1
|
Barkat MQ, Manzoor M, Xu C, Hussain N, Salawi A, Yang H, Hussain M. Severe asthma beyond bronchodilators: Emerging therapeutic approaches. Int Immunopharmacol 2025; 152:114360. [PMID: 40049087 DOI: 10.1016/j.intimp.2025.114360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/24/2025]
Abstract
Asthma is characterized by reversible airway inflammation, obstruction, and structural remodeling, which lead to the eosinophils and lymphocytes accumulation at inflammation sites and the release of inflammatory cells, like mast cells and dendritic cells, from lungs' epithelial and smooth muscle cells that trigger the activation and release of cytokines and chemokines, attracting more cells and contributing to asthma development. Available pharmacological interventions, like bronchodilators and anti-inflammatory agents, are considered generally safe and effective to treat asthma, but many affected individuals with severe asthma still struggle with symptom control. This review highlights recent innovative therapies, such as chemoattractant receptor-homologous molecule expressed on Th2 cell (CRTH2) antagonists, S-nitrosoglutathione reductase (GSNOR) and phosphodiesterase (PDE) inhibitors, and other novel biological agents, which offer potential new strategies for managing severe asthma and may alter the disease's course. Kew words. Inflammation; CRTH2; GSNOR; PDE; Interleukins; Biological agents.
Collapse
Affiliation(s)
| | - Majid Manzoor
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Chengyun Xu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City 310015, China
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates; AAU Health and Biomedical Research center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Musaddique Hussain
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
2
|
Jaiswal R, Ahmad S, Pandey S, Ali A, Jaiswal R, Yadav R, Yadav R, Ahsan R, Dwivedi T. Innovative approaches to eczema treatment: A review of Fevipiprant and its potential as a new therapeutic agent. Prostaglandins Other Lipid Mediat 2025; 176:106946. [PMID: 39740738 DOI: 10.1016/j.prostaglandins.2024.106946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
Eczema is also known as atopic dermatitis, which goes on to affect the skin as a chronic inflammatory disease. It is associated with a constant feeling of scratchiness, erthyma and disruption of the natural skin barrier. Treatment provided at present may improve some of the symptoms, for instance use of corticosteroids or immunosuppressive agents, however, there is an overwhelming need for better focused and effective methods of treatment with minimal adverse effects. Fevipiprant, a DP2 receptor antagonist, has emerged as a promising agent targeting prostaglandin D2 (PGD2) pathways, which play a crucial role in eczema pathophysiology. This review examines the mechanism of action, pharmacological profile of Fevipiprant and present studies on preclinical and clinical development of Fevipiprant for treatment of eczema. Additionally, we provide a comparison of Fevipiprant with existing treatment options and evaluate its safety and tolerability. The evaluation gives a reason that targeting in the treatment of eczema by the use of Fevipiprant is able to effectively target the DP2 pathway which is associated with a good safetyl however presenting itself as a new treatment option in the management of eczema. Finally, long-term studies are essential to validate the feasibility, safety, and effectiveness of Fevipiprant compared to existing therapies for eczema. Novartis has taken advantage of this stat for comp… given the scarcity of effective therapies for paediatric atopic dermatitis in Japan. Exploring Fevipiprant from the Efficacy Perspective is also required because it will impact how it will enter clinical practice in therapy of eczema in the future.
Collapse
Affiliation(s)
- Rahul Jaiswal
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026, India.
| | - Sageer Ahmad
- Sagar Institute of Technology And Management Department of Pharmacy, Barabanki, Uttar Pradesh, India
| | - Supriya Pandey
- Hygia Institute of Pharmaceutical Education and Research, Lucknow, Uttar Pradesh, India
| | - Asad Ali
- Hygia Institute of Pharmaceutical Education and Research, Lucknow, Uttar Pradesh, India
| | - Rupali Jaiswal
- Rajarshi Rananjay Sinh College of Pharmacy, Amethi, Uttar Pradesh 227405, India
| | - Reetu Yadav
- Hygia Institute of Pharmaceutical Education and Research, Lucknow, Uttar Pradesh, India
| | - Reema Yadav
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026, India
| | - Rabiya Ahsan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026, India
| | - Tapasya Dwivedi
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026, India
| |
Collapse
|
3
|
Shi Q, Wang S, Wang G, Wang T, Du K, Gao C, Guo X, Fu S, Yun K. Serum metabolomics analysis reveals potential biomarkers of penicillins-induced fatal anaphylactic shock in rats. Sci Rep 2024; 14:23534. [PMID: 39384950 PMCID: PMC11464644 DOI: 10.1038/s41598-024-74623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
Immunoglobulin E (IgE)-mediated immediate hypersensitivity reactions are the most concerning adverse events after penicillin antibiotics (PENs) administration because of their rapid progression and potential for fatal outcome. However, the diagnosis of allergic death is a forensic challenge because it mainly depends on nonspecific characteristic morphological changes, as well as exclusion and circumstantial evidence. In this study, an untargeted metabolomics approach based on liquid chromatography-mass spectrometry (LC-MS) was used to screen potential forensic biomarkers of fatal anaphylactic shock induced by four PENs (benzylpenicillin (BP), amoxicillin (AMX), oxacillin (OXA), and mezlocillin (MEZ)), and analyzed the metabolites, metabolic pathway and the mechanism which were closely related to the allergic reactions. The metabolomics results discovered that a total of 24 different metabolites in all four anaphylactic death (AD) groups, seven of which were common metabolites. A biomarker model consisting of six common metabolites (linoleic acid, prostaglandin D2, lysophosphatidylcholine (18:0), N-acetylhistamine, citric acid and indolelactic acid) AUC value of Receiver Operating Characteristic (ROC) curve was 0.978. Metabolism pathway analysis revealed that the pathogenesis of PENs-induced AD is closely related to linoleic acid metabolism. Our results revealed that the metabolomic profiling has potential in PENs-induced AD post-mortem diagnosis and metabolic mechanism investigations.
Collapse
Affiliation(s)
- Qianwen Shi
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Shanxi, 030600, P. R. China
| | - Shuhui Wang
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Shanxi, 030600, P. R. China
| | - Gege Wang
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Shanxi, 030600, P. R. China
| | - Tao Wang
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Shanxi, 030600, P. R. China
| | - Kaili Du
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- Department of Pathology, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Cairong Gao
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Shanxi, 030600, P. R. China
| | - Xiangjie Guo
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Shanxi, 030600, P. R. China
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Shanlin Fu
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Shanxi, 030600, P. R. China
- Centre for Forensic Science, University of Technology Sydney, Sydney, 2007, Australia
| | - Keming Yun
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China.
- Shanxi Key Laboratory of Forensic Medicine, Shanxi, 030600, P. R. China.
| |
Collapse
|
4
|
Poto R, Marone G, Galli SJ, Varricchi G. Mast cells: a novel therapeutic avenue for cardiovascular diseases? Cardiovasc Res 2024; 120:681-698. [PMID: 38630620 PMCID: PMC11135650 DOI: 10.1093/cvr/cvae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 04/19/2024] Open
Abstract
Mast cells are tissue-resident immune cells strategically located in different compartments of the normal human heart (the myocardium, pericardium, aortic valve, and close to nerves) as well as in atherosclerotic plaques. Cardiac mast cells produce a broad spectrum of vasoactive and proinflammatory mediators, which have potential roles in inflammation, angiogenesis, lymphangiogenesis, tissue remodelling, and fibrosis. Mast cells release preformed mediators (e.g. histamine, tryptase, and chymase) and de novo synthesized mediators (e.g. cysteinyl leukotriene C4 and prostaglandin D2), as well as cytokines and chemokines, which can activate different resident immune cells (e.g. macrophages) and structural cells (e.g. fibroblasts and endothelial cells) in the human heart and aorta. The transcriptional profiles of various mast cell populations highlight their potential heterogeneity and distinct gene and proteome expression. Mast cell plasticity and heterogeneity enable these cells the potential for performing different, even opposite, functions in response to changing tissue contexts. Human cardiac mast cells display significant differences compared with mast cells isolated from other organs. These characteristics make cardiac mast cells intriguing, given their dichotomous potential roles of inducing or protecting against cardiovascular diseases. Identification of cardiac mast cell subpopulations represents a prerequisite for understanding their potential multifaceted roles in health and disease. Several new drugs specifically targeting human mast cell activation are under development or in clinical trials. Mast cells and/or their subpopulations can potentially represent novel therapeutic targets for cardiovascular disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Via S. Pansini 5, Naples 80131, Italy
| | - Stephen J Galli
- Department of Pathology and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, USA
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Via S. Pansini 5, Naples 80131, Italy
| |
Collapse
|
5
|
Bhalla M, Herring S, Lenhard A, Wheeler JR, Aswad F, Klumpp K, Rebo J, Wang Y, Wilhelmsen K, Fortney K, Bou Ghanem EN. The prostaglandin D2 antagonist asapiprant ameliorates clinical severity in young hosts infected with invasive Streptococcus pneumoniae. Infect Immun 2024; 92:e0052223. [PMID: 38629842 PMCID: PMC11075459 DOI: 10.1128/iai.00522-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/29/2024] [Indexed: 05/03/2024] Open
Abstract
Streptococcus pneumoniae (pneumococcus) remains a serious cause of pulmonary and systemic infections globally, and host-directed therapies are lacking. The aim of this study was to test the therapeutic efficacy of asapiprant, an inhibitor of prostaglandin D2 signaling, against pneumococcal infection. Treatment of young mice with asapiprant after pulmonary infection with invasive pneumococci significantly reduced systemic spread, disease severity, and host death. Protection was specific against bacterial dissemination from the lung to the blood but had no effect on pulmonary bacterial burden. Asapiprant-treated mice had enhanced antimicrobial activity in circulating neutrophils, elevated levels of reactive oxygen species (ROS) in lung macrophages/monocytes, and improved pulmonary barrier integrity indicated by significantly reduced diffusion of fluorescein isothiocyanate (FITC)-dextran from lungs into the circulation. These findings suggest that asapiprant protects the host against pneumococcal dissemination by enhancing the antimicrobial activity of immune cells and maintaining epithelial/endothelial barrier integrity in the lungs.
Collapse
Affiliation(s)
- Manmeet Bhalla
- Department of Microbiology and Immunology, School of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Sydney Herring
- Department of Microbiology and Immunology, School of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Alexsandra Lenhard
- Department of Microbiology and Immunology, School of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Joshua R. Wheeler
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Fred Aswad
- BIOAGE Labs Inc., Richmond, California, USA
| | | | | | - Yan Wang
- BIOAGE Labs Inc., Richmond, California, USA
| | | | | | - Elsa N. Bou Ghanem
- Department of Microbiology and Immunology, School of Medicine, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
6
|
Akinnusi PA, Olubode SO, Adebesin AO, Alade AA, Nwoke VC, Shodehinde SA. Optimal molecular binding data and pharmacokinetic profiles of novel potential triple-action inhibitors of chymase, spleen tyrosine kinase, and prostaglandin D2 receptor in the treatment of asthma. J Genet Eng Biotechnol 2023; 21:113. [PMID: 37947895 PMCID: PMC10638233 DOI: 10.1186/s43141-023-00577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Asthma is a chronic and complex pulmonary condition that affects the airways. A total of 250,000 asthma-related deaths are recorded annually and several proteins including chymase, spleen tyrosine kinase, and prostaglandin D2 receptor have been implicated in the pathophysiology of asthma. Different anti-inflammatory drugs have been developed for the treatment of asthma, particularly corticosteroids, but the associated adverse reactions cannot be overlooked. It is therefore of interest to identify and develop small molecule inhibitors of the integral proteins associated with asthma that have very little or no side effects. Herein, a molecular modeling approach was employed to screen the bioactive compounds in Chromolaena odorata and identify compounds with high binding affinity to the protein targets. RESULTS Five compounds were identified after rigorous and precise molecular screening namely (-)-epicatechin, chlorogenic acid, ombuine, quercetagetin, and quercetin 3-O-rutinoside. These compounds generally showed impressive binding to all the targets understudy. However, chlorogenic acid, quercetagetin, and quercetin 3-O-rutinoside showed better prospects in terms of triple-action inhibition. Further pulmonary and oral pharmacokinetics showed positive results for all the reported compounds. The generated pharmacophore model showed hydrogen bond donor, hydrogen bond acceptor, and aromatic rings as basic structural features required for triple action inhibition. CONCLUSION These findings suggest that these compounds could be explored as triple-action inhibitors of the protein targets. They are, therefore, recommended for further analysis.
Collapse
Affiliation(s)
| | | | | | | | - Victor Chinedu Nwoke
- Department of Biochemistry, Enugu State University of Science and Technology, Enugu, Nigeria
| | | |
Collapse
|
7
|
Marcella S, Petraroli A, Canè L, Ferrara AL, Poto R, Parente R, Palestra F, Cristinziano L, Modestino L, Galdiero MR, Monti M, Marone G, Triggiani M, Varricchi G, Loffredo S. Thymic stromal lymphopoietin (TSLP) is a substrate for tryptase in patients with mastocytosis. Eur J Intern Med 2023; 117:111-118. [PMID: 37500310 DOI: 10.1016/j.ejim.2023.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Mastocytosis is a heterogeneous disease associated to uncontrolled proliferation and increased density of mast cells in different organs. This clonal disorder is related to gain-of-function pathogenic variants of the c-kit gene that encodes for KIT (CD117) expressed on mast cell membrane. Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine, which plays a key role in allergic disorders and several cancers. TSLP is a survival and activating factor for human mast cells through the engagement of the TSLP receptor. Activated human mast cells release several preformed mediators, including tryptase. Increased mast cell-derived tryptase is a diagnostic biomarker of mastocytosis. In this study, we found that in these patients serum concentrations of TSLP were lower than healthy donors. There was an inverse correlation between TSLP and tryptase concentrations in mastocytosis. Incubation of human recombinant TSLP with sera from patients with mastocytosis, containing increasing concentrations of tryptase, concentration-dependently decreased TSLP immunoreactivity. Similarly, recombinant β-tryptase reduced the immunoreactivity of recombinant TSLP, inducing the formation of a cleavage product of approximately 10 kDa. Collectively, these results indicate that TSLP is a substrate for human mast cell tryptase and highlight a novel loop involving these mediators in mastocytosis.
Collapse
Affiliation(s)
| | - Angelica Petraroli
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Luisa Canè
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; CEINGE Advanced Biotechnologies, Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Roberta Parente
- Division of Allergy and Clinical Immunology, University of Salerno, Fisciano (SA) 84084, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples 80131, Italy
| | - Maria Monti
- CEINGE Advanced Biotechnologies, Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, Naples 80126, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples 80131, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples 80131, Italy
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Fisciano (SA) 84084, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples 80131, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples 80131, Italy.
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples 80131, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples 80131, Italy.
| |
Collapse
|
8
|
Poto R, Loffredo S, Marone G, Di Salvatore A, de Paulis A, Schroeder JT, Varricchi G. Basophils beyond allergic and parasitic diseases. Front Immunol 2023; 14:1190034. [PMID: 37205111 PMCID: PMC10185837 DOI: 10.3389/fimmu.2023.1190034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Basophils bind IgE via FcεRI-αβγ2, which they uniquely share only with mast cells. In doing so, they can rapidly release mediators that are hallmark of allergic disease. This fundamental similarity, along with some morphological features shared by the two cell types, has long brought into question the biological significance that basophils mediate beyond that of mast cells. Unlike mast cells, which mature and reside in tissues, basophils are released into circulation from the bone marrow (constituting 1% of leukocytes), only to infiltrate tissues under specific inflammatory conditions. Evidence is emerging that basophils mediate non-redundant roles in allergic disease and, unsuspectingly, are implicated in a variety of other pathologies [e.g., myocardial infarction, autoimmunity, chronic obstructive pulmonary disease, fibrosis, cancer, etc.]. Recent findings strengthen the notion that these cells mediate protection from parasitic infections, whereas related studies implicate basophils promoting wound healing. Central to these functions is the substantial evidence that human and mouse basophils are increasingly implicated as important sources of IL-4 and IL-13. Nonetheless, much remains unclear regarding the role of basophils in pathology vs. homeostasis. In this review, we discuss the dichotomous (protective and/or harmful) roles of basophils in a wide spectrum of non-allergic disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Antonio Di Salvatore
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - John T. Schroeder
- Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| |
Collapse
|
9
|
Poto R, Gambardella AR, Marone G, Schroeder JT, Mattei F, Schiavoni G, Varricchi G. Basophils from allergy to cancer. Front Immunol 2022; 13:1056838. [PMID: 36578500 PMCID: PMC9791102 DOI: 10.3389/fimmu.2022.1056838] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Human basophils, first identified over 140 years ago, account for just 0.5-1% of circulating leukocytes. While this scarcity long hampered basophil studies, innovations during the past 30 years, beginning with their isolation and more recently in the development of mouse models, have markedly advanced our understanding of these cells. Although dissimilarities between human and mouse basophils persist, the overall findings highlight the growing importance of these cells in health and disease. Indeed, studies continue to support basophils as key participants in IgE-mediated reactions, where they infiltrate inflammatory lesions, release pro-inflammatory mediators (histamine, leukotriene C4: LTC4) and regulatory cytokines (IL-4, IL-13) central to the pathogenesis of allergic diseases. Studies now report basophils infiltrating various human cancers where they play diverse roles, either promoting or hampering tumorigenesis. Likewise, this activity bears remarkable similarity to the mounting evidence that basophils facilitate wound healing. In fact, both activities appear linked to the capacity of basophils to secrete IL-4/IL-13, with these cytokines polarizing macrophages toward the M2 phenotype. Basophils also secrete several angiogenic factors (vascular endothelial growth factor: VEGF-A, amphiregulin) consistent with these activities. In this review, we feature these newfound properties with the goal of unraveling the increasing importance of basophils in these diverse pathobiological processes.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Adriana Rosa Gambardella
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy,Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - John T. Schroeder
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy,*Correspondence: Gilda Varricchi, ; Giovanna Schiavoni,
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy,Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy,*Correspondence: Gilda Varricchi, ; Giovanna Schiavoni,
| |
Collapse
|
10
|
Varricchi G, Ferri S, Pepys J, Poto R, Spadaro G, Nappi E, Paoletti G, Virchow JC, Heffler E, Canonica WG. Biologics and airway remodeling in severe asthma. Allergy 2022; 77:3538-3552. [PMID: 35950646 PMCID: PMC10087445 DOI: 10.1111/all.15473] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 01/28/2023]
Abstract
Asthma is a chronic inflammatory airway disease resulting in airflow obstruction, which in part can become irreversible to conventional therapies, defining the concept of airway remodeling. The introduction of biologics in severe asthma has led in some patients to the complete normalization of previously considered irreversible airflow obstruction. This highlights the need to distinguish a "fixed" airflow obstruction due to structural changes unresponsive to current therapies, from a "reversible" one as demonstrated by lung function normalization during biological therapies not previously obtained even with high-dose systemic glucocorticoids. The mechanisms by which exposure to environmental factors initiates the inflammatory responses that trigger airway remodeling are still incompletely understood. Alarmins represent epithelial-derived cytokines that initiate immunologic events leading to inflammatory airway remodeling. Biological therapies can improve airflow obstruction by addressing these airway inflammatory changes. In addition, biologics might prevent and possibly even revert "fixed" remodeling due to structural changes. Hence, it appears clinically important to separate the therapeutic effects (early and late) of biologics as a new paradigm to evaluate the effects of these drugs and future treatments on airway remodeling in severe asthma.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Sebastian Ferri
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy
| | - Jack Pepys
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Emanuele Nappi
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giovanni Paoletti
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Enrico Heffler
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Walter G Canonica
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
11
|
Poto R, Criscuolo G, Marone G, Brightling CE, Varricchi G. Human Lung Mast Cells: Therapeutic Implications in Asthma. Int J Mol Sci 2022; 23:14466. [PMID: 36430941 PMCID: PMC9693207 DOI: 10.3390/ijms232214466] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Mast cells are strategically located in different compartments of the lung in asthmatic patients. These cells are widely recognized as central effectors and immunomodulators in different asthma phenotypes. Mast cell mediators activate a wide spectrum of cells of the innate and adaptive immune system during airway inflammation. Moreover, these cells modulate the activities of several structural cells (i.e., fibroblasts, airway smooth muscle cells, bronchial epithelial and goblet cells, and endothelial cells) in the human lung. These findings indicate that lung mast cells and their mediators significantly contribute to the immune induction of airway remodeling in severe asthma. Therapies targeting mast cell mediators and/or their receptors, including monoclonal antibodies targeting IgE, IL-4/IL-13, IL-5/IL-5Rα, IL-4Rα, TSLP, and IL-33, have been found safe and effective in the treatment of different phenotypes of asthma. Moreover, agonists of inhibitory receptors expressed by human mast cells (Siglec-8, Siglec-6) are under investigation for asthma treatment. Increasing evidence suggests that different approaches to depleting mast cells show promising results in severe asthma treatment. Novel treatments targeting mast cells can presumably change the course of the disease and induce drug-free remission in bronchial asthma. Here, we provide an overview of current and promising treatments for asthma that directly or indirectly target lung mast cells.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy
| | - Chris E. Brightling
- Department of Respiratory Sciences, Leicester NIHR BRC, Institute for Lung Health, University of Leicester, Leicester LE1 7RH, UK
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy
| |
Collapse
|
12
|
Neutrophil Extracellular Traps in Asthma: Friends or Foes? Cells 2022; 11:cells11213521. [PMID: 36359917 PMCID: PMC9654069 DOI: 10.3390/cells11213521] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Asthma is a chronic inflammatory disease characterized by variable airflow limitation and airway hyperresponsiveness. A plethora of immune and structural cells are involved in asthma pathogenesis. The roles of neutrophils and their mediators in different asthma phenotypes are largely unknown. Neutrophil extracellular traps (NETs) are net-like structures composed of DNA scaffolds, histones and granular proteins released by activated neutrophils. NETs were originally described as a process to entrap and kill a variety of microorganisms. NET formation can be achieved through a cell-death process, termed NETosis, or in association with the release of DNA from viable neutrophils. NETs can also promote the resolution of inflammation by degrading cytokines and chemokines. NETs have been implicated in the pathogenesis of various non-infectious conditions, including autoimmunity, cancer and even allergic disorders. Putative surrogate NET biomarkers (e.g., double-strand DNA (dsDNA), myeloperoxidase-DNA (MPO-DNA), and citrullinated histone H3 (CitH3)) have been found in different sites/fluids of patients with asthma. Targeting NETs has been proposed as a therapeutic strategy in several diseases. However, different NETs and NET components may have alternate, even opposite, consequences on inflammation. Here we review recent findings emphasizing the pathogenic and therapeutic potential of NETs in asthma.
Collapse
|
13
|
Wallace CH, Oliveros G, Serrano PA, Rockwell P, Xie L, Figueiredo-Pereira M. Timapiprant, a prostaglandin D2 receptor antagonist, ameliorates pathology in a rat Alzheimer's model. Life Sci Alliance 2022; 5:e202201555. [PMID: 36167438 PMCID: PMC9515385 DOI: 10.26508/lsa.202201555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
We investigated the relevance of the prostaglandin D2 pathway in Alzheimer's disease, because prostaglandin D2 is a major prostaglandin in the brain. Thus, its contribution to Alzheimer's disease merits attention, given the known impact of the prostaglandin E2 pathway in Alzheimer's disease. We used the TgF344-AD transgenic rat model because it exhibits age-dependent and progressive Alzheimer's disease pathology. Prostaglandin D2 levels in hippocampi of TgF344-AD and wild-type littermates were significantly higher than prostaglandin E2. Prostaglandin D2 signals through DP1 and DP2 receptors. Microglial DP1 receptors were more abundant and neuronal DP2 receptors were fewer in TgF344-AD than in wild-type rats. Expression of the major brain prostaglandin D2 synthase (lipocalin-type PGDS) was the highest among 33 genes involved in the prostaglandin D2 and prostaglandin E2 pathways. We treated a subset of rats (wild-type and TgF344-AD males) with timapiprant, a potent highly selective DP2 antagonist in development for allergic inflammation treatment. Timapiprant significantly mitigated Alzheimer's disease pathology and cognitive deficits in TgF344-AD males. Thus, selective DP2 antagonists have potential as therapeutics to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Charles H Wallace
- PhD Program in Biochemistry, The Graduate Center, CUNY, New York, NY, USA
| | - Giovanni Oliveros
- PhD Program in Biochemistry, The Graduate Center, CUNY, New York, NY, USA
| | | | - Patricia Rockwell
- PhD Program in Biochemistry, The Graduate Center, CUNY, New York, NY, USA
- Department of Biological Sciences, Hunter College, New York, NY, USA
| | - Lei Xie
- Department of Computer Science, Hunter College, New York, NY, USA
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Maria Figueiredo-Pereira
- PhD Program in Biochemistry, The Graduate Center, CUNY, New York, NY, USA
- Department of Biological Sciences, Hunter College, New York, NY, USA
| |
Collapse
|
14
|
Huang Z, Chu M, Chen X, Wang Z, Jiang L, Ma Y, Wang Y. Th2A cells: The pathogenic players in allergic diseases. Front Immunol 2022; 13:916778. [PMID: 36003397 PMCID: PMC9393262 DOI: 10.3389/fimmu.2022.916778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Proallergic type 2 helper T (Th2A) cells are a subset of memory Th2 cells confined to atopic individuals, and they include all the allergen-specific Th2 cells. Recently, many studies have shown that Th2A cells characterized by CD3+ CD4+ HPGDS+ CRTH2+ CD161high ST2high CD49dhigh CD27low play a crucial role in allergic diseases, such as atopic dermatitis (AD), food allergy (FA), allergic rhinitis (AR), asthma, and eosinophilic esophagitis (EoE). In this review, we summarize the discovery, biomarkers, and biological properties of Th2A cells to gain new insights into the pathogenesis of allergic diseases.
Collapse
Affiliation(s)
- Ziyu Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Department of Clinical Medicine, Mudanjiang Medical University, Mudanjiang, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Xi Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Ziyuan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Lin Jiang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yinchao Ma
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yuedan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| |
Collapse
|
15
|
Autoantibodies to IgE can induce the release of proinflammatory and vasoactive mediators from human cardiac mast cells. Clin Exp Med 2022:10.1007/s10238-022-00861-w. [PMID: 35879625 PMCID: PMC10390627 DOI: 10.1007/s10238-022-00861-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
Abstract
Mast cells are multifunctional immune cells with complex roles in tissue homeostasis and disease. Cardiac mast cells (HCMCs) are strategically located within the human myocardium, in atherosclerotic plaques, in proximity to nerves, and in the aortic valve. HCMCs express the high-affinity receptor (FcεRI) for IgE and can be activated by anti-IgE and anti-FcεRI. Autoantibodies to IgE and/or FcεRI have been found in the serum of patients with a variety of immune disorders. We have compared the effects of different preparations of IgG anti-IgE obtained from patients with atopic dermatitis (AD) with rabbit IgG anti-IgE on the release of preformed (histamine and tryptase) and lipid mediators [prostaglandin D2 (PGD2) and cysteinyl leukotriene C4 (LTC4)] from HCMCs. Functional human IgG anti-IgE from one out of six AD donors and rabbit IgG anti-IgE induced the release of preformed (histamine, tryptase) and de novo synthesized mediators (PGD2 and LTC4) from HCMCs. Human IgG anti-IgE was more potent than rabbit IgG anti-IgE in inducing proinflammatory mediators from HCMCs. Human monoclonal IgE was a competitive antagonist of both human and rabbit IgG anti-IgE. Although functional anti-IgE autoantibodies rarely occur in patients with AD, when present, they can powerfully activate the release of proinflammatory and vasoactive mediators from HCMCs.
Collapse
|
16
|
Identification of potential inhibitors for Hematopoietic Prostaglandin D2 synthase: Computational modeling and molecular dynamics simulations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Eicosanoid signalling blockade protects middle-aged mice from severe COVID-19. Nature 2022; 605:146-151. [PMID: 35314834 PMCID: PMC9783543 DOI: 10.1038/s41586-022-04630-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 03/11/2022] [Indexed: 12/27/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is especially severe in aged populations1. Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly effective, but vaccine efficacy is partly compromised by the emergence of SARS-CoV-2 variants with enhanced transmissibility2. The emergence of these variants emphasizes the need for further development of anti-SARS-CoV-2 therapies, especially for aged populations. Here we describe the isolation of highly virulent mouse-adapted viruses and use them to test a new therapeutic drug in infected aged animals. Many of the alterations observed in SARS-CoV-2 during mouse adaptation (positions 417, 484, 493, 498 and 501 of the spike protein) also arise in humans in variants of concern2. Their appearance during mouse adaptation indicates that immune pressure is not required for selection. For murine SARS, for which severity is also age dependent, elevated levels of an eicosanoid (prostaglandin D2 (PGD2)) and a phospholipase (phospholipase A2 group 2D (PLA2G2D)) contributed to poor outcomes in aged mice3,4. mRNA expression of PLA2G2D and prostaglandin D2 receptor (PTGDR), and production of PGD2 also increase with ageing and after SARS-CoV-2 infection in dendritic cells derived from human peripheral blood mononuclear cells. Using our mouse-adapted SARS-CoV-2, we show that middle-aged mice lacking expression of PTGDR or PLA2G2D are protected from severe disease. Furthermore, treatment with a PTGDR antagonist, asapiprant, protected aged mice from lethal infection. PTGDR antagonism is one of the first interventions in SARS-CoV-2-infected animals that specifically protects aged animals, suggesting that the PLA2G2D-PGD2/PTGDR pathway is a useful target for therapeutic interventions.
Collapse
|
18
|
Chen L, Yan G, Ohwada T. Building on endogenous lipid mediators to design synthetic receptor ligands. Eur J Med Chem 2022; 231:114154. [DOI: 10.1016/j.ejmech.2022.114154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 01/05/2023]
|
19
|
Pera T, Loblundo C, Penn RB. Pharmacological Management of Asthma and COPD. COMPREHENSIVE PHARMACOLOGY 2022:762-802. [DOI: 10.1016/b978-0-12-820472-6.00095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
Maspero J, Agache IO, Kamei T, Yoshida M, Boone B, Felser JM, Kawakami F, Knorr B, Lawrence D, Lehmann T, Wang W, Pedinoff AJ. Long-term safety and exploratory efficacy of fevipiprant in patients with inadequately controlled asthma: the SPIRIT randomised clinical trial. Respir Res 2021; 22:311. [PMID: 34895218 PMCID: PMC8666007 DOI: 10.1186/s12931-021-01904-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The prostaglandin D2 (PGD2) receptor 2 (DP2 receptor) pathway is an important regulator of the inflammatory cascade in asthma, which can be stimulated by allergic or non-allergic triggers. Fevipiprant is an oral, non-steroidal, highly selective, reversible antagonist of the DP2 receptor that inhibits the binding of PGD2 and its metabolites. METHODS SPIRIT, a 2-treatment period (52-week, double-blind and optional 104-week single-blind), randomised, placebo-controlled, multicentre, parallel-group study, assessed the long-term safety of fevipiprant (150 mg and 450 mg o.d.) added to standard of care in patients ≥ 12 years with uncontrolled asthma. Stratified block randomisation was used. Patients were randomised in an approximate ratio of 3:3:1 (fevipiprant 150 mg, fevipiprant 450 mg or placebo). Patients were either newly enrolled or had participated in a previous fevipiprant Phase 3 trial. Primary endpoints were: time-to-first treatment emergent adverse event (AE); serious AE; and AE leading to discontinuation from study treatment. Data from both treatment periods were combined for analyses. Data were collected during study site visits. RESULTS In total, 1093 patients were randomised to receive fevipiprant 150 mg, 1085 to fevipiprant 450 mg, and 360 to placebo. Overall, 1184 patients had ≥ 52 weeks' treatment, while 163 received ≥ 104 weeks' treatment. Both doses were well tolerated, with a safety profile similar to placebo both in new patients and in those enrolled from previous studies. In exploratory analyses, reduced rates of moderate-to-severe asthma exacerbations, increased time-to-first moderate-to-severe asthma exacerbation and improved FEV1 were observed for both doses of fevipiprant versus placebo; these were without multiplicity adjustment and should be interpreted with caution. SPIRIT was terminated early, on 16 December 2019, by the Sponsor. CONCLUSIONS In patients with uncontrolled asthma, the addition of fevipiprant had a favourable long-term safety profile. TRIAL REGISTRATION Clinicaltrials.gov, NCT03052517, prospectively registered 23 January 2017, https://clinicaltrials.gov/ct2/show/NCT03052517 .
Collapse
Affiliation(s)
- Jorge Maspero
- Allergy and Respiratory Research Unit, Fundación CIDEA, Buenos Aires, Argentina.
| | | | - Tadashi Kamei
- Kamei Internal Medicine and Respiratory Clinic, Takamatsu-city, Kagawa, Japan
| | - Makoto Yoshida
- National Hospital Organization Fukuoka National Hospital, Fukuoka-city, Fukuoka, Japan
| | - Bryan Boone
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - James M Felser
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | - Barbara Knorr
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | | | - Wei Wang
- Novartis Institutes for Biomedical Research Co., Ltd, Shanghai, China
| | | |
Collapse
|
21
|
Watts AM, West NP, Smith PK, Cripps AW, Cox AJ. Adult allergic rhinitis sufferers have unique nasal mucosal and peripheral blood immune gene expression profiles: A case-control study. IMMUNITY INFLAMMATION AND DISEASE 2021; 10:78-92. [PMID: 34637606 PMCID: PMC8669689 DOI: 10.1002/iid3.545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022]
Abstract
Background Allergic rhinitis (AR) is a complex disease involving both mucosal and systemic immune compartments. Greater understanding of the immune networks underpinning AR pathophysiology may assist with further refining disease‐specific biomarkers. Objective To compare immune gene expression profiles in nasal mucosa and peripheral blood samples between adults with AR and controls without AR. Methods This cross‐sectional study included 45 adults with moderate‐severe and persistent AR (37.6 ± 12.8 years; mean ± SD) and 24 adults without AR (36.6 ± 10.2). Gene expression analysis was performed using the NanoString nCounter PanCancer Immune profiling panel (n = 730 immune genes) in combination with the panel plus probe set (n = 30 allergy‐related genes) with purified RNA from peripheral blood and cell lysates prepared from combined nasal lavage and nasal brushing. Results One hundred and thirteen genes were significantly differentially expressed in peripheral blood samples between groups (p < .05). In contrast, 14 genes were differentially expressed in nasal lysate samples between groups (p < .05). Upregulation of allergy‐related genes in nasal mucosa samples in the AR group was observed. Namely, chemokines CCL17 and CCL26 are involved in the chemotaxis of key effector cells and TPSAB1 encodes tryptase, an inflammatory mediator released from activated mast cells and basophils. Six differentially expressed genes (DEGs) were in common between the nasal mucosa and blood samples. In addition, counts of specific DEGs in nasal mucosa samples were positively correlated with eosinophil and dust mite‐specific immunoglobulin E (IgE) counts in blood. Conclusions and Clinical Relevance Distinct gene expression profiles in blood and nasal mucosa samples were observed between AR sufferers and controls. The results of this study also provide evidence for a close interaction between the local site and systemic immunity. The genes identified in this study contribute to the current knowledge of AR pathophysiology and may serve as biomarkers to evaluate the effectiveness of treatment regimens, or as targets for drug discovery.
Collapse
Affiliation(s)
- Annabelle M Watts
- Menzies Health Institute of Queensland, Griffith University, Southport, Queensland, Australia.,School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Nicholas P West
- Menzies Health Institute of Queensland, Griffith University, Southport, Queensland, Australia.,School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Peter K Smith
- School of Medicine, Griffith University, Southport, Queensland, Australia.,Queensland Allergy Services Clinic, Southport, Queensland, Australia
| | - Allan W Cripps
- Menzies Health Institute of Queensland, Griffith University, Southport, Queensland, Australia.,School of Medicine, Griffith University, Southport, Queensland, Australia
| | - Amanda J Cox
- Menzies Health Institute of Queensland, Griffith University, Southport, Queensland, Australia.,School of Medical Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
22
|
Oyesola OO, Shanahan MT, Kanke M, Mooney BM, Webb LM, Smita S, Matheson MK, Campioli P, Pham D, Früh SP, McGinty JW, Churchill MJ, Cahoon JL, Sundaravaradan P, Flitter BA, Mouli K, Nadjsombati MS, Kamynina E, Peng SA, Cubitt RL, Gronert K, Lord JD, Rauch I, von Moltke J, Sethupathy P, Tait Wojno ED. PGD2 and CRTH2 counteract Type 2 cytokine-elicited intestinal epithelial responses during helminth infection. J Exp Med 2021; 218:e20202178. [PMID: 34283207 PMCID: PMC8294949 DOI: 10.1084/jem.20202178] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/28/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
Type 2 inflammation is associated with epithelial cell responses, including goblet cell hyperplasia, that promote worm expulsion during intestinal helminth infection. How these epithelial responses are regulated remains incompletely understood. Here, we show that mice deficient in the prostaglandin D2 (PGD2) receptor CRTH2 and mice with CRTH2 deficiency only in nonhematopoietic cells exhibited enhanced worm clearance and intestinal goblet cell hyperplasia following infection with the helminth Nippostrongylus brasiliensis. Small intestinal stem, goblet, and tuft cells expressed CRTH2. CRTH2-deficient small intestinal organoids showed enhanced budding and terminal differentiation to the goblet cell lineage. During helminth infection or in organoids, PGD2 and CRTH2 down-regulated intestinal epithelial Il13ra1 expression and reversed Type 2 cytokine-mediated suppression of epithelial cell proliferation and promotion of goblet cell accumulation. These data show that the PGD2-CRTH2 pathway negatively regulates the Type 2 cytokine-driven epithelial program, revealing a mechanism that can temper the highly inflammatory effects of the anti-helminth response.
Collapse
Affiliation(s)
- Oyebola O. Oyesola
- Department of Immunology, University of Washington, Seattle, WA
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Michael T. Shanahan
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Matt Kanke
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | | | - Lauren M. Webb
- Department of Immunology, University of Washington, Seattle, WA
| | - Shuchi Smita
- Department of Immunology, University of Washington, Seattle, WA
| | | | - Pamela Campioli
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Duc Pham
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Simon P. Früh
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - John W. McGinty
- Department of Immunology, University of Washington, Seattle, WA
| | - Madeline J. Churchill
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | | | | | - Becca A. Flitter
- Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, CA
| | - Karthik Mouli
- Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, CA
| | | | - Elena Kamynina
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Seth A. Peng
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Rebecca L. Cubitt
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Karsten Gronert
- Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, CA
| | - James D. Lord
- Benaroya Research Institute at Virginia Mason Medical Center, Division of Gastroenterology, Seattle, WA
| | - Isabella Rauch
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | | | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | | |
Collapse
|
23
|
Eicosanoid receptors as therapeutic targets for asthma. Clin Sci (Lond) 2021; 135:1945-1980. [PMID: 34401905 DOI: 10.1042/cs20190657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Eicosanoids comprise a group of oxidation products of arachidonic and 5,8,11,14,17-eicosapentaenoic acids formed by oxygenases and downstream enzymes. The two major pathways for eicosanoid formation are initiated by the actions of 5-lipoxygenase (5-LO), leading to leukotrienes (LTs) and 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), and cyclooxygenase (COX), leading to prostaglandins (PGs) and thromboxane (TX). A third group (specialized pro-resolving mediators; SPMs), including lipoxin A4 (LXA4) and resolvins (Rvs), are formed by the combined actions of different oxygenases. The actions of the above eicosanoids are mediated by approximately 20 G protein-coupled receptors, resulting in a variety of both detrimental and beneficial effects on airway smooth muscle and inflammatory cells that are strongly implicated in asthma pathophysiology. Drugs targeting proinflammatory eicosanoid receptors, including CysLT1, the receptor for LTD4 (montelukast) and TP, the receptor for TXA2 (seratrodast) are currently in use, whereas antagonists of a number of other receptors, including DP2 (PGD2), BLT1 (LTB4), and OXE (5-oxo-ETE) are under investigation. Agonists targeting anti-inflammatory/pro-resolving eicosanoid receptors such as EP2/4 (PGE2), IP (PGI2), ALX/FPR2 (LXA4), and Chemerin1 (RvE1/2) are also being examined. This review summarizes the contributions of eicosanoid receptors to the pathophysiology of asthma and the potential therapeutic benefits of drugs that target these receptors. Because of the multifactorial nature of asthma and the diverse pathways affected by eicosanoid receptors, it will be important to identify subgroups of asthmatics that are likely to respond to any given therapy.
Collapse
|
24
|
PTGDR2 Expression in Peripheral Blood as a Potential Biomarker in Adult Patients with Asthma. J Pers Med 2021; 11:jpm11090827. [PMID: 34575604 PMCID: PMC8468563 DOI: 10.3390/jpm11090827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Precision medicine is a promising strategy to identify biomarkers, stratify asthmatic patients according to different endotypes, and match them with the appropriate therapy. This proof-of-concept study aimed to investigate whether gene expression in peripheral blood could provide a valuable noninvasive approach for the molecular phenotyping of asthma. Methods: We performed whole-transcriptome RNA sequencing on peripheral blood of 30 non-atopic non-asthmatic controls and 30 asthmatic patients. A quantitative PCR (qPCR) validation study of PTGDR2 that encodes for CRTH2 receptor, expressed in cells involved in T2 inflammation, was developed in a cohort of 361 independent subjects: 94 non-asthmatic non-atopic controls, 187 asthmatic patients [including 82 with chronic rhinosinusitis with nasal polyposis (CRSwNP) and 24 with aspirin-exacerbated respiratory disease (AERD)], 52 with allergic rhinitis, and 28 with CRSwNP without asthma. Results: PTGDR2 was one of the most differentially overexpressed genes in asthmatic patients’ peripheral blood (p-value 2.64 × 106). These results were confirmed by qPCR in the validation study, where PTGDR2 transcripts were significantly upregulated in asthmatic patients (p < 0.001). This upregulation was mainly detected in some subgroups such as allergic asthma, asthma with CRSwNP, AERD, eosinophilic asthma, and severe persistent asthma. PTGDR2 expression was detected in different blood cell types, and its correlation with eosinophil counts showed differences in some groups of asthmatic patients. Conclusions: We found that PTGDR2 expression levels could identify asthma patients, introduce a minimally invasive biomarker for adult asthma molecular phenotyping, and add additional information to blood eosinophils. Although further studies are required, analyzing PTGDR2 expression levels in peripheral blood of asthmatics might assist in selecting patients for treatment with specific antagonists.
Collapse
|
25
|
Bieber T. Atopic dermatitis: an expanding therapeutic pipeline for a complex disease. Nat Rev Drug Discov 2021; 21:21-40. [PMID: 34417579 PMCID: PMC8377708 DOI: 10.1038/s41573-021-00266-6] [Citation(s) in RCA: 331] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disease with a complex pathophysiology that underlies a wide spectrum of clinical phenotypes. AD remains challenging to treat owing to the limited response to available therapies. However, recent advances in understanding of disease mechanisms have led to the discovery of novel potential therapeutic targets and drug candidates. In addition to regulatory approval for the IL-4Ra inhibitor dupilumab, the anti-IL-13 inhibitor tralokinumab and the JAK1/2 inhibitor baricitinib in Europe, there are now more than 70 new compounds in development. This Review assesses the various strategies and novel agents currently being investigated for AD and highlights the potential for a precision medicine approach to enable prevention and more effective long-term control of this complex disease. Recent advances in understanding of the complex phenotype and mechanisms underlying atopic dermatitis (AD) have revealed multiple new potential targets for pharmacological intervention. Here, Bieber reviews therapeutic strategies and assesses the expanding pipeline for the therapy of AD, highlighting the potential for a precision medicine approach to the management of this complex disorder.
Collapse
Affiliation(s)
- Thomas Bieber
- Department of Dermatology and Allergy, University Hospital, Bonn, Germany. .,Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland. .,Davos Biosciences, Davos, Switzerland.
| |
Collapse
|
26
|
Zuo S, Wang B, Liu J, Kong D, Cui H, Jia Y, Wang C, Xu X, Chen G, Wang Y, Yang L, Zhang K, Ai D, Du J, Shen Y, Yu Y. ER-anchored CRTH2 antagonizes collagen biosynthesis and organ fibrosis via binding LARP6. EMBO J 2021; 40:e107403. [PMID: 34223653 PMCID: PMC8365266 DOI: 10.15252/embj.2020107403] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Excessive deposition of extracellular matrix, mainly collagen protein, is the hallmark of organ fibrosis. The molecular mechanisms regulating fibrotic protein biosynthesis are unclear. Here, we find that chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2), a plasma membrane receptor for prostaglandin D2, is trafficked to the endoplasmic reticulum (ER) membrane in fibroblasts in a caveolin-1-dependent manner. ER-anchored CRTH2 binds the collagen mRNA recognition motif of La ribonucleoprotein domain family member 6 (LARP6) and promotes the degradation of collagen mRNA in these cells. In line, CRTH2 deficiency increases collagen biosynthesis in fibroblasts and exacerbates injury-induced organ fibrosis in mice, which can be rescued by LARP6 depletion. Administration of CRTH2 N-terminal peptide reduces collagen production by binding to LARP6. Similar to CRTH2, bumetanide binds the LARP6 mRNA recognition motif, suppresses collagen biosynthesis, and alleviates bleomycin-triggered pulmonary fibrosis in vivo. These findings reveal a novel anti-fibrotic function of CRTH2 in the ER membrane via the interaction with LARP6, which may represent a therapeutic target for fibrotic diseases.
Collapse
Affiliation(s)
- Shengkai Zuo
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Bei Wang
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Jiao Liu
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Deping Kong
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Hui Cui
- School of Life Science and TechnologyShanghai Tech UniversityShanghaiChina
| | - Yaonan Jia
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Chenyao Wang
- Department of Inflammation and ImmunityLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Xin Xu
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Guilin Chen
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Yuanyang Wang
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Linlin Yang
- Department of PharmacologySchool of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Kai Zhang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Ding Ai
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Jie Du
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijingChina
| | - Yujun Shen
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Ying Yu
- Tianjin Key Laboratory of Inflammatory BiologyCenter for Cardiovascular DiseasesKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of PharmacologyThe Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| |
Collapse
|
27
|
Oyesola OO, Tait Wojno ED. Prostaglandin regulation of type 2 inflammation: From basic biology to therapeutic interventions. Eur J Immunol 2021; 51:2399-2416. [PMID: 34396535 PMCID: PMC8843787 DOI: 10.1002/eji.202048909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/11/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022]
Abstract
Type 2 immunity is critical for the protective and repair responses that mediate resistance to parasitic helminth infection. This immune response also drives aberrant inflammation during atopic diseases. Prostaglandins are a class of critical lipid mediators that are released during type 2 inflammation and are integral in controlling the initiation, activation, maintenance, effector functions, and resolution of Type 2 inflammation. In this review, we explore the roles of the different prostaglandin family members and the receptors they bind to during allergen‐ and helminth‐induced Type 2 inflammation and the mechanism through which prostaglandins promote or suppress Type 2 inflammation. Furthermore, we discuss the potential role of prostaglandins produced by helminth parasites in the regulation of host–pathogen interactions, and how prostaglandins may regulate the inverse relationship between helminth infection and allergy. Finally, we discuss opportunities to capitalize on our understanding of prostaglandin pathways to develop new therapeutic options for humans experiencing Type 2 inflammatory disorders that have a significant prostaglandin‐driven component including allergic rhinitis and asthma.
Collapse
Affiliation(s)
- Oyebola O Oyesola
- Department of Immunology, University of Washington, Seattle, WA, 98117, USA
| | - Elia D Tait Wojno
- Department of Immunology, University of Washington, Seattle, WA, 98117, USA
| |
Collapse
|
28
|
Schmid T, Brüne B. Prostanoids and Resolution of Inflammation - Beyond the Lipid-Mediator Class Switch. Front Immunol 2021; 12:714042. [PMID: 34322137 PMCID: PMC8312722 DOI: 10.3389/fimmu.2021.714042] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Bioactive lipid mediators play a major role in regulating inflammatory processes. Herein, early pro-inflammatory phases are characterized and regulated by prostanoids and leukotrienes, whereas specialized pro-resolving mediators (SPM), including lipoxins, resolvins, protectins, and maresins, dominate during the resolution phase. While pro-inflammatory properties of prostanoids have been studied extensively, their impact on later phases of the inflammatory process has been attributed mainly to their ability to initiate the lipid-mediator class switch towards SPM. Yet, there is accumulating evidence that prostanoids directly contribute to the resolution of inflammation and return to homeostasis. In this mini review, we summarize the current knowledge of the resolution-regulatory properties of prostanoids and discuss potential implications for anti-inflammatory, prostanoid-targeted therapeutic interventions.
Collapse
Affiliation(s)
- Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK) Partner Site Frankfurt, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| |
Collapse
|
29
|
Wong LYR, Zheng J, Wilhelmsen K, Li K, Ortiz ME, Schnicker NJ, Pezzulo AA, Szachowicz PJ, Klumpp K, Aswad F, Rebo J, Narumiya S, Murakami M, Meyerholz DK, Fortney K, McCray PB, Perlman S. Eicosanoid signaling as a therapeutic target in middle-aged mice with severe COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.20.440676. [PMID: 33907749 PMCID: PMC8077574 DOI: 10.1101/2021.04.20.440676] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is especially severe in aged populations1. Resolution of the COVID-19 pandemic has been advanced by the recent development of SARS-CoV-2 vaccines, but vaccine efficacy is partly compromised by the recent emergence of SARS-CoV-2 variants with enhanced transmissibility2. The emergence of these variants emphasizes the need for further development of anti-SARS-CoV-2 therapies, especially in aged populations. Here, we describe the isolation of a new set of highly virulent mouse-adapted viruses and use them to test a novel therapeutic drug useful in infections of aged animals. Initially, we show that many of the mutations observed in SARS-CoV-2 during mouse adaptation (at positions 417, 484, 501 of the spike protein) also arise in humans in variants of concern (VOC)2. Their appearance during mouse adaptation indicates that immune pressure is not required for their selection. Similar to the human infection, aged mice infected with mouse-adapted SARS-CoV-2 develop more severe disease than young mice. In murine SARS, in which severity is also age-dependent, we showed that elevated levels of an eicosanoid, prostaglandin D2 (PGD2) and of a phospholipase, PLA2G2D, contributed to poor outcomes in aged mice3,4. Using our virulent mouse-adapted SARS-CoV-2, we show that infection of middle-aged mice lacking expression of DP1, a PGD2 receptor, or PLA2G2D are protected from severe disease. Further, treatment with a DP1 antagonist, asapiprant, protected aged mice from a lethal infection. DP1 antagonism is one of the first interventions in SARS-CoV-2-infected animals that specifically protects aged animals, and demonstrates that the PLA2G2D-PGD2/DP1 pathway is a useful target for therapeutic interventions.
Collapse
Affiliation(s)
- Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Jian Zheng
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | | | - Kun Li
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Miguel E. Ortiz
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University, Kyoto, Japan 606-8501
| | - Makoto Murakami
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | | | | | - Paul B. McCray
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
30
|
Bertschi NL, Bazzini C, Schlapbach C. The Concept of Pathogenic TH2 Cells: Collegium Internationale Allergologicum Update 2021. Int Arch Allergy Immunol 2021; 182:365-380. [PMID: 33845475 DOI: 10.1159/000515144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/09/2021] [Indexed: 11/19/2022] Open
Abstract
T helper (TH) cells have evolved into distinct subsets that mediate specific immune responses to protect the host against a myriad of infectious and noninfectious challenges. However, if dysregulated, TH-cell subsets can cause inflammatory disease. Emerging evidence now suggests that human allergic disease is caused by a distinct subpopulation of pathogenic TH2 cells. Pathogenic TH2 cells from different type-2-driven diseases share a core phenotype and show overlapping functional attributes. The unique differentiation requirements, activating signals, and metabolic characteristics of pathogenic TH2 cells are just being discovered. A better knowledge of this particular TH2 cell population will enable the specific targeting of disease-driving pathways in allergy. In this review, we introduce a rational for classifying TH cells into distinct subsets, discuss the current knowledge on pathogenic TH2 cells, and summarize their involvement in allergic diseases.
Collapse
Affiliation(s)
- Nicole L Bertschi
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cecilia Bazzini
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christoph Schlapbach
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
31
|
The pharmacology of the prostaglandin D 2 receptor 2 (DP 2) receptor antagonist, fevipiprant. Pulm Pharmacol Ther 2021; 68:102030. [PMID: 33826946 DOI: 10.1016/j.pupt.2021.102030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 11/23/2022]
Abstract
Fevipiprant is an oral, non-steroidal, highly selective, reversible antagonist of the prostaglandin D2 (DP2) receptor. The DP2 receptor is a mediator of inflammation expressed on the membrane of key inflammatory cells, including eosinophils, Th2 cells, type 2 innate lymphoid cells, CD8+ cytotoxic T cells, basophils and monocytes, as well as airway smooth muscle and epithelial cells. The DP2 receptor pathway regulates the allergic and non-allergic asthma inflammatory cascade and is activated by the binding of prostaglandin D2. Fevipiprant is metabolised by several uridine 5'-diphospho glucuronosyltransferase enzymes to an inactive acyl-glucuronide (AG) metabolite, the only major human metabolite. Both fevipiprant and its AG metabolite are eliminated by urinary excretion; fevipiprant is also possibly cleared by biliary excretion. These parallel elimination pathways suggested a low risk of major drug-drug interactions (DDI), pharmacogenetic or ethnic variability for fevipiprant, which was supported by DDI and clinical studies of fevipiprant. Phase II clinical trials of fevipiprant showed reduction in sputum eosinophilia, as well as improvement in lung function, symptoms and quality of life in patients with asthma. While fevipiprant reached the most advanced state of development to date of an oral DP2 receptor antagonist in a worldwide Phase III clinical trial programme, the demonstrated efficacy did not support further clinical development in asthma.
Collapse
|
32
|
Certo M, Tsai CH, Pucino V, Ho PC, Mauro C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat Rev Immunol 2021; 21:151-161. [PMID: 32839570 DOI: 10.1038/s41577-020-0406-2] [Citation(s) in RCA: 442] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Abstract
The microenvironment in cancerous tissues is immunosuppressive and pro-tumorigenic, whereas the microenvironment of tissues affected by chronic inflammatory disease is pro-inflammatory and anti-resolution. Despite these opposing immunological states, the metabolic states in the tissue microenvironments of cancer and inflammatory diseases are similar: both are hypoxic, show elevated levels of lactate and other metabolic by-products and have low levels of nutrients. In this Review, we describe how the bioavailability of lactate differs in the microenvironments of tumours and inflammatory diseases compared with normal tissues, thus contributing to the establishment of specific immunological states in disease. A clear understanding of the metabolic signature of tumours and inflammatory diseases will enable therapeutic intervention aimed at resetting the bioavailability of metabolites and correcting the dysregulated immunological state, triggering beneficial cytotoxic, inflammatory responses in tumours and immunosuppressive responses in chronic inflammation.
Collapse
Affiliation(s)
- Michelangelo Certo
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Chin-Hsien Tsai
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Valentina Pucino
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ping-Chih Ho
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, Lausanne, Switzerland.
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
33
|
Wójcik P, Gęgotek A, Žarković N, Skrzydlewska E. Oxidative Stress and Lipid Mediators Modulate Immune Cell Functions in Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms22020723. [PMID: 33450863 PMCID: PMC7828321 DOI: 10.3390/ijms22020723] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Autoimmune diseases, including psoriasis, systemic lupus erythematosus (SLE), and rheumatic arthritis (RA), are caused by a combination of environmental and genetic factors that lead to overactivation of immune cells and chronic inflammation. Since oxidative stress is a common feature of these diseases, which activates leukocytes to intensify inflammation, antioxidants could reduce the severity of these diseases. In addition to activating leukocytes, oxidative stress increases the production of lipid mediators, notably of endocannabinoids and eicosanoids, which are products of enzymatic lipid metabolism that act through specific receptors. Because the anti-inflammatory CB2 receptors are the predominant cannabinoid receptors in leukocytes, endocannabinoids are believed to act as anti-inflammatory factors that regulate compensatory mechanisms in autoimmune diseases. While administration of eicosanoids in vitro leads to the differentiation of lymphocytes into T helper 2 (Th2) cells, eicosanoids are also necessary for the different0iation of Th1 and Th17 cells. Therefore, their antagonists and/or the genetic deletion of their receptors abolish inflammation in animal models of psoriasis—RA and SLE. On the other hand, products of non-enzymatic lipid peroxidation, especially acrolein and 4-hydroxynonenal-protein adducts, mostly generated by an oxidative burst of granulocytes, may enhance inflammation and even acting as autoantigens and extracellular signaling molecules in the vicious circle of autoimmune diseases.
Collapse
Affiliation(s)
- Piotr Wójcik
- Department of Analytical Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland; (P.W.); (A.G.)
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland; (P.W.); (A.G.)
| | - Neven Žarković
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland; (P.W.); (A.G.)
- Correspondence:
| |
Collapse
|
34
|
Pang J, Qi X, Luo Y, Li X, Shu T, Li B, Song M, Liu Y, Wei D, Chen J, Wang J, Wang C. Multi-omics study of silicosis reveals the potential therapeutic targets PGD 2 and TXA 2. Am J Cancer Res 2021; 11:2381-2394. [PMID: 33500731 PMCID: PMC7797695 DOI: 10.7150/thno.47627] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: Silicosis is a severe occupational lung disease. Current treatments for silicosis have highly limited availability (i.e., lung transplantation) or, do not effectively prolong patient survival time (i.e., lung lavage). There is thus an urgent clinical need for effective drugs to retard the progression of silicosis. Methods: To systematically characterize the molecular changes associated with silicosis and to discover potential therapeutic targets, we conducted a transcriptomics analysis of human lung tissues acquired during transplantation, which was integrated with transcriptomics and metabolomics analyses of silicosis mouse lungs. The results from the multi-omics analyses were then verified by qPCR, western blot, and immunohistochemistry. The effect of Ramatroban on the progression of silicosis was evaluated in a silica-induced mouse model. Results: Wide metabolic alterations were found in lungs from both human patients and mice with silicosis. Targeted metabolite quantification and validation of expression of their synthases revealed that arachidonic acid (AA) pathway metabolites, prostaglandin D2 (PGD2) and thromboxane A2 (TXA2), were significantly up-regulated in silicosis lungs. We further examined the effect of Ramatroban, a clinical antagonist of both PGD2 and TXA2 receptors, on treating silicosis using a mouse model. The results showed that Ramatroban significantly alleviated silica-induced pulmonary inflammation, fibrosis, and cardiopulmonary dysfunction compared with the control group. Conclusion: Our results revealed the importance of AA metabolic reprogramming, especially PGD2 and TXA2 in the progression of silicosis. By blocking the receptors of these two prostanoids, Ramatroban may be a novel potential therapeutic drug to inhibit the progression of silicosis.
Collapse
|
35
|
Behl T, Kaur I, Sehgal A, Zengin G, Brisc C, Brisc MC, Munteanu MA, Nistor-Cseppento DC, Bungau S. The Lipid Paradox as a Metabolic Checkpoint and Its Therapeutic Significance in Ameliorating the Associated Cardiovascular Risks in Rheumatoid Arthritis Patients. Int J Mol Sci 2020; 21:ijms21249505. [PMID: 33327502 PMCID: PMC7764917 DOI: 10.3390/ijms21249505] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023] Open
Abstract
While the most common manifestations associated with rheumatoid arthritis (RA) are synovial damage and inflammation, the systemic effects of this autoimmune disorder are life-threatening, and are prevalent in 0.5–1% of the population, mainly associated with cardiovascular disorders (CVDs). Such effects have been instigated by an altered lipid profile in RA patients, which has been reported to correlate with CV risks. Altered lipid paradox is related to inflammatory burden in RA patients. The review highlights general lipid pathways (exogenous and endogenous), along with the changes in different forms of lipids and lipoproteins in RA conditions, which further contribute to elevated risks of CVDs like ischemic heart disease, atherosclerosis, myocardial infarction etc. The authors provide a deep insight on altered levels of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides (TGs) in RA patients and their consequence on the cardiovascular health of the patient. This is followed by a detailed description of the impact of anti-rheumatoid therapy on the lipid profile in RA patients, comprising DMARDs, corticosteroids, anti-TNF agents, anti-IL-6 agents, JAK inhibitors and statins. Furthermore, this review elaborates on the prospects to be considered to optimize future investigation on management of RA and treatment therapies targeting altered lipid paradigms in patients.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.)
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, 42130 Konya, Turkey;
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (M.C.B.); (M.A.M.)
| | - Mihaela Cristina Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (M.C.B.); (M.A.M.)
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (M.C.B.); (M.A.M.)
| | - Delia Carmen Nistor-Cseppento
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| |
Collapse
|
36
|
Braune S, Küpper JH, Jung F. Effect of Prostanoids on Human Platelet Function: An Overview. Int J Mol Sci 2020; 21:ijms21239020. [PMID: 33260972 PMCID: PMC7730041 DOI: 10.3390/ijms21239020] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Prostanoids are bioactive lipid mediators and take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. In this review, we focus on their influence on platelets, which are key elements in thrombosis and hemostasis. The function of platelets is influenced by mediators in the blood and the vascular wall. Activated platelets aggregate and release bioactive substances, thereby activating further neighbored platelets, which finally can lead to the formation of thrombi. Prostanoids regulate the function of blood platelets by both activating or inhibiting and so are involved in hemostasis. Each prostanoid has a unique activity profile and, thus, a specific profile of action. This article reviews the effects of the following prostanoids: prostaglandin-D2 (PGD2), prostaglandin-E1, -E2 and E3 (PGE1, PGE2, PGE3), prostaglandin F2α (PGF2α), prostacyclin (PGI2) and thromboxane-A2 (TXA2) on platelet activation and aggregation via their respective receptors.
Collapse
|
37
|
Marone G, Schroeder JT, Mattei F, Loffredo S, Gambardella AR, Poto R, de Paulis A, Schiavoni G, Varricchi G. Is There a Role for Basophils in Cancer? Front Immunol 2020; 11:2103. [PMID: 33013885 PMCID: PMC7505934 DOI: 10.3389/fimmu.2020.02103] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Basophils were identified in human peripheral blood by Paul Ehrlich over 140 years ago. Human basophils represent <1% of peripheral blood leukocytes. During the last decades, basophils have been described also in mice, guinea pigs, rabbits, and monkeys. There are many similarities, but also several immunological differences between human and mouse basophils. There are currently several strains of mice with profound constitutive or inducible basophil deficiency useful to prove that these cells have specific roles in vivo. However, none of these mice are solely and completely devoid of all basophils. Therefore, the relevance of these findings to humans remains to be established. It has been known for some time that basophils have the propensity to migrate into the site of inflammation. Recent observations indicate that tissue resident basophils contribute to lung development and locally promote M2 polarization of macrophages. Moreover, there is increasing evidence that lung-resident basophils exhibit a specific phenotype, different from circulating basophils. Activated human and mouse basophils synthesize restricted and distinct profiles of cytokines. Human basophils produce several canonical (e.g., VEGFs, angiopoietin 1) and non-canonical (i.e., cysteinyl leukotriene C4) angiogenic factors. Activated human and mouse basophils release extracellular DNA traps that may have multiple effects in cancer. Hyperresponsiveness of basophils has been demonstrated in patients with JAK2V617F-positive polycythemia vera. Basophils are present in the immune landscape of human lung adenocarcinoma and pancreatic cancer and can promote inflammation-driven skin tumor growth. The few studies conducted thus far using different models of basophil-deficient mice have provided informative results on the roles of these cells in tumorigenesis. Much more remains to be discovered before we unravel the hitherto mysterious roles of basophils in human and experimental cancers.
Collapse
Affiliation(s)
- Giancarlo Marone
- Section of Hygiene, Department of Public Health, University of Naples Federico II, Naples, Italy.,Azienda Ospedaliera Ospedali dei Colli, Monaldi Hospital Pharmacy, Naples, Italy
| | - John T Schroeder
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| | | | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| |
Collapse
|
38
|
HIV gp120 Induces the Release of Proinflammatory, Angiogenic, and Lymphangiogenic Factors from Human Lung Mast Cells. Vaccines (Basel) 2020; 8:vaccines8020208. [PMID: 32375243 PMCID: PMC7349869 DOI: 10.3390/vaccines8020208] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Human lung mast cells (HLMCs) express the high-affinity receptor FcεRI for IgE and are involved in chronic pulmonary diseases occurring at high frequency among HIV-infected individuals. Immunoglobulin superantigens bind to the variable regions of either the heavy or light chain of immunoglobulins (Igs). Glycoprotein 120 (gp120) of HIV-1 is a typical immunoglobulin superantigen interacting with the heavy chain, variable 3 (VH3) region of human Igs. The present study investigated whether immunoglobulin superantigen gp120 caused the release of different classes of proinflammatory and immunoregulatory mediators from HLMCs. The results show that gp120 from different clades induced the rapid (30 min) release of preformed mediators (histamine and tryptase) from HLMCs. gp120 also caused the de novo synthesis of cysteinyl leukotriene C4 (LTC4) and prostaglandin D2 (PGD2) from HLMCs. Incubation (6 h) of HLMC with gp120 induced the release of angiogenic (VEGF-A) and lymphangiogenic (VEGF-C) factors from HLMCs. The activating property of gp120 was mediated through the interaction with IgE VH3+ bound to FcεRI. Our data indicate that HIV gp120 is a viral superantigen, which induces the release of different proinflammatory, angiogenic, and lymphangiogenic factors from HLMCs. These observations could contribute to understanding, at least in part, the pathophysiology of chronic pulmonary diseases in HIV-infected individuals.
Collapse
|
39
|
Pucino V, Certo M, Varricchi G, Marone G, Ursini F, Rossi FW, De Paulis A, Mauro C, Raza K, Buckley CD. Metabolic Checkpoints in Rheumatoid Arthritis. Front Physiol 2020; 11:347. [PMID: 32362840 PMCID: PMC7180190 DOI: 10.3389/fphys.2020.00347] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Several studies have highlighted the interplay between metabolism, immunity and inflammation. Both tissue resident and infiltrating immune cells play a major role in the inflammatory process of rheumatoid arthritis (RA) via the production of cytokines, adipo-cytokines and metabolic intermediates. These functions are metabolically demanding and require the most efficient use of bioenergetic pathways. The synovial membrane is the primary site of inflammation in RA and exhibits distinctive histological patterns characterized by different metabolism, prognosis and response to treatment. In the RA synovium, the high energy demand by stromal and infiltrating immune cells, causes the accumulation of metabolites, and adipo-cytokines, which carry out signaling functions, as well as activating transcription factors which act as metabolic sensors. These events drive immune and joint-resident cells to acquire pro-inflammatory effector functions which in turn perpetuate chronic inflammation. Whether metabolic changes are a consequence of the disease or one of the causes of RA pathogenesis is still under investigation. This review covers our current knowledge of cell metabolism in RA. Understanding the intricate interactions between metabolic pathways and the inflammatory and immune responses will provide more awareness of the mechanisms underlying RA pathogenesis and will identify novel therapeutic options to treat this disease.
Collapse
Affiliation(s)
- Valentina Pucino
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Michelangelo Certo
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy
- Ospedale dei Colli, Hospital Pharmacy, Naples, Italy
| | - Francesco Ursini
- Section of Rheumatology, Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Amato De Paulis
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Karim Raza
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
- Research into Inflammatory Arthritis Centre Versus Arthritis, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
- MRC and Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Christopher Dominic Buckley
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
40
|
Brightling CE, Brusselle G, Altman P. The impact of the prostaglandin D 2 receptor 2 and its downstream effects on the pathophysiology of asthma. Allergy 2020; 75:761-768. [PMID: 31355946 DOI: 10.1111/all.14001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/24/2019] [Accepted: 07/17/2019] [Indexed: 02/03/2023]
Abstract
Current research suggests that the prostaglandin D2 (PGD2 ) receptor 2 (DP2 ) is a principal regulator in the pathophysiology of asthma, because it stimulates and amplifies the inflammatory response in this condition. The DP2 receptor can be activated by both allergic and nonallergic stimuli, leading to several pro-inflammatory events, including eosinophil activation and migration, release of the type 2 cytokines interleukin (IL)-4, IL-5 and IL-13 from T helper 2 (Th2) cells and innate lymphoid cells type 2 (ILCs), and increased airway smooth muscle mass via recruitment of mesenchymal progenitors to the airway smooth muscle bundle. Activation of the DP2 receptor pathway has potential downstream effects on asthma pathophysiology, including on airway epithelial cells, mucus hypersecretion, and airway remodelling, and consequently might impact asthma symptoms and exacerbations. Given the broad distribution of DP2 receptors on immune and structural cells involved in asthma, this receptor is being explored as a novel therapeutic target.
Collapse
Affiliation(s)
| | - Guy Brusselle
- Department of Respiratory Diseases Ghent University Hospital Ghent Belgium
| | - Pablo Altman
- Novartis Pharmaceuticals Corporation East Hanover NJ USA
| |
Collapse
|
41
|
Lee K, Lee SH, Kim TH. The Biology of Prostaglandins and Their Role as a Target for Allergic Airway Disease Therapy. Int J Mol Sci 2020; 21:ijms21051851. [PMID: 32182661 PMCID: PMC7084947 DOI: 10.3390/ijms21051851] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Prostaglandins (PGs) are a family of lipid compounds that are derived from arachidonic acid via the cyclooxygenase pathway, and consist of PGD2, PGI2, PGE2, PGF2, and thromboxane B2. PGs signal through G-protein coupled receptors, and individual PGs affect allergic inflammation through different mechanisms according to the receptors with which they are associated. In this review article, we have focused on the metabolism of the cyclooxygenase pathway, and the distinct biological effect of each PG type on various cell types involved in allergic airway diseases, including asthma, allergic rhinitis, nasal polyposis, and aspirin-exacerbated respiratory disease.
Collapse
|
42
|
Kong D, Wan Q, Li J, Zuo S, Liu G, Liu Q, Wang C, Bai P, Duan SZ, Zhou B, Gounari F, Lyu A, Lazarus M, Breyer RM, Yu Y. DP1 Activation Reverses Age-Related Hypertension Via NEDD4L-Mediated T-Bet Degradation in T Cells. Circulation 2020; 141:655-666. [PMID: 31893939 DOI: 10.1161/circulationaha.119.042532] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Blood pressure often rises with aging, but exact mechanisms are still not completely understood. With aging, the level of proinflammatory cytokines increases in T lymphocytes. Prostaglandin D2, a proresolution mediator, suppresses Type 1 T helper (Th1) cytokines through D-prostanoid receptor 1 (DP1). In this study, we aimed to investigate the role of the prostaglandin D2/DP1 axis in T cells on age-related hypertension. METHODS To clarify the physiological and pathophysiological roles of DP1 in T cells with aging, peripheral blood samples were collected from young and older male participants, and CD4+ T cells were sorted for gene expression, prostaglandin production, and Western blot assays. Mice blood pressure was quantified by invasive telemetric monitor. RESULTS The prostaglandin D2/DP1 axis was downregulated in CD4+ T cells from older humans and aged mice. DP1 deletion in CD4+ T cells augmented age-related hypertension in aged male mice by enhancing Th1 cytokine secretion, vascular remodeling, CD4+ T cells infiltration, and superoxide production in vasculature and kidneys. Conversely, forced expression of exogenous DP1 in T cells retarded age-associated hypertension in mice by reducing Th1 cytokine secretion. Tumor necrosis factor α neutralization or interferon γ deletion ameliorated the age-related hypertension in DP1 deletion in CD4+ T cells mice. Mechanistically, DP1 inhibited Th1 activity via the PKA (protein kinase A)/p-Sp1 (phosphorylated specificity protein 1)/neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) pathway-mediated T-box-expressed-in-T-cells (T-bet) ubiquitination. T-bet deletion or forced NEDD4L expression in CD4+ T cells attenuated age-related hypertension in CD4+ T cell-specific DP1-deficient mice. DP1 receptor activation by BW245C prevented age-associated blood pressure elevation and reduced vascular/renal superoxide production in male mice. CONCLUSIONS The prostaglandin D2/DP1 axis suppresses age-related Th1 activation and subsequent hypertensive response in male mice through increase of NEDD4L-mediated T-bet degradation by ubiquitination. Therefore, the T cell DP1 receptor may be an attractive therapeutic target for age-related hypertension.
Collapse
Affiliation(s)
- Deping Kong
- Department of Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, China (D.K., S.Z., Q.L., Y.Y.)
| | - Qiangyou Wan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (Q.W., C.W., Y.Y.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Juanjuan Li
- Department of Gastroenterology (J.L.), Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Shengkai Zuo
- Department of Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, China (D.K., S.Z., Q.L., Y.Y.)
| | - Guizhu Liu
- National Clinical Research Center for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (G.L., Y.Y.)
| | - Qian Liu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, China (D.K., S.Z., Q.L., Y.Y.)
| | - Chenchen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (Q.W., C.W., Y.Y.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Peiyuan Bai
- Department of Cardiology (P.B., A.L.), Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China (S.-Z.D.)
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology (B.Z.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Fotini Gounari
- Division of Rheumatology and Knapp Center for Lupus and Immunology Research, University of Chicago, IL (F.G.)
| | - Ankang Lyu
- Department of Cardiology (P.B., A.L.), Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba City, Ibaraki, Japan (M.L.)
| | - Richard M Breyer
- Department of Veterans Affairs, Tennessee Valley Health Authority, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (R.M.B.)
| | - Ying Yu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, China (D.K., S.Z., Q.L., Y.Y.).,CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (Q.W., C.W., Y.Y.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, China.,National Clinical Research Center for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (G.L., Y.Y.)
| |
Collapse
|
43
|
Marone G, Granata F, Pucino V, Pecoraro A, Heffler E, Loffredo S, Scadding GW, Varricchi G. The Intriguing Role of Interleukin 13 in the Pathophysiology of Asthma. Front Pharmacol 2019; 10:1387. [PMID: 31866859 PMCID: PMC6908970 DOI: 10.3389/fphar.2019.01387] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Approximately 5–10% of asthmatic patients worldwide suffer from severe asthma. Experimental and clinical studies have demonstrated that IL-13 is an important cytokine in chronic airways inflammation. IL-13 is involved in Th2 inflammation and has been identified as a possible therapeutic target in the treatment of asthma. Two different human monoclonal antibodies (mAbs) anti-IL-13 (tralokinumab and lebrikizumab) block binding and signaling of IL-13 to its receptors, IL-13Rα1 and IL-13Rα2. Several randomized, double-blind, placebo-controlled multicenter studies have evaluated the safety and efficacy of tralokinumab and lebrikizumab in the treatment of adult patients with severe asthma, but all have failed to meet their primary endpoints. No serious adverse events related to the treatment with these anti-IL-13 mAbs have been reported in these studies. These negative clinical results contrast with positive findings from blocking IL-13 signaling in experimental models of asthma, raising doubts about the transferrable value of some models. Interestingly, dupilumab, a mAb which blocks both IL-4 and IL-13 signaling reduces exacerbation rates and improves lung function in severe asthmatics. These results suggest that IL-4 and IL-13 share some, but not all functional activities in airway inflammation. Tralokinumab might show efficacy in a highly selected cohort of asthmatics characterized by overexpression of IL-13.
Collapse
Affiliation(s)
- Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Azienda Ospedaliera Ospedali dei Colli, Monaldi Hospital Pharmacy, Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Valentina Pucino
- College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Antonio Pecoraro
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Enrico Heffler
- Personalized Medicine, Asthma, and Allergy, Humanitas Clinical and Research Center, IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Guy W Scadding
- Allergy and Clinical Immunology, Imperial College, National Heart and Lung Institute, London, United Kingdom
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
44
|
Pelaia C, Crimi C, Vatrella A, Busceti MT, Gaudio A, Garofalo E, Bruni A, Terracciano R, Pelaia G. New treatments for asthma: From the pathogenic role of prostaglandin D 2 to the therapeutic effects of fevipiprant. Pharmacol Res 2019; 155:104490. [PMID: 31682916 DOI: 10.1016/j.phrs.2019.104490] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022]
Abstract
Prostaglandin D2 (PGD2) is a pleiotropic mediator, significantly involved in the pathogenesis of type 2 (T2) asthma because of its biologic actions exerted on both immune/inflammatory and airway structural cells. In particular, the pro-inflammatory and pro-remodelling effects of PGD2 are mainly mediated by stimulation of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). This receptor is the target of the oral competitive antagonist fevipiprant, which on the basis of recent phase II studies is emerging as a potential very promising anti-asthma drug. Indeed, fevipiprant appears to be safe and effective, especially in consideration of its ability to inhibit eosinophilic bronchial inflammation and improve forced expiratory volume in one second (FEV1). Further ongoing phase III trials will definitely clarify if fevipiprant can prospectively become a valid option for an efficacious add-on treatment of moderate-to-severe T2-high asthma.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Maria Teresa Busceti
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Achille Gaudio
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Eugenio Garofalo
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Andrea Bruni
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Rosa Terracciano
- Department of Health Science, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Girolamo Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy.
| |
Collapse
|
45
|
Marone G, Spadaro G, Braile M, Poto R, Criscuolo G, Pahima H, Loffredo S, Levi-Schaffer F, Varricchi G. Tezepelumab: a novel biological therapy for the treatment of severe uncontrolled asthma. Expert Opin Investig Drugs 2019; 28:931-940. [PMID: 31549891 DOI: 10.1080/13543784.2019.1672657] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Thymic stromal lymphopoietin (TSLP) is overexpressed in the airways of severe asthmatics and is an upstream cytokine that orchestrates inflammatory responses in asthma. TSLP exerts its effects by binding to a high affinity heteromeric receptor complex composed of TSLPR and IL-7Rα. An association of polymorphisms in TSLP with airway hyperresponsiveness, IgE, eosinophilia and asthma has been documented. TSLP has been implicated in asthma pathophysiology. Tezepelumab is a first-in-class human monoclonal antibody that binds to TSLP, thus inhibiting its interaction with TSLP receptor complex. Tezepelumab given as an add-on-therapy to patients with severe uncontrolled asthma has shown safety, tolerability and efficacy. Several trials are evaluating the long-term safety and the efficacy of tezepelumab in adults and adolescents with severe uncontrolled asthma.Areas covered: We provide an overview of the monoclonal antibody therapeutics market for severe uncontrolled asthma, examine the underlying pathophysiology that drives TSLP and discuss the use of tezepelumab for the treatment of severe uncontrolled asthma,Expert opinion: TSLP is a promising target for T2-high and perhaps some patients with T2-low asthma. The results of preliminary clinical trials are encouraging. Several unanswered questions concerning basic pathophysiological aspects of TSLP variants, the long-term safety and efficacy of tezepelumab with different phenotypes/endotypes of asthma should be addressed.
Collapse
Affiliation(s)
- Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Azienda Ospedaliera Ospedali dei Colli - Monaldi Hospital Pharmacy, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Mariantonia Braile
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Hadas Pahima
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stefania Loffredo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
46
|
Johal KJ, Saini SS. Current and emerging treatments for chronic spontaneous urticaria. Ann Allergy Asthma Immunol 2019; 125:380-387. [PMID: 31494233 DOI: 10.1016/j.anai.2019.08.465] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To review the published literature on current and new treatments for chronic spontaneous urticaria (CSU) and to provide guidance on the potential use of these therapeutics. DATA SOURCES A PubMed search was performed to include English-language articles with the keywords chronic spontaneous urticaria, pathophysiology, quality of life, and treatments, with a preference to those articles written in the last 5 years. ClinicalTrials.gov was reviewed for recent relevant clinical trials related to potential CSU therapeutics. STUDY SELECTIONS Literature was included if it provided information related to the current understanding of the pathophysiology and management of CSU as well as potential novel therapeutics currently in development. RESULTS CSU has a significant effect on patients' quality of life. Current therapies include antihistamines, leukotriene receptor antagonists, omalizumab, and immunosuppressants; however, additional treatments are needed. New therapeutics under investigation include IgG1 anti-IgE monoclonal antibodies (ligelizumab), chemoattractant rector-homologous molecule expressed on TH2 cells antagonists (AZD1981), Bruton tyrosine kinase inhibitors (fenebrutinib), anti-siglec-8 monoclonal antibody (AK002), and topical spleen tyrosine kinase inhibitors (GSK2646264). We review the mechanisms of action as well as recently published data from clinical trials regarding the efficacy and safety of these treatments. CONCLUSION The development of new treatments for CSU will lead to improved options for patients and may assist with improving our understanding of disease pathophysiology.
Collapse
Affiliation(s)
- Kirti J Johal
- Johns Hopkins Asthma and Allergy Center, Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sarbjit S Saini
- Johns Hopkins Asthma and Allergy Center, Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
47
|
Asthma from immune pathogenesis to precision medicine. Semin Immunol 2019; 46:101294. [PMID: 31387788 DOI: 10.1016/j.smim.2019.101294] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022]
Abstract
Asthma is characterized by multiple immunological mechanisms (endotypes) determining variable clinical presentations (phenotypes). The identification of endotypic mechanisms is crucial to better characterize patients and to identify tailored therapeutic approaches with novel biological agents targeting specific immunological pathways. This review focused on summarizing the major immunological mechanisms involved in the pathogenesis of asthma, as well as on discussing the emergence of phenotypic features of the disease. Novel biological agents and other drugs targeting specific endotypes are discussed, as their use represent a precision medicine approach to the disease that is nowadays mandatory particularly for treating more severe patients.
Collapse
|
48
|
Therapeutic Potential of Hematopoietic Prostaglandin D 2 Synthase in Allergic Inflammation. Cells 2019; 8:cells8060619. [PMID: 31226822 PMCID: PMC6628301 DOI: 10.3390/cells8060619] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Worldwide, there is a rise in the prevalence of allergic diseases, and novel efficient therapeutic approaches are still needed to alleviate disease burden. Prostaglandin D2 (PGD2) has emerged as a central inflammatory lipid mediator associated with increased migration, activation and survival of leukocytes in various allergy-associated disorders. In the periphery, the hematopoietic PGD synthase (hPGDS) acts downstream of the arachidonic acid/COX pathway catalysing the isomerisation of PGH2 to PGD2, which makes it an interesting target to treat allergic inflammation. Although much effort has been put into developing efficient hPGDS inhibitors, no compound has made it to the market yet, which indicates that more light needs to be shed on potential PGD2 sources and targets to determine which particular condition and patient will benefit most and thereby improve therapeutic efficacy. In this review, we want to revisit current knowledge about hPGDS function, expression in allergy-associated cell types and their contribution to PGD2 levels as well as beneficial effects of hPGDS inhibition in allergic asthma, rhinitis, atopic dermatitis, food allergy, gastrointestinal allergic disorders and anaphylaxis.
Collapse
|
49
|
Kytikova O, Novgorodtseva T, Denisenko Y, Antonyuk M, Gvozdenko T. Pro-Resolving Lipid Mediators in the Pathophysiology of Asthma. ACTA ACUST UNITED AC 2019; 55:medicina55060284. [PMID: 31216723 PMCID: PMC6631965 DOI: 10.3390/medicina55060284] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/09/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022]
Abstract
Asthma is one of the most important medical and social problems of our time due to the prevalence and the complexity of its treatment. Chronic inflammation that is characteristic of asthma is accompanied by bronchial obstruction, which involves various lipid mediators produced from n-6 and n-3 polyunsaturated fatty acids (PUFAs). The review is devoted to modern ideas about the PUFA metabolites—eicosanoids (leukotrienes, prostaglandins, thromboxanes) and specialized pro-resolving lipid mediators (SPMs) maresins, lipoxins, resolvins, protectins. The latest advances in clinical lipidomics for identifying and disclosing the mechanism of synthesis and the biological action of SPMs have been given. The current views on the peculiarities of the inflammatory reaction in asthma and the role of highly specialized metabolites of arachidonic, eicosapentaenoic and docosahexaenoic acids in this process have been described. The possibility of using SPMs as therapeutic agents aimed at controlling the resolution of inflammation in asthma is discussed.
Collapse
Affiliation(s)
- Oxana Kytikova
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| | - Tatyana Novgorodtseva
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| | - Yulia Denisenko
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| | - Marina Antonyuk
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| | - Tatyana Gvozdenko
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| |
Collapse
|