans have had a close relationship for millenia. Yeast have been used for food production since the first human societies. Since then, alternative uses have been discovered. Nowadays, antibiotic resistance constitutes a pressing need worldwide. In order to overcome this threat, one of the most important strategies is the search for new antimicrobials in natural sources. Moreover, biopreservation based on natural sources has emerged as an alternative to more common chemical preservatives. Yeasts constitute an underexploited source of antagonistic activity against other microorganisms. Here, we compile a summary of the antagonistic activity of yeast origin against other yeast and other microorganisms, such as bacteria or parasites. We present the mechanisms of action used by yeasts to display these activities. We also provide applications of these antagonistic activities in food industry and agriculture, medicine and veterinary, where yeast promise to play a pivotal role in the near future.
Collapse
|
42
|
Di Francesco A, Zajc J, Gunde-Cimerman N, Aprea E, Gasperi F, Placì N, Caruso F, Baraldi E. Bioactivity of volatile organic compounds by Aureobasidium species against gray mold of tomato and table grape. World J Microbiol Biotechnol 2020; 36:171. [PMID: 33067644 PMCID: PMC7567711 DOI: 10.1007/s11274-020-02947-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/08/2020] [Indexed: 11/24/2022]
Abstract
Aureobasidium strains isolated from diverse unconventional environments belonging to the species A. pullulans, A. melanogenum, and A. subglaciale were evaluated for Volatile Organic Compounds (VOCs) production as a part of their modes of action against Botrytis cinerea of tomato and table grape. By in vitro assay, VOCs generated by the antagonists belonging to the species A. subglaciale showed the highest inhibition percentage of the pathogen mycelial growth (65.4%). In vivo tests were conducted with tomatoes and grapes artificially inoculated with B. cinerea conidial suspension, and exposed to VOCs emitted by the most efficient antagonists of each species (AP1, AM10, AS14) showing that VOCs of AP1 (A. pullulans) reduced the incidence by 67%, partially confirmed by the in vitro results. Conversely, on table grape, VOCs produced by all the strains did not control the fungal incidence but were only reducing the infection severity (< 44.4% by A. pullulans; < 30.5% by A. melanogenum, and A. subglaciale). Solid-phase microextraction (SPME) and subsequent gas chromatography coupled to mass spectrometry identified ethanol, 3-methyl-1-butanol, 2-methyl-1-propanol as the most produced VOCs. However, there were differences in the amounts of produced VOCs as well as in their repertoire. The EC50 values of VOCs for reduction of mycelial growth of B. cinerea uncovered 3-methyl-1-butanol as the most effective compound. The study demonstrated that the production and the efficacy of VOCs by Aureobasidium could be directly related to the specific species and pathosystem and uncovers new possibilities for searching more efficient VOCs producing strains in unconventional habitats other than plants.
Collapse
Affiliation(s)
- A Di Francesco
- CRIOF-Department of Agricultural Sciences, University of Bologna, Via Gandolfi, 19, 40057, Cadriano, Bologna, Italy.
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 42, 40127, Bologna, Italy.
| | - J Zajc
- Plant Protection Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000, Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - N Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - E Aprea
- Center Agriculture Food Environment, University of Trento/Fondazione Edmund Mach, 38010, San Michele all'Adige, TN, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010, San Michele all' Adige, Trento, Italy
| | - F Gasperi
- Center Agriculture Food Environment, University of Trento/Fondazione Edmund Mach, 38010, San Michele all'Adige, TN, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010, San Michele all' Adige, Trento, Italy
| | - N Placì
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 42, 40127, Bologna, Italy
| | - F Caruso
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 42, 40127, Bologna, Italy
| | - E Baraldi
- CRIOF-Department of Agricultural Sciences, University of Bologna, Via Gandolfi, 19, 40057, Cadriano, Bologna, Italy
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 42, 40127, Bologna, Italy
| |
Collapse
|
43
|
A review of recent trends in the development of the microbial safety of fruits and vegetables. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Vidal A, Parada R, Mendoza L, Cotoras M. Endophytic Fungi Isolated from Plants Growing in Central Andean Precordillera of Chile with Antifungal Activity against Botrytis cinerea. J Fungi (Basel) 2020; 6:jof6030149. [PMID: 32858807 PMCID: PMC7560031 DOI: 10.3390/jof6030149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/26/2022] Open
Abstract
Botrytis cinerea is an important phytopathogenic fungus affecting the fruit production around the world. This fungus is controlled mainly by using synthetic fungicides, but many resistant isolates have been selected by the indiscriminate use of fungicides. Endophytic fungi or secondary metabolites obtained from them become an alternative method of control for this fungus. The aim of this work was to identify endophytic fungi with antifungal activity against the plant pathogenic fungus B. cinerea isolated from plants from Central Andean Precordillera of Chile. Three endophytic fungi (Ac1, Lc1 and Ec1) with antifungal activity against B. cinerea were isolated from native and endemic plants growing in Central Andean Precordillera of Chile. The isolates Lc1 (isolated from Lithraea caustica) and Ac1 (isolated from Acacia caven) were identified as Alternaria spp. and the isolate Ec1 (isolated from Echinopsis chiloensis) was identified as Aureobasidium spp. The isolated endophytic fungi would inhibit B. cinerea through the secretion of diffusible and volatile compounds affecting the mycelial growth, conidia germination and interestingly, it was also shown that the volatile compounds produced by the three isolated endophytic fungi suppressed the sporulation of B. cinerea.
Collapse
Affiliation(s)
| | | | - Leonora Mendoza
- Correspondence: (L.M.); (M.C.); Tel.: +56-2718-1062 (L.M.); +56-2718-1094 (M.C.)
| | - Milena Cotoras
- Correspondence: (L.M.); (M.C.); Tel.: +56-2718-1062 (L.M.); +56-2718-1094 (M.C.)
| |
Collapse
|
45
|
Alasmar R, Ul-Hassan Z, Zeidan R, Al-Thani R, Al-Shamary N, Alnaimi H, Migheli Q, Jaoua S. Isolation of a Novel Kluyveromyces marxianus Strain QKM-4 and Evidence of Its Volatilome Production and Binding Potentialities in the Biocontrol of Toxigenic Fungi and Their Mycotoxins. ACS OMEGA 2020; 5:17637-17645. [PMID: 32715249 PMCID: PMC7377640 DOI: 10.1021/acsomega.0c02124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
To overcome the economic losses associated with fungi and their toxic metabolites, environmentally safe and efficient approaches are needed. To this end, biological control using yeasts and safe bacterial strains and their products are being explored to replace synthetic fungicides. In the present study, the biocontrol effect of a yeast strain of Kluyveromyces marxianus, QKM-4, against the growth and mycotoxin synthesis potential of key toxigenic fungi was evaluated. In vitro assays were performed to find the application of yeast volatile organic compounds (VOCs) against fungal contamination on important agricultural commodities. The removal of ochratoxin A (OTA) and deoxynivalenol (DON) by living and heat-inactivated yeast cells was also explored. VOCs produced by strain QKM-4 were able to significantly limit the fungal growth of 17 fungal species belonging to genera Aspergillus, Penicillium, and Fusarium. Yeast VOCs were able to reduce OTA biosynthesis potential of Penicillium verrucosum and Aspergillus carbonarius by 99.6 and 98.7%, respectively. In vivo application of QKM-4 VOCs against Fusarium oxysporum and A. carbonarius infection on tomatoes and grapes, respectively, determined a complete inhibition of fungal spore germination. GC/MS-based analysis of yeast VOCs identified long-chain alkanes, including nonadecane, eicosane, docosane, heptacosane, hexatriacontane, and tetracosane. In vitro testing of the mycotoxin-binding potential of the living and heat-inactivated QKM-4 cells showed a reduction of OTA and DON up to 58 and 49%, respectively, from artificially contaminated buffers. Our findings clearly demonstrate the strong antifungal potential of K. marxianus QKM-4 and propose this strain as a strong candidate for application in agriculture to safeguard food and feed products.
Collapse
Affiliation(s)
- Reem Alasmar
- Department
of Biological and Environmental Sciences, College of Arts
and Science and Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zahoor Ul-Hassan
- Department
of Biological and Environmental Sciences, College of Arts
and Science and Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Randa Zeidan
- Department
of Biological and Environmental Sciences, College of Arts
and Science and Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roda Al-Thani
- Department
of Biological and Environmental Sciences, College of Arts
and Science and Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Noora Al-Shamary
- Department
of Biological and Environmental Sciences, College of Arts
and Science and Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Hajer Alnaimi
- Department
of Biological and Environmental Sciences, College of Arts
and Science and Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Quirico Migheli
- Dipartimento
di Agraria, Università degli Studi
di Sassari, Viale Italia 39, I-07100 Sassari, Italy
| | - Samir Jaoua
- Department
of Biological and Environmental Sciences, College of Arts
and Science and Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
46
|
Ruiz-Moyano S, Hernández A, Galvan AI, Córdoba MG, Casquete R, Serradilla MJ, Martín A. Selection and application of antifungal VOCs-producing yeasts as biocontrol agents of grey mould in fruits. Food Microbiol 2020; 92:103556. [PMID: 32950150 DOI: 10.1016/j.fm.2020.103556] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 05/16/2020] [Accepted: 06/01/2020] [Indexed: 12/28/2022]
Abstract
Rotting caused by grey mould (Botrytis cinerea) is a concerning disease for numerous crops both pre- and postharvest stages. Application of antagonistic yeasts is a promising strategy for controlling grey mould incidence which could mitigate undesirable consequences of using synthetic fungicides. In this work, a screening for detection of yeasts isolated from figs producers of antifungal volatile organic compounds (VOCs) were performed by confrontation in double dishes systems. Eleven out of 34 yeasts confronted reduced B. cinerea growth parameter in vitro. This reduction was correlated (p ≤ 0.050) with the production of 10 volatile compounds: two acids (acetic acid and octanoic acid), 7 esters (Ethyl propionate, n-Propyl acetate, Isobutyl acetate, 2-methylbutyl acetate, furfuryl acetate, phenylmethyl acetate, 2-phenylethyl acetate) and one ketone (Heptan-2-one). In bases on in vitro assay, Hanseniaspora uvarum 793 was applied to in vivo assays with strawberries and cherries. The reduction of incidence of B. cinerea in strawberries at 7 °C and 25 °C was 54.9 and 72.1% after 6 and 3 days, respectively. The reduction of incidence of B. cinerea in cherries at 7 °C and 25 °C was 48.9 and 45.6% after 5 and 4 days, respectively. These results showed that VOCs produced by Hanseniaspora uvarum 793 are effective in the control of incidence of Botrytis cinerea in fruits, being a potential alternative to chemical fungicide.
Collapse
Affiliation(s)
- Santiago Ruiz-Moyano
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007, Badajoz, Spain
| | - Alejandro Hernández
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007, Badajoz, Spain.
| | - Ana I Galvan
- Área de Hortofruticultura, Centro de Investigaciones Finca La Orden-Valdesequera (CICYTEX), Autovía Madrid-Lisboa, s/n, 060187, Guadajira, Spain
| | - María G Córdoba
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007, Badajoz, Spain
| | - Rocio Casquete
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007, Badajoz, Spain
| | - Manuel J Serradilla
- Área de Vegetales, Instituto Tecnológico Agroalimentario de Extremadura (INTAEX), Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Avenida Adolfo Suárez s/n, 06007, Badajoz, Spain
| | - Alberto Martín
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007, Badajoz, Spain
| |
Collapse
|
47
|
Yalage Don SM, Schmidtke LM, Gambetta JM, Steel CC. Aureobasidium pullulans volatilome identified by a novel, quantitative approach employing SPME-GC-MS, suppressed Botrytis cinerea and Alternaria alternata in vitro. Sci Rep 2020; 10:4498. [PMID: 32161291 PMCID: PMC7066187 DOI: 10.1038/s41598-020-61471-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
Volatile organic compounds (VOCs) produced by Aureobasidium pullulans were investigated for antagonistic actions against Alternaria alternata and Botrytis cinerea. Conidia germination and colony growth of these two phytopathogens were suppressed by A. pullulans VOCs. A novel experimental setup was devised to directly extract VOCs using solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) from antagonist-pathogen culture headspace. The proposed system is a robust method to quantify microbial VOCs using an internal standard. Multivariate curve resolution-alternating least squares deconvolution of SPME-GC-MS spectra identified fourteen A. pullulans VOCs. 3-Methyl-1-hexanol, acetone, 2-heptanone, ethyl butyrate, 3-methylbutyl acetate and 2-methylpropyl acetate were newly identified in A. pullulans headspace. Partial least squares discriminant analysis models with variable importance in projection and selectivity ratio identified four VOCs (ethanol, 2-methyl-1-propanol, 3-methyl-1-butanol and 2-phenylethanol), with high explanatory power for discrimination between A. pullulans and pathogen. The antifungal activity and synergistic interactions of the four VOCs were evaluated using a Box-Behnken design with response surface modelling. Ethanol and 2-phenylethanol are the key inhibitory A. pullulans VOCs against both B. cinerea and A. alternata. Our findings introduce a novel, robust, quantitative approach for microbial VOCs analyses and give insights into the potential use of A. pullulans VOCs to control B. cinerea and A. alternata.
Collapse
Affiliation(s)
- S M Yalage Don
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales, 2678, Australia.
| | - L M Schmidtke
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales, 2678, Australia
| | - J M Gambetta
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales, 2678, Australia
| | - C C Steel
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales, 2678, Australia
| |
Collapse
|
48
|
Sui Y, Wisniewski M, Droby S, Piombo E, Wu X, Yue J. Genome Sequence, Assembly, and Characterization of the Antagonistic Yeast Candida oleophila Used as a Biocontrol Agent Against Post-harvest Diseases. Front Microbiol 2020; 11:295. [PMID: 32158440 PMCID: PMC7052047 DOI: 10.3389/fmicb.2020.00295] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/10/2020] [Indexed: 11/29/2022] Open
Abstract
Candida oleophila is an effective biocontrol agent used to control post-harvest diseases of fruits and vegetables. C. oleophila I-182 was the active agent used in the first-generation yeast-based commercial product, Aspire®, for post-harvest disease management. Several action modes, like competition for nutrients and space, induction of pathogenesis-related genes in host tissues, and production of extracellular lytic enzymes, have been demonstrated for the biological control activity exhibited by C. oleophila through which it inhibits post-harvest pathogens. In the present study, the whole genome of C. oleophila I-182 was sequenced using PacBio and Illumina shotgun sequencing technologies, yielding an estimated genome size of 14.73 Mb. The genome size is similar in length to that of the model yeast strain Saccharomyces cerevisiae S288c. Based on the assembled genome, protein-coding sequences were identified and annotated. The predicted genes were further assigned with gene ontology terms and clustered in special functional groups. A comparative analysis of C. oleophila proteome with the proteomes of 11 representative yeasts revealed 2 unique and 124 expanded families of proteins in C. oleophila. Availability of the genome sequence will facilitate a better understanding the properties of biocontrol yeasts at the molecular level.
Collapse
Affiliation(s)
- Yuan Sui
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Forestry and Life Science, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Michael Wisniewski
- U.S. Department of Agriculture-Agricultural Research Service, Kearneysville, WV, United States
| | - Samir Droby
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Bet Dagan, Israel
| | - Edoardo Piombo
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Turin, Italy
| | - Xuehong Wu
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Junyang Yue
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
49
|
Tilocca B, Cao A, Migheli Q. Scent of a Killer: Microbial Volatilome and Its Role in the Biological Control of Plant Pathogens. Front Microbiol 2020; 11:41. [PMID: 32117096 PMCID: PMC7018762 DOI: 10.3389/fmicb.2020.00041] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/09/2020] [Indexed: 11/29/2022] Open
Abstract
The use of synthetic fungicides represents the most common strategy to control plant pathogens. Excessive and/or long-term distribution of chemicals is responsible for increased levels of environmental pollution, as well as adverse health consequence to humans and animals. These issues are deeply influencing public perception, as reflected by the increasing demand for safer and eco-friendly agricultural commodities and their by-products. A steadily increasing number of research efforts is now devoted to explore the use of safer and innovative approaches to control plant pathogens. The use of microorganisms as biological control agents (BCAs) represents one of the most durable and promising strategies. Among the panoply of microbial mechanisms exerted by BCAs, the production of volatile organic compounds (VOCs) represents an intriguing issue, mostly exploitable in circumstances where a direct contact between the pathogen and its antagonist is not practicable. VOCs are potentially produced by all living microorganisms, and may be active in the biocontrol of phytopathogenic oomycetes, fungi, and bacteria by means of antimicrobial activity and/or other cross-talk interactions. Their biological effects, the reduced residuals in the environment and on agricultural commodities, and the ease of application in different agricultural systems make the use of VOCs a promising and sustainable approach to replace synthetic fungicides in the control of plant pathogens. In this review, we focus on VOCs produced by bacteria and fungi and on their role in the cross-talk existing between the plant pathogens and their host. Biologic systemic effect of the microbial volatile blends on both pathogen and host plant cells is also briefly reviewed.
Collapse
Affiliation(s)
- Bruno Tilocca
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- Dipartimento di Agraria and NRD-Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Sassari, Italy
| | - Aocheng Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Quirico Migheli
- Dipartimento di Agraria and NRD-Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Sassari, Italy
| |
Collapse
|