1
|
Kılıç H, Hasanova N, Topaloğlu MS, Şahin E, Sağlam N, Alemdar NT, Menteşe A. A case-control study on the role of carbonic anhydrase autoantibodies in the pathogenesis and diagnosis of fibromyalgia. Sci Rep 2025; 15:13158. [PMID: 40240416 PMCID: PMC12003864 DOI: 10.1038/s41598-025-96677-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
To investigate the levels and diagnostic significance of carbonic anhydrase I (CAI) and II (CAII) autoantibodies and oxidative stress status in fibromyalgia syndrome (FMS) patients. A total of 59 FMS patients and 53 healthy controls were included. CAI and CAII autoantibody levels were measured using a manual ELISA protocol. Serum malondialdehyde (MDA), serum total oxidant status (TOS), serum total antioxidant status (TAS), and oxidative stress index (OSI) were also analyzed. The mean CAI and CAII autoantibody levels were significantly higher in the FMS group compared to the control group (p < 0.000 and p < 0.003, respectively). FMS patients had significantly higher MDA, TOS and OSI levels(p < 0.000 for all comparisons), and lower TAS levels compared to controls but no significant differences (p > 0,705). Elevated CAI and CAII autoantibodies and altered oxidative stress markers in FMS patients suggest autoimmune processes and oxidative stress involvement in the pathogenesis of FMS, providing new insights into potential diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Hülya Kılıç
- Department of Medical Biochemistry, Medicine Faculty of Recep Tayyip Erdoğan University, Rize, 53020, Turkey.
| | - Narmin Hasanova
- Department of Medical Biochemistry, Medicine Faculty of Recep Tayyip Erdoğan University, Rize, 53020, Turkey
| | - Mehmet Serhat Topaloğlu
- Department of Physical Medicine and Rehabilitation, Medicine Faculty of Recep Tayyip Erdoğan University, Rize, 53020, Turkey
| | - Elif Şahin
- Department of Medical biochemistry, Medicine Faculty of Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Neslihan Sağlam
- Department of Medical biochemistry, Medicine Faculty of Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Nihal Türkmen Alemdar
- Vocational School of Health Services, Department of Medical Services, Techniques of Recep Tayyip Erdoğan University, Rize, 53020, Turkey
| | - Ahmet Menteşe
- Department of Medical biochemistry, Medicine Faculty of Karadeniz Technical University, Trabzon, 61080, Turkey
| |
Collapse
|
2
|
Menendez GB, Giovannuzzi S, Bonardi A, Nocentini A, Gratteri P, Supuran CT. Exploration of Aromatic Hydrazides as Inhibitors of Human Carbonic Anhydrases. Arch Pharm (Weinheim) 2025; 358:e202400963. [PMID: 40165649 PMCID: PMC11959329 DOI: 10.1002/ardp.202400963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
A large set of hydrazide-based derivatives were explored as inhibitors of the human (h) carbonic anhydrase (CA) isoforms I, II, IV, IX, and XII. A wide series of compounds were synthesized and then assessed for their CA inhibitory activity using a CO2 hydrase stopped-flow assay. Generally, these inhibitors demonstrated micromolar activity against the evaluated hCAs. Specifically, some derivatives bearing a ureido-linker exhibited the highest inhibitory potency, showing inhibition constants (KIs) in the low-micromolar range against hCAs IV, XI, and XII. Moreover, two of them were detected as submicromolar inhibitors of isoform IV (KIs: 0.8-0.96 µM). Molecular modeling was carried out to investigate the binding mode of the most selective and potent compounds and reinforce the experimental results. The latter suggests that hydrazide compounds act as zinc binders, being bidentate ligands, and can be developed as an alternative to classic CA inhibitors.
Collapse
Affiliation(s)
- German Benito Menendez
- NEUROFARBA Department, Pharmaceutical and Nutraceutical SectionUniversity of FlorenceFlorenceItaly
| | - Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical SectionUniversity of FlorenceFlorenceItaly
| | - Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical SectionUniversity of FlorenceFlorenceItaly
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSARUniversity of FlorenceFlorenceItaly
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical SectionUniversity of FlorenceFlorenceItaly
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSARUniversity of FlorenceFlorenceItaly
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical SectionUniversity of FlorenceFlorenceItaly
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSARUniversity of FlorenceFlorenceItaly
| | - Claudiu T. Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical SectionUniversity of FlorenceFlorenceItaly
| |
Collapse
|
3
|
Supuran CT. Multi- and polypharmacology of carbonic anhydrase inhibitors. Pharmacol Rev 2025; 77:100004. [PMID: 39952696 DOI: 10.1124/pharmrev.124.001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Eight genetically distinct families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) have been described in organisms overall in the phylogenetic tree. They catalyze the hydration of CO2 to bicarbonate and protons and are involved in pH regulation, chemosensing, and metabolism. The 15 α-CA isoforms present in humans are pharmacological drug targets known for decades, their inhibitors being used as diuretics, antiglaucoma, antiepileptic, or antiobesity drugs, as well as for the management of acute mountain sickness, idiopathic intracranial hypertension, and recently, as antitumor theragnostic agents. Other potential applications include the use of CA inhibitors (CAIs) in inflammatory conditions, cerebral ischemia, neuropathic pain, or Alzheimer/Parkinson disease management. CAs from pathogenic bacteria, fungi, protozoans, and nematodes have started to be considered as drug targets in recent years, with notable advances being registered. CAIs have a complex multipharmacology probably unique to this enzyme, which has been exploited intensely but may lead to other relevant applications in the future due to the emergence of drug design approaches that afforded highly isoform-selective compounds for most α-CAs known to date. They belong to a multitude of chemical classes (sulfonamides and isosteres, [iso]coumarins and related compounds, mono- and dithiocarbamates, selenols, ninhydrines, boronic acids, benzoxaboroles, etc). The polypharmacology of CAIs will also be discussed because drugs originally discovered for the treatment of non-CA related conditions (topiramate, zonisamide, celecoxib, pazopanib, thiazide, and high-ceiling diuretics) show effective inhibition against many CAs, which led to their repurposing for diverse pharmacological applications. SIGNIFICANCE STATEMENT: CAIs have multiple pharmacologic applications, such as diuretics, antiglaucoma, antiepileptic, antiobesity, antiacute mountain sickness, anti-idiopathic intracranial hypertension, and antitumor drugs. Their use in inflammatory conditions, cerebral ischemia, neuropathic pain, or neurodegenerations has started to be investigated recently. Parasite carbonic anhydrases are also drug targets for anti-infectives with novel mechanisms of action that can bypass drug resistance to commonly used agents. Drugs discovered for the management of other conditions that effectively inhibit these enzymes exert interesting polypharmacologic effects.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
4
|
Paciotti R, Carradori S, Angeli A, D'Agostino I, Ferraroni M, Coletti C, Supuran CT. Unprecedented carbonic anhydrase inhibition mechanism: Targeting histidine 64 side chain through a halogen bond. Arch Pharm (Weinheim) 2025; 358:e2400776. [PMID: 39763011 PMCID: PMC11704030 DOI: 10.1002/ardp.202400776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/13/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
2,2'-Thio-bis(4,6-dichlorophenol), namely bithionol, is a small molecule endowed with a multifaceted bioactivity. Its peculiar polychlorinated phenolic structure makes it a suitable candidate to explore its potentialities in establishing interaction patterns with enzymes of MedChem interest, such as the human carbonic anhydrase (hCA) metalloenzymes. Herein, bithionol was tested on a panel of specific hCAs through the stopped-flow technique, showing a promising micromolar inhibitory activity for the hCA II isoform. X-ray crystallographic studies revealed an unprecedented halogen-bond interaction between one chlorine of bithionol and the N3(ε) atom of the hCA II catalytically active histidine residue, His64. Then, quantum mechanics calculations based on the fragment molecular orbital method allowed us to estimate the strength of this bond (~2.9 kcal/mol) and highlighted the contribution of a rich hydrophobic interaction network within the isoenzyme. Interestingly, the compound inactivity against the hCA III isoform, characterized by His64Lys and Leu198Phe mutations, supported the key role played by halogen bonding in the enzyme affinity. This finding might pave the way for the development of a new class of hCA inhibitors characterized by such chemical features, with the halogen bond being a key ligand-receptor interaction.
Collapse
Affiliation(s)
- Roberto Paciotti
- Department of Pharmacy“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Simone Carradori
- Department of Pharmacy“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Andrea Angeli
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA)University of FlorenceSesto FiorentinoFirenzeItaly
| | | | - Marta Ferraroni
- Department of Chemistry “Ugo Schiff”University of FlorenceSesto FiorentinoFlorenceItaly
| | - Cecilia Coletti
- Department of Pharmacy“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Claudiu T. Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA)University of FlorenceSesto FiorentinoFirenzeItaly
| |
Collapse
|
5
|
Poggetti V, Angeloni E, Germelli L, Natale B, Waqas M, Sarno G, Angeli A, Daniele S, Salerno S, Barresi E, Cosconati S, Castellano S, Da Pozzo E, Costa B, Supuran CT, Da Settimo F, Taliani S. Discovery of the First-in-Class Dual TSPO/Carbonic Anhydrase Modulators with Promising Neurotrophic Activity. ACS Chem Neurosci 2025; 16:1-15. [PMID: 39545683 DOI: 10.1021/acschemneuro.4c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
In searching for putative new therapeutic strategies to treat neurodegenerative diseases, the mitochondrial 18 kDa translocator protein (TSPO) and cerebral isoforms of carbonic anhydrase (CA) were exploited as potential targets. Based on the structures of a class of highly affine and selective TSPO ligands and a class of CA activators, both developed by us in recent years, a small library of 2-phenylindole-based dual TSPO/CA modulators was developed, able to bind TSPO and activate CA VII in the low micromolar/submicromolar range. The interaction with the two targets was corroborated by computational studies. Biological investigation on human microglia C20 cells identified derivative 3 as a promising lead compound worthy of future optimization due to its (i) lack of cytotoxicity, (ii) ability to stimulate TSPO steroidogenic function and activate CA VII, and (iii) ability to effectively upregulate gene expression of the brain-derived neurotrophic factor.
Collapse
Affiliation(s)
- Valeria Poggetti
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Elisa Angeloni
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Lorenzo Germelli
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Benito Natale
- DiSTABiF, University of Campania Luigi Vanvitelli, Via Vivaldi, 43, 81100 Caserta, Italy
| | - Muhammad Waqas
- DiSTABiF, University of Campania Luigi Vanvitelli, Via Vivaldi, 43, 81100 Caserta, Italy
| | - Giuliana Sarno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Polo Scientifico, University of Florence, Via U. Schiff, 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Sandro Cosconati
- DiSTABiF, University of Campania Luigi Vanvitelli, Via Vivaldi, 43, 81100 Caserta, Italy
| | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Polo Scientifico, University of Florence, Via U. Schiff, 6, Sesto Fiorentino, 50019 Firenze, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| |
Collapse
|
6
|
Dinh Thanh N, Ngoc Toan V, Minh Trang V. Sulphonyl thiourea compounds containing pyrimidine as dual inhibitors of I, II, IX, and XII carbonic anhydrases and cancer cell lines: synthesis, characterization and in silico studies. RSC Med Chem 2024:d4md00816b. [PMID: 39823041 PMCID: PMC11734695 DOI: 10.1039/d4md00816b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/26/2024] [Indexed: 01/19/2025] Open
Abstract
Some novel sulphonyl thiourea derivatives (7a-m) containing 4,6-diarylpyrimidine rings were designed and synthesized using a one-pot procedure. These compounds exhibited remarkable dual inhibitory activity against human carbonic anhydrase hCA I, hCA II, hCA IX, and XII isoenzymes and some cancer cell lines. Among them, some thioureas had significantly more potent inhibitory activities in the order of 7l > 7c > 7f (against the hCA I isoform), 7f > 7b > 7c (against the hCA II isoform), 7c > 7g > 7a > 7b (against the hCA IX isoform), and 7d > 7c > 7g > 7f (against the hCA XII isoform). The obtained inhibitory activity data against the hCA IX and XII isoforms showed that compound 7c was the most potent inhibitor in this sulphonyl thiourea series against enzyme hCA IX, with K I = 125.1 ± 12.4 nM, while compound 7d was the most potent inhibitor against enzyme hCA XII, with K I = 111.0 ± 12.3 nM. Compound 7c exhibited strong inhibitory activity among all four tested hCA enzymes, while thiourea 7f was a potent inhibitor for enzymes hCA I, II and XII. All these compounds demonstrated non-competitive inhibition of both enzymes. Some selected potential inhibitory compounds, including 7c, 7d, and 7g, exhibited remarkable cytotoxic activity against human cancer cell lines, including human breast adenocarcinoma (MCF-7), human liver adenocarcinoma (HepG2), human cervical epithelial carcinoma (HeLa), and human lung adenocarcinoma cells (A549). These compounds exhibited low cytotoxicity in the WI-38 cell line. The compounds 7c and 7d were the most potent inhibitors against tumour-associated hCA IX and hCA XII isoenzymes. Furthermore, these compounds exhibited remarkable inhibition against some cancer cell lines, such as MCF-7, HepG2, HeLa, and A549. They were subjected to in silico screening for molecular docking and molecular dynamics simulations. The results of in vitro and in silico studies revealed that compounds 7c and 7d were the most promising derivatives in this series owing to their significant effects on the studied hCA IX and hCA XII isoenzymes, respectively. The results showed that the sulphonyl thiourea moiety was deeply accommodated in the active site and interacted with zinc ions in the receptors.
Collapse
Affiliation(s)
- Nguyen Dinh Thanh
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong, Hoan Kiem Ha Noi Vietnam
| | - Vu Ngoc Toan
- Institute of New Technology, Academy of Military Science and Technology, Ministry of Defence 17 Hoang Sam, Cau Giay Ha Noi Vietnam
| | - Vu Minh Trang
- VNU University of Education, Vietnam National University, Hanoi 144 Xuan Thuy, Cau Giay Ha Noi Vietnam
| |
Collapse
|
7
|
Berrino E, Michelet B, Vitse K, Nocentini A, Bartolucci G, Martin-Mingot A, Gratteri P, Carta F, Supuran CT, Thibaudeau S. Superacid-Synthesized Fluorinated Diamines Act as Selective hCA IV Inhibitors. J Med Chem 2024; 67:19460-19474. [PMID: 39447020 DOI: 10.1021/acs.jmedchem.4c01795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Carbonic anhydrase (CA) IV is a membrane-bound enzyme involved in important physio-pathological processes, such as excitation-contraction coupling in heart muscle, central nervous system (CNS) extracellular buffering, and mediation of inflammatory response after stroke. Known since the mid-1980s, this isoform is still largely unexplored when compared to other isoforms, mostly for the current lack of inhibitors targeting selectively this isoform. The discovery of selective CA IV inhibitors is thus largely awaited. In this work, we report β-(di) fluoropropyl diamines as effective CA IV inhibitors, opening real perspectives for a new mode of selective inhibition of this isoform. Inhibition data reveal that the essential structure core to ensure a potent and selective inhibition of CA IV is the N-propyldiamine. Molecular modeling studies were employed to understand the binding mode of the synthesized amines. Conformational searches within the active site space carried out in an implicit solvent (water) model were also conducted.
Collapse
Affiliation(s)
- Emanuela Berrino
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 09, France
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Bastien Michelet
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 09, France
| | - Kassandra Vitse
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 09, France
| | - Alessio Nocentini
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Gianluca Bartolucci
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Agnès Martin-Mingot
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 09, France
| | - Paola Gratteri
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Fabrizio Carta
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Sébastien Thibaudeau
- Superacid Group in "Organic Synthesis" Team, Université de Poitiers, CNRS UMR 7285 IC2MP, Bât. B28, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 09, France
| |
Collapse
|
8
|
Naeem N, Sadiq A, Othman GA, Yassin HM, Mughal EU. Exploring heterocyclic scaffolds in carbonic anhydrase inhibition: a decade of structural and therapeutic insights. RSC Adv 2024; 14:35769-35970. [PMID: 39534850 PMCID: PMC11555472 DOI: 10.1039/d4ra06290f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Heterocyclic compounds represent a prominent class of molecules with diverse pharmacological activities. Among their therapeutic applications, they have gained significant attention as carbonic anhydrase (CA) inhibitors, owing to their potential in the treatment of various diseases such as epilepsy, cancer and glaucoma. CA is a widely distributed zinc metalloenzyme that facilitates the reversible interconversion of carbon dioxide and bicarbonate. This reaction is essential for numerous physiological and pathological processes. In humans, CA exists in sixteen different isoforms, labeled hCA-I to hCA-XV, each distributed across various tissues and organs and involved in crucial physiological functions. Clinically utilized CA inhibitors, such as brinzolamide, dorzolamide and acetazolamide, exhibit poor selectivity, leading to undesirable side effects. A significant challenge in designing effective CA inhibitors is achieving balanced isoform selectivity, prompting the exploration of new chemotypes. This review compiles recent strategies employed by various researchers in developing CAIs across different structural classes, including pyrazoline, quinoline, imidazole, oxadiazole, pyrimidine, coumarin, chalcone, rhodanine, phthalazine, triazole, isatin, and indole. Additionally, the review summarizes structure-activity relationship (SAR) analyses, isoform selectivity evaluations, along with mechanistic and in silico investigations. Insights derived from SAR studies provide crucial directions for the rational design of next-generation heterocyclic CA inhibitors, with improved therapeutic efficacy and reduced side effects. To the best of our knowledge, for the first time, we have comprehensively summarized all known isoforms of CA in relation to various heterocyclic motifs. This review examines the use of different heterocycles as CA inhibitors, drawing on research published over the past 11 years. It offers a valuable resource for early-career researchers, encouraging further exploration of synthetic heterocycles in the development of CA inhibitors.
Collapse
Affiliation(s)
- Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot 51300 Pakistan
| | - Gehan Ahmed Othman
- Biology Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | - Habab M Yassin
- Biology Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | | |
Collapse
|
9
|
Wu L, Rodriguez M, El Hachem K, Krittanawong C. Diuretic Treatment in Heart Failure: A Practical Guide for Clinicians. J Clin Med 2024; 13:4470. [PMID: 39124738 PMCID: PMC11313642 DOI: 10.3390/jcm13154470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Congestion and fluid retention are the hallmarks of decompensated heart failure and the major reason for the hospitalization of patients with heart failure. Diuretics have been used in heart failure for decades, and they remain the backbone of the contemporary management of heart failure. Loop diuretics is the preferred diuretic, and it has been given a class I recommendation by clinical guidelines for the relief of congestion symptoms. Although loop diuretics have been used virtually among all patients with acute decompensated heart failure, there is still very limited clinical evidence to guide the optimized diuretics use. This is a sharp contrast to the rapidly growing evidence of the rest of the guideline-directed medical therapy of heart failure and calls for further studies. The loop diuretics possess a unique pharmacology and pharmacokinetics that lay the ground for different strategies to increase diuretic efficiency. However, many of these approaches have not been evaluated in randomized clinical trials. In recent years, a stepped and protocolized diuretics dosing has been suggested to have superior benefits over an individual clinician-based strategy. Diuretic resistance has been a major challenge to decongestion therapy for patients with heart failure and is associated with a poor clinical prognosis. Recently, therapy options have emerged to help overcome diuretic resistance to loop diuretics and have been evaluated in randomized clinical trials. In this review, we aim to provide a comprehensive review of the pharmacology and clinical use of loop diuretics in the context of heart failure, with attention to its side effects, and adjuncts, as well as the challenges and future direction.
Collapse
Affiliation(s)
- Lingling Wu
- Cardiovascular Division, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mario Rodriguez
- John T. Milliken Department of Medicine, Division of Cardiovascular Disease, Section of Advanced Heart Failure and Transplant, Barnes-Jewish Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Karim El Hachem
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY 10029, USA
| | - Chayakrit Krittanawong
- Section of Cardiology, Cardiology Division, NYU Langone Health and NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
10
|
Tasleem M, Ullah S, Khan A, Mali SN, Kumar S, Mathew B, Oneto A, Noreen F, Eldesoky GE, Schenone S, Al-Harrasi A, Shafiq Z. Design, synthesis, and in vitro and in silico studies of morpholine derived thiazoles as bovine carbonic anhydrase-II inhibitors. RSC Adv 2024; 14:21355-21374. [PMID: 38979463 PMCID: PMC11228576 DOI: 10.1039/d4ra03385j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Carbonic anhydrase CA-II enzyme is essential for maintaining homeostasis in several processes, including respiration, lipogenesis, gluconeogenesis, calcification, bone resorption, and electrolyte balance due to its vital function within cellular processes. Herein, we screened 25 newly synthesized thiazole derivatives and assessed their inhibitory potential against the zinc-containing carbonic anhydrase CA-II enzyme. Intriguingly, derivatives of thiazole exhibited varying degrees of inhibitory action against CA-II. The distinctive attribute of these compounds is that they can attach to the CA-II binding site and block its action. Morpholine based thiazoles can be strategically modified to improve bovine CA-II inhibitor binding affinity, selectivity, and pharmacokinetics. Thiazole and morpholine moieties can boost inhibitory efficacy and selectivity over other calcium-binding proteins by interacting with target bovine CA-II binding sites. The derivatives 23-26 exhibited greater affinity when compared to the standard acetazolamide. Furthermore, kinetic study of the most potent compound 24 was performed, which exhibited concentration dependent inhibition with a K i value of 9.64 ± 0.007 μM. Molecular docking, MD simulation and QSAR analysis was also carried out to elucidate the interactions, orientation, and conformational changes of these compounds within the active site of the enzyme. Moreover, pharmacokinetic assessments showed that most of the compounds possess attributes conducive to potential drug development.
Collapse
Affiliation(s)
- Mussarat Tasleem
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan-60800 Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Centre, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Suraj N Mali
- School of Pharmacy, D. Y. Patil University (Deemed to be University) Sector 7, Nerul Navi Mumbai 400706 India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus Kochi 682041 India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus Kochi 682041 India
| | - Angelo Oneto
- Department of Pharmaceutical & Medicinal Chemistry An der Immenburg 4 D-53121 Bonn Germany
| | - Faiqa Noreen
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan-60800 Pakistan
| | - Gaber E Eldesoky
- Chemistry Department, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa Viale Benedetto XV, 3 Genoa 16132 Italy
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan-60800 Pakistan
- Department of Pharmaceutical & Medicinal Chemistry An der Immenburg 4 D-53121 Bonn Germany
| |
Collapse
|
11
|
Supuran CT. Challenges for developing bacterial CA inhibitors as novel antibiotics. Enzymes 2024; 55:383-411. [PMID: 39222998 DOI: 10.1016/bs.enz.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Acetazolamide, methazolamide, ethoxzolamide and dorzolamide, classical sulfonamide carbonic anhydrase (CA) inhibitors (CAIs) designed for targeting human enzymes, were also shown to effectively inhibit bacterial CAs and were proposed for repurposing as antibacterial agents against several infective agents. CAs belonging to the α-, β- and/or γ-classes from pathogens such as Helicobacter pylori, Neisseria gonorrhoeae, vacomycin resistant enterococci (VRE), Vibrio cholerae, Mycobacterium tuberculosis, Pseudomonas aeruginosa and other bacteria were considered as drug targets for which several classes of potent inhibitors have been developed. Treatment of some of these pathogens with various classes of such CAIs led to an impairment of the bacterial growth, reduced virulence and for drug resistant bacteria, a resensitization to clinically used antibiotics. Here I will discuss the strategies and challenges for obtaining CAIs with enhanced selectivity for inhibiting bacterial versus human enzymes, which may constitute an important weapon for addressing the drug resistance to β-lactams and other clinically used antibiotics.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
12
|
Melfi F, Carradori S, Mencarelli N, Campestre C, Granese A, Mori M. Recent developments of agents targeting Vibrio cholerae: patents and literature data. Expert Opin Ther Pat 2024; 34:415-432. [PMID: 38446009 DOI: 10.1080/13543776.2024.2327305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Vibrio cholerae bacteria cause an infection characterized by acute diarrheal illness in the intestine. Cholera is sustained by people swallowing contaminated food or water. Even though symptoms can be mild, if untreated disease becomes severe and life-threatening, especially in low-income countries. AREAS COVERED After a description of the most recent literature on the pathophysiology of this infection, we searched for patents and literature articles following the PRISMA guidelines, filtering the results disclosed from 2020 to present. Moreover, some innovative molecular targets (e.g., carbonic anhydrases) and pathways to counteract this rising problem were also discussed in terms of design, structure-activity relationships and structural analyses. EXPERT OPINION This review aims to cover and analyze the most recent advances on the new druggable targets and bioactive compounds against this fastidious pathogen, overcoming the use of old antibiotics which currently suffer from high resistance rate.
Collapse
Affiliation(s)
- Francesco Melfi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Noemi Mencarelli
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristina Campestre
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Arianna Granese
- Department of Drug Chemistry and Technology, "Sapienza" University of Rome, Rome, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
13
|
Chen X, Zhang Y, Chao S, Song L, Wu G, Sun Y, Chen Y, Lv B. Biocontrol potential of endophytic Bacillus subtilis A9 against rot disease of Morchella esculenta. Front Microbiol 2024; 15:1388669. [PMID: 38873148 PMCID: PMC11169702 DOI: 10.3389/fmicb.2024.1388669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Morchella esculenta is a popular edible fungus with high economic and nutritional value. However, the rot disease caused by Lecanicillium aphanocladii, pose a serious threat to the quality and yield of M. esculenta. Biological control is one of the effective ways to control fungal diseases. Methods and results In this study, an effective endophytic B. subtilis A9 for the control of M. esculenta rot disease was screened, and its biocontrol mechanism was studied by transcriptome analysis. In total, 122 strains of endophytic bacteria from M. esculenta, of which the antagonistic effect of Bacillus subtilis A9 on L. aphanocladii G1 reached 72.2% in vitro tests. Biological characteristics and genomic features of B. subtilis A9 were analyzed, and key antibiotic gene clusters were detected. Scanning electron microscope (SEM) observation showed that B. subtilis A9 affected the mycelium and spores of L. aphanocladii G1. In field experiments, the biological control effect of B. subtilis A9 reached to 62.5%. Furthermore, the transcritome profiling provides evidence of B. subtilis A9 bicontrol at the molecular level. A total of 1,246 differentially expressed genes (DEGs) were identified between the treatment and control group. Gene Ontology (GO) enrichment analysis showed that a large number of DEGs were related to antioxidant activity related. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the main pathways were Nitrogen metabolism, Pentose Phosphate Pathway (PPP) and Mitogen-Activated Protein Kinases (MAPK) signal pathway. Among them, some important genes such as carbonic anhydrase CA (H6S33_007248), catalase CAT (H6S33_001409), tRNA dihydrouridine synthase DusB (H6S33_001297) and NAD(P)-binding protein NAD(P) BP (H6S33_000823) were found. Furthermore, B. subtilis A9 considerably enhanced the M. esculenta activity of Polyphenol oxidase (POD), Superoxide dismutase (SOD), Phenylal anineammonia lyase (PAL) and Catalase (CAT). Conclusion This study presents the innovative utilization of B. subtilis A9, for effectively controlling M. esculenta rot disease. This will lay a foundation for biological control in Morchella, which may lead to the improvement of new biocontrol agents for production.
Collapse
Affiliation(s)
- Xue Chen
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yin Zhang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - ShengQian Chao
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - LiLi Song
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - GuoGan Wu
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yu Sun
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - YiFan Chen
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - BeiBei Lv
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R, Shanghai, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Co-Elite Agricultural Sci-Tech (Group) Co., Ltd., Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai, China
| |
Collapse
|
14
|
Tang L, Xu H, Wu T, Wu W, Lu Y, Gu J, Wang X, Zhou M, Chen Q, Sun X, Cai H. Advances in tumor microenvironment and underlying molecular mechanisms of bladder cancer: a systematic review. Discov Oncol 2024; 15:111. [PMID: 38602556 PMCID: PMC11009183 DOI: 10.1007/s12672-024-00902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/21/2024] [Indexed: 04/12/2024] Open
Abstract
Bladder cancer is one of the most frequent malignant tumors of the urinary system. The prevalence of bladder cancer among men and women is roughly 5:2, and both its incidence and death have been rising steadily over the past few years. At the moment, metastasis and recurrence of advanced bladder cancer-which are believed to be connected to the malfunction of multigene and multilevel cell signaling network-remain the leading causes of bladder cancer-related death. The therapeutic treatment of bladder cancer will be greatly aided by the elucidation of these mechanisms. New concepts for the treatment of bladder cancer have been made possible by the advancement of research technologies and a number of new treatment options, including immunotherapy and targeted therapy. In this paper, we will extensively review the development of the tumor microenvironment and the possible molecular mechanisms of bladder cancer.
Collapse
Affiliation(s)
- Liu Tang
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Haifei Xu
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Tong Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Wenhao Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Yuhao Lu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Jijia Gu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Xiaoling Wang
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Mei Zhou
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Qiuyang Chen
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Xuan Sun
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| |
Collapse
|
15
|
Kumar A, Arya P, Giovannuzzi S, Mohan B, Raghav N, Supuran CT, Sharma PK. Novel 1,2,4-triazoles as selective carbonic anhydrase inhibitors showing ancillary anticathepsin B activity. Future Med Chem 2024; 16:689-706. [PMID: 38573017 PMCID: PMC11221327 DOI: 10.4155/fmc-2023-0321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024] Open
Abstract
Background: Exploration of the multi-target approach considering both human carbonic anhydrase (hCA) IX and XII and cathepsin B is a promising strategy to target cancer. Methodology & Results: 22 novel 1,2,4-triazole derivatives were synthesized and evaluated for their inhibition efficacy against hCA I, II, IX, XII isoforms and cathepsin B. The compounds demonstrated effective inhibition against hCA IX and/or XII isoforms with considerable selectivity over off-target hCA I/II. All compounds presented significant anticathepsin B activities at a low concentration of 10-7 M and in vitro results were also supported by the molecular modeling studies. Conclusion: Insights of present study can be utilized in the rational design of effective and selective hCA IX and XII inhibitors capable of inhibiting cathepsin B.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Priyanka Arya
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical & Nutraceutical Section, University of Florence, Florence, 50139, Italy
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical & Nutraceutical Section, University of Florence, Florence, 50139, Italy
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
- Department of Chemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| |
Collapse
|
16
|
Xie Y, Wang X, Jia H, Chu N. Discovery of water-soluble semicarbazide-containing sulfonamide derivatives possessing favorable anti-glaucoma effect in vivo and drug-like properties. Saudi Pharm J 2024; 32:101969. [PMID: 38328793 PMCID: PMC10848004 DOI: 10.1016/j.jsps.2024.101969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
In order to obtain topical and non-irritating anti-glaucoma drugs, novel semicarbazide-containing sulfonamide derivatives were designed and synthetized by sugar tail method in this study. The hydrophilic monosaccharides were expected to form interaction with the hydrophilic site of hCA II meanwhile the linker semicarbazides are used to further enhance water solubility, and more importantly, regulate the pH values of the target compounds in aqueous solution. First, all target compounds were synthesized and evaluated for their CA inhibitory activities. The results showed our target compounds demonstrated comparable activity to the positive control drug acetazolamide. The best derivative 11d exhibits an IC50 value of 14 nM for hCA II and 2086-fold selectivity over CA I. Subsequently, physicochemical properties study showed that the target compounds displayed very good water solubility (up to 3 %) and neutral pH value in solutions. Meanwhile, the artificial membrane permeability assay was performed to verify that the target compound could also pass through the membrane structure despite their strong water solubility. In the glaucomatous rabbit eye model, the applied topically representative compounds showed strongly lowered intraocular pressure (IOP), as 1 % or 2 % water solutions. Subsequent drug-like evaluation showed our target compounds possessed low hemolysis effect and low cytotoxicity toward human corneal epithelial cell line. Also, it was not found that these target compounds had significant inhibition of hERG and CYP. In addition, these novel analogs also displayed good liver microsomal metabolic stability and plasma stability. Finally, docking studies provided the rational binding modes of representative compounds in complex with hCA II. Taken together, these results suggested that compound 11d may be a promising hCA II inhibitor deserving further development.
Collapse
Affiliation(s)
- Yingxia Xie
- Department of Pharmacy, The First People’s Hospital of Shangqiu, Suiyang District, 292 Kaixuan Road, Shangqiu 476000, China
| | - Xiaoyi Wang
- Department of Pharmacy, The First People’s Hospital of Shangqiu, Suiyang District, 292 Kaixuan Road, Shangqiu 476000, China
| | - Hao Jia
- Department of Pharmacy, The First People’s Hospital of Shangqiu, Suiyang District, 292 Kaixuan Road, Shangqiu 476000, China
| | - Naying Chu
- Department of Pharmacy, The First People’s Hospital of Shangqiu, Suiyang District, 292 Kaixuan Road, Shangqiu 476000, China
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
17
|
Demir-Yazıcı K, Trawally M, Bua S, Öztürk-Civelek D, Akdemir A, Supuran CT, Güzel-Akdemir Ö. Novel 2-(hydrazinocarbonyl)-3-phenyl-1H-indole-5-sulfonamide based thiosemicarbazides as potent and selective inhibitors of tumor-associated human carbonic anhydrase IX and XII: Synthesis, cytotoxicity, and molecular modelling studies. Bioorg Chem 2024; 144:107096. [PMID: 38290186 DOI: 10.1016/j.bioorg.2024.107096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
In the pursuit of discovering new selective carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, a small collection of novel thiosemicarbazides (5a-5t) were designed and synthesized starting from 2-(hydrazinocarbonyl)-3-phenyl-1H-indole-5-sulfonamide which was evaluated as a potent inhibitor of different CA isoforms in a previous study. The newly synthesized compounds were examined against four human carbonic anhydrases (hCA), namely transmembrane tumor-related hCA IX/XII and cytosolic widespread off-targets hCA I/II. In enzyme inhibition assays, all nineteen compounds display up to ∼340-fold selectivity for hCA IX/XII over off-target isoforms hCA I/II. Four compounds have enzyme inhibition values (Ki) lower than 10 nM against tumor-associated isoforms hCA IX/XII including two compounds in the subnanomolar range (5r and 5s; hCA XII; Ki: 0.69 and 0.87 nM). The potential binding interactions of the most potent compounds against hCA IX and XII, compounds 5s and 5r, respectively, were investigated using ensemble docking and molecular dynamics studies. Cell viability assays using human colorectal adenocarcinoma cell line HT-29 and healthy skin fibroblasts CCD-86Sk show that compound 5e selectively inhibits HT-29 cancer cell proliferation (IC50: 53.32 ± 7.74 µM for HT-29; IC50: 74.64 ± 14.15 µM for CCD-986Sk). Finally, Western blot assays show that compounds 5e and 5r significantly reduce the expression of hCA XII in HT-29 cells. Moreover, 5e shows better cytotoxic activity in hypoxia compared to normoxic conditions. Altogether, the newly designed compounds show stronger inhibition of the tumor-associated hCA IX and XII isoforms and several tested compounds show selective cytotoxicity as well as downregulation of hCA XII expression.
Collapse
Affiliation(s)
- Kübra Demir-Yazıcı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey; Department of Pharmaceutical Chemistry, Institute of Graduate Studies in Health Sciences, Istanbul University, 34126 Istanbul, Turkey
| | - Muhammed Trawally
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey; Department of Pharmaceutical Chemistry, Institute of Graduate Studies in Health Sciences, Istanbul University, 34126 Istanbul, Turkey
| | - Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Dilek Öztürk-Civelek
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Atilla Akdemir
- Department of Pharmacology, Faculty of Pharmacy, Istinye University, 34408 Istanbul, Turkey
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Özlen Güzel-Akdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey.
| |
Collapse
|
18
|
Thanh ND, Giang NTK, Hai DS, Toan VN, Van HTK, Tri NM. Sulfonyl thiourea derivatives from 2-aminodiarylpyrimidines: In vitro and in silico evaluation as potential carbonic anhydrase I, II, IX, and XII inhibitors. Chem Biol Drug Des 2024; 103:e14494. [PMID: 38490810 DOI: 10.1111/cbdd.14494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/31/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024]
Abstract
A series of synthesized sulfonyl thiourea derivatives (7a-o) of substituted 2-amino-4,6-diarylpyrimidines (4a-o) exhibited the remarkable inhibitory activity against some the human carbonic anhydrases (hCAs), including hCA I, II, IX, and XII isoforms. The inhibitory efficacy of synthesized sulfonyl thiourea derivatives were experimentally validated by in vitro enzymatic assays. 7a (KI = 46.14 nM), 7j (KI = 48.92 nM), and 7m (KI = 62.59 nM) (for isoform hCA I); 7f (KI = 42.72 nM), 7i (KI = 40.98 nM), and 7j (KI = 33.40 nM) (for isoform hCA II); 7j (KI = 228.5 nM), 7m (KI = 195.4 nM), and 7n (KI = 210.1 nM) (for isoform hCA IX); 7l (KI = 116.9 nM), 7m (KI = 118.8 nM), and 7n (KI = 147.2 nM) (for isoform hCA XII) in comparison with KI values of 452.1, 327.3, 437.2, and 338.9 nM, respectively, of the standard drug AAZ. These compounds also had significantly more potent inhibitory action against cytosolic isoform hCA I and tumor-associated isoforms hCA IX and hCA XII. Furthermore, the potential inhibitory compounds were subjected to in silico screening for molecular docking and molecular dynamics simulations. The results of in vitro and in silico studies revealed that compounds 7a, 7j, and 7m were the most promising derivatives in this series due to their significant effects on studied hCA I, II, IX, and XII isoforms, respectively. The results showed that the sulfonyl thiourea moiety was accommodated deeply in the active site and interacted with the zinc ion in the receptors.
Collapse
Affiliation(s)
- Nguyen Dinh Thanh
- Faculty of Chemistry, VNU University of Science (Vietnam Nation University), Hanoi, Vietnam
| | - Nguyen Thi Kim Giang
- Faculty of Chemistry, VNU University of Science (Vietnam Nation University), Hanoi, Vietnam
- Institute of Science and Technology, Ministry of Public Security of Vietnam, Hanoi, Vietnam
| | - Do Son Hai
- Faculty of Chemistry, VNU University of Science (Vietnam Nation University), Hanoi, Vietnam
- Institute of Science and Technology, Ministry of Public Security of Vietnam, Hanoi, Vietnam
| | - Vu Ngoc Toan
- Faculty of Chemistry, VNU University of Science (Vietnam Nation University), Hanoi, Vietnam
- Institute of New Technology, Academy of Military Science and Technology, Ministry of National Defence, Hanoi, Vietnam
| | - Hoang Thi Kim Van
- Faculty of Chemistry, VNU University of Science (Vietnam Nation University), Hanoi, Vietnam
- Faculty of Chemical Technology, Viet Tri University of Industry, Phu Tho, Vietnam
| | - Nguyen Minh Tri
- Faculty of Chemistry, VNU University of Science (Vietnam Nation University), Hanoi, Vietnam
- Institute of New Technology, Academy of Military Science and Technology, Ministry of National Defence, Hanoi, Vietnam
| |
Collapse
|
19
|
Yapar G, Lolak N, Bonardi A, Akocak S, Supuran CT. Exploring the potency of diazo-coumarin containing hybrid molecules: Selective inhibition of tumor-associated carbonic anhydrase isoforms IX and XII. ChemMedChem 2024; 19:e202300626. [PMID: 38193633 DOI: 10.1002/cmdc.202300626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
This study introduces a series of ten hybrid molecules DK(1-10), which combine diazo and coumarin moieties along with diverse aromatic substitutions. The primary objective was to evaluate the inhibitory capabilities of these compounds against four prominent isoforms: the cytosolic hCA I and II, as well as the tumor-associated membrane-bound hCA IX and XII. Impressively, the majority of the tested compounds exhibited significant inhibition activity against the tumor-associated isoforms hCA IX and XII, with KI values ranging from 29.2 to 293.3 nM. Notably, compound DK-8 displayed particularly robust inhibitory activity against the tumor-associated membrane-bound isoforms, hCA IX and XII, yielding KI values of 32.5 and 29.2 nM, respectively. Additionally, another derivative, DK-9, containing a primary sulfonamide, exhibited notable inhibition against hCA XII with a KI value of 36.4 nM. This investigation aimed to explore the structure-activity relationships within these compounds, shedding light on how various substitutions and structural components influence their inhibitory potential. As a result, these compounds present promising candidates for further exploration in medicinal and pharmacological research. Their ability to selectively inhibit specific isoforms, particularly those associated with hypoxic tumors, suggests their potential as foundational compounds for the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Gönül Yapar
- Department of Chemistry, Faculty of Arts and Sciences, Istanbul Technical University, Istanbul, 34469, Türkiye
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adıyaman, Türkiye
| | - Alessandro Bonardi
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adıyaman, Türkiye
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy
| |
Collapse
|
20
|
Durgun M, Akocak S, Lolak N, Topal F, Koçyiğit ÜM, Türkeş C, Işık M, Beydemir Ş. Design and Synthesis of Pyrazole Carboxamide Derivatives as Selective Cholinesterase and Carbonic Anhydrase Inhibitors: Molecular Docking and Biological Evaluation. Chem Biodivers 2024; 21:e202301824. [PMID: 38149720 DOI: 10.1002/cbdv.202301824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 12/28/2023]
Abstract
The present study focused on the synthesis and characterization of novel pyrazole carboxamide derivatives (SA1-12). The inhibitory effect of the compounds on cholinesterases (ChEs; AChE and BChE) and carbonic anhydrases (hCAs; hCA I and hCA II) isoenzymes were screened as in vitro. These series compounds have been identified as potential inhibitors with a KI values in the range of 10.69±1.27-70.87±8.11 nM for hCA I, 20.01±3.48-56.63±6.41 nM for hCA II, 6.60±0.62-14.15±1.09 nM for acetylcholinesterase (AChE) and 54.87±7.76-137.20 ±9.61 nM for butyrylcholinesterase (BChE). These compounds have a more effective inhibition effect when compared to the reference compounds. In addition, the potential binding positions of the compounds with high affinity for ChE and hCAs were demonstrated by in silico methods. The results of in silico and in vitro studies support each other. As a result of the present study, the compounds with high inhibitory activity for metabolic enzymes, such as ChE and hCA were designed. The compounds may be potential alternative agents used as selective ChE and hCA inhibitors in the treatment of Alzheimer's disease and glaucoma.
Collapse
Affiliation(s)
- Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, 63290, Şanlıurfa, Turkey
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adıyaman, Turkey
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adıyaman, Turkey
| | - Fevzi Topal
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Gümüşhane University, 29100, Gümüşhane, Turkey
- Department of Chemical and Chemical Processing Technologies, Gümüşhane Vocational School, Gümüşhane University, 29100, Gümüşhane, Turkey
| | - Ümit Muhammet Koçyiğit
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey
| | - Mesut Işık
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
- Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| |
Collapse
|
21
|
Angeli A, Ferraroni M, Bonardi A, Supuran CT, Nocentini A. Diversely N-substituted benzenesulfonamides dissimilarly bind to human carbonic anhydrases: crystallographic investigations of N-nitrosulfonamides. J Enzyme Inhib Med Chem 2023; 38:2178430. [PMID: 36798036 PMCID: PMC9946301 DOI: 10.1080/14756366.2023.2178430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Carbonic anhydrases (CAs) are a zinc metalloenzymes that catalyse the reversible hydration of carbon dioxide to bicarbonate and proton, pivotal for a wide range of biological processes. CAs are involved in numerous pathologies and thus represent valuable drug targets in the treatments of several diseases such as glaucoma, obesity, tumour, neuropathic pain, cerebral ischaemia, or as antiinfectives. In the last two decades, several efforts have been made to achieve selective CA inhibitors (CAIs) employing different drug design approaches. However, N-substitutions on primary sulphonamide groups still remain poorly investigated. Here, we reported for the first time the co-crystallisation of a N-nitro sulphonamide derivative with human (h) CA II pointing out the binding site and mode of inhibition of this class of CAIs. The thorough comprehension of the ligand/target interaction might be valuable for a further CAI optimisation for achieving new potent and selective derivatives.
Collapse
Affiliation(s)
- Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Sesto Fiorentino, Florence, Italy,CONTACT Andrea Angeli NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Marta Ferraroni
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy,Marta Ferraroni Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy
| | - Alessandro Bonardi
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
22
|
Tekeli T, Akocak S, Petreni A, Lolak N, Çete S, Supuran CT. Potent carbonic anhydrase I, II, IX and XII inhibition activity of novel primary benzenesulfonamides incorporating bis-ureido moieties. J Enzyme Inhib Med Chem 2023; 38:2185762. [PMID: 36880350 PMCID: PMC9987750 DOI: 10.1080/14756366.2023.2185762] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
A novel series of twelve aromatic bis-ureido-substituted benzenesulfonamides was synthesised by conjugation of aromatic aminobenzenesulfonamides with aromatic bis-isocyanates. The obtained bis-ureido-substituted derivatives were tested against four selected human carbonic anhydrase isoforms (hCA I, hCA II, hCA IX and hCA XII). Most of the new compounds showed an effective inhibitory profile against isoforms hCA IX and hCA XII, also having some selectivity with respect to hCA I and hCA II. The inhibition constants of these compounds against isoforms hCA IX and XII were in the range of 6.73-835 and 5.02-429 nM, respectively. Since hCA IX and hCA XII are important drug targets for anti-cancer/anti-metastatic drugs, these effective inhibitors reported here may be considered of interest for cancer related studies in which these enzymes are involved.
Collapse
Affiliation(s)
- Tuba Tekeli
- Vocational School of Technical Science, Department of Chemistry and Chemical Processing Technologies, Adıyaman University, Adıyaman, Türkiye.,Department of Chemistry, Faculty of Science, Gazi University, Ankara, Türkiye
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Türkiye
| | - Andrea Petreni
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Türkiye
| | - Servet Çete
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Türkiye
| | - Claudiu T Supuran
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| |
Collapse
|
23
|
Giovannuzzi S, Bonardi A, Gratteri P, Nocentini A, Supuran CT. Discovery of the first-in-class potent and isoform-selective human carbonic anhydrase III inhibitors. J Enzyme Inhib Med Chem 2023; 38:2202360. [PMID: 37092262 PMCID: PMC10128460 DOI: 10.1080/14756366.2023.2202360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/25/2023] Open
Abstract
Considering the unrecognised physio-pathological role of human carbonic anhydrase III (hCA III), a structure-based drug design was set up to identify the first-in-class potent and selective inhibitors of this neglected isoform. hCA III targeting was planned considering a unique feature of its active site among the other hCA isoforms, i.e. the Leu198/Phe198 substitution which interferes with the binding of aromatic/heterocyclic sulfonamides and other inhibitors. Thus, new aliphatic primary sulfonamides possessing long and flexible (CH2)nSO2NH2 moieties were designed to coordinate the zinc(II) ion, bypassing the bulky Phe198 residue. They incorporate 1,2,3-triazole linkers which connect the tail moieties to the sulfonamide head, enhancing thus the contacts at the active site entrance. Some of these compounds act as nanomolar and selective inhibitors of hCA III over other isoforms. Docking/molecular dynamics simulations were used to investigate ligand/target interactions for these sulfonamides which might improve our understanding of the physio-pathological roles of hCA III.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Firenze, Italy
| | - Alessandro Bonardi
- NEUROFARBA Department, Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, Firenze, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, Firenze, Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Firenze, Italy
- NEUROFARBA Department, Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, Firenze, Italy
| | - Claudiu T. Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Firenze, Italy
| |
Collapse
|
24
|
Haapanen S, Angeli A, Tolvanen M, Emameh RZ, Supuran CT, Parkkila S. Cloning, characterization, and inhibition of the novel β-carbonic anhydrase from parasitic blood fluke, Schistosoma mansoni. J Enzyme Inhib Med Chem 2023; 38:2184299. [PMID: 36856011 PMCID: PMC9980027 DOI: 10.1080/14756366.2023.2184299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Schistosoma mansoni is an intestinal parasite with one β-class carbonic anhydrase, SmaBCA. We report the sequence enhancing, production, catalytic activity, and inhibition results of the recombinant SmaBCA. It showed significant catalytic activity on CO2 hydration in vitro with kcat 1.38 × 105 s-1 and kcat/Km 2.33 × 107 M-1 s-1. Several sulphonamide inhibitors, from which many are clinically used, showed submicromolar or nanomolar inhibitory effects on SmaBCA. The most efficient inhibitor with a KI of 43.8 nM was 4-(2-amino-pyrimidine-4-yl)-benzenesulfonamide. Other effective inhibitors with KIs in the range of 79.4-95.9 nM were benzolamide, brinzolamide, topiramate, dorzolamide, saccharin, epacadostat, celecoxib, and famotidine. The other tested compounds showed at least micromolar range inhibition against SmaBCA. Our results introduce SmaBCA as a novel target for drug development against schistosomiasis, a highly prevalent parasitic disease.
Collapse
Affiliation(s)
- Susanna Haapanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,CONTACT Susanna Haapanen Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Andrea Angeli
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Martti Tolvanen
- Department of Computing, University of Turku, Turku, Finland
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Claudiu T. Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
25
|
Abdoli M, Bonardi A, Supuran CT, Žalubovskis R. Investigation of novel alkyl/benzyl (4-sulphamoylphenyl)carbamimidothioates as carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2023; 38:2152811. [PMID: 36629134 PMCID: PMC9848269 DOI: 10.1080/14756366.2022.2152811] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A library of novel alkyl/benzyl (4-sulphamoylphenyl)carbamimidothioates was synthesised by selective S-alkylation of the easily accessible 4-thioureidobenzenesulphonamide. The compounds were assayed as inhibitors of four human (h) carbonic anhydrase isoforms hCA I, II, VII, and XIII, as well as three bacterial enzymes belonging to the β-CA class, MscCA from Mammaliicoccus (Staphylococcus) sciuri and StCA1 and StCA2, from Salmonella enterica (serovar Typhimurium). Most compounds investigated here exhibited moderate to low nanomolar inhibition constants against hCA I, II, and VII. The cytosolic hCA XIII was also inhibited by these compounds, but not as effective as hCA I, II, and VII. Several compounds were very effective against MscCA and StCA1. StCA2 was less inhibited compared to MscCA and StCA1. Some compounds showed considerable selectivity for inhibiting some CA isoforms. They may thus be considered as interesting starting points for the discovery and development of novel therapeutic agents belonging to this class of enzyme inhibitors.
Collapse
Affiliation(s)
- Morteza Abdoli
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Alessandro Bonardi
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy
| | - Claudiu T. Supuran
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy,Claudiu T. Supuran Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Raivis Žalubovskis
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia,Latvian Institute of Organic Synthesis, Riga, Latvia,CONTACT Raivis Žalubovskis Latvian Institute of Organic Synthesis, 21 Aizkraukles Str, Riga, LV-1006, Latvia
| |
Collapse
|
26
|
Türkeş C. Carbonic anhydrase inhibition by antiviral drugs in vitro and in silico. J Mol Recognit 2023; 36:e3063. [PMID: 37807620 DOI: 10.1002/jmr.3063] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Enzyme inhibition is a commonly utilized method for controlling enzymatic activity in various physiologically relevant biological systems. Herein, the selected five active antiviral drugs, abacavir, emtricitabine, lamivudine, ribavirin, and ritonavir, were assayed as inhibitors of two human isoforms of the metalloenzyme carbonic anhydrase (hCA, EC 4.2.1.1) involved in various physiological/pathological conditions. For this aim, in vitro and in silico studies were performed to gain insights into the plausible binding interactions and affinities for the antiviral drugs within hCA I and II isoforms' active sites. The hCA I, an isoform involved in some pathological conditions such as retinal or cerebral edema, was moderately inhibited by these five drugs at micromolar concentrations with KI s spanning from 0.49 ± 0.05 to 3.51 ± 0.37 μM compared with the reference drug acetazolamide (AAZ, KI of 0.19 ± 0.01 μM). Moreover, hCA II, a promising target for edema, glaucoma, epilepsy, and altitude sickness, was a reasonably inhibited isoform by these agents, with KI s in the range of 0.64 ± 0.08-5.80 ± 0.64 μM compared with AAZ (KI of 0.17 ± 0.01 μM). Both in vitro and in silico results demonstrated significant interactions between these five drugs and hCAs and that they can support therapeutic targets against the above-mentioned pathological conditions. Additionally, the results obtained will help optimize the clinical dosage regimens of these drugs and avoid drug-drug interactions unexpectedly when used in combination with other agents.
Collapse
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| |
Collapse
|
27
|
Sheikh AS, Altaf R, Nadeem H, Khan MT, Murtaza B. Formation of morpholine-acetamide derivatives as potent anti-tumor drug candidates: Pharmacological evaluation and molecular docking studies. Heliyon 2023; 9:e22183. [PMID: 38053851 PMCID: PMC10694180 DOI: 10.1016/j.heliyon.2023.e22183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Heterocyclic amines and acetamide derivatives are known for their chemotherapeutic potential. Hence, in the present study, morpholine was taken as a principal product and novel morpholine derivatives were designed, formulated, characterized, and screened for the mechanism of inhibition of carbonic anhydrase and their anticancer potential. In addition, in vitro inhibition of hypoxia-inducible factor-1 (HIF-1) protein was also investigated. Results revealed that compounds 1c, 1d, and 1h possessed significant inhibitory activities against carbonic anhydrase with IC50 of 8.80, 11.13, and 8.12 μM, respectively. Interestingly, the carbonic anhydrase inhibitory activity of compound 1h was comparable with that of standard acetazolamide (IC50 7.51 μM). The compounds 1h and 1i significantly inhibited the proliferation of ovarian cancer cell line ID8 with IC50 of 9.40, and 11.2 μM, respectively while the standard cisplatin exhibited an IC50 8.50 μM. In addition, compounds 1c, 1b, 1h and 1i also exhibited significant inhibitory effects on HIF-1α. In conclusion, we report first time the biological potential of morpholine based compounds against ovarian cancer and HIF-1α that may serve as lead molecules for drug discovery.
Collapse
Affiliation(s)
- Ahmed Sadiq Sheikh
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, RIU, Islamabad, Pakistan
| | - Reem Altaf
- Department of Pharmacy, Iqra University, Islamabad, Pakistan
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, RIU, Islamabad, Pakistan
| | | | - Babar Murtaza
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, RIU, Islamabad, Pakistan
| |
Collapse
|
28
|
Akocak S, Lolak N, Giovannuzzi S, Supuran CT. Potent and selective carbonic anhydrase inhibition activities of pyrazolones bearing benzenesulfonamides. Bioorg Med Chem Lett 2023; 95:129479. [PMID: 37704010 DOI: 10.1016/j.bmcl.2023.129479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
This research introduces a series of fourteen 4-aryl-hydrazonopyrazolone sulfonamide derivatives, denoted as 3(a-g) and 4(a-g), which encompass various aromatic substitutions. The aim was to assess the inhibitory potential of these compounds against four significant isoforms, including the cytosolic isoforms hCA I and II, as well as the tumor-associated membrane-bound isoforms hCA IX and XII. Most of the tested compounds exhibited substantial inhibition against the tumor-associated isoform hCA IX, with Ki values spanning from 1.1 to 158.2 nM. Notably, compounds 3e and 3g showed particularly strong inhibitory activity against the tumor-associated membrane-bound isoforms, hCA IX and XII, while maintaining a high selectivity ratio over cytosolic off-target isoforms hCA I and II. This selectivity is vital due to the potential of hCA IX and hCA XII as drug targets for hypoxic tumors. In an effort to create novel analogs that exhibit enhanced carbonic anhydrase inhibitory activity and specificity, we investigated the structure-activity relationships of these compounds and provided a concise interpretation of our findings. Consequently, these compounds merit consideration for subsequent medicinal and pharmacological research, holding potential for developing novel therapeutic agents targeting specific isoforms in hypoxic tumors.
Collapse
Affiliation(s)
- Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040 Adıyaman, Turkey.
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040 Adıyaman, Turkey
| | - Simone Giovannuzzi
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy.
| |
Collapse
|
29
|
Bondock S, Albarqi T, Abboud M, Nasr T, Mohamed NM, Abdou MM. Tail-approach based design, synthesis, and cytotoxic evaluation of novel disubstituted and trisubstituted 1,3-thiazole benzenesulfonamide derivatives with suggested carbonic anhydrase IX inhibition mechanism. RSC Adv 2023; 13:24003-24022. [PMID: 37577088 PMCID: PMC10413337 DOI: 10.1039/d3ra02528d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023] Open
Abstract
A novel series of 2,4,5- and 2,3,4-trisubstituted thiazole hybrids with 1,3,4-thiadiazolylbenzenesulfonamide was designed following the tail approach as possible hCAIX inhibitors. The key intermediate 1 was condensed with thiosemicarbazide 2a to give 1,3,4-thiadiazolylthiosemicarbazone 3, which upon hetero-cyclization with substituted α-haloketones and esters afforded 2,4,5-trisubstituted thiazole-1,3,4-thiadiazole conjugates 4-8. Furthermore, the trisubstituted thiazole-1,3,4-thiadiazole hybrids 12a-d were synthesized via the regioselective cyclization of 4-substituted-1,3,4-thiadiazolylthiosemicarbazones with phenacyl bromide. The cyclized 2,4-disubstituted thiazole 4 enhanced cytotoxicity by nine, four and two times against HepG-2, Caco2, and MCF-7, respectively. Moreover, the simple methyl substitution on the thiosemicarbazone terminus 9a improved the parent derivative 3 cytotoxicity by nine, fourteen, and six times against HepG-2, Caco2, and MCF-7, respectively. This astonishing cytotoxicity was elaborated with hCAIX molecular docking simulation of 4, 9a, and 12d demonstrating binding to zinc and its catalytic His94. Furthermore, molecular dynamic simulation 9a revealed stable hydrogen bonding with hCAIX with interaction energy of -61.07 kcal mol-1 and ΔGbinding MM-PBSA of -9.6 kcal mol-1.
Collapse
Affiliation(s)
- Samir Bondock
- Chemistry Department, Faculty of Science, King Khalid University 9004 Abha Saudi Arabia
| | - Tallah Albarqi
- Chemistry Department, Faculty of Science, King Khalid University 9004 Abha Saudi Arabia
| | - Mohamed Abboud
- Chemistry Department, Faculty of Science, King Khalid University 9004 Abha Saudi Arabia
| | - Tamer Nasr
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University 11795 Helwan Cairo Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, MTI 12055 Cairo Egypt
| | - Nada M Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, MTI 12055 Cairo Egypt
| | - Moaz M Abdou
- Egyptian Petroleum Research Institute Nasr City 11727 Cairo Egypt
| |
Collapse
|
30
|
Dorbabu A. Pyrazole/pyrazoline as an excellent pharmacophore in the design of carbonic anhydrase inhibitors (2018-2022). Arch Pharm (Weinheim) 2023; 356:e2200562. [PMID: 36599496 DOI: 10.1002/ardp.202200562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023]
Abstract
Carbonic anhydrase (CA) is a metalloenzyme that catalyzes the interconversion between carbon dioxide and water and dissociated ions of carbonic acid. In addition, CA performs various other functions in animals and plants, depending on the part of the living being. CAs have been found in almost all organisms. Besides, CAs are associated with several diseases, such as glaucoma, obesity, epilepsy, cancer, and so on. CAs are also involved in tumor cell growth and angiogenesis. Thus, inhibition of CA may be an attractive way of control of such diseases. Hence, CA inhibitors have been designed and developed to cure CA-associated diseases. Some examples of approved CA inhibitors are dorzolamide, methazolamide, brinzolamide, and dichlorphenamide. Furthermore, various heterocyclic scaffolds were utilized for the design of CA inhibitors. Among those, pyrazole/pyrazoline derivatives have exhibited greater potency toward CA inhibition. Hence, research that took place in the field of drug design and discovery of CA inhibition has been systematically reviewed and collated. Alongside, the structure-activity relationship has been described, followed by a description of the most potent molecules and their structural features.
Collapse
Affiliation(s)
- Atukuri Dorbabu
- SRMPP Government First Grade College, Huvina Hadagali, India
| |
Collapse
|
31
|
Nerella SG, Singh P, Thacker PS, Arifuddin M, Supuran CT. PET radiotracers and fluorescent probes for imaging human carbonic anhydrase IX and XII in hypoxic tumors. Bioorg Chem 2023; 133:106399. [PMID: 36731297 DOI: 10.1016/j.bioorg.2023.106399] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/07/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Positron emission tomography (PET) and fluorescent imaging play a pivotal role in medical diagnosis, biomedical oncologic research, and drug development process, which include identification of target location, target engagement, but also prove on mechanism of action or pharmacokinetics of new drug candidates. PET estimates physiological changes at the molecular level using specific radiotracers containing a short-lived positron emitting radionuclide such as fluorine-18 or carbon-11, whereas fluorescent imaging techniques use fluorescent probes labeled with suitable drug candidates for detection at the molecular level. The human carbonic anhydrase (hCA) isoforms IX and XII are overexpressed in hypoxic cancer cells, promoting tumor growth by regulating extra/intracellular pH, ferroptosis, and metabolism, being recognized as promising targets for anticancer theranostic agents. In this review, we have focused on PET radiotracers as well as fluorescent probes for diagnosis and treatment of tumors expressing hCA IX and hCA XII.
Collapse
Affiliation(s)
- Sridhar Goud Nerella
- Department of Neuroimaging and Interventional Radiology (NI & IR), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru 560 029, India.
| | - Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Pavitra S Thacker
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India; Department of Chemistry, Directorate of Distance Education, Maulana Azad National Urdu University, Hyderabad, India
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
32
|
Angeli A, Petrou A, Kartsev V, Lichitsky B, Komogortsev A, Capasso C, Geronikaki A, Supuran CT. Synthesis, Biological and In Silico Studies of Griseofulvin and Usnic Acid Sulfonamide Derivatives as Fungal, Bacterial and Human Carbonic Anhydrase Inhibitors. Int J Mol Sci 2023; 24:ijms24032802. [PMID: 36769114 PMCID: PMC9917406 DOI: 10.3390/ijms24032802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the essential reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho-/physiological conditions. A series of griseofulvin and usnic acid sulfonamides were synthesized and tested as possible CA inhibitors. Since β- and γ- classes are expressed in microorganisms in addition to the α- class, showing substantial structural differences to the human isoforms they are also interesting as new antiinfective targets with a different mechanism of action for fighting the emerging problem of extensive drug resistance afflicting most countries worldwide. Griseofulvin and usnic acid sulfonamides were synthesized using methods of organic chemistry. Their inhibitory activity, assessed against the cytosolic human isoforms hCA I and hCA II, the transmembrane hCA IX as well as β- and γ-CAs from different bacterial and fungal strains, was evaluated by a stopped-flow CO2 hydrase assay. Several of the investigated derivatives showed interesting inhibition activity towards the cytosolic associate isoforms hCA I and hCA II, as well as the three γ-CAs and Malassezia globosa (MgCA) enzyme. Six compounds (1b-1d, 1h, 1i and 1j) were more potent than AAZ against hCA I while five (1d, 1h, 1i, 1j and 4a) showed better activity than AAZ against the hCA II isoform. Moreover, all compounds appeared to be very potent against MgCA with a Ki lower than that of the reference drug. Furthermore, computational procedures were used to investigate the binding mode of this class of compounds within the active site of human CAs.
Collapse
Affiliation(s)
- Andrea Angeli
- NeuroFarba Department, Sezione di ScienzeFarmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
- Istituto di Bioscienze e Biorisorse, CNR (National Research Council), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Boris Lichitsky
- Zelinsky Institute of Organic Chemistry, Leninsky Prospect, Moscow 119991, Russia
| | - Andrey Komogortsev
- Zelinsky Institute of Organic Chemistry, Leninsky Prospect, Moscow 119991, Russia
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR (National Research Council), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (A.G.); (C.T.S.)
| | - Claudiu T. Supuran
- NeuroFarba Department, Sezione di ScienzeFarmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
- Correspondence: (A.G.); (C.T.S.)
| |
Collapse
|
33
|
Angeli A, Micheli L, Carta F, Ferraroni M, Pirali T, Fernandez Carvajal A, Ferrer Montiel A, Di Cesare Mannelli L, Ghelardini C, Supuran CT. First-in-Class Dual Hybrid Carbonic Anhydrase Inhibitors and Transient Receptor Potential Vanilloid 1 Agonists Revert Oxaliplatin-Induced Neuropathy. J Med Chem 2023; 66:1616-1633. [PMID: 36626645 PMCID: PMC9940855 DOI: 10.1021/acs.jmedchem.2c01911] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Here, we report for the first time a series of compounds potentially useful for the management of oxaliplatin-induced neuropathy (OINP) able to modulate the human Carbonic Anhydrases (hCAs) as well as the Transient Receptor Potential Vanilloid 1 (TRPV1). All compounds showed effective in vitro inhibition activity toward the main hCAs involved in such a pathology, whereas selected items reported moderate agonism of TRPV1. X-ray crystallographic experiments assessed the binding modes of the two enantiomers (R)-37a and (S)-37b within the hCA II cleft. Although the tails assumed diverse orientations, no appreciable effects were observed for their hCA II affinity. Similarly, the activity of (R)-39a and (S)-39b on TRPV1 was not influenced by the stereocenters. In vivo evaluation of the most promising derivatives (R)-12a, (R)-37a, and the two enantiomers (R)-39a, (S)-39b revealed antihypersensitivity effects in a mouse model of OINP with potent and persistent effect up to 75 min after administration.
Collapse
Affiliation(s)
- Andrea Angeli
- NEUROFARBA
Department, Sezione di Scienze Farmaceutiche, University of Florence, via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy,. Tel.: +39 055
457 3666
| | - Laura Micheli
- Pharmacology
and Toxicology Section, Department of Neuroscience, Psychology, Drug
Research and Child Health (NEUROFARBA), University of Florence, viale Gaetano Pieraccini 6, 50139 Firenze, Florence, Italy
| | - Fabrizio Carta
- NEUROFARBA
Department, Sezione di Scienze Farmaceutiche, University of Florence, via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Marta Ferraroni
- Department
of Chemistry ″Ugo Schiff″, University of Florence, via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy
| | - Tracey Pirali
- Dipartimento
Di Scienze del Farmaco, Università
Degli Studi del Piemonte Orientale, 28100 Novara, Italy
| | - Asia Fernandez Carvajal
- Instituto
de Investigación, Desarrollo e Innovación en Biotecnología
Sanitaria de Elche (IDiBE), Universitas
Miguel Hernández, 03202 Elche, Spain
| | - Antonio Ferrer Montiel
- Instituto
de Investigación, Desarrollo e Innovación en Biotecnología
Sanitaria de Elche (IDiBE), Universitas
Miguel Hernández, 03202 Elche, Spain
| | - Lorenzo Di Cesare Mannelli
- Pharmacology
and Toxicology Section, Department of Neuroscience, Psychology, Drug
Research and Child Health (NEUROFARBA), University of Florence, viale Gaetano Pieraccini 6, 50139 Firenze, Florence, Italy
| | - Carla Ghelardini
- Pharmacology
and Toxicology Section, Department of Neuroscience, Psychology, Drug
Research and Child Health (NEUROFARBA), University of Florence, viale Gaetano Pieraccini 6, 50139 Firenze, Florence, Italy
| | - Claudiu T. Supuran
- NEUROFARBA
Department, Sezione di Scienze Farmaceutiche, University of Florence, via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
34
|
Sharma V, Kumar R, Angeli A, Supuran CT, Sharma PK. Benzenesulfonamides with trisubstituted triazole motif as selective carbonic anhydrase I, II, IV, and IX inhibitors. Arch Pharm (Weinheim) 2023; 356:e2200391. [PMID: 36316236 DOI: 10.1002/ardp.202200391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 01/03/2023]
Abstract
Twenty novel 1,2,3-triazole benzenesulfonamides featuring nitrile 8a-g, carbothioamide 9a-f, and N'-hydroxycarboximidamide 10a-g functionalities were designed and synthesized to improve potency and selectivity as carbonic anhydrase inhibitors (CAIs). The synthesized 1,2,3-triazole compounds were tested in vitro as CAIs against four physiologically and pharmacologically relevant isoforms of human carbonic anhydrase (hCA I, II, IV, and IX). Compounds 8a-g, 9a-f, and 10a-g displayed variable inhibition constants ranging from 8.1 nM to 3.22 μM for hCA I, 4.7 nM to 0.50 μM for hCA II, 15.0 nM to 3.7 μM for hCA IV, and 29.6 nM to 0.27 μM for hCA IX. As per the inhibition data profile, compounds 9a-e exhibited strong efficacy for hCA IV, whereas the inhibition was found to be somewhat diminished in the case of hCA IX by nearly all the compounds. A computational protocol based on docking and MM-GBSA was conducted to reveal the plausible interactions of the targeted sulfonamides within the hCA II and IX binding sites. The outcomes of appending various functionalities at the C-4 position of the 1,2,3-triazole motif over the inhibition potential and selectivity of the designed sulfonamides were examined with a potential for the discovery of new isoform selective CAIs. The CAI and SAR data established the significance of the synthesized 1,2,3-triazoles as building blocks for developing CAI drugs.
Collapse
Affiliation(s)
- Vikas Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India.,Pt. Chiranji Lal Sharma Government College, Karnal, India
| | - Rajiv Kumar
- Ch. Mani Ram Godara Government College for Women, Fatehabad, India
| | - Andrea Angeli
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
35
|
Benzenesulfonamides Incorporating Hydantoin Moieties Effectively Inhibit Eukaryoticand Human Carbonic Anhydrases. Int J Mol Sci 2022; 23:ijms232214115. [PMID: 36430592 PMCID: PMC9696710 DOI: 10.3390/ijms232214115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
A series of novel 1-(4-benzenesulfonamide)-3-alkyl/benzyl-hydantoin derivatives were synthesized and evaluated for the inhibition of eukaryotic and human carbonic anhydrases (CAs, EC 4.2.1.1). The prepared compounds were screened for their hCA inhibitory activities against three cytosolic isoforms as well as two β-CAs from fungal pathogens. The best inhibition was observed against hCA II and VII as well as Candida glabrata enzyme CgNce103. hCA I and Malassezia globosa MgCA enzymes were, on the other hand, less effectively inhibited by these compounds. The inhibitory potency of these compounds against CAs was found to be dependent on the electronic and steric effects of substituent groups on the N3-position of the hydantoin ring, which included alkyl, alkenyl and substituted benzyl moieties. The interesting results against CgNce103 make the compounds of interest for investigations in vivo as potential antifungals.
Collapse
|
36
|
Braconi L, Teodori E, Riganti C, Coronnello M, Nocentini A, Bartolucci G, Pallecchi M, Contino M, Manetti D, Romanelli MN, Supuran CT, Dei S. New Dual P-Glycoprotein (P-gp) and Human Carbonic Anhydrase XII (hCA XII) Inhibitors as Multidrug Resistance (MDR) Reversers in Cancer Cells. J Med Chem 2022; 65:14655-14672. [PMID: 36269278 DOI: 10.1021/acs.jmedchem.2c01175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In a continuing search of dual P-gp and hCA XII inhibitors, we synthesized and studied new N,N-bis(alkanol)amine aryl diester derivatives characterized by the presence of a coumarin group. These hybrids contain both P-gp and hCA XII binding groups to synergistically overcome the P-gp-mediated multidrug resistance (MDR) in cancer cells expressing both P-gp and hCA XII. Indeed, hCA XII modulates the efflux activity of P-gp and the inhibition of hCA XII reduces the intracellular pH, thereby decreasing the ATPase activity of P-gp. All compounds showed inhibitory activities on P-gp and hCA XII proteins taken individually, and many of them displayed a synergistic effect in HT29/DOX and A549/DOX cells that overexpress both P-gp and hCA XII, being more potent than in K562/DOX cells overexpressing only P-gp. Compounds 5 and 14 were identified as promising chemosensitizer agents for selective inhibition in MDR cancer cells overexpressing both P-gp and hCA XII.
Collapse
Affiliation(s)
- Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, Via Santena 5/bis, 10126Torino, Italy
| | - Marcella Coronnello
- Department of Health Sciences - Clinical Pharmacology and Oncology Section, University of Florence, Viale Pieraccini 6, 50139Firenze, Italy
| | - Alessio Nocentini
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| | - Marco Pallecchi
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| | - Marialessandra Contino
- Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", via Orabona 4, 70125Bari, Italy
| | - Dina Manetti
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| |
Collapse
|
37
|
A decade of tail-approach based design of selective as well as potent tumor associated carbonic anhydrase inhibitors. Bioorg Chem 2022; 126:105920. [DOI: 10.1016/j.bioorg.2022.105920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022]
|
38
|
Arif N, Shafiq Z, Mahmood K, Rafiq M, Naz S, Shahzad SA, Farooq U, Bahkali AH, Elgorban AM, Yaqub M, El-Gokha A. Synthesis, Biological Evaluation, and In Silico Studies of Novel Coumarin-Based 4 H,5 H-pyrano[3,2- c]chromenes as Potent β-Glucuronidase and Carbonic Anhydrase Inhibitors. ACS OMEGA 2022; 7:28605-28617. [PMID: 35990487 PMCID: PMC9386806 DOI: 10.1021/acsomega.2c03528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The search for novel heterocyclic compounds with a natural product skeleton as potent enzyme inhibitors against clinical hits is our prime concern in this study. Here, a simple and facile two-step strategy has been designed to synthesize a series of novel coumarin-based dihydropyranochromenes (12a-12m) in a basic moiety. The synthesized compounds were thus characterized through spectroscopic techniques and screened for inhibition potency against the cytosolic hCA II isoform and β-glucuronidase. Few of these compounds were potent inhibitors of hCA II and β-glucuronidase with varying IC50 values ranging from 4.55 ± 0.22 to 21.77 ± 3.32 μM and 440.1 ± 1.17 to 971.3 ± 0.05 μM, respectively. Among the stream of synthesized compounds, 12e and 12i were the most potent inhibitors of β-glucuronidase, while 12h, 12i, and 12j showed greater potency against hCA II. In silico docking studies illustrated the significance of substituted groups on the pyranochromene skeleton and binding pattern of these highly potent compounds inside enzyme pockets.
Collapse
Affiliation(s)
- Nadia Arif
- Institute
of Chemical Sciences, Organic Chemistry Division, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Zahid Shafiq
- Institute
of Chemical Sciences, Organic Chemistry Division, Bahauddin Zakariya University, Multan 60800, Pakistan
- Department
of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Khalid Mahmood
- Institute
of Chemical Sciences, Organic Chemistry Division, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Rafiq
- Institute
of Chemical Sciences, Organic Chemistry Division, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sadia Naz
- Department
of Chemistry, COMSATS University Islamabad,
Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department
of Chemistry, COMSATS University Islamabad,
Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Umar Farooq
- Department
of Chemistry, COMSATS University Islamabad,
Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Ali H. Bahkali
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdallah M. Elgorban
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Muhammad Yaqub
- Institute
of Chemical Sciences, Organic Chemistry Division, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Ahmed El-Gokha
- Department
of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Chemistry
Department, Faculty of Science, Menoufia
University, Shebin El-Kom 32512, Egypt
| |
Collapse
|
39
|
Squaramide-Tethered Sulfonamides and Coumarins: Synthesis, Inhibition of Tumor-Associated CAs IX and XII and Docking Simulations. Int J Mol Sci 2022; 23:ijms23147685. [PMID: 35887037 PMCID: PMC9318203 DOI: 10.3390/ijms23147685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: carbonic anhydrases (CAs) are attractive targets for the development of new anticancer therapies; in particular, CAs IX and XII isoforms are overexpressed in numerous tumors. (2) Methods: following the tail approach, we have appended a hydrophobic aromatic tail to a pharmacophore responsible for the CA inhibition (aryl sulfonamide, coumarin). As a linker, we have used squaramides, featured with strong hydrogen bond acceptor and donor capacities. (3) Results: Starting from easily accessible dimethyl squarate, the title compounds were successfully obtained as crystalline solids, avoiding the use of chromatographic purifications. Interesting and valuable SARs could be obtained upon modification of the length of the hydrocarbon chain, position of the sulfonamido moiety, distance of the aryl sulfonamide scaffold to the squaramide, stereoelectronic effects on the aromatic ring, as well as the number and type of substituents on C-3 and C-4 positions of the coumarin. (4) Conclusions: For sulfonamides, the best profile was achieved for the m-substituted derivative 11 (Ki = 29.4, 9.15 nM, CA IX and XII, respectively), with improved selectivity compared to acetazolamide, a standard drug. Coumarin derivatives afforded an outstanding selectivity (Ki > 10,000 nM for CA I, II); the lead compound (16c) was a strong CA IX and XII inhibitor (Ki = 19.2, 7.23 nM, respectively). Docking simulations revealed the key ligand-enzyme interactions.
Collapse
|
40
|
Chahal V, Kakkar R. A combination strategy of structure-based virtual screening, MM-GBSA, cross docking, molecular dynamics and metadynamics simulations used to investigate natural compounds as potent and specific inhibitors of tumor linked human carbonic anhydrase IX. J Biomol Struct Dyn 2022:1-16. [PMID: 35735269 DOI: 10.1080/07391102.2022.2087736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cancer remains a serious health concern representing one of the leading causes of deaths worldwide. The enzyme human carbonic anhydrase IX (hCA IX) is found to be over-expressed in many cancer types and its selective inhibition over its cytosolic off-target isoform, human carbonic anhydrase II (hCA II), represents a potential area of research in the development of novel anticancer compounds. This work is concerned with the use of various in silico tools for the identification of natural product based molecules that can selectively inhibit hCA IX over hCA II. MM-GBSA assisted structure-based virtual screening against hCA IX was performed for nearly 225,000 natural products imported from the ZINC15 database. The obtained hits were checked for their potency by considering acetazolamide, the bound inhibitor of hCA IX, as the reference molecule, and 121 molecules were identified as potent hCA IX inhibitors. After ensuring their potency, cross-docking, followed by MM-GBSA calculations of the hits with hCA II, was performed, and their selectivity was assessed by considering the hCA IX selective compound SLC-0111 as the reference molecule, and 50 natural products were identified as potent as well as selective hCA IX inhibitors. Molecules with the quinoline scaffold showed the highest selectivity, and their selectivity was attributed to the strong electrostatic interactions of the zinc binding group (ZBG) with the active site Zn(II) ion. Furthermore, the stability of the binding modes of the top hCA IX selective hits was ensured by performing molecular dynamics (MD) simulations, which clearly proved that one of the short-listed molecules is truly selective, as it does not interact with the active site Zn(II) ion of hCA II, but interacts strongly with this ion in hCA IX. Bonding pose metadynamics studies revealed that the ligand moves to a more stable binding site from the one predicted by the docking studies and shows stronger interaction with the protein and Zn(II) at this binding site. The ligand is not likely to have issues with bioavailability. As a result, this ligand can be taken for bioassay testing and subsequently used as a feasible therapeutic treatment for a variety of cancer types. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Varun Chahal
- Computational Chemistry Group, Department of Chemistry, University of Delhi, Delhi, India
| | - Rita Kakkar
- Computational Chemistry Group, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
41
|
Khatua S, Taraphder S. In the footsteps of an inhibitor unbinding from the active site of human carbonic anhydrase II. J Biomol Struct Dyn 2022; 41:3187-3204. [PMID: 35257634 DOI: 10.1080/07391102.2022.2048075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The crystal structure of human carbonic anhydrase (HCA) II bound to an inhibitor molecule, 6-hydroxy-2-thioxocoumarin (FC5), shows FC5 to be located in a hydrophobic pocket at the active site. The present work employs classical molecular dynamics (MD) simulation to follow the FC5 molecule for 1 μs as it unbinds from its binding location, adopts the path of substrate/product diffusion (path 1) to leave the active site at around 75 ns. It is then found to undergo repeated binding and unbinding at different locations on the surface of the enzyme in water. Several transient excursions through different regions of the enzyme are also observed prior to its exit from the active site. These transient paths are combined with functionally relevant cavities/channels to enlist five additional pathways (path 2-6). Pathways 1-6 are subsequently explored using steered MD and umbrella sampling simulations. A free energy barrier of 0.969 kcal mol-1 is encountered along path 1, while barriers in the range of 0.57-2.84 kcal mol-1 are obtained along paths 2, 4 and 5. We also analyze in detail the interaction between FC5 and the enzyme along each path as the former leaves the active site of HCA II. Our results indicate path 1 to be the major exit pathway for FC5, although competing contributions may also come from the paths 2, 4 and 5.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Satyajit Khatua
- Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| | - Srabani Taraphder
- Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
42
|
Synthesis, Carbonic Anhydrase II/IX/XII Inhibition, DFT, and Molecular Docking Studies of Hydrazide-Sulfonamide Hybrids of 4-Methylsalicyl- and Acyl-Substituted Hydrazide. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5293349. [PMID: 35252449 PMCID: PMC8894010 DOI: 10.1155/2022/5293349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 11/18/2022]
Abstract
Carbonic anhydrases (CAs and EC 4.2.1.1) are the Zn2+ containing enzymes which catalyze the reversible hydration of CO2 to carbonate and proton. If they are not functioning properly, it would lead towards many diseases including tumor. Synthesis of hydrazide-sulfonamide hybrids (19-36) was carried out by the reaction of aryl (10-11) and acyl (12-13) hydrazides with substituted sulfonyl chloride (14-18). Final product formation was confirmed by FT-IR, NMR, and EI-MS. Density functional theory (DFT) calculations were performed on all the synthesized compounds to get the ground-state geometries and compute NMR properties. NMR computations were in excellent agreement with the experimental NMR data. All the synthesized hydrazide-sulfonamide hybrids were in vitro evaluated against CA II, CA IX, and CA XII isozymes for their carbonic anhydrase inhibition activities. Among the entire series, only compounds 22, 32, and 36 were highly selective inhibitors of hCA IX and did not inhibit hCA XII. To investigate the binding affinity of these compounds, molecular docking studies of compounds 32 and 36 were carried out against both hCA IX and hCA XII. By using BioSolveIT's SeeSAR software, further studies to provide visual clues to binding affinity indicate that the structural elements that are responsible for this were also studied. The binding of these compounds with hCA IX was highly favorable (as expected) and in agreement with the experimental data.
Collapse
|
43
|
Dang Y, Wei Y, Batool W, Sun X, Li X, Zhang SH. Contribution of the Mitochondrial Carbonic Anhydrase (MoCA1) to Conidiogenesis and Pathogenesis in Magnaporthe oryzae. Front Microbiol 2022; 13:845570. [PMID: 35250959 PMCID: PMC8891501 DOI: 10.3389/fmicb.2022.845570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 01/12/2023] Open
Abstract
The interconversion of CO2 and HCO3− catalyzed by carbonic anhydrases (CAs) is a fundamental biochemical process in organisms. During mammalian–pathogen interaction, both host and pathogen CAs play vital roles in resistance and pathogenesis; during planta–pathogen interaction, however, plant CAs function in host resistance but whether pathogen CAs are involved in pathogenesis is unknown. Here, we biologically characterized the Magnaporthe oryzae CA (MoCA1). Through detecting the DsRED-tagged proteins, we observed the fusion MoCA1 in the mitochondria of M. oryzae. Together with the measurement of CA activity, we confirmed that MoCA1 is a mitochondrial zinc-binding CA. MoCA1 expression, upregulated with H2O2 or NaHCO3 treatment, also showed a drastic upregulation during conidiogenesis and pathogenesis. When MoCA1 was deleted, the mutant ΔMoCA1 was defective in conidiophore development and pathogenicity. 3,3′-Diaminobenzidine (DAB) staining indicated that more H2O2 accumulated in ΔMoCA1; accordingly, ATPase genes were downregulated and ATP content decreased in ΔMoCA1. Summarily, our data proved the involvement of the mitochondrial MoCA1 in conidiogenesis and pathogenesis in the rice blast fungus. Considering the previously reported HCO3− transporter MoAE4, we propose that MoCA1 in cooperation with MoAE4 constitutes a HCO3− homeostasis-mediated disease pathway, in which MoCA1 and MoAE4 can be a drug target for disease control.
Collapse
Affiliation(s)
- Yuejia Dang
- Center for Extreme-Environmental Microorganisms, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yi Wei
- Center for Extreme-Environmental Microorganisms, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Wajjiha Batool
- Center for Extreme-Environmental Microorganisms, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xicen Sun
- Center for Extreme-Environmental Microorganisms, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xiaoqian Li
- Center for Extreme-Environmental Microorganisms, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Shi-Hong Zhang
- Center for Extreme-Environmental Microorganisms, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Shi-Hong Zhang,
| |
Collapse
|
44
|
Swain B, Singh P, Angeli A, Sahoo SK, Yaddanapudi VM, T Supuran C, Arifuddin M. Efficient One-pot Synthesis of 3,3-di(indolyl)indolin-2-ones from Isatin and Indole Catalyzed by VOSO4 as Non-Sulfonamide Carbonic Anhydrase Inhibitors. Anticancer Agents Med Chem 2022; 22:2358-2366. [PMID: 35114927 DOI: 10.2174/1871520622666220202112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022]
Abstract
Background A high yielding green protocol has been developed and delineated for the synthesis of 3,3-di(indolyl)indolin-2-ones, potentially bioactive compounds, involving one pot aqueous medium condensation of isatin with indole in the presence of VOSO4. The synthesized compounds were screened for their carbonic anhydrase inhibitory activity against human (h) isoforms hCA I, hCA II, hCA IX and hCA XII. These non-sulfonamide derivatives selectively inhibited hCA II in the micromolar range. Objective To develop a high yielding green protocol to synthesize 3,3-diindolyl oxindole derivatives using water as solvent media and screening of the synthesized molecules for their carbonic anhydrase inhibitory activity. Methods The target compound is obtained by taking isatin, indole, VOSO4and H2O in one-pot at 70 oC. Results The designed molecules were synthesized by using the new method. The molecules were screened for their CA inhibitory activity which shows selective inhibition toward hCA II.The result shown an excellent yield without any loss or decrease in catalytic activity, hence proved the performance and recyclability of the catalyst. Conclusion An efficient, simple and green protocol was established that provides a facile and straightforward approach for the preparation of 3,3-diindolyl oxindole derivatives (3a-r) from Isatin and Indole by using 10 mol % VOSO4 in high yields in a short period of time by a one-pot coupling reaction. Furthermore, the catalyst can also be recovered and reused for three consecutive catalytic cycle without any loss of its efficiency which was confirmed by performing the experiment with 3a. The newly synthesized molecules (3a-r) were screened for their carbonic anhydrase inhibition potency against four isoforms, hCA I, II, IX and XII and most of the compounds were found potent against hCA II with potency low to submicromolar range.
Collapse
Affiliation(s)
- Baijayantimala Swain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Andrea Angeli
- UniversitàdegliStudi di Firenze, Neurofarba Dept., Sezione di ScienzeFarmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Santosh Kumar Sahoo
- Process chemistry Process Technology, Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Venkata Madhavi Yaddanapudi
- Process chemistry Process Technology, Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Claudiu T Supuran
- UniversitàdegliStudi di Firenze, Neurofarba Dept., Sezione di ScienzeFarmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Mohammed Arifuddin
- epartment of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| |
Collapse
|
45
|
Selective and low-cost triterpene urea and amide derivatives of high cytotoxicity and selectivity. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
46
|
Kumar R, Kumar A, Ram S, Angeli A, Bonardi A, Nocentini A, Gratteri P, Supuran CT, Sharma PK. Novel benzenesulfonamide-bearing pyrazoles and 1,2,4-thiadiazoles as selective carbonic anhydrase inhibitors. Arch Pharm (Weinheim) 2022; 355:e2100241. [PMID: 34596922 DOI: 10.1002/ardp.202100241] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/28/2021] [Accepted: 09/13/2021] [Indexed: 11/11/2022]
Abstract
Two series comprising 20 novel benzenesulfonamides bearing thioureido-linked pyrazole 8 and amino-1,2,4-thiadiazole 10 were synthesized and assayed as human carbonic anhydrase (hCA) inhibitors against isoforms I and II as well as the tumor-associated isoforms IX and XII. Molecular modeling studies of some potent derivatives (8a, 8c, 10a, and 10c) were also performed against isoforms hCA I, II, and XII. Both the promising series of compounds were synthesized by using commercially available mtethyl ketones and sulfanilamide as the starting materials. Interestingly, this paper also reports a novel methodology for the synthesis of amino-1,2,4-thiadiazoles 10 using 3-amino isoxazoles and 4-isothiocyanatobenzenesulfonamide as reactants. The activity profile of all the newly synthesized compounds reveals that amino-linked 1,2,4-thiadiazoles 10 were better inhibitors of the cytosolic isoform, hCA I, as compared to thioureido-linked pyrazoles 8. Further, hCA II was strongly inhibited by nearly all the newly synthesized sulfonamides, while all the compounds were less effective as hCA IX and XII inhibitors compared to the standard drug acetazolamide. However, in terms of selectivity, compound 8e was found to be the most selective inhibitor of hCA II, which is the isoform associated with glaucoma, edema, altitude sickness, and epilepsy.
Collapse
Affiliation(s)
- Rajiv Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- Department of Chemistry, Ch. Mani Ram Godara Government College for Women, Bhodia Khera, Fatehabad, India
| | - Amit Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Sita Ram
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- Department of Chemistry, J. C. Bose University of Science and Technology, YMCA, Faridabad, India
| | - Andrea Angeli
- NEUROFARBA Department-Pharmaceutical and Nutraceutical Section, University of Florence, Polo Scientifico, Firenze, Italy
| | - Alessandro Bonardi
- NEUROFARBA Department-Pharmaceutical and Nutraceutical Section, University of Florence, Polo Scientifico, Firenze, Italy
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modelling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Firenze, Italy
| | - Alessio Nocentini
- NEUROFARBA Department-Pharmaceutical and Nutraceutical Section, University of Florence, Polo Scientifico, Firenze, Italy
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modelling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Firenze, Italy
| | - Paola Gratteri
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modelling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Firenze, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department-Pharmaceutical and Nutraceutical Section, University of Florence, Polo Scientifico, Firenze, Italy
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
47
|
Guo W, Mei W, Liu G, Deng L, Zou X, Zhong Y, Zhuo X, Fan X, Zheng L. Base‐Promoted Three‐Component Cyclization and Coupling Strategy for the Synthesis of Substituted 3‐Aryl‐5‐thio‐1,3,4‐thiadiazole‐2‐thiones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Guo
- Gannan Normal University Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Economic & Technological Development Zone 341000 Ganzhou CHINA
| | - Weijie Mei
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Gongping Liu
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Ling Deng
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Xiaoying Zou
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Yumei Zhong
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Xiaoya Zhuo
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Xiaolin Fan
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Lvyin Zheng
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| |
Collapse
|
48
|
Mancuso F, De Luca L, Bucolo F, Vrabel M, Angeli A, Capasso C, Supuran CT, Gitto R. 4-Sulfamoylphenylalkylamides as Inhibitors of Carbonic Anhydrases Expressed in Vibrio cholerae. ChemMedChem 2021; 16:3787-3794. [PMID: 34592052 PMCID: PMC9298201 DOI: 10.1002/cmdc.202100510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/21/2022]
Abstract
A current issue of antimicrobial therapy is the resistance to treatment with worldwide consequences. Thus, the identification of innovative targets is an intriguing challenge in the drug and development process aimed at newer antimicrobial agents. The state-of-art of anticholera therapy might comprise the reduction of the expression of cholera toxin, which could be reached through the inhibition of carbonic anhydrases expressed in Vibrio cholerae (VchCAα, VchCAβ, and VchCAγ). Therefore, we focused our interest on the exploitation of sulfonamides as VchCA inhibitors. We planned to design and synthesize new benzenesulfonamides based on our knowledge of the VchCA catalytic site. The synthesized compounds were tested thus collecting useful SAR information. From our investigation, we identified new potent VchCA inhibitors, some of them displayed high affinity toward VchCAγ class, for which few inhibitors are currently reported in literature. The best interesting VchCAγ inhibitor (S)-N-(1-oxo-1-((4-sulfamoylbenzyl)amino)propan-2-yl)furan-2-carboxamide (40) resulted more active and selective inhibitor when compared with acetazolamide (AAZ) as well as previously reported VchCA inhibitors.
Collapse
Affiliation(s)
- Francesca Mancuso
- CHIBIOFARAM DepartmentUniversity of MessinaViale Stagno D'Alcontres98166MessinaItaly
| | - Laura De Luca
- CHIBIOFARAM DepartmentUniversity of MessinaViale Stagno D'Alcontres98166MessinaItaly
| | - Federica Bucolo
- CHIBIOFARAM DepartmentUniversity of MessinaViale Stagno D'Alcontres98166MessinaItaly
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry (IOCB)Czech Academy of SciencesFlemingovo nám. 216000PragueCzech Republic
| | - Andrea Angeli
- NEUROFARBA DepartmentUniversity of FlorenceVia U. Schiff 650019FlorenceItaly
| | - Clemente Capasso
- Institute of Biosciences and BioresourcesCNRVia Castellino 11180131NapoliItaly
| | - Claudiu T. Supuran
- NEUROFARBA DepartmentUniversity of FlorenceVia U. Schiff 650019FlorenceItaly
| | - Rosaria Gitto
- CHIBIOFARAM DepartmentUniversity of MessinaViale Stagno D'Alcontres98166MessinaItaly
| |
Collapse
|
49
|
Fuentes-Aguilar A, Merino-Montiel P, Montiel-Smith S, Meza-Reyes S, Vega-Báez JL, Puerta A, Fernandes MX, Padrón JM, Petreni A, Nocentini A, Supuran CT, López Ó, Fernández-Bolaños JG. 2-Aminobenzoxazole-appended coumarins as potent and selective inhibitors of tumour-associated carbonic anhydrases. J Enzyme Inhib Med Chem 2021; 37:168-177. [PMID: 34894971 PMCID: PMC8667885 DOI: 10.1080/14756366.2021.1998026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have carried out the design, synthesis, and evaluation of a small library of 2-aminobenzoxazole-appended coumarins as novel inhibitors of tumour-related CAs IX and XII. Substituents on C-3 and/or C-4 positions of the coumarin scaffold, and on the benzoxazole moiety, together with the length of the linker connecting both units were modified to obtain useful structure-activity relationships. CA inhibition studies revealed a good selectivity towards tumour-associated CAs IX and XII (Ki within the mid-nanomolar range in most of the cases) in comparison with CAs I, II, IV, and VII (Ki > 10 µM); CA IX was found to be slightly more sensitive towards structural changes. Docking calculations suggested that the coumarin scaffold might act as a prodrug, binding to the CAs in its hydrolysed form, which is in turn obtained due to the esterase activity of CAs. An increase of the tether length and of the substituents steric hindrance was found to be detrimental to in vitro antiproliferative activities. Incorporation of a chlorine atom on C-3 of the coumarin moiety achieved the strongest antiproliferative agent, with activities within the low micromolar range for the panel of tumour cell lines tested.
Collapse
Affiliation(s)
- Alma Fuentes-Aguilar
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Socorro Meza-Reyes
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - José Luis Vega-Báez
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - Miguel X Fernandes
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - Andrea Petreni
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence, Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence, Italy
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Seville, Spain
| | | |
Collapse
|
50
|
Berrino E, Michelet B, Martin‐Mingot A, Carta F, Supuran CT, Thibaudeau S. Modulating the Efficacy of Carbonic Anhydrase Inhibitors through Fluorine Substitution. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Emanuela Berrino
- University of Florence NEUROFARBA Dept. Sezione di Scienze Farmaceutiche e Nutraceutiche Via Ugo Schiff 6 50019 Sesto Fiorentino Florence Italy
| | - Bastien Michelet
- Superacid Group in “Organic Synthesis” Team Université de Poitiers CNRS UMR 7285 IC2MP Bât. B28, 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 09 France
| | - Agnès Martin‐Mingot
- Superacid Group in “Organic Synthesis” Team Université de Poitiers CNRS UMR 7285 IC2MP Bât. B28, 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 09 France
| | - Fabrizio Carta
- University of Florence NEUROFARBA Dept. Sezione di Scienze Farmaceutiche e Nutraceutiche Via Ugo Schiff 6 50019 Sesto Fiorentino Florence Italy
| | - Claudiu T. Supuran
- University of Florence NEUROFARBA Dept. Sezione di Scienze Farmaceutiche e Nutraceutiche Via Ugo Schiff 6 50019 Sesto Fiorentino Florence Italy
| | - Sébastien Thibaudeau
- Superacid Group in “Organic Synthesis” Team Université de Poitiers CNRS UMR 7285 IC2MP Bât. B28, 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 09 France
| |
Collapse
|