1
|
Vieira BM, Paiva MB, Gaspar-Elsas MIC, Xavier-Elsas PP. Coordinated regulation of eosinophil production and migration by glucocorticoids, prostaglandins, and cysteinyl-leukotrienes. Int Immunopharmacol 2025; 148:114067. [PMID: 39823798 DOI: 10.1016/j.intimp.2025.114067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025]
Abstract
INTRODUCTION The spectrum of eosinophil functions has expanded from fighting helminths to multiple novel roles in malignancy, infection, cancer, and metabolism. In asthma, glucocorticoids, prostaglandins (PG), and cysteinyl-leukotrienes (LT) regulate eosinophil biology through separate signaling pathways. Here we've evaluated the complex interplay between Dexa, PGE2, and CysLTs in eosinopoiesis and eosinophil biology in an allergic asthma model. METHODOLOGY We used different inbred mouse strains to probe the interactions between these agents in eosinophil differentiation and maturation in bone marrow culture. Flow cytometry and histological analyses evaluated eosinophil precursor proliferation, maturation, and VLA-4 expression. The in vivo function of eosinophils was assessed by their in vivo migration into allergen-challenged sites. RESULTS Eosinophil production in IL-5-stimulated bone marrow cultures is enhanced by dexamethasone but suppressed by PGE2, which triggers eosinophil apoptosis via inducible NO synthase (iNOS). Dexamethasone-primed cultures contain mostly immature eosinophils; by contrast, dexamethasone associated with PGE2 leads to the production of mature eosinophils (without inducing eosinophil apoptosis), by a mechanism independent of iNOS. Interaction between dexamethasone and LTD4 in culture produces mostly mature eosinophils expressing VLA-4, capable of migration into the lungs in ovalbumin-sensitized and -challenged mice. DISCUSSION The combination of dexamethasone and either PGE2 or LTD4 - both mediators of allergic inflammation - supports the maturation of eosinophils (overcoming the maturation blockade observed with dexamethasone alone), which are functional in an in vivo model of asthma.
Collapse
Affiliation(s)
- Bruno Marques Vieira
- Laboratório de Citocinas Dept. of Immunology Instituto de Microbiologia Prof. Paulo de Góes Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil; Laboratório de Medicina Experimental e Saúde Instituto Oswaldo Cruz FIOCRUZ Rio de Janeiro Brazil; Laboratório de Biomedicina do Cérebro Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) Rio de Janeiro Brazil.
| | - Milla Bezerra Paiva
- Laboratório de Medicina Experimental e Saúde Instituto Oswaldo Cruz FIOCRUZ Rio de Janeiro Brazil
| | | | - Pedro Paulo Xavier-Elsas
- Laboratório de Citocinas Dept. of Immunology Instituto de Microbiologia Prof. Paulo de Góes Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
2
|
Zhang W, Zhao S, Li J, Sun Y, Wang X. Network meta-analysis of efficacy and safety of drugs for the treatment of moderate to severe ulcerative colitis. Front Pharmacol 2025; 15:1481678. [PMID: 39830339 PMCID: PMC11739108 DOI: 10.3389/fphar.2024.1481678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Purpose To guide the drug selection for treatment of moderate to severe ulcerative colitis (UC) by evaluating the efficacy and safety of various drugs. Methods This systematic review searched the Embase, PubMed, The Cochrane Library, and Web of Science databases and included randomized controlled trials (RCTs) based on the drugs used alone or in combination for treating UC. Moreover, the Stata17.0 software was employed for statistical analysis and results were reported as relative risk (RR) and 95% confidence interval (CI). Results For the efficacy of induction, upadacitinib ranked first in clinical response, clinical remission, and endoscopic improvement rates, with cumulative probabilities of 96.0%, 99.3%, and 99.0%, respectively. Moreover, for the efficacy of maintenance, upadacitinib ranked first in both clinical remission and endoscopic improvement with a cumulative probability of 93.2% and 93.3%, respectively. For safety, vedolizumab showed the best incidence of adverse events (AE) with 16.8% cumulative probability, while upadacitinib showed the best incidence of serious adverse events (SAE) with 13.8% cumulative probability. Conclusion In a systematic review and network meta-analysis, we found upadacitinib showed the best efficacy and safety in to be ranked highest in patients with moderate to severe ulcerative colitis. More trials of direct comparisons are needed to inform clinical decision making with greater confidence.
Collapse
Affiliation(s)
- Wenkai Zhang
- The Second Clinical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Songbo Zhao
- The Second Clinical College of Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jipin Li
- The Second Clinical College of Lanzhou University, Lanzhou, Gansu, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yihua Sun
- The Second Clinical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiang Wang
- The Second Clinical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Zhao R, Gu J, Zhao H, Wang Z, Liu X, Yuan C, Zheng X, Yang T, Xu X, Cai Y. Expression of integrin α4β1 and α4β7 on B cells correlates with autoimmune responses in Graves' disease. Int Immunopharmacol 2024; 142:113218. [PMID: 39317053 DOI: 10.1016/j.intimp.2024.113218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Integrins are upregulated on endothelial cells and T-lymphocytes in autoimmune thyroid disease (AITD), potentially contributing to immune response localization. The role of integrins on B-cells in AITD remains unclear. METHODS Peripheral blood samples were collected from healthy controls (n = 56), patients with Graves' disease (GD) (n = 37) and Hashimoto's thyroiditis (HT) (n = 52). Ultrasound-guided fine-needle aspiration (FNA) of the thyroid was performed in patients with non-autoimmune thyroid disease (nAITD) (n = 19), GD (n = 11), and HT (n = 40). Integrins α4β7, α4β1, and αEβ7 in B cells were measured by flow cytometry. Serum zonulin levels were quantified via ELISA. Associations of integrins on B cells with thyroid hormones, thyroid autoantibodies, AITD duration, and zonulin were analyzed. RESULTS HT patients exhibited lower α4β7 and higher α4β1 expression on B cells compared to healthy controls and GD patients. While α4β7 was predominant on circulating B cells, the dominant integrin expressed on intrathyroidal B cells varied with specific thyroid diseases. In GD patients, α4β7 and α4β1 expression on circulating B cells correlated positively and negatively with thyroid function and thyroid stimulating immunoglobulins (TSI) levels, respectively. Intrathyroidal α4β1+ B cells positively correlated with TSH levels in HT patients. Additionally, serum zonulin was elevated in HT patients, and intrathyroidal α4β7+ B cells and α4β1+ B cells correlated negatively and positively with zonulin levels, respectively. Integrin αEβ7 on B cells showed no significant association with AITD. CONCLUSION Integrins expressed on B cells potentially play a role in the pathogenesis of AITD and might serve as immune biomarkers for the disease.
Collapse
Affiliation(s)
- Ruiling Zhao
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junjie Gu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hang Zhao
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhixiao Wang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaoyun Liu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Cuiping Yuan
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xuqin Zheng
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xinyu Xu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Yun Cai
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
4
|
Magnusen AF, Pandey MK. Complement System and Adhesion Molecule Skirmishes in Fabry Disease: Insights into Pathogenesis and Disease Mechanisms. Int J Mol Sci 2024; 25:12252. [PMID: 39596318 PMCID: PMC11594573 DOI: 10.3390/ijms252212252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the galactosidase alpha (GLA) gene, resulting in the accumulation of globotriaosylceramide (Gb3) and its deacetylated form, globotriaosylsphingosine (Lyso-Gb3) in various tissues and fluids throughout the body. This pathological accumulation triggers a cascade of processes involving immune dysregulation and complement system activation. Elevated levels of complement 3a (C3a), C5a, and their precursor C3 are observed in the plasma, serum, and tissues of patients with Fabry disease, correlating with significant endothelial cell abnormalities and vascular dysfunction. This review elucidates how the complement system, particularly through the activation of C3a and C5a, exacerbates disease pathology. The activation of these pathways leads to the upregulation of adhesion molecules, including vascular cell adhesion molecule 1 (VCAM1), intercellular adhesion molecule 1 (ICAM1), platelet and endothelial cell adhesion molecule 1 (PECAM1), and complement receptor 3 (CR3) on leukocytes and endothelial cells. This upregulation promotes the excessive recruitment of leukocytes, which in turn exacerbates disease pathology. Targeting complement components C3a, C5a, or their respective receptors, C3aR (C3a receptor) and C5aR1 (C5a receptor 1), could potentially reduce inflammation, mitigate tissue damage, and improve clinical outcomes for individuals with Fabry disease.
Collapse
Affiliation(s)
- Albert Frank Magnusen
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
5
|
Yang H, Shi P, Li M, Liu S, Mou B, Xia Y, Sun J. Plasma proteome mediate the impact of PM 2.5 on stroke: A 2-step Mendelian randomization study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116624. [PMID: 38908058 DOI: 10.1016/j.ecoenv.2024.116624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
The objectives of this study were to measure the mediation effect of plasma proteins and to clarify their mediating role in the relationship between stroke risk and particulate matter 2.5 (PM2.5) exposure. The possible mediating role of plasma proteins on the causative link between PM2.5 exposure and stroke incidence were examined using a two-step Mendelian randomization (MR) approach based on two-sample Mendelian randomization (TSMR). The findings revealed a significant positive causal relationship between PM2.5 exposure and stroke, with an inverse variance weighted odds ratio of 1.219 (95 % CI: 1.002 - 1.482, P < 0.05). Additionally, a positive causal association was identified between PM2.5 exposure and several plasma proteins, including FAM134B, SAP, ITGB7, Elafin, and DCLK3. Among these, FAM134B, ITGB7, Elafin, and DCLK3 also demonstrated a positive causal association with stroke, whereas only SAP was found to be negatively causally associated with stroke. Remarkably, four plasma proteins, namely DCLK3, FAM134B, Elafin, and ITGB7, were identified as mediators, accounting for substantial proportions (14.5 %, 13.6 %, 11.1 %, and 9.9 %) of the causal association between PM2.5 and stroke. These results remained robust across various sensitivity analyses. Consequently, the study highlights the significant and independent impact of PM2.5 on stroke risk and identifies specific plasma proteins as potential targets for preventive interventions against PM2.5-induced stroke.
Collapse
Affiliation(s)
- Huajie Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Peng Shi
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Mingzheng Li
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Shuailing Liu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Baohua Mou
- First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Yinglan Xia
- Zhejiang Greentown Cardiovascular Hospital, Hangzhou 310000, China
| | - Jiaxing Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
6
|
Paulus J, Sewald N. Small molecule- and peptide-drug conjugates addressing integrins: A story of targeted cancer treatment. J Pept Sci 2024; 30:e3561. [PMID: 38382900 DOI: 10.1002/psc.3561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 02/23/2024]
Abstract
Targeted cancer treatment should avoid side effects and damage to healthy cells commonly encountered during traditional chemotherapy. By combining small molecule or peptidic ligands as homing devices with cytotoxic drugs connected by a cleavable or non-cleavable linker in peptide-drug conjugates (PDCs) or small molecule-drug conjugates (SMDCs), cancer cells and tumours can be selectively targeted. The development of highly affine, selective peptides and small molecules in recent years has allowed PDCs and SMDCs to increasingly compete with antibody-drug conjugates (ADCs). Integrins represent an excellent target for conjugates because they are overexpressed by most cancer cells and because of the broad knowledge about native binding partners as well as the multitude of small-molecule and peptidic ligands that have been developed over the last 30 years. In particular, integrin αVβ3 has been addressed using a variety of different PDCs and SMDCs over the last two decades, following various strategies. This review summarises and describes integrin-addressing PDCs and SMDCs while highlighting points of great interest.
Collapse
Affiliation(s)
- Jannik Paulus
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
7
|
Neri B, Mancone R, Fiorillo M, Schiavone SC, De Cristofaro E, Migliozzi S, Biancone L. Comprehensive overview of novel chemical drugs for ulcerative colitis: focusing on phase 3 and beyond. Expert Opin Pharmacother 2024; 25:485-499. [PMID: 38591242 DOI: 10.1080/14656566.2024.2339926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Despite the growing number of highly efficacious biologics and chemical drugs for ulcerative colitis (UC), steroid-free disease control is still difficult to achieve in subgroups of patients due to refractoriness, adverse events, primary or secondary failure. New treatments are therefore still required in order to optimize clinical management of patients with UC. AREAS COVERED The efficacy and safety of both currently available and newly developed small molecules have been summarized. The PubMed database and clinicaltrials.gov were considered in order to search for phase 2b and 3 trials on new chemical drugs for UC. The study drugs reviewed included Janus kinases (JAK) and sphingosine-1-phosphate receptor (S1Pr) inhibitors, α4 integrin antagonist, and micro-RNA-124 upregulators. EXPERT OPINION Rapidity of onset, low immunogenicity, and safety are the main characteristics of small molecules currently available or under evaluation for treatment patients with UC. Among the currently available chemical drugs, the selective JAK and the S1Pr inhibitors are characterized by a good safety profile combined with the ability to induce clinical remission in UC. A relatively low frequency of endoscopic improvement and healing currently appears associated with their use, being higher in UC patients treated with S1Pr inhibitor Etrasimod. Overall, additional new safe and effective drugs are still required in order to optimize disease control in a larger majority of UC patients.
Collapse
Affiliation(s)
- Benedetto Neri
- Department of Systems Medicine, Gastroenterological Unit, University "Tor Vergata" of Rome, Rome, Italy
| | - Roberto Mancone
- Department of Systems Medicine, Gastroenterological Unit, University "Tor Vergata" of Rome, Rome, Italy
| | - Mariasofia Fiorillo
- Department of Systems Medicine, Gastroenterological Unit, University "Tor Vergata" of Rome, Rome, Italy
| | - Sara Concetta Schiavone
- Department of Systems Medicine, Gastroenterological Unit, University "Tor Vergata" of Rome, Rome, Italy
| | - Elena De Cristofaro
- Department of Systems Medicine, Gastroenterological Unit, University "Tor Vergata" of Rome, Rome, Italy
| | - Stefano Migliozzi
- Department of Systems Medicine, Gastroenterological Unit, University "Tor Vergata" of Rome, Rome, Italy
| | - Livia Biancone
- Department of Systems Medicine, Gastroenterological Unit, University "Tor Vergata" of Rome, Rome, Italy
| |
Collapse
|
8
|
Johansen KH, Golec DP, Okkenhaug K, Schwartzberg PL. Mind the GAP: RASA2 and RASA3 GTPase-activating proteins as gatekeepers of T cell activation and adhesion. Trends Immunol 2023; 44:917-931. [PMID: 37858490 PMCID: PMC10621891 DOI: 10.1016/j.it.2023.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Following stimulation, the T cell receptor (TCR) and its coreceptors integrate multiple intracellular signals to initiate T cell proliferation, migration, gene expression, and metabolism. Among these signaling molecules are the small GTPases RAS and RAP1, which induce MAPK pathways and cellular adhesion to activate downstream effector functions. Although many studies have helped to elucidate the signaling intermediates that mediate T cell activation, the molecules and pathways that keep naive T cells in check are less understood. Several recent studies provide evidence that RASA2 and RASA3, which are GAP1-family GTPase-activating proteins (GAPs) that inactivate RAS and RAP1, respectively, are crucial molecules that limit T cell activation and adhesion. In this review we describe recent data on the roles of RASA2 and RASA3 as gatekeepers of T cell activation and migration.
Collapse
Affiliation(s)
- Kristoffer H Johansen
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Dominic P Golec
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Pamela L Schwartzberg
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Zheng K, Yang W, Wang S, Sun M, Jin Z, Zhang W, Ren H, Li C. Identification of immune infiltration-related biomarkers in carotid atherosclerotic plaques. Sci Rep 2023; 13:14153. [PMID: 37644056 PMCID: PMC10465496 DOI: 10.1038/s41598-023-40530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Atherosclerosis is a chronic lipid-driven inflammatory response of the innate and adaptive immune systems, and it is responsible for several cardiovascular ischemic events. The present study aimed to determine immune infiltration-related biomarkers in carotid atherosclerotic plaques (CAPs). Gene expression profiles of CAPs were extracted from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between the CAPs and control groups were screened by the "limma" package in R software. Immune cell infiltration between the CAPs and control groups was evaluated by the single sample gene set enrichment analysis. Key infiltrating immune cells in the CAPs group were screened by the Wilcoxon test and least absolute shrinkage and selection operator regression. The weighted gene co-expression network analysis was used to identify immune cell-related genes. Hub genes were identified by the protein-protein interaction (PPI) network. Receiver operating characteristic curve analysis was performed to assess the gene's ability to differentiate between the CAPs and control groups. Finally, we constructed a miRNA-gene-transcription factor network of hub genes by using the ENCODE database. Eleven different types of immune infiltration-related cells were identified between the CAPs and control groups. A total of 1,586 differentially expressed immunity-related genes were obtained through intersection between DEGs and immune-related genes. Twenty hub genes were screened through the PPI network. Eventually, 7 genes (BTK, LYN, PTPN11, CD163, CD4, ITGAL, and ITGB7) were identified as the hub genes of CAPs, and these genes may serve as the estimable drug targets for patients with CAPs.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wentao Yang
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Shengxing Wang
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Mingsheng Sun
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhenyi Jin
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wangde Zhang
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hualiang Ren
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Chunmin Li
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
He C, Xiu W, Chen Q, Peng K, Zhu X, Wang Z, Xu X, Chen Y, Zhang G, Fu J, Dong Q, Wu X, Li A, Liu D, Gao Y, Wang J, Wang Z, Deng B, Shuai P, Gao C, Chen Y, Yu L, Lu F. Gut-licensed β7 + CD4 + T cells contribute to progressive retinal ganglion cell damage in glaucoma. Sci Transl Med 2023; 15:eadg1656. [PMID: 37531415 DOI: 10.1126/scitranslmed.adg1656] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
Glaucoma is the leading cause of irreversible blindness. Currently, most therapeutic strategies aim to reduce elevated intraocular pressure (EIOP), but this does not always halt disease progression. Evidence suggests a role for T cells in glaucoma pathogenesis, but the underlying mechanisms remain largely unknown. Here, we found that the percentage of circulating CD4+ T cells expressing a gut-homing integrin β7 was increased in patients with glaucoma and was associated with disease stage. In an EIOP-triggered glaucoma mouse model, β7+ CD4+ T cells infiltrated the retina in the progressive phase of glaucoma via eliciting retinal endothelial cell expression of mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1). MAdCAM-1 was minimally detected in retinas of healthy mice, and neutralization with an MAdCAM-1 antibody ameliorated retinal ganglion cell (RGC) loss and glial activity in mice with glaucoma. We furthermore found that EIOP-induced β7+ CD4+ T cells homed to the gut during the acute phase of glaucoma, which was essential for progressive RGC damage in diseased mice. Gut-homing β7+ CD4+ T cells underwent transcriptional reprogramming, showing up-regulated pathways enriched in autoimmune diseases, bacteria responses, mucosal immunity, and glial activity. Gut-homing β7+ CD4+ T cells gained the competence to induce retinal MAdCAM-1 expression and to cross the blood-retina barrier. Together, our study reveals a role of gut-licensed β7+ CD4+ T cells and MAdCAM-1 in RGC degeneration and emphasizes the importance of the "gut-retina" axis in glaucoma.
Collapse
Affiliation(s)
- Chong He
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenbo Xiu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qinyuan Chen
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kun Peng
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiong Zhu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Prenatal Diagnosis, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zuo Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiang Xu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Chen
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Gao Zhang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Fu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiwei Dong
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoqiong Wu
- Department of Ophthalmology, Luzhou Meternal and Child Health Hospital, Luzhou, China
| | - An Li
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Donghua Liu
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanping Gao
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinxia Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhao Wang
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, China
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Bolin Deng
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Shuai
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Caiping Gao
- Department of Gastroenterology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yilian Chen
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Yu
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, China
| | - Fang Lu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Swart LE, Fens MHAM, van Oort A, Waranecki P, Mata Casimiro LD, Tuk D, Hendriksen M, van den Brink L, Schweighart E, Seinen C, Nelson R, Krippner-Heidenreich A, O'Toole T, Schiffelers RM, Kooijmans S, Heidenreich O. Increased Bone Marrow Uptake and Accumulation of Very-Late Antigen-4 Targeted Lipid Nanoparticles. Pharmaceutics 2023; 15:1603. [PMID: 37376052 DOI: 10.3390/pharmaceutics15061603] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Lipid nanoparticles (LNPs) have evolved rapidly as promising delivery systems for oligonucleotides, including siRNAs. However, current clinical LNP formulations show high liver accumulation after systemic administration, which is unfavorable for the treatment of extrahepatic diseases, such as hematological disorders. Here we describe the specific targeting of LNPs to hematopoietic progenitor cells in the bone marrow. Functionalization of the LNPs with a modified Leu-Asp-Val tripeptide, a specific ligand for the very-late antigen 4 resulted in an improved uptake and functional siRNA delivery in patient-derived leukemia cells when compared to their non-targeted counterparts. Moreover, surface-modified LNPs displayed significantly improved bone-marrow accumulation and retention. These were associated with increased LNP uptake by immature hematopoietic progenitor cells, also suggesting similarly improved uptake by leukemic stem cells. In summary, we describe an LNP formulation that successfully targets the bone marrow including leukemic stem cells. Our results thereby support the further development of LNPs for targeted therapeutic interventions for leukemia and other hematological disorders.
Collapse
Affiliation(s)
- Laura E Swart
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Marcel H A M Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Anita van Oort
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Piotr Waranecki
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - L Daniel Mata Casimiro
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - David Tuk
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Martijn Hendriksen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Luca van den Brink
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Elizabeth Schweighart
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Cor Seinen
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Ryan Nelson
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | | | - Tom O'Toole
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Raymond M Schiffelers
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Sander Kooijmans
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Olaf Heidenreich
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
- Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne NE1 7RY, UK
| |
Collapse
|
12
|
Zhang Q, Zhang S, Chen J, Xie Z. The Interplay between Integrins and Immune Cells as a Regulator in Cancer Immunology. Int J Mol Sci 2023; 24:6170. [PMID: 37047140 PMCID: PMC10093897 DOI: 10.3390/ijms24076170] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Integrins are a group of heterodimers consisting of α and β subunits that mediate a variety of physiological activities of immune cells, including cell migration, adhesion, proliferation, survival, and immunotolerance. Multiple types of integrins act differently on the same immune cells, while the same integrin may exert various effects on different immune cells. In the development of cancer, integrins are involved in the regulation of cancer cell proliferation, invasion, migration, and angiogenesis; conversely, integrins promote immune cell aggregation to mediate the elimination of tumors. The important roles of integrins in cancer progression have provided valuable clues for the diagnosis and targeted treatment of cancer. Furthermore, many integrin inhibitors have been investigated in clinical trials to explore effective regimens and reduce side effects. Due to the complexity of the mechanism of integrin-mediated cancer progression, challenges remain in the research and development of cancer immunotherapies (CITs). This review enumerates the effects of integrins on four types of immune cells and the potential mechanisms involved in the progression of cancer, which will provide ideas for more optimal CIT in the future.
Collapse
Affiliation(s)
- Qingfang Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Shuo Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- College of Basic Medical, Nanchang University, Nanchang 330006, China
| |
Collapse
|
13
|
Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, Gu Y, Zhao N, Xiang Q, Cui Y. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther 2023; 8:1. [PMID: 36588107 PMCID: PMC9805914 DOI: 10.1038/s41392-022-01259-6] [Citation(s) in RCA: 393] [Impact Index Per Article: 196.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 01/03/2023] Open
Abstract
Integrins are considered the main cell-adhesion transmembrane receptors that play multifaceted roles as extracellular matrix (ECM)-cytoskeletal linkers and transducers in biochemical and mechanical signals between cells and their environment in a wide range of states in health and diseases. Integrin functions are dependable on a delicate balance between active and inactive status via multiple mechanisms, including protein-protein interactions, conformational changes, and trafficking. Due to their exposure on the cell surface and sensitivity to the molecular blockade, integrins have been investigated as pharmacological targets for nearly 40 years, but given the complexity of integrins and sometimes opposite characteristics, targeting integrin therapeutics has been a challenge. To date, only seven drugs targeting integrins have been successfully marketed, including abciximab, eptifibatide, tirofiban, natalizumab, vedolizumab, lifitegrast, and carotegrast. Currently, there are approximately 90 kinds of integrin-based therapeutic drugs or imaging agents in clinical studies, including small molecules, antibodies, synthetic mimic peptides, antibody-drug conjugates (ADCs), chimeric antigen receptor (CAR) T-cell therapy, imaging agents, etc. A serious lesson from past integrin drug discovery and research efforts is that successes rely on both a deep understanding of integrin-regulatory mechanisms and unmet clinical needs. Herein, we provide a systematic and complete review of all integrin family members and integrin-mediated downstream signal transduction to highlight ongoing efforts to develop new therapies/diagnoses from bench to clinic. In addition, we further discuss the trend of drug development, how to improve the success rate of clinical trials targeting integrin therapies, and the key points for clinical research, basic research, and translational research.
Collapse
Affiliation(s)
- Xiaocong Pang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Xu He
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiwei Qiu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Hanxu Zhang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Ran Xie
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiyan Liu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Yanlun Gu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Nan Zhao
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| |
Collapse
|
14
|
Lin SN, Musso A, Wang J, Mukherjee PK, West GA, Mao R, Lyu R, Li J, Zhao S, Elias M, Haberman Y, Denson LA, Kugathasan S, Chen MH, Czarnecki D, Dejanovic D, Le HT, Chandra J, Lipman J, Steele SR, Nguyen QT, Fiocchi C, Rieder F. Human intestinal myofibroblasts deposited collagen VI enhances adhesiveness for T cells - A novel mechanism for maintenance of intestinal inflammation. Matrix Biol 2022; 113:1-21. [PMID: 36108990 PMCID: PMC10043923 DOI: 10.1016/j.matbio.2022.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Inflammatory bowel diseases (IBD) cause chronic intestinal damage and extracellular matrix (ECM) remodeling. The ECM may play an active role in inflammation by modulating immune cell functions, including cell adhesion, but this hypothesis has not been tested in IBD. DESIGN Primary human intestinal myofibroblast (HIMF)-derived ECM from IBD and controls, 3D decellularized colon or ECM molecule-coated scaffolds were tested for their adhesiveness for T cells. Matrisome was analysed via proteomics. Functional integrin blockade was used to investigate the underlying mechanism. Analysis of the pediatric Crohn's disease (CD) RISK inception cohort was used to explore an altered ECM gene expression as a potential predictor for a future complicated disease course. RESULTS HIMF-derived ECM and 3D decellularized colonic ECM from IBD bound more T cells compared to control. Control HIMFs exposed to the pro-inflammatory cytokines Iinterleukin-1β (IL-1β) and tumor necrosis factor (TNF) increased, and to transforming growth factor-β1 (TGF-β1) decreased ECM adhesiveness to T cells. Matrisome analysis of the HIMF-derived ECM revealed collagen VI as a major culprit for differences in T cell adhesion. Collagen VI knockdown in HIMF reduced adhesion T cell as did the blockage of integrin αvβ1. Elevated gene expression of collagen VI in biopsies of pediatric CD patients was linked to risk for future stricturing disease. CONCLUSION HIMF-derived ECM in IBD binds a remarkably enhanced number of T cells, which is dependent on Collagen VI and integrin αvβ1. Collagen VI expression is a risk factor for a future complicated CD course. Blocking immune cells retention may represent a novel approach to treatment in IBD.
Collapse
Affiliation(s)
- Si-Nan Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alessandro Musso
- Division of Gastroenterology, Città della Salute e della Scienza di Torino, Molinette Hospital, Turin, Italy
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan, China
| | - Pranab K Mukherjee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gail A West
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ren Mao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ruishen Lyu
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shuai Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Michael Elias
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yael Haberman
- Sheba Medical Center, Tel Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel; Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lee A Denson
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Min-Hu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Doug Czarnecki
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dina Dejanovic
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hongnga T Le
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jyotsna Chandra
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jeremy Lipman
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Scott R Steele
- Department of Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Quang Tam Nguyen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, 9500 Euclid Avenue - NC22, Cleveland, OH, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, 9500 Euclid Avenue - NC22, Cleveland, OH, USA.
| |
Collapse
|
15
|
van Beers JJBC, Damoiseaux JGMC. Treatment of Autoimmune Diseases with Therapeutic Antibodies: Lessons Learned from PID Patients Allow for Stratification of the Infection Risk. Methods Mol Biol 2022; 2313:27-44. [PMID: 34478130 DOI: 10.1007/978-1-0716-1450-1_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Over the years, a wide variety of therapeutic antibodies has been successfully introduced in the autoimmunology clinic and many more are on the edge to follow. Many of these treatments address either a pathogenic circulating molecule or a cell-bound molecule. Whereas the former target results in neutralization of the soluble factor, the latter target either inhibits cellular function or induces selective cell death. If this targeted molecule or cell is part of the immune system, this therapy evokes a state of immunodeficiency. Knowing the exact function of the respective components enables the risk stratification for possible infectious complications in patients treated with biologics. Much of the understanding of the function of immune cells and their associated molecules, in relation to redundancy in the immune system, is derived from studies in knockout mice. However, as mice are not men in terms of their life-expectancy, their infection exposure, or the composition of their immune system, the most useful knowledge for estimating the consequence of therapeutic intervention on immune competence comes from monitoring patients. In the current chapter, we focus on patients with a primary immunodeficiency (PID) because they provide us with a unique perspective to estimate the redundancy of a certain genetic defect for overall immune competence. These patients have inborn errors of the immune system that, in general, are due to single gene defects. Depending on the immunological pathway that is defective, patients can present with different types of (opportunistic) infectious diseases, as well as other clinical manifestations. Based on selected examples, we focus in this chapter on finding parallels in the infectious risk of autoimmune patients treated with biologics and PID patients with a defect in the immunological pathway that is affected by the respective biologic. The goal is to learn from the (dis)similarities between both patient populations in terms of safety profiles of biologic treatments.
Collapse
Affiliation(s)
- Joyce J B C van Beers
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan G M C Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
16
|
Gilon C, Klazas M, Lahiani A, Schumacher-Klinger A, Merzbach S, Naoum JN, Ovadia H, Rubin L, Cornell-Kennon S, Schaefer EM, Katzhendler J, Marcinkiewicz C, Hoffman A, Lazarovici P. Synthesis and Pharmacological Characterization of Visabron, a Backbone Cyclic Peptide Dual Antagonist of α4β1 (VLA-4)/α9β1 Integrin for Therapy of Multiple Sclerosis. JACS AU 2021; 1:2361-2376. [PMID: 34977904 PMCID: PMC8717366 DOI: 10.1021/jacsau.1c00496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 06/14/2023]
Abstract
Integrins α4β1/ α9β1 are important in the pathogenesis and progression of inflammatory and autoimmune diseases by their roles in leukocyte activation and trafficking. Natalizumab, a monoclonal antibody selectively targeting α4β1 integrin and blocking leukocyte trafficking to the central nervous system, is an immunotherapy for multiple sclerosis (MS). However, due to its adverse effects associated with chronic treatment, alternative strategies using small peptide mimetic inhibitors are being sought. In the present study, we synthesized and characterized visabron c (4-4), a backbone cyclic octapeptide based on the sequence TMLD, a non-RGD unique α4β1 integrin recognition sequence motif derived from visabres, a proteinous disintegrin from the viper venom. Visabron c (4-4) was selected from a minilibrary with conformational diversity based on its potency and selectivity in functional adhesion cellular assays. Visabron c (4-4)'s serum stability, pharmacokinetics, and therapeutic effects following ip injection were assessed in an experimental autoimmune encephalomyelitis (EAE) animal model. Furthermore, visabron c (4-4)'s lack of toxic effects in mice was verified by blood analysis, tissue pathology, immunogenicity, and "off-target" effects, indicating its significant tolerability and lack of immunogenicity. Visabron c (4-4) can be delivered systemically. The in vitro and in vivo data justify visabron c (4-4) as a safe alternative peptidomimetic lead compound/drug to monoclonal anti-α4 integrin antibodies, steroids, and other immunosuppressant drugs. Moreover, visabron c (4-4) design may pave the way for developing new therapies for a variety of other inflammatory and/or autoimmune diseases.
Collapse
Affiliation(s)
- Chaim Gilon
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michal Klazas
- Pharmacy, Pharmacology, and Medicinal Chemistry, Institute
for Drug Research, School of Pharmacy, Faculty
of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Adi Lahiani
- Pharmacy, Pharmacology, and Medicinal Chemistry, Institute
for Drug Research, School of Pharmacy, Faculty
of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Adi Schumacher-Klinger
- Pharmacy, Pharmacology, and Medicinal Chemistry, Institute
for Drug Research, School of Pharmacy, Faculty
of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Shira Merzbach
- Pharmacy, Pharmacology, and Medicinal Chemistry, Institute
for Drug Research, School of Pharmacy, Faculty
of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Johnny N. Naoum
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Haim Ovadia
- Neurology and Allergy and Clinical Immunology Unit, Hadassah-Hebrew
University Medical Center, Jerusalem 9112001, Israel
| | - Limor Rubin
- Neurology and Allergy and Clinical Immunology Unit, Hadassah-Hebrew
University Medical Center, Jerusalem 9112001, Israel
| | - Susan Cornell-Kennon
- AssayQuant
Technologies, Inc., 260
Cedar Hill Street, Marlboro, Massachusetts 01752, United States
| | - Erik M. Schaefer
- AssayQuant
Technologies, Inc., 260
Cedar Hill Street, Marlboro, Massachusetts 01752, United States
| | - Jehoshua Katzhendler
- Pharmacy, Pharmacology, and Medicinal Chemistry, Institute
for Drug Research, School of Pharmacy, Faculty
of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Cezary Marcinkiewicz
- Department
of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Amnon Hoffman
- Pharmacy, Pharmacology, and Medicinal Chemistry, Institute
for Drug Research, School of Pharmacy, Faculty
of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Philip Lazarovici
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Pharmacy, Pharmacology, and Medicinal Chemistry, Institute
for Drug Research, School of Pharmacy, Faculty
of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
17
|
Panés J. Integrin Inhibitors in Inflammatory Bowel Disease: From Therapeutic Antibodies to Small-Molecule Drugs. Gastroenterology 2021; 161:1791-1793. [PMID: 34529992 DOI: 10.1053/j.gastro.2021.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023]
Affiliation(s)
- Julian Panés
- Inflammatory Bowel Disease Unit, Hospital Clínic de Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain.
| |
Collapse
|
18
|
Ziani W, Shao J, Fang A, Connolly PJ, Wang X, Veazey RS, Xu H. Mucosal integrin α4β7 blockade fails to reduce the seeding and size of viral reservoirs in SIV-infected rhesus macaques. FASEB J 2021; 35:e21282. [PMID: 33484474 PMCID: PMC7839271 DOI: 10.1096/fj.202002235r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/04/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
Cellular viral reservoirs are rapidly established in tissues upon HIV‐1/SIV infection, which persist throughout viral infection, even under long‐term antiretroviral therapy (ART). Specific integrins are involved in the homing of cells to gut‐associated lymphoid tissues (GALT) and inflamed tissues, which may promote the seeding and dissemination of HIV‐1/SIV to these tissue sites. In this study, we investigated the efficacy of prophylactic integrin blockade (α4β7 antibody or α4β7/α4β1 dual antagonist TR‐14035) on viral infection, as well as dissemination and seeding of viral reservoirs in systemic and lymphoid compartments post‐SIV inoculation. The results showed that blockade of α4β7/α4β1 did not decrease viral infection, replication, or reduce viral reservoir size in tissues of rhesus macaques after SIV infection, as indicated by equivalent levels of plasma viremia and cell‐associated SIV RNA/DNA to controls. Surprisingly, TR‐14035 administration in acute SIV infection resulted in consistently higher viremia and more rapid disease progression. These findings suggest that integrin blockade alone fails to effectively control viral infection, replication, dissemination, and reservoir establishment in HIV‐1/SIV infection. The use of integrin blockade for prevention or/and therapeutic strategies requires further investigation.
Collapse
Affiliation(s)
- Widade Ziani
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Jiasheng Shao
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Angela Fang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Patrick J Connolly
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| |
Collapse
|
19
|
Zhang MH, Wang H, Wang HG, Wen X, Yang XZ. Effective immune-inflammation index for ulcerative colitis and activity assessments. World J Clin Cases 2021; 9:334-343. [PMID: 33521101 PMCID: PMC7812895 DOI: 10.12998/wjcc.v9.i2.334] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/28/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The inverse association between systemic immune-inflammation index (SII) and overall survival in tumors has been studied.
AIM To evaluate the hematological indexes for assessing the activity of ulcerative colitis (UC).
METHODS In this case-control study, 172 UC patients and healthy participants were included. Comparisons were made among groups of white blood cells, hemoglobin, platelets, neutrophils, lymphocytes, monocytes, SII, neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR). The relationship with hematological inflammation was verified by Spearman correlation analyses. The efficiency of SII, NLR, and PLR for distinguishing between UC and severe disease status was assessed by the receiver operator curve and logistic regression analyses.
RESULTS The values of SII, NLR, and PLR were higher in UC patients than in controls (P < 0.001) and were positively correlated with the Mayo endoscopic score, extent, Degree of Ulcerative Colitis Burden of Luminal Inflammation (DUBLIN) score, and Ulcerative Colitis Endoscopic Index of Severity (UCEIS). The cut-off NLR value of 562.22 predicted UC with a sensitivity of 79.65% and a specificity of 76.16%. Logistic regression analysis revealed that patients with SII and NLR levels above the median had a significantly higher risk of UC (P < 0.05). Risk factors independently associated with DUBLIN ≥ 3 included SII ≥ 1776.80 [odds ratio (OR) = 11.53, P = 0.027] and NLR value of 2.67-4.23 (OR = 2.96, P = 0.047) on multivariate analysis. Compared with the first quartile, SII ≥ 1776.80 was an independent predictor of UCEIS ≥ 5 (OR = 18.46, P = 0.012).
CONCLUSION SII has a certain value in confirming UC and identifying its activity.
Collapse
Affiliation(s)
- Meng-Hui Zhang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| | - Han Wang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| | - Hong-Gang Wang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| | - Xin Wen
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| | - Xiao-Zhong Yang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an 223300, Jiangsu Province, China
| |
Collapse
|
20
|
Tresoldi I, Sangiuolo CF, Manzari V, Modesti A. SARS-COV-2 and infectivity: Possible increase in infectivity associated to integrin motif expression. J Med Virol 2020; 92:1741-1742. [PMID: 32246503 PMCID: PMC7228266 DOI: 10.1002/jmv.25831] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Ilaria Tresoldi
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università degli Studi di Roma Tor Vergata Facoltà di Medicina e Chirurgia, Roma, Italy
| | - Carla F Sangiuolo
- Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma Tor Vergata Facoltà di Medicina e Chirurgia, Roma, Italy
| | - Vittorio Manzari
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università degli Studi di Roma Tor Vergata Facoltà di Medicina e Chirurgia, Roma, Italy
| | - Andrea Modesti
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università degli Studi di Roma Tor Vergata Facoltà di Medicina e Chirurgia, Roma, Italy
| |
Collapse
|
21
|
Dupré A, Collins M, Nocturne G, Carbonnel F, Mariette X, Seror R. Articular manifestations in patients with inflammatory bowel disease treated with vedolizumab. Rheumatology (Oxford) 2020; 59:3275-3283. [DOI: 10.1093/rheumatology/keaa107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Abstract
Objective
Vedolizumab (VDZ) has been incriminated in the occurrence of articular manifestations in patients with inflammatory bowel diseases (IBDs). The aim of this study was to describe musculoskeletal manifestations occurring in IBD patients treated by VDZ and to identify risk factors.
Methods
In this retrospective monocentric study, we included all consecutive patients treated by VDZ for IBD in our hospital. Incident musculoskeletal manifestations occurring during VDZ treatment were analysed and characteristics of patients with and without articular inflammatory manifestations were compared.
Results
Between 2013 and 2017, 112 patients were treated with VDZ for IBD: ulcerative colitis (n = 59), Crohn’s disease (n = 49) and undetermined colitis (n = 4). Four patients (3.6%) had a history of SpA, whereas 13 (11.6%) had a history of peripheral arthralgia. Some 102 (91.1%) patients had previously received anti-TNF. After a mean (S.d.) follow-up of 11.4 (8.6) months, 32 (28.6%) patients presented 35 musculoskeletal manifestations, of which 18 were mechanical and 17 inflammatory. Among the latter, 11 had axial or peripheral SpA, 5 had early reversible arthralgia and 1 had chondrocalcinosis (n = 1). Among the 11 SpA patients, only 3 (2.6%) had inactive IBD and may be considered as paradoxical SpA. The only factor associated with occurrence of inflammatory manifestations was history of inflammatory articular manifestation [7/16 (43.8%) vs 10/80 (12.5%), P = 0.007].
Conclusion
Musculoskeletal manifestations occurred in almost 30% of IBD patients treated with VDZ, but only half of them were inflammatory. Since most of the patients previously received anti-TNF, occurrence of inflammatory articular manifestations might rather be linked to anti-TNF discontinuation than to VDZ itself.
Collapse
Affiliation(s)
- Anastasia Dupré
- Department of Rheumatology, INSERM UMR1184, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Michael Collins
- Department of Gastroenterology, Université Paris-Sud, AP-HP, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Gaétane Nocturne
- Department of Rheumatology, INSERM UMR1184, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Franck Carbonnel
- Department of Gastroenterology, Université Paris-Sud, AP-HP, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Xavier Mariette
- Department of Rheumatology, INSERM UMR1184, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Raphaèle Seror
- Department of Rheumatology, INSERM UMR1184, Université Paris-Saclay, Le Kremlin Bicêtre, France
| |
Collapse
|
22
|
Baiula M, Spampinato S, Gentilucci L, Tolomelli A. Novel Ligands Targeting α 4β 1 Integrin: Therapeutic Applications and Perspectives. Front Chem 2019; 7:489. [PMID: 31338363 PMCID: PMC6629825 DOI: 10.3389/fchem.2019.00489] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
Among the other members of the adhesion molecules' family, α4β1 integrin, a heterodimeric receptor, plays a crucial role in inflammatory diseases, cancer development, metastasis and stem cell mobilization or retention. In many cases, its function in pathogenesis is not yet completely understood and investigations on ligand binding and related stabilization of active/inactive conformations still represent an important goal. For this reason, starting from the highlight of α4β1 functions in human pathologies, we report an overview of synthetic α4β1 integrin ligands under development as potential therapeutic agents. The small molecule library that we have selected represents a collection of lead compounds. These molecules are the object of future refinement in academic and industrial research, in order to achieve a fine tuning of α4β1 integrin regulation for the development of novel agents against pathologies still eluding an effective solution.
Collapse
Affiliation(s)
- Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry “G. Ciamician,” University of Bologna, Bologna, Italy
| | | |
Collapse
|