1
|
El Boukhari R, Fatimi A. Carvacrol: Innovative Synthesis Pathways and Overview of its Patented Applications. Recent Pat Biotechnol 2025; 19:53-68. [PMID: 39840411 DOI: 10.2174/0118722083292888240223094707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 01/23/2025]
Abstract
AIM This research concerns the patentability of carvacrol; it could be helpful for researchers to easily identify any innovation in the biotechnological application of this monoterpene as well as other similar compounds. BACKGROUND Like thyme or oregano, several plants in the Lamiaceae family produce carvacrol. It is one of the secondary metabolites with several biological activities, including the improvement in plants' resistance and their protection. Carvacrol has many chemical properties, such as antioxidant and anti-microbial, which have made it interesting for multiple biotechnological applications in the fields of food, feed, pharmacology, and cosmetology. OBJECTIVE We have made an attempt to demonstrate the value of carvacrol, first by studying quantitative data from patent documents, and then, through some relevant patents, we have tried to highlight the various fields of innovation related to the properties of carvacrol. METHODS For the study, we have collected and sorted patent documents (i.e., patent applications and granted patents) from specialized patent databases, using "carvacrol" and some of its synonyms as keywords. The selected documents have included these keywords in their titles, abstracts, or claims. Then, thanks to patent analysis, we have tried to provide an overview of the useful properties of organic compounds. RESULTS We have shown that about 90% of the patent documents studied have been published in the 2000s. The number of publications, which is constantly increasing, demonstrates the growing interest in carvacrol. Although the applications of carvacrol are varied, the data on the IPC classification show that most published innovations are concerned with formulations in the fields of health, food, and feed. The study of the most relevant patents has allowed us to highlight some developments in the extraction and synthesis of carvacrol and some examples of patents that illustrate the wide possibilities offered by the exploitation of carvacrol. Thus, we have discussed its use in the cosmetic, pharmaceutical, food, and agricultural fields. CONCLUSION Carvacrol is a natural compound with beneficial properties. Several applications using this monoterpene have already been patented in different fields. However, the evolution of patentability has grown this past year and revealed the potential of carvacrol in biotechnology.
Collapse
Affiliation(s)
- Reda El Boukhari
- Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM), Sultan Moulay Slimane University (USMS), P.O. Box 592 Mghila, Beni Mellal 23000, Morocco
| | - Ahmed Fatimi
- Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM), Sultan Moulay Slimane University (USMS), P.O. Box 592 Mghila, Beni Mellal 23000, Morocco
| |
Collapse
|
2
|
Luo Q, Luo L, Zhao J, Wang Y, Luo H. Biological potential and mechanisms of Tea's bioactive compounds: An Updated review. J Adv Res 2024; 65:345-363. [PMID: 38056775 PMCID: PMC11519742 DOI: 10.1016/j.jare.2023.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Tea (Camellia sinensis) has a rich history and is widely consumed across many countries, and is categorized into green tea, white tea, oolong tea, yellow tea, black tea, and dark tea based on the level of fermentation. Based on a review of previous literature, the commonly recognized bioactive substances in tea include tea polyphenols, amino acids, polysaccharides, alkaloids, terpenoids, macro minerals, trace elements, and vitamins, which have been known to have various potential health benefits, such as anticancer, antioxidant, anti-inflammatory, anti-diabetes, and anti-obesity properties, cardiovascular protection, immune regulation, and control of the intestinal microbiota. Most studies have only pointed out the characteristics of tea's bioactivities, so a comprehensive summary of the pharmacological characteristics and mechanisms of tea's bioactivities and their use risks are vital. AIM OF REVIEW This paper aims to summarize tea's bioactive substances of tea and their pharmacological characteristics and mechanisms, providing a scientific basis for the application of bioactive substances in tea and outlining future research directions for the study of bioactive substances in tea. KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarizes the main biologically active substances, pharmacological effects, and mechanisms and discusses the potential risks. It may help researchers grasp more comprehensive progress in the study of tea bioactive substances to further promote the application of tea as a natural bioactive substance in the medical field.
Collapse
Affiliation(s)
- Qiaoxian Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Longbiao Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Jinmin Zhao
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China.
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China; College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China.
| |
Collapse
|
3
|
Kulkarni P, Yeram PB, Vora A. Terpenes in the management of chronic kidney disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6351-6368. [PMID: 38683370 DOI: 10.1007/s00210-024-03098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
Chronic kidney disease (CKD) is a chronic and progressive systemic condition that characterizes irreversible alterations in the kidneys' function and structure over an extended period, spanning months to years. CKD is the one of the major causes of mortality worldwide. However, very limited treatment options are available in the market for management of the CKD. Diabetes and hypertension are the key risk factors for the progression of CKD. It is majorly characterised by glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Plants are considered safe and effective in treating various chronic conditions. A diverse group of phytoconstituents, including polyphenols, flavonoids, alkaloids, tannins, saponins, and terpenes, have found significant benefits in managing chronic ailments. Terpenes constitute a diverse group of plant compounds with various therapeutic benefits. Evidence-based pharmacological studies underscore the crucial role played by terpenes in preventing and managing CKD. These substances demonstrate the capacity to hinder detrimental pathways, such as oxidative stress, inflammation and fibrosis, thereby demonstrating benefit in renal dysfunction. This review offers a comprehensive overview of the roles and positive attributes of commonly occurring terpenes in managing the causes and risk factors of CKD and the associated conditions.
Collapse
Affiliation(s)
- Piyusha Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, 400056, India
| | - Pranali B Yeram
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, 400056, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, 400056, India.
| |
Collapse
|
4
|
Yao S, Tan X, Huang D, Li L, Chen J, Ming R, Huang R, Yao C. Integrated transcriptomics and metabolomics analysis provides insights into aromatic volatiles formation in Cinnamomum cassia bark at different harvesting times. BMC PLANT BIOLOGY 2024; 24:84. [PMID: 38308239 PMCID: PMC10835945 DOI: 10.1186/s12870-024-04754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Cinnamomum cassia Presl, classified in the Lauraceae family, is widely used as a spice, but also in medicine, cosmetics, and food. Aroma is an important factor affecting the medicinal and flavoring properties of C. cassia, and is mainly determined by volatile organic compounds (VOCs); however, little is known about the composition of aromatic VOCs in C. cassia and their potential molecular regulatory mechanisms. Here, integrated transcriptomic and volatile metabolomic analyses were employed to provide insights into the formation regularity of aromatic VOCs in C. cassia bark at five different harvesting times. RESULTS The bark thickness and volatile oil content were significantly increased along with the development of the bark. A total of 724 differentially accumulated volatiles (DAVs) were identified in the bark samples, most of which were terpenoids. Venn analysis of the top 100 VOCs in each period showed that twenty-eight aromatic VOCs were significantly accumulated in different harvesting times. The most abundant VOC, cinnamaldehyde, peaked at 120 months after planting (MAP) and dominated the aroma qualities. Five terpenoids, α-copaene, β-bourbonene, α-cubebene, α-funebrene, and δ-cadinene, that peaked at 240 MAP could also be important in creating C. cassia's characteristic aroma. A list of 43,412 differentially expressed genes (DEGs) involved in the biosynthetic pathways of aromatic VOCs were identified, including phenylpropanoids, mevalonic acid (MVA) and methylerythritol phosphate (MEP). A gene-metabolite regulatory network for terpenoid and phenylpropanoid metabolism was constructed to show the key candidate structural genes and transcription factors involved in the biosynthesis of terpenoids and phenylpropanoids. CONCLUSIONS The results of our research revealed the composition and changes of aromatic VOCs in C. cassia bark at different harvesting stages, differentiated the characteristic aroma components of cinnamon, and illuminated the molecular mechanism of aroma formation. These foundational results will provide technical guidance for the quality breeding of C. cassia.
Collapse
Affiliation(s)
- Shaochang Yao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Key Laboratory of Protection and Utilization of Traditional Chinese Medicine and Ethnic Medicine Resources, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530200, China
| | - Xiaoming Tan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Key Laboratory of Protection and Utilization of Traditional Chinese Medicine and Ethnic Medicine Resources, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530200, China
| | - Ding Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Key Laboratory of Protection and Utilization of Traditional Chinese Medicine and Ethnic Medicine Resources, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530200, China
| | - Linshuang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Jianhua Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Key Laboratory of Protection and Utilization of Traditional Chinese Medicine and Ethnic Medicine Resources, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530200, China
| | - Ruhong Ming
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Key Laboratory of Protection and Utilization of Traditional Chinese Medicine and Ethnic Medicine Resources, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530200, China
| | - Rongshao Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
- Key Laboratory of Protection and Utilization of Traditional Chinese Medicine and Ethnic Medicine Resources, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530200, China.
| | - Chun Yao
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| |
Collapse
|
5
|
Singhai H, Rathee S, Jain SK, Patil UK. The Potential of Natural Products in the Management of Cardiovascular Disease. Curr Pharm Des 2024; 30:624-638. [PMID: 38477208 DOI: 10.2174/0113816128295053240207090928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/22/2024] [Indexed: 03/14/2024]
Abstract
Cardiovascular Disease (CVD) is one of the most prevalent diseases in the world, comprising a variety of disorders such as hypertension, heart attacks, Peripheral Vascular Disease (PVD), dyslipidemias, strokes, coronary heart disease, and cardiomyopathies. The World Health Organization (WHO) predicts that 22.2 million people will die from CVD in 2030. Conventional treatments for CVDs are often quite expensive and also have several side effects. This potentiates the use of medicinal plants, which are still a viable alternative therapy for a number of diseases, including CVD. Natural products' cardio-protective effects result from their anti-oxidative, anti-hypercholesterolemia, anti-ischemic, and platelet aggregation-inhibiting properties. The conventional therapies used to treat CVD have the potential to be explored in light of the recent increase in the popularity of natural goods and alternative medicine. Some natural products with potential in the management of cardiovascular diseases such as Allium sativum L., Ginkgo biloba, Cinchona ledgeriana, Ginseng, Commiphora mukul, Digitalis lanata, Digitalis purpurea L., Murrayakoenigii, Glycyrrhiza glabra, Polygonum cuspidatum, Fenugreek, Capsicum annuum, etc. are discussed in this article.
Collapse
Affiliation(s)
- Harshita Singhai
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Sunny Rathee
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Umesh Kumar Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| |
Collapse
|
6
|
Tripathi J, Gupta S, Gautam S. Alpha-cadinol as a potential ACE-inhibitory volatile compound identified from Phaseolus vulgaris L. through in vitro and in silico analysis. J Biomol Struct Dyn 2023; 41:3847-3861. [PMID: 35380098 DOI: 10.1080/07391102.2022.2057359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
Hypertension is a major risk factor of cardiovascular diseases, which is mainly caused due to over activation of renin-angiotensin system. The angiotensin converting enzyme (ACE), which is involved in formation of angiotensin II from angiotensin I, causes the blood vessels to constrict, in turn leading to hypertension. The current study was initiated to understand the role of bioactive volatile compounds from Phaseolus vulgaris L. (common bean), in ACE enzyme inhibition. Beans aqueous extract (BAE) showed maximum ACE inhibition of 88.4 ± 0.8% in comparison to other commonly consumed vegetables like spinach and garlic. The head space gas chromatography-mass spectrometry analysis showed the presence of a number of terpenes and terpenoids, which were present prominently in BAE. In silico molecular docking studies indicated that among the other volatile compounds, alpha-cadinol (-7.27 kcal/mol) and ar-tumerone (-6.44 kcal/mol) have the maximum binding affinity with the active site of ACE, as compared to that of captopril (-6.41 kcal/mol). The molecular dynamic simulation in biological environment, showed that alpha-cadinol forms a stable complex with ACE, with average binding energy of -42 kJ/mol. The ACE:alpha-cadinol complex was found to be stable mainly due to the hydrophobic interactions of alpha-cadinol with active site residues (Tyr523 and Phe457) of ACE. The in silico drug-likeness analysis showed that alpha-cadinol is appropriate for human system with no predicted hepatotoxicity or mutagenicity (AMES toxicity).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jyoti Tripathi
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sumit Gupta
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Satyendra Gautam
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
7
|
Pardo-Rodriguez D, Cifuentes-López A, Bravo-Espejo J, Romero I, Robles J, Cuervo C, Mejía SM, Tellez J. Lupeol Acetate and α-Amyrin Terpenes Activity against Trypanosoma cruzi: Insights into Toxicity and Potential Mechanisms of Action. Trop Med Infect Dis 2023; 8:tropicalmed8050263. [PMID: 37235311 DOI: 10.3390/tropicalmed8050263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Chagas disease is a potentially fatal disease caused by the parasite Trypanosoma cruzi. There is growing scientific interest in finding new and better therapeutic alternatives for this disease's treatment. METHODS A total of 81 terpene compounds with potential trypanocidal activity were screened and found to have potential T. cruzi cysteine synthase (TcCS) inhibition using molecular docking, molecular dynamics, ADME and PAIN property analyses and in vitro susceptibility assays. RESULTS Molecular docking analyses revealed energy ranges from -10.5 to -4.9 kcal/mol in the 81 tested compounds, where pentacyclic triterpenes were the best. Six compounds were selected to assess the stability of the TcCS-ligand complexes, of which lupeol acetate (ACLUPE) and α-amyrin (AMIR) exhibited the highest stability during 200 ns of molecular dynamics analysis. Such stability was primarily due to their hydrophobic interactions with the amino acids located in the enzyme's active site. In addition, ACLUPE and AMIR exhibited lipophilic characteristics, low intestinal absorption and no structural interferences or toxicity. Finally, selective index for ACLUPE was >5.94, with moderate potency in the trypomastigote stage (EC50 = 15.82 ± 3.7 μg/mL). AMIR's selective index was >9.36 and it was moderately potent in the amastigote stage (IC50 = 9.08 ± 23.85 μg/mL). CONCLUSIONS The present study proposes a rational approach for exploring lupeol acetate and α-amyrin terpene compounds to design new drugs candidates for Chagas disease.
Collapse
Affiliation(s)
- Daniel Pardo-Rodriguez
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Grupo de Productos Naturales, Universidad del Tolima, Tolima 730006299, Colombia
| | | | - Juan Bravo-Espejo
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Ibeth Romero
- Escuela de Pregrados, Dirección Académica, Vicerrectoría de Sede, Universidad Nacional de Colombia, Sede, De La Paz 202010, Colombia
| | - Jorge Robles
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Claudia Cuervo
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Sol M Mejía
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Jair Tellez
- Escuela de Pregrados, Dirección Académica, Vicerrectoría de Sede, Universidad Nacional de Colombia, Sede, De La Paz 202010, Colombia
| |
Collapse
|
8
|
Wei J, Yang Y, Peng Y, Wang S, Zhang J, Liu X, Liu J, Wen B, Li M. Biosynthesis and the Transcriptional Regulation of Terpenoids in Tea Plants ( Camellia sinensis). Int J Mol Sci 2023; 24:ijms24086937. [PMID: 37108101 PMCID: PMC10138656 DOI: 10.3390/ijms24086937] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Terpenes, especially volatile terpenes, are important components of tea aroma due to their unique scents. They are also widely used in the cosmetic and medical industries. In addition, terpene emission can be induced by herbivory, wounding, light, low temperature, and other stress conditions, leading to plant defense responses and plant-plant interactions. The transcriptional levels of important core genes (including HMGR, DXS, and TPS) involved in terpenoid biosynthesis are up- or downregulated by the MYB, MYC, NAC, ERF, WRKY, and bHLH transcription factors. These regulators can bind to corresponding cis-elements in the promoter regions of the corresponding genes, and some of them interact with other transcription factors to form a complex. Recently, several key terpene synthesis genes and important transcription factors involved in terpene biosynthesis have been isolated and functionally identified from tea plants. In this work, we focus on the research progress on the transcriptional regulation of terpenes in tea plants (Camellia sinensis) and thoroughly detail the biosynthesis of terpene compounds, the terpene biosynthesis-related genes, the transcription factors involved in terpene biosynthesis, and their importance. Furthermore, we review the potential strategies used in studying the specific transcriptional regulation functions of candidate transcription factors that have been discriminated to date.
Collapse
Affiliation(s)
- Junchi Wei
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Yun Yang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Ye Peng
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Shaoying Wang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Jing Zhang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xiaobo Liu
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Jianjun Liu
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Beibei Wen
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Meifeng Li
- College of Tea Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
9
|
Natural Monoterpenes as Potential Therapeutic Agents against Atherosclerosis. Int J Mol Sci 2023; 24:ijms24032429. [PMID: 36768748 PMCID: PMC9917110 DOI: 10.3390/ijms24032429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Traditional herbal medicines based on natural products play a pivotal role in preventing and managing atherosclerotic diseases, which are among the leading causes of death globally. Monoterpenes are a large class of naturally occurring compounds commonly found in many aromatic and medicinal plants. Emerging evidence has shown that monoterpenes have many biological properties, including cardioprotective effects. Remarkably, an increasing number of studies have demonstrated the therapeutic potential of natural monoterpenes to protect against the pathogenesis of atherosclerosis. These findings shed light on developing novel effective antiatherogenic drugs from these compounds. Herein, we provide an overview of natural monoterpenes' effects on atherogenesis and the underlying mechanisms. Monoterpenes have pleiotropic and multitargeted pharmacological properties by interacting with various cell types and intracellular molecular pathways involved in atherogenesis. These properties confer remarkable advantages in managing atherosclerosis, which has been recognized as a multifaceted vascular disease. We also discuss limitations in the potential clinical application of monoterpenes as therapeutic agents against atherosclerosis. We propose perspectives to give new insights into future preclinical research and clinical practice regarding natural monoterpenes.
Collapse
|
10
|
Mahou Y, Chda A, Es-Safi NE, Tesse A, Fettoukh N, El Bouri A, Stambouli H, El Abida K, Bencheikh R. Vasorelaxant Effect of Moroccan Cannabis sativa Threshing Residues on Rat Mesenteric Arterial Bed is Endothelium and Muscarinic Receptors Dependent. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:1265103. [PMID: 37123084 PMCID: PMC10139821 DOI: 10.1155/2023/1265103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/17/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023]
Abstract
Introduction Ethanolic fraction of Moroccan Cannabis sativa threshing residues (EFCS) was evaluated for its vasorelaxant activity. The current work aims to identify the active metabolites in the ethanolic fraction of the EFCS and illustrate their mechanism of action. Methods Free radical scavenging capacity of EFCS was assessed using DPPH method. The EFCS vasodilation activities in phenylephrine-precontracted isolated rat mesenteric arterial beds were investigated in presence of L-NAME (nitric oxide synthase inhibitor), indomethacin (cyclooxygenase inhibitor), potassium channel blockers (namely tetraetylamonium, barium chloride, and glibenclamide), and atropine. Nitric oxide vascular release was measured by electron paramagnetic resonance (EPR) using a spin trap in rat aortic rings. Results EFCS induced dose-dependent vasorelaxation on mesenteric vascular bed. Incubation of the preparations with L-NAME, ODQ (a soluble guanylyl cyclase inhibitor), or potassium channel blockers reduced the fall of perfusion pressure caused by EFCS. Endothelial denudation or atropine abolished the EFCS's vasorelaxant effect, suggesting involvement of muscarinic receptors and endothelium-relaxing factors. The extract induced nitric oxide release in aortic rings in a similar manner as acetylcholine suggesting an effect of EFCS on the muscarinic receptor and the conductance arteries. Chemical investigation of EFCS identified potential active components namely apigenin and derivatives of luteolin skeleton and also additional components such as neophytadiene, squalene, and β-sitosterol. In conclusion, the vasorelaxant effect of EFCS on rat mesenteric arterial bed, which is dependent of muscarinic receptor activation, nitric oxide, and EDHF, can account for potential therapeutic use against high blood pressure related cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Nour Eddine Es-Safi
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), ENS, Rabat, Morocco
| | - Angela Tesse
- Nantes Université, INSERM, CNRS, l'Institut du Thorax, Nantes 44007, France
| | - Nezha Fettoukh
- Institut de Criminalistique de La Gendarmerie Royale, BP 6597 Rabat-Instituts, Rabat, CP 10000, Morocco
| | - Aziz El Bouri
- Institut de Criminalistique de La Gendarmerie Royale, BP 6597 Rabat-Instituts, Rabat, CP 10000, Morocco
| | - Hamid Stambouli
- Institut de Criminalistique de La Gendarmerie Royale, BP 6597 Rabat-Instituts, Rabat, CP 10000, Morocco
| | | | | |
Collapse
|
11
|
Grewal J, Kumar V, Gandhi Y, Rawat H, Singh R, Singh A, Narasimhaji CV, Acharya R, Mishra SK. Current Perspective and Mechanistic Insights on Bioactive Plant Secondary Metabolites for the Prevention and Treatment of Cardiovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2023; 23:157-176. [PMID: 37921163 DOI: 10.2174/011871529x262371231009132426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/28/2023] [Accepted: 08/31/2023] [Indexed: 11/04/2023]
Abstract
Cardiovascular diseases (CVDs) are one of the most prevalent medical conditions of modern era and are one of the primary causes of adult mortality in both developing and developed countries. Conventional medications such as use of aspirin, beta-blockers, statins and angiotensin- converting enzyme inhibitors involve use of drugs with many antagonistic effects. Hence, alternative therapies which are safe, effective, and relatively cheap are increasingly being investigated for the treatment and prevention of CVDs. The secondary metabolites of medicinal plants contain several bioactive compounds which have emerged as alternatives to toxic modern medicines. The detrimental effects of CVDs can be mitigated via the use of various bioactive phytochemicals such as catechin, isoflavones, quercetin etc. present in medicinal plants. Current review intends to accumulate previously published data over the years using online databases concerning herbal plant based secondary metabolites that can help in inhibition and treatment of CVDs. An in-depth review of various phytochemical constituents with therapeutic actions such as antioxidant, anti-inflammatory, vasorelaxant, anti-hypertensive and cardioprotective properties has been delineated. An attempt has been made to provide a probable mechanistic overview for the pertinent phytoconstituent which will help in achieving a better prognosis and effective treatment for CVDs.
Collapse
Affiliation(s)
- Jyotika Grewal
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Vijay Kumar
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Yashika Gandhi
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Hemant Rawat
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Ravindra Singh
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Arjun Singh
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Ch V Narasimhaji
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Rabinarayan Acharya
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Sujeet K Mishra
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| |
Collapse
|
12
|
Wang Q, Chen G, Chen X, Liu Y, Qin Z, Lin P, Shang H, Ye M, He L, Yao Z. Development of a three-step-based novel strategy integrating DMPK with network pharmacology and bioactivity evaluation for the discovery of Q-markers of traditional Chinese medicine prescriptions: Danlou tablet as an example. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154511. [PMID: 36334388 DOI: 10.1016/j.phymed.2022.154511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/02/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Quality marker (Q-marker) serves an important role in promoting the standardization of the quality of traditional Chinese medicine (TCM) prescriptions. However, discovering comprehensive and representative Q-markers from TCM prescriptions composed of multiple components remains difficult. PURPOSE A three-step-based novel strategy integrating drug metabolism and pharmacokinetics (DMPK) with network pharmacology and bioactivity evaluation was proposed to discover the Q-markers and applied to a research example of Danlou tablet (DLT), a famous TCM prescription with remarkable and reliable clinical effects for coronary heart disease (CHD). METHODS Firstly, the metabolic profile in vivo of DLT was systemically characterized, and the pharmacokinetic (PK) properties of PK markers were then investigated. Secondly, an integrated network of "PK markers - CHD targets - pathways - therapeutic effects" was established to screen out the crucial PK markers of DLT against CHD. Thirdly, the crucial PK markers that could exhibit strong myocardial protection activity in the H9c2 cardiomyocyte model were selected as the candidate Q-markers of DLT. According to the proportion of their Cmax value in vivo, the candidate Q-markers were configured into a composition; the bioactivity was then evaluated to confirm their synergistic effect and justify their usage as Q-markers. RESULTS First of all, a total of 110 DLT-related xenobiotics (35 prototypes and 75 metabolites) were detected in bio-samples, and the pharmacokinetic properties of 13 PK markers of DLT were successfully characterized, revealing the quality transitivity and traceability from prescription to in vivo. Then, 6 crucial PK markers with three topological features (degree, betweenness, and closeness) greater than the average values in the pharmacology network were screened out as the key components of DLT against CHD. Furthermore, among these 6 crucial PK markers, 5 components (puerarin, alisol A, daidzein, paeoniflorin, and tanshinone IIA) with strong myocardial protection activity were chosen as the candidate Q-markers to constitute a new composition. The composition activated the expression of the PI3K/AKT pathway and exhibited strong myocardial protection activity, and the effective concentrations (nM level) of these components in the composition were significantly lower than their individually effective concentrations (μM level), indicating that there was a certain synergistic effect between them. Hence, the 5 components with multiple properties, including testability, quality transitivity and traceability from prescription to in vivo, effectiveness, and compatibility contribution, were defined as comprehensive and representative Q-markers of DLT. CONCLUSION This study not only presented a novel idea for the revelation of comprehensive and representative Q-markers in quality control research of TCM prescriptions, but also identified the reasonable Q-markers of DLT for the first time to improve the quality control level of DLT.
Collapse
Affiliation(s)
- Qi Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Guotao Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xintong Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yuehe Liu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zifei Qin
- Department of Pharmacology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Pei Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Liangliang He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Zhihong Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Paiva-Santos AC, Ferreira L, Peixoto D, Silva F, Soares MJ, Zeinali M, Zafar H, Mascarenhas-Melo F, Raza F, Mazzola PG, Veiga F. Cyclodextrins as an encapsulation molecular strategy for volatile organic compounds – pharmaceutical applications. Colloids Surf B Biointerfaces 2022; 218:112758. [DOI: 10.1016/j.colsurfb.2022.112758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 01/07/2023]
|
14
|
Ma L, Meng Q, Chen F, Gao W. SAFE and SBSE combined with GC-MS and GC-O for characterization of flavor compounds in Zhizhonghe Wujiapi medicinal liquor. J Food Sci 2022; 87:939-956. [PMID: 35122437 DOI: 10.1111/1750-3841.16031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/28/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Abstract
Volatile compounds in Chinese Zhizhonghe Wujiapi (WJP) medicinal liquor were extracted by solvent-assisted flavor evaporation extraction (SAFE) and stir bar sorptive extraction (SBSE), respectively, and identified by gas chromatography-mass spectrometry. Results showed that a total of 123 volatile compounds (i.e., 108 by SAFE, 50 by SBSE, and 34 by both) including esters, alcohols, acids, aldehydes, ketones, heterocycles, terpenes and terpenoids, alkenes, phenols, and other compounds were identified, and 67 of them were confirmed as aroma-active compounds by the application of the aroma extract dilution analysis coupled with gas chromatography-olfactometry. After making a simulated reconstitute by mixing 41 characterized aroma-active compounds (odor activity values ≥1) based on their concentrations, the aroma profile of the reconstitute showed good similarity to that of the original WJP liquor. Omission test further corroborated 34 key aroma-active compounds in the WJP liquor. The study of WJP liquor is expected to provide some insights into the characterization of special volatile components in traditional Chinese medicine liquors for the purpose of quality improvement and aroma optimization.
Collapse
Affiliation(s)
- Longhua Ma
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, P. R. China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, P. R. China
| | - Feng Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Wenjie Gao
- Department of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, P. R. China
| |
Collapse
|
15
|
Sari N, Katanasaka Y, Sugiyama Y, Sunagawa Y, Miyazaki Y, Funamoto M, Shimizu S, Shimizu K, Murakami A, Mori K, Wada H, Hasegawa K, Morimoto T. Zerumbone prevents pressure overload-induced left ventricular systolic dysfunction by inhibiting cardiac hypertrophy and fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153744. [PMID: 34563985 DOI: 10.1016/j.phymed.2021.153744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 08/25/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cardiac hypertrophy and fibrosis are hallmarks of cardiac remodeling and are involved functionally in the development of heart failure (HF). However, it is unknown whether Zerumbone (Zer) prevents left ventricular (LV) systolic dysfunction by inhibiting cardiac hypertrophy and fibrosis. PURPOSE This study investigated the effect of Zer on cardiac hypertrophy and fibrosis in vitro and in vivo. STUDY DESIGN/METHODS In primary cultured cardiac cells from neonatal rats, the effect of Zer on phenylephrine (PE)-induced hypertrophic responses and transforming growth factor beta (TGF-β)-induced fibrotic responses was observed. To determine whether Zer prevents the development of pressure overload-induced HF in vivo, a transverse aortic constriction (TAC) mouse model was utilized. Cardiac function was evaluated by echocardiography. The changes of cardiomyocyte surface area were observed using immunofluorescence staining and histological analysis (HE and WGA staining). Collagen synthesis and fibrosis formation were measured by scintillation counter and picrosirius staining, respectively. The total mRNA levels of genes associated with hypertrophy (ANF and BNP) and fibrosis (Postn and α-SMA) were measured by qRT-PCR. The protein expressions (Akt and α-SMA) were assessed by western blotting. RESULTS Zer significantly suppressed PE-induced increase in cell size, mRNA levels of ANF and BNP, and Akt phosphorylation in cardiomyocytes. The TGF-β-induced increase in proline incorporation, mRNA levels of Postn and α-SMA, and protein expression of α-SMA were decreased by Zer in cultured cardiac fibroblasts. In the TAC male C57BL/6 mice, echocardiography results demonstrated that Zer improved cardiac function by increasing LV fractional shortening and reducing LV wall thickness compared with the vehicle group. ZER significantly reduced the level of phosphorylated Akt both in cultured cardiomyocytes treated with PE and in the hearts of TAC. Finally, Zer inhibited the pressure overload-induced cardiac hypertrophy and cardiac fibrosis. CONCLUSION Zer ameliorates pressure overload-induced LV dysfunction, at least in part by suppressing both cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Nurmila Sari
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Clinical Research Institute, Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto, 612-8555, Japan; Shizuoka General Hospital, Shizuoka, Japan
| | - Yuga Sugiyama
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yoichi Sunagawa
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Clinical Research Institute, Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto, 612-8555, Japan; Shizuoka General Hospital, Shizuoka, Japan
| | - Yusuke Miyazaki
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Masafumi Funamoto
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Satoshi Shimizu
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Kana Shimizu
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Akira Murakami
- Department of Food Science and Nutrition, School of Human Science and Environment, University of Hyogo, Hyogo, Japan
| | - Kiyoshi Mori
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Hiromichi Wada
- Clinical Research Institute, Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto, 612-8555, Japan
| | - Koji Hasegawa
- Clinical Research Institute, Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto, 612-8555, Japan
| | - Tatsuya Morimoto
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Clinical Research Institute, Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto, 612-8555, Japan; Shizuoka General Hospital, Shizuoka, Japan.
| |
Collapse
|
16
|
Sudan CRC, Pereira LC, Silva AF, Moreira CPDS, de Oliveira DS, Faria G, Dos Santos JSC, Leclercq SY, Caldas S, Silva CG, Lopes JCD, de Almeida VL. Biological Activities of Extracts from Ageratum fastigiatum: Phytochemical Study and In Silico Target Fishing Approach. PLANTA MEDICA 2021; 87:1045-1060. [PMID: 34530481 DOI: 10.1055/a-1576-4080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the present study, the ethanolic extract from aerial parts of Ageratum fastigiatum was evaluated in vitro against epimastigote forms of Trypanosoma cruzi (Y strain), promastigote forms of Leishmania amazonensis (PH8 strain), and L. chagasi (BH400 strain). The extract was also evaluated against Staphylococcus aureus (ATCC 25 923), Escherichia coli (ATCC 11 775), Pseudomonas aeruginosa (ATCC 10 145), and Candida albicans (ATCC 36 802). The phytochemical screening was performed by thin-layer chromatography and high-performance liquid chromatography. The extract was fractionated using flash preparative chromatography. The ethanolic extract showed activity against T. cruzi, L. chagasi, and L. amazonensis and antimicrobial activity against S. aureus, E. coli, P. aeruginosa, and C. albicans. The phytochemical screening revealed coumarins, terpenes/sterols, and flavonoids in the ethanolic extract. In addition, the coumarin identified as ayapin was isolated from this extract. We also performed in silico prediction of potential biological activities and targets for compounds previously found in A. fastigiatum. Several predictions were confirmed both retrospectively and prospectively by experimental results described here or elsewhere. Some activities described in the in silico target fishing approach were validated by the ethnopharmacological use and known biological properties. Some new activities and/or targets were predicted and could guide future studies. These results suggest that A. fastigiatum can be an interesting source of substances with antiparasitic and antimicrobial activities.
Collapse
Affiliation(s)
| | - Lucas Campos Pereira
- Laboratório de Inovação Biotecnológica, Serviço de Biotecnologia e Saúde, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Andréia Fonseca Silva
- Empresa de Pesquisa Agropecuária de Minas, Gerais (EPAMIG), Belo Horizonte, MG, Brazil
| | | | | | - Gilson Faria
- Serviço de Biotecnologia e Saúde, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Janete Soares Coelho Dos Santos
- Laboratório de Inovação Biotecnológica, Serviço de Biotecnologia e Saúde, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Sophie Yvette Leclercq
- Laboratório de Inovação Biotecnológica, Serviço de Biotecnologia e Saúde, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Sergio Caldas
- Serviço de Biotecnologia e Saúde, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Cláudia Gontijo Silva
- Serviço de Fitoquímica e Prospecção Farmacêutica, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Júlio César Dias Lopes
- Chemoinformatics Group (NEQUIM), Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vera Lúcia de Almeida
- Serviço de Fitoquímica e Prospecção Farmacêutica, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| |
Collapse
|
17
|
Huang ZY, Ye RY, Yu HL, Li AT, Xu JH. Mining methods and typical structural mechanisms of terpene cyclases. BIORESOUR BIOPROCESS 2021; 8:66. [PMID: 38650244 PMCID: PMC10992375 DOI: 10.1186/s40643-021-00421-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022] Open
Abstract
Terpenoids, formed by cyclization and/or permutation of isoprenes, are the most diverse and abundant class of natural products with a broad range of significant functions. One family of the critical enzymes involved in terpenoid biosynthesis is terpene cyclases (TCs), also known as terpene synthases (TSs), which are responsible for forming the ring structure as a backbone of functionally diverse terpenoids. With the recent advances in biotechnology, the researches on terpene cyclases have gradually shifted from the genomic mining of novel enzyme resources to the analysis of their structures and mechanisms. In this review, we summarize both the new methods for genomic mining and the structural mechanisms of some typical terpene cyclases, which are helpful for the discovery, engineering and application of more and new TCs.
Collapse
Affiliation(s)
- Zheng-Yu Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Ru-Yi Ye
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Ai-Tao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
18
|
Silva EAP, Santos DM, de Carvalho FO, Menezes IAC, Barreto AS, Souza DS, Quintans-Júnior LJ, Santos MRV. Monoterpenes and their derivatives as agents for cardiovascular disease management: A systematic review and meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153451. [PMID: 33483251 DOI: 10.1016/j.phymed.2020.153451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/16/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Monoterpenes are one of the most studied plant's secondary metabolites, they are found abundantly in essential oils of aromatic plants. They also have a great range of pharmacological properties, such as antihypertensive, bradycardic, antiarrhythmic and hypotensive. In the face of the burden caused by cardiovascular disease (CVDs) worldwide, studies using monoterpenes to assess their cardiovascular effects have increased over the years. PURPOSE This systematic review aimed to summarize the use of monoterpenes in animal models of any CVDs. METHODS PubMed, SCOPUS, LILACS and Web of Science databases were used to search for articles that used monoterpenes, in any type of administration, to treat or prevent CVDs in animal models. The PRISMA guidelines were followed. Two independent researchers extracted main characteristics of studies, methods and outcomes. Data obtained were analyzed qualitatively and quantitatively. RESULTS At the ending of the search process, 33 articles were selected for the systematic review. Of these, 17 articles were included in the meta-analysis. A total of 16 different monoterpenes were found for the treatment of hypertension, myocardial infarction, pulmonary hypertension, cardiac hypertrophy and arrhythmia. The main actions include hypotension, bradycardia, vasodilatation, antiarrhythmic, and antioxidant and antiapoptotic properties. From our data, it can be suggested that monoterpenes may be a significant source for new drug development. However, there is still a need to apply these knowledge into clinical research and a long path to pursue before putting them in the market. CONCLUSION The variability of cardiovascular effects demonstrated by the monoterpenes highlighted them as a promising candidates for treatment or prevention of CVDs. Nevertheless, studies that investigate their biological sites of action needs to be further encouraged.
Collapse
Affiliation(s)
- Eric Aian P Silva
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Biotechnology Graduate Program - Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil
| | - Danillo M Santos
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Health Sciences Graduate Program, Universidade Federal de Sergipe, Rua Claudio Batista S/N, Sanatorio, Aracaju-SE, 49.060-100, Brazil
| | - Fernanda Oliveira de Carvalho
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Health Sciences Graduate Program, Universidade Federal de Sergipe, Rua Claudio Batista S/N, Sanatorio, Aracaju-SE, 49.060-100, Brazil
| | - Igor A Cortes Menezes
- Hospital de Clínicas, Universidade Federal do Paraná, Rua General Carneiro, 181, Curitiba-PR, 80060-900, Brazil
| | - André S Barreto
- Department of Health Education, Universidade Federal de Sergipe, Av. Governador Marcelo Deda, 13, Centro, Lagarto-SE, CEP 49400-000, Brazil
| | - Diego S Souza
- Department of Anesthesiology, University of Arizona, Tucson, AZ, USA
| | - Lucindo J Quintans-Júnior
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Health Sciences Graduate Program, Universidade Federal de Sergipe, Rua Claudio Batista S/N, Sanatorio, Aracaju-SE, 49.060-100, Brazil
| | - Márcio R V Santos
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Health Sciences Graduate Program, Universidade Federal de Sergipe, Rua Claudio Batista S/N, Sanatorio, Aracaju-SE, 49.060-100, Brazil; Biotechnology Graduate Program - Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil.
| |
Collapse
|
19
|
Silva EAP, Carvalho JS, Dos Santos DM, Oliveira AMS, de Souza Araújo AA, Serafini MR, Oliveira Santos LAB, Batista MVDA, Viana Santos MR, Siqueira Quintans JDS, Quintans-Júnior LJ, Barreto AS. Cardiovascular effects of farnesol and its β-cyclodextrin complex in normotensive and hypertensive rats. Eur J Pharmacol 2021; 901:174060. [PMID: 33819466 DOI: 10.1016/j.ejphar.2021.174060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Farnesol (FAR) is a sesquiterpene alcohol with a range of reported biological effects including cardioprotective, antioxidant and antiarrhythmic properties. However, due to its volatility, the use of drug incorporation systems, such as cyclodextrins, have been proposed to improve its pharmacological properties. Thus, the aim of this study was to evaluate and characterize the cardiovascular effects of FAR alone, and to investigate the antihypertensive effects of FAR complexed with β-cyclodextrin (βCD) in rats. Mean arterial pressure (MAP) and heart rate (HR) were measured before and after intravenous administration of FAR (0,5; 2,5; 5 and 7,5 mg/kg) in normotensive rats, and after oral acute administration (200 mg/kg) of FAR and FAR/βCD complex in NG-nitro-L-arginine-methyl-ester (L-NAME) hypertensive rats. In normotensive animals, FAR induced dose-dependent hypotension associated with bradycardia. These effects were not affected by pre-treatment with L-NAME or indomethacin (INDO), but were partially attenuated by atropine. Pre-treatment with hexamethonium (HEXA) only affected hypotension. In the hypertensive rats, FAR/βCD potentialized the antihypertensive effect when compared to FAR alone. Molecular docking experiments demonstrated for the first time that FAR has affinity to bind to the M3 and M2 muscarinic, and nicotinic receptors through hydrogen bonds in the same residues as known ligands. In conclusion, our results demonstrated that FAR induced hypotension associated with bradycardia, possibly through the muscarinic and nicotinic receptors. The inclusion complex with βCD improved the antihypertensive effects of FAR, which can be relevant to improve current cardiovascular therapy using volatile natural components.
Collapse
Affiliation(s)
- Eric Aian P Silva
- Department of Physiology, Federal University of Sergipe, São Cristovão, Sergipe, Brazil; Biotechnology Graduate Program - Rede Nordeste de Biotecnologia (RENORBIO), Federal University of Sergipe, São Cristovão, Sergipe, Brazil
| | - Jéssica S Carvalho
- Department of Physiology, Federal University of Sergipe, São Cristovão, Sergipe, Brazil
| | - Danillo M Dos Santos
- Department of Physiology, Federal University of Sergipe, São Cristovão, Sergipe, Brazil; Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Ana Maria S Oliveira
- Department of Pharmacy, Federal University of Sergipe, São Cristovão, Sergipe, Brazil
| | - Adriano A de Souza Araújo
- Department of Pharmacy, Federal University of Sergipe, São Cristovão, Sergipe, Brazil; Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Mairim R Serafini
- Department of Pharmacy, Federal University of Sergipe, São Cristovão, Sergipe, Brazil; Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | | | - Marcus V de A Batista
- Department of Biology, Federal University of Sergipe, São Cristovão, Sergipe, Brazil
| | - Márcio R Viana Santos
- Department of Physiology, Federal University of Sergipe, São Cristovão, Sergipe, Brazil; Biotechnology Graduate Program - Rede Nordeste de Biotecnologia (RENORBIO), Federal University of Sergipe, São Cristovão, Sergipe, Brazil; Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Jullyana de S Siqueira Quintans
- Department of Physiology, Federal University of Sergipe, São Cristovão, Sergipe, Brazil; Biotechnology Graduate Program - Rede Nordeste de Biotecnologia (RENORBIO), Federal University of Sergipe, São Cristovão, Sergipe, Brazil; Department of Health Education, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| | - Lucindo J Quintans-Júnior
- Department of Physiology, Federal University of Sergipe, São Cristovão, Sergipe, Brazil; Biotechnology Graduate Program - Rede Nordeste de Biotecnologia (RENORBIO), Federal University of Sergipe, São Cristovão, Sergipe, Brazil; Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - André S Barreto
- Department of Health Education, Federal University of Sergipe, Lagarto, Sergipe, Brazil; Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Sergipe, Brazil.
| |
Collapse
|
20
|
Muir M, Molina DL, Islam A, Abdel-Rahman MK, Trenary M. Adsorption properties of acrolein, propanal, 2-propenol, and 1-propanol on Ag(111). Phys Chem Chem Phys 2020; 22:25011-25020. [PMID: 33112308 DOI: 10.1039/d0cp04634e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reflection absorption infrared spectroscopy and temperature programmed desorption were used to study the adsorption of acrolein, its partial hydrogenation products, propanal and 2-propenol, and its full hydrogenation product, 1-propanol on the Ag(111) surface. Each molecule adsorbs weakly to the surface and desorbs without reaction at temperatures below 220 K. For acrolein, the out-of plane bending modes are more intense than the C[double bond, length as m-dash]O stretch at all coverages, indicating that the molecular plane is mainly parallel to the surface. The two alcohols, 2-propenol and 1-propanol, have notably higher desorption temperatures than acrolein and display strong hydrogen bonding in the multilayers as revealed by a broadened and redshifted O-H stretch. For 1-propanol, annealing the surface to 180 K disrupts the hydrogen-bonding to produce unusally narrow peaks, including one at 1015 cm-1 with a full width at half maximum of 1.1 cm-1. This suggests that 1-propanol forms a highly orderded monolayer and adsorbs as a single conformer. For 2-propenol, hydrogen bonding in the multilayer correlates with observation of the C[double bond, length as m-dash]C stretch at 1646 cm-1, which is invisible for the monolayer. This suggests that for monolayer coverages, 2-propenol bonds with the C[double bond, length as m-dash]C bond parallel to the surface. Similarly, the C[double bond, length as m-dash]O stretch of propanal is very weak for low coverages but becomes the largest peak for the multilayer, indicating a change in orientation with coverage.
Collapse
Affiliation(s)
- Mark Muir
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, USA.
| | | | | | | | | |
Collapse
|
21
|
de Vasconcelos Cerqueira Braz J, Carvalho Nascimento Júnior JA, Serafini MR. Terpenes with Antitumor Activity: A Patent Review. Recent Pat Anticancer Drug Discov 2020; 15:321-328. [PMID: 33138764 DOI: 10.2174/1574892815666201002162315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/08/2020] [Accepted: 08/30/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Cancer is a major public health concern, and is one of the leading causes of death globally. Surgical removal, chemotherapy or hormonal therapy, radiation therapy, or a combination of them are treatment for cancer, many of which are ineffective or have serious side effects. In view of this, there is a search for new, more effective alternatives for cancer prevention and treatment. One possible source of compounds are natural products; among them, terpenes, a large class of organic compounds, have shown promise due to their anti-inflammatory, anti-tumorigenic, and hypolipidemic properties, among others recorded in the literature. OBJECTIVE The study aims to use a patent review to evaluate the development and use of terpenes, or formulations containing terpenes, in new therapeutic options for the treatment of various types of cancer. METHODS This patent review was carried out using the specialized patent databases of WIPO and Espacenet. The selection of patents was based on the following inclusion criteria which included pre-clinical and/or clinical trials, and demonstrated anti-tumor effects. RESULTS Eight patents were identified, six from China, and two from Japan. In this review, all patents confirmed having good antitumor activity for many types of cancer cells. In addition, the inventors indicate more studies pre-clinical and clinical trials giving greater clarity and accurate reflection of the activity of the products studied. CONCLUSION Natural products are an important source of compounds for use in the fight against cancer that can act synergistically, and help in the treatment of cancer.
Collapse
Affiliation(s)
| | | | - Mairim Russo Serafini
- Department of Health Sciences, Federal University of Sergipe (UFS), Aracaju-SE, Brazil
| |
Collapse
|
22
|
Luneau M, Lim JS, Patel DA, Sykes ECH, Friend CM, Sautet P. Guidelines to Achieving High Selectivity for the Hydrogenation of α,β-Unsaturated Aldehydes with Bimetallic and Dilute Alloy Catalysts: A Review. Chem Rev 2020; 120:12834-12872. [DOI: 10.1021/acs.chemrev.0c00582] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mathilde Luneau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jin Soo Lim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Dipna A. Patel
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - E. Charles H. Sykes
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Cynthia M. Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
23
|
Souza DSD, Menezes-Filho JERD, Santos-Miranda A, Jesus ICGD, Silva Neto JA, Guatimosim S, Cruz JS, Vasconcelos CMLD. Calcium overload-induced arrhythmia is suppressed by farnesol in rat heart. Eur J Pharmacol 2019; 859:172488. [DOI: 10.1016/j.ejphar.2019.172488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 01/01/2023]
|