1
|
Lao XY, Sun YL, Zhao ZJ, Liu J, Ruan XF. Pharmacological effects of betulinic acid and its protective mechanisms on the cardiovascular system. Fitoterapia 2025; 183:106561. [PMID: 40288588 DOI: 10.1016/j.fitote.2025.106561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Betulinic acid (BA), a pentacyclic triterpenoid saponin widely found in plants, has attracted attention for its diverse pharmacological activities. Recent studies highlight its cardioprotective potential, promoting its relevance in cardiovascular research. AIM OF THE REVIEW This review summarizes BA's physicochemical properties, structure-activity relationships, natural sources, and synthesis strategies. It further discusses its pharmacokinetics and toxicity to evaluate its drug development potential, with emphasis on cardioprotective effects and related signaling pathways. METHODS Literature was collected from databases such as PubMed and Web of Science, focusing on studies addressing BA's chemical characteristics, biological activities, pharmacokinetics, and cardiovascular relevance. RESULTS BA exerts cardioprotective effects via multiple signaling pathways, including NRF2, NF-κB, MAPK, and NFAT. These contribute to its antioxidant, anti-inflammatory, anti-apoptotic, and anti-proliferative actions, as well as its enhancement of endothelial function through nitric oxide signaling. BA also reduces lipid accumulation. Combined with favorable physicochemical properties and synthetic accessibility, these findings support BA as a promising multifunctional lead compound in cardiovascular pharmacology. CONCLUSION BA shows strong potential as a cardioprotective natural compound. Although further research is needed to validate its clinical efficacy and safety, its multi-target actions and structural versatility provide a solid basis for development in cardiovascular drug discovery.
Collapse
Affiliation(s)
- Xu Yuan Lao
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuan Long Sun
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhe Jun Zhao
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jie Liu
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao Fen Ruan
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Guo X, Su Y, Du Y, Zhang F, Yu W, Ren W, Li S, Kuang H, Wu L. Vinegar-processed Schisandra chinensis polysaccharide ameliorates type 2 diabetes via modulation serum metabolic profiles, gut microbiota, and fecal SCFAs. Int J Biol Macromol 2025; 294:139514. [PMID: 39761882 DOI: 10.1016/j.ijbiomac.2025.139514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/21/2025]
Abstract
Numerous studies indicate that Schisandra chinensis (Turcz.) Baill (SC) has anti-type 2 diabetes mellitus (T2DM) effects, and its processed products are commonly used in clinical practice. However, limited reports exist on the mechanisms of polysaccharides from its vinegar products and their role in T2DM. We purified a novel polysaccharide from vinegar-processed Schisandra chinensis (VSC) and used intestinal microbiota 16S rRNA analysis and metabolomics to study changes in T2DM mice after vinegar-processed Schisandra chinensis polysaccharide (VSP) intervention, aiming to elucidate how VSP alleviates T2DM. VSP has shown significant therapeutic effects in T2DM mice, which can regulate the imbalance of glucose and lipid metabolism, alleviate pancreatic and liver damage, restore the integrity of the intestinal barrier, and inhibit the inflammatory response. Serum metabolomics and microbiological analysis showed that VSP could significantly regulate 104 endogenous metabolites and rectify gut microbiota disorders in T2DM mice. Additionally, VSP enhanced the levels of short-chain fatty acids (SCFAs) and the expression of GPR41/43 in the colon of T2DM mice. Correlation analysis revealed significant correlations among specific gut microbiota, serum metabolites, and fecal SCFAs. Overall, these findings will provide a basis for further VSP development.
Collapse
Affiliation(s)
- Xingyu Guo
- School of Pharmacy, Heilongjiang University Of Chinese Medicine, Harbin 150040, China
| | - Yang Su
- School of Pharmacy, Heilongjiang University Of Chinese Medicine, Harbin 150040, China
| | - Yongqiang Du
- Heilongjiang Province Healthcare Security Administration, Harbin 150036, China
| | - Fan Zhang
- School of Pharmacy, Heilongjiang University Of Chinese Medicine, Harbin 150040, China
| | - Wenting Yu
- School of Pharmacy, Heilongjiang University Of Chinese Medicine, Harbin 150040, China
| | - Wenchen Ren
- School of Pharmacy, Heilongjiang University Of Chinese Medicine, Harbin 150040, China
| | - Shanshan Li
- Heilongjiang Province Health Management Service Evaluation Center, Harbin 150030, China
| | - Haixue Kuang
- School of Pharmacy, Heilongjiang University Of Chinese Medicine, Harbin 150040, China
| | - Lun Wu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
3
|
Lin B, Bai G, Zhang Y, Wang Y, Chen S. Betulinic acid from Inonotus obliquus ameliorates T2DM by modulating short-chain fatty acids producing bacteria and amino acids metabolism in db/db mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119417. [PMID: 39884483 DOI: 10.1016/j.jep.2025.119417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/04/2025] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inonotus obliquus has also been used as a traditional folk medicine in Europe and Northeastern China to treat metabolic diseases. Betulinic acid (BA) is a major ingredient with anti-diabetic property derived from I. obliquus, however, its bioavailability is limited. Whether the beneficial effects of BA on type 2 diabetic mellitus (T2DM) referring to modulation of gut microbiota and associated metabolites remain unclear. AIM OF THE STUDY This work aims to investigate the alleviating effect of BA on T2DM in db/db mice and elucidate the mechanism from perspective of network pharmacology, gut microbiome and fecal metabolome. MATERIALS AND METHODS BA was orally administered to db/db mice for 45 days, and the related biochemical parameters were evaluated. The associated mechanism was explored using network pharmacology analysis, 16S rRNA sequencing and UHPLC-MS metabolomics comprehensively. Additionally, Spearman analysis was performed to assess the correlation between gut microbes, metabolites, and T2DM-related biochemical parameters. RESULTS BA ameliorated T2DM symptoms by reducing body weight gain, regulating serum glucose and lipid levels, and mitigating T2DM-associated liver injury in db/db mice. Network pharmacology analysis indicated the ameliorative effect was via targeting at PPAR activity. BA intervention increased the relative abundance of short-chain fatty acids (SCFAs) producing bacteria including Lactobacillus and Eubacterium_xylanophilum group, and enhanced the production of SCFAs. Moreover, BA primarily regulates arginine and proline metabolism, D-glutamine and D-glutamate metabolism, and alanine, aspartate and glutamate metabolism. Spearman analysis indicated a negative correlation between SCFAs-producing bacteria and amino acids, as well as serum glucose and lipid levels. CONCLUSION Apart from PPAR signaling pathway, BA modulated gut microbiota composition and associated metabolites in db/db mice. This study provided novel insights into the therapeutic potential of BA for alleviating T2DM symptoms.
Collapse
Affiliation(s)
- Bing Lin
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Guangjian Bai
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China; Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Yifan Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yaqi Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Shaodan Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China; Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
4
|
Ghasemzadeh Rahbardar M, Fazeli Kakhki H, Hosseinzadeh H. Ziziphus jujuba (Jujube) in Metabolic Syndrome: From Traditional Medicine to Scientific Validation. Curr Nutr Rep 2024; 13:845-866. [PMID: 39354208 DOI: 10.1007/s13668-024-00581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 10/03/2024]
Abstract
PURPOSE OF REVIEW This review evaluates the therapeutic potential of Ziziphus jujuba and its main components in managing complications of metabolic syndrome, including diabetes, dyslipidemia, obesity, and hypertension. RECENT FINDINGS The reviewed studies provide evidence supporting the use of Z. jujuba and its main components (lupeol and betulinic acid) as natural treatments for complications of metabolic syndrome. These substances enhance glucose uptake through the activation of signaling pathways such as phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), reduce hepatic glucose synthesis, and increase glucose uptake by adipocytes and skeletal muscle cells. They also improve insulin sensitivity by modulating AMP-activated protein kinase (AMPK) activity and regulating insulin signaling proteins and glucose transporters. In the field of dyslipidemia, they inhibit triglyceride synthesis, lipid accumulation, and adipogenic enzymes, while influencing key signaling pathways involved in adipogenesis. Z. jujuba and its constituents demonstrate anti-adipogenic effects, inhibiting lipid accumulation and modulating adipogenic enzymes and transcription factors. They also exhibit positive effects on endothelial function and vascular health by enhancing endothelial nitric oxide synthase (eNOS) expression, NO production, and antioxidant enzyme activity. Z. jujuba, lupeol, and betulinic acid hold promise as natural treatments for complications of metabolic syndrome. They improve glucose metabolism, insulin sensitivity, and lipid profiles while exerting anti-adipogenic effects and enhancing endothelial function. However, further research is needed to elucidate the mechanisms and confirm their efficacy in clinical trials. These natural compounds offer potential as alternative therapies for metabolic disorders and contribute to the growing body of evidence supporting the use of natural medicines in their management.
Collapse
Affiliation(s)
| | - Homa Fazeli Kakhki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Gao Y, Zhou Q, Wang H, Xin G, Wang T, Zhang K, Yu X, Wen A, Wu Q, Li X, Liu Y, Huang W. Isoxanthohumol improves hepatic lipid metabolism via regulating the AMPK/PPARα and PI3K/AKT signaling pathways in hyperlipidemic mice. Food Sci Nutr 2024; 12:8846-8857. [PMID: 39619961 PMCID: PMC11606862 DOI: 10.1002/fsn3.4449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 03/17/2025] Open
Abstract
Hyperlipidemia presents a significant global healthcare challenge, necessitating innovative therapeutic strategies for more effective outcomes. Recent studies have highlighted the beneficial impact of moderate beer intake on metabolic diseases. The purpose of this research is to explore the possible molecular mechanisms of isoxanthohumol (IXN), the major hop flavonoid in beer, in the treatment of hyperlipidemia. The mice model of acute hyperlipidemia was constructed by intraperitoneal injection of Triton WR-1339. The therapeutic effect of IXN was assessed by biochemical and histological analyses. Furthermore, comprehensive data mining across various public databases was conducted to identify underlying therapeutic targets of IXN on hyperlipidemia. A protein-protein interaction network was constructed to pinpoint hub targets, and subsequent GO and KEGG enrichment analyses were used to elucidate underlying biological functions. Molecular docking was utilized to validate the binding affinity between hub targets and IXN. Western blotting analysis further verified the protein expression of potential IXN targets. IXN administration significantly improved blood lipid and hepatic lipid levels, alongside increased SOD activity and decreased MDA content in hyperlipidemia mice. Histological analyses, including H&E and Oil Red O staining, showed the improvement of hepatic steatosis with IXN treatment. At the molecular level, IXN significantly increased protein levels of p-AMPK, PPARα, p-PI3K, and p-AKT. IXN activates AMPK/PPARα and PI3K/AKT signaling pathways, leading to reduction in lipid accumulation and oxidative stress, and ultimately ameliorating hyperlipidemia.
Collapse
Affiliation(s)
- Yu Gao
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue‐Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of MedicineWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| | - Qilong Zhou
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue‐Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of MedicineWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| | - Huiqing Wang
- Department of PediatricsWest China Second University Hospital, Sichuan UniversityChengduPeople's Republic of China
| | - Guang Xin
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue‐Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of MedicineWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| | - Tao Wang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue‐Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of MedicineWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| | - Kun Zhang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue‐Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of MedicineWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| | - Xiuxian Yu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue‐Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of MedicineWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| | - Ao Wen
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue‐Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of MedicineWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| | - Qiuling Wu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue‐Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of MedicineWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| | - Xiaojuan Li
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue‐Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of MedicineWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| | - Yijiang Liu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue‐Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of MedicineWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| | - Wen Huang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue‐Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of MedicineWest China Hospital, Sichuan UniversityChengduPeople's Republic of China
| |
Collapse
|
6
|
Wang Q, Ma F, Wang J, Xu H, Li K, Cheng YY, Chen X, Qu S, Wei T, Hao X, Kong M, Xie C, Wang W, Wang Y, Jeong LS. Antitumor activity and transcriptome sequencing (RNA-seq) analyses of hepatocellular carcinoma cells in response to exposure triterpene-nucleoside conjugates. Eur J Med Chem 2024; 276:116635. [PMID: 38964258 DOI: 10.1016/j.ejmech.2024.116635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Fifteen betulonic/betulinic acid conjugated with nucleoside derivatives were synthesized to enhance antitumor potency and water solubility. Among these, the methylated betulonic acid-azidothymidine compound (8c) exhibited a broad-spectrum of antitumor activity against three tested tumor cell lines, including SMMC-7721 (IC50 = 5.02 μM), KYSE-150 (IC50 = 5.68 μM), and SW620 (IC50 = 4.61 μM) and along with lower toxicity (TC50 > 100 μM) estimated by zebrafish embryos assay. Compared to betulinic acid (<0.05 μg/mL), compound 8c showed approximately 40-fold higher water solubility (1.98 μg/mL). In SMMC-7721 cells, compound 8c induced autophagy and apoptosis as its concentration increased. Transcriptomic sequencing analysis was used to understand the potential impacts of the underlying mechanism of 8c on SMMC-7721 cells. Transcriptomic studies indicated that compound 8c could activate autophagy by inhibiting the PI3K/AKT pathway in SMMC-7721 cells. Furthermore, in the xenograft mice study, compound 8c significantly slowed down the tumor growth, as potent as paclitaxel treated group. In conclusion, methylated betulonic acid-azidothymidine compound (8c) not only increases water solubility, but also enhances the potency against hepatocellular carcinoma cells by inducing autophagy and apoptosis, and suppressing the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Qiang Wang
- Henan Biotechnology Development Center, BGI College & Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450052, China; High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou, 450002, China; College of Pharmacy, Seoul National University, Seoul, 08820, South Korea.
| | - Fangchao Ma
- Henan Biotechnology Development Center, BGI College & Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450052, China
| | - Jingchen Wang
- Henan Biotechnology Development Center, BGI College & Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450052, China
| | - Hongde Xu
- Henan Biotechnology Development Center, BGI College & Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450052, China
| | - Keyan Li
- National Health Commission Key Laboratory of Birth Defect Prevention, Henan Provincial People's Hospital, Zhengzhou, 450002, China
| | - Yung-Yi Cheng
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan; Natural Products Research Laboratories, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7568, USA
| | - Xiqiang Chen
- High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou, 450002, China
| | - Shuhao Qu
- College of Pharmacy, Seoul National University, Seoul, 08820, South Korea
| | - Tingting Wei
- National Health Commission Key Laboratory of Birth Defect Prevention, Henan Provincial People's Hospital, Zhengzhou, 450002, China
| | - Xiaofei Hao
- High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou, 450002, China
| | - Mingyue Kong
- National Health Commission Key Laboratory of Birth Defect Prevention, Henan Provincial People's Hospital, Zhengzhou, 450002, China
| | - Chengping Xie
- High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou, 450002, China
| | - Wei Wang
- Henan Natural Product Biotechnology Co. Ltd., Zhengzhou, 450002, China.
| | - Yanli Wang
- National Health Commission Key Laboratory of Birth Defect Prevention, Henan Provincial People's Hospital, Zhengzhou, 450002, China.
| | - Lak Shin Jeong
- College of Pharmacy, Seoul National University, Seoul, 08820, South Korea.
| |
Collapse
|
7
|
Teng W, Zhou Z, Cao J, Guo Q. Recent Advances of Natural Pentacyclic Triterpenoids as Bioactive Delivery System for Synergetic Biological Applications. Foods 2024; 13:2226. [PMID: 39063310 PMCID: PMC11275325 DOI: 10.3390/foods13142226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Bioactive compounds have drawn much attention according to their various health benefits. However, poor dissolvability, low stability and limited bioavailability largely narrow their applications. Although a variety of nontoxic ingredients have been rapidly developed as vehicles to deliver bioactive compounds in the last few years, most of them are non-bioactive. Pentacyclic triterpenoids, owing to their unique self-assembly and co-assembly behaviors and different physiological functions, can construct bioactive carriers due to their higher biodegradability, biocompatibility and lower toxicity. In this paper, the basic classification, biological activities and physicochemical properties of pentacyclic triterpenoids were summarized. Additionally, applications of self-assembled and co-assembled pentacyclic triterpenoids as bioactive delivery systems to load bioactive components and future research directions were discussed. This study emphasizes the potential of pentacyclic triterpenoids as bioactive delivery systems, offering a new perspective for constructing self- or co-assemblies for further synergetic biological applications.
Collapse
Affiliation(s)
- Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.T.); (Z.Z.); (J.C.)
| | - Zixiao Zhou
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.T.); (Z.Z.); (J.C.)
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.T.); (Z.Z.); (J.C.)
| | - Qing Guo
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
8
|
Salau VF, Erukainure OL, Aljoundi A, Akintemi EO, Elamin G, Odewole OA. Exploring the inhibitory action of betulinic acid on key digestive enzymes linked to diabetes via in vitro and computational models: approaches to anti-diabetic mechanisms. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:411-432. [PMID: 38764437 DOI: 10.1080/1062936x.2024.2352729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024]
Abstract
Phytochemicals are now increasingly exploited as remedial agents for the management of diabetes due to side effects attributable to commercial antidiabetic agents. This study investigated the structural and molecular mechanisms by which betulinic acid exhibits its antidiabetic effect via in vitro and computational techniques. In vitro antidiabetic potential was analysed via on α-amylase, α-glucosidase, pancreatic lipase and α-chymotrypsin inhibitory assays. Its structural and molecular inhibitory mechanisms were investigated using Density Functional Theory (DFT) analysis, molecular docking and molecular dynamics (MD) simulation. Betulinic acid significantly (p < 0.05) inhibited α-amylase, α-glucosidase, pancreatic lipase and α-chymotrypsin enzymes with IC50 of 70.02 μg/mL, 0.27 μg/mL, 1.70 μg/mL and 8.44 μg/mL, respectively. According to DFT studies, betulinic acid possesses similar reaction in gaseous phase and water due to close values observed for highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LUMO) and the chemical descriptors. The dipole moment indicates that betulinic acid has high polarity. Molecular electrostatic potential surface revealed the electrophilic and nucleophilic attack-prone atoms of the molecule. Molecular dynamic studies revealed a stable complex between betulinic acid and α-amylase, α-glucosidase, pancreatic lipase and α-chymotrypsin. The study elucidated the potent antidiabetic properties of betulinic acid by revealing its conformational inhibitory mode of action on enzymes involved in the onset of diabetes.
Collapse
Affiliation(s)
- V F Salau
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - O L Erukainure
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - A Aljoundi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Attahadi, Tripoli, Libya
| | - E O Akintemi
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - G Elamin
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - O A Odewole
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
9
|
Brahma S, Goyal AK, Dhamodhar P, Kumari MR, Jayashree S, Usha T, Middha SK. Can Polyherbal Medicine be used for the Treatment of Diabetes? - A Review of Historical Classics, Research Evidence and Current Prevention Programs. Curr Diabetes Rev 2024; 20:e140323214600. [PMID: 36918778 DOI: 10.2174/1573399819666230314093721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 03/16/2023]
Abstract
Diabetes mellitus (DM), a chronic medical condition, has attained a global pandemic status over the last few decades affecting millions of people. Despite a variety of synthetic drugs available in the market, the use of herbal medicines for managing diabetes is gaining importance because of being comparatively safer. This article reviews the result of a substantial literature search on polyherbal formulations (PHFs) developed and evaluated with potential for DM. The accumulated data in the literature allowed us to enlist 76PHFs consisting of different parts of 147 plant species belonging to 58 botanical families. The documented plant species are laden with bioactive components with anti-diabetic properties and thus draw attention. The most favoured ingredient for PHFs was leaves of Gymnema sylvestre and seeds of Trigonella foenum-graecum used in 27 and 22 formulations, respectively. Apart from herbs, shilajit (exudates from high mountain rocks) formed an important component of 9 PHFs, whereas calcined Mytilus margaritiferus and goat pancreas were used in Dolabi, the most commonly used tablet form of PHF in Indian markets. The healing properties of PHFs against diabetes have been examined in both pre-clinical studies and clinical trials. However, the mechanism(s) of action of PHFs are still unclear and considered the pitfalls inherent in understanding the benefits of PHFs. From the information available based on experimental systems, it could be concluded that plant-derived medicines will have a considerable role to play in the control of diabetes provided the challenges related to their bioavailability, bioefficacy, optimal dose, lack of characterization, ambiguous mechanism of action, and clinical efficiency are addressed.
Collapse
Affiliation(s)
- Sudem Brahma
- Department of Biotechnology, Bodoland University, Kokrajhar-783370, BTR, Assam, India
| | - Arvind Kumar Goyal
- Department of Biotechnology, Bodoland University, Kokrajhar-783370, BTR, Assam, India
| | - Prakash Dhamodhar
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangaluru-560054, Karnataka, India
| | - Mani Reema Kumari
- Department of Botany, Maharani Lakshmi Ammanni College for Women, Bengaluru-560012, Karnataka, India
| | - S Jayashree
- School of Allied Health Sciences, REVA University, Bengaluru-560064, Karnataka, India
| | - Talambedu Usha
- Department of Biochemistry, Maharani Lakshmi Ammanni College for Women, Bengaluru-560012, Karnataka, India
| | - Sushil Kumar Middha
- Department of Biochemistry, Maharani Lakshmi Ammanni College for Women, Bengaluru-560012, Karnataka, India
| |
Collapse
|
10
|
Wang S, Wang R, Li R, Li Y. Research Progress on Application of Inonotus obliquus in Diabetic Kidney Disease. J Inflamm Res 2023; 16:6349-6359. [PMID: 38161352 PMCID: PMC10756068 DOI: 10.2147/jir.s431913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024] Open
Abstract
Diabetic kidney disease (DKD) is one of the prime causes of end-stage renal disease. At present, the treatment of DKD is mainly confined to inhibiting the renin-angiotensin-aldosterone system, but the therapeutic effects is not satisfactory. As a kind of very rare and precious medicinal fungi, Inonotus obliquus has a very high medicinal value. Due to its special hypoglycemic and pharmacological effect, researchers currently have attached great importance to it. In this paper, the biological activities, pharmacological effects and application status in the treatment of DKD-related diseases of Inonotus obliquus and the latest progress of metabolites isolated from it in DKD were summarized, thus providing detailed insights and basic understanding of the potential application prospects in DKD.
Collapse
Affiliation(s)
- Shuyue Wang
- Department of Nephrology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, 030012, People’s Republic of China
| | - Ruihua Wang
- The Third Clinical College, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030002, People’s Republic of China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, 030012, People’s Republic of China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, 030012, People’s Republic of China
| |
Collapse
|
11
|
Limonin mitigates cardiometabolic complications in rats with metabolic syndrome through regulation of the IRS-1/GLUT4 signalling pathway. Biomed Pharmacother 2023; 161:114448. [PMID: 36857910 DOI: 10.1016/j.biopha.2023.114448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Limonin is a natural triterpenoid isolated from citrus fruit. In the present study, we examined the effects of limonin on cardiometabolic alterations in diet-induced metabolic syndrome. Metabolic syndrome was induced in rats by feeding them a high-fat (HF) diet plus 15% fructose in drinking water for 16 weeks. They were treated with limonin (50 or 100 mg/kg) (n = 8/group) for the final 4 weeks. Increases in body weight (BW), fasting blood glucose (FBG), serum insulin, total cholesterol (TC), blood pressure (BP), liver fat accumulation, and adipocyte hypertrophy, as well as oral glucose tolerance in rats with metabolic syndrome were alleviated by limonin treatment (p < 0.05). Limonin improved ejection fraction and left ventricular (LV) hypertrophy, and reduced angiotensin converting enzyme (ACE) activity and angiotensin II (Ang II) concentration in rats with metabolic syndrome (p < 0.05). It also reduced plasma tumour necrosis factor (TNF)-α, interleukin (IL)- 6, leptin, malonaldehyde (MDA), and superoxide generation, and increased catalase activity in rats with metabolic syndrome compared to controls (p < 0.05). Downregulation of insulin receptor substrate 1 (IRS-1) and glucose transporter type 4 (GLUT4) protein expression in epididymal fat pads and cardiac, liver, and gastrocnemius tissues was present in metabolic syndrome, and these were restored by limonin treatment (p < 0.05). In conclusion, limonin shows a potential effect in alleviating symptoms and improving cardiometabolic disorders. These beneficial effects are linked to the reduction of the renin-angiotensin system, inflammation, oxidative stress, and improvement of IRS-1/GLUT4 protein expression in the target tissue.
Collapse
|
12
|
Farooqi AA, Turgambayeva A, Tashenova G, Tulebayeva A, Bazarbayeva A, Kapanova G, Abzaliyeva S. Multifunctional Roles of Betulinic Acid in Cancer Chemoprevention: Spotlight on JAK/STAT, VEGF, EGF/EGFR, TRAIL/TRAIL-R, AKT/mTOR and Non-Coding RNAs in the Inhibition of Carcinogenesis and Metastasis. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010067. [PMID: 36615262 PMCID: PMC9822120 DOI: 10.3390/molecules28010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
The pursual of novel anticancer molecules from natural sources has gained worthwhile appreciation, and a significant fraction of conceptual knowledge has revolutionized our understanding about heterogeneous nature of cancer. Betulinic acid has fascinated interdisciplinary researchers due to its tremendous pharmacological properties. Ground-breaking discoveries have unraveled previously unprecedented empirical proof-of-concept about momentous chemopreventive role of betulinic acid against carcinogenesis and metastasis. Deregulation of cell signaling pathways has been reported to play a linchpin role in cancer progression and colonization of metastatically competent cancer cells to the distant organs for the development of secondary tumors. Importantly, betulinic acid has demonstrated unique properties to mechanistically modulate oncogenic transduction cascades. In this mini-review, we have attempted to provide a sophisticated compendium of regulatory role of betulinic acid in cancer chemoprevention. We have partitioned this multi-component review into different sections in which we summarized landmark research-works which highlighted betulinic acid mediated regulation of JAK/STAT, VEGF, EGF/EGFR, TRAIL/TRAIL-R, AKT/mTOR and ubiquitination pathways in the inhibition of cancer. In parallel, betulinic acid mediated regulation of signaling cascades and non-coding RNAs will be critically analyzed in cell culture and animal model studies. Better comprehension of the pharmaceutical features of betulinic acid and mapping of the existing knowledge gaps will be valuable in the translatability of preclinical studies into rationally designed clinical trials.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
- Correspondence:
| | - Assiya Turgambayeva
- Department of Public Health and Management, NJSC “Astana Medical University”, Astana 010000, Kazakhstan
| | - Gulnara Tashenova
- Asfendiyarov Kazakh National Medical University, Almaty 050040, Kazakhstan
- Scientific Center of Pediatrics and Pediatric Surgery, Almaty 050060, Kazakhstan
| | - Aigul Tulebayeva
- Asfendiyarov Kazakh National Medical University, Almaty 050040, Kazakhstan
- Scientific Center of Pediatrics and Pediatric Surgery, Almaty 050060, Kazakhstan
| | - Aigul Bazarbayeva
- Scientific Center of Pediatrics and Pediatric Surgery, Almaty 050060, Kazakhstan
| | - Gulnara Kapanova
- Scientific Center of Anti-Infectious Drugs, 75 al-Faraby Ave, Almaty 050040, Kazakhstan
- Al-Farabi Kazakh National University, 71 al-Farabi Ave, Almaty 050040, Kazakhstan
| | - Symbat Abzaliyeva
- Al-Farabi Kazakh National University, 71 al-Farabi Ave, Almaty 050040, Kazakhstan
| |
Collapse
|
13
|
Ma X, Nan F, Liang H, Shu P, Fan X, Song X, Hou Y, Zhang D. Excessive intake of sugar: An accomplice of inflammation. Front Immunol 2022; 13:988481. [PMID: 36119103 PMCID: PMC9471313 DOI: 10.3389/fimmu.2022.988481] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
High sugar intake has long been recognized as a potential environmental risk factor for increased incidence of many non-communicable diseases, including obesity, cardiovascular disease, metabolic syndrome, and type 2 diabetes (T2D). Dietary sugars are mainly hexoses, including glucose, fructose, sucrose and High Fructose Corn Syrup (HFCS). These sugars are primarily absorbed in the gut as fructose and glucose. The consumption of high sugar beverages and processed foods has increased significantly over the past 30 years. Here, we summarize the effects of consuming high levels of dietary hexose on rheumatoid arthritis (RA), multiple sclerosis (MS), psoriasis, inflammatory bowel disease (IBD) and low-grade chronic inflammation. Based on these reported findings, we emphasize that dietary sugars and mixed processed foods may be a key factor leading to the occurrence and aggravation of inflammation. We concluded that by revealing the roles that excessive intake of hexose has on the regulation of human inflammatory diseases are fundamental questions that need to be solved urgently. Moreover, close attention should also be paid to the combination of high glucose-mediated immune imbalance and tumor development, and strive to make substantial contributions to reverse tumor immune escape.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Nan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hantian Liang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Panyin Shu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xinzou Fan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshuang Song
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanfeng Hou
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong medicine and Health Key Laboratory of Rheumatism, Jinan, China
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Sun D, Sun L, Su F. Influence of Optimal Management of Hyperglycemia and Intensive Nursing on Blood Glucose Control Level and Complications in Patients with Postoperative Cerebral Hemorrhage. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8553539. [PMID: 36072767 PMCID: PMC9444437 DOI: 10.1155/2022/8553539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022]
Abstract
Background Cerebral hemorrhage, also known as hemorrhagic stroke, is a common clinical cerebrovascular disease, accounting for about 10%-30% of stroke, with high morbidity and mortality. Objective To observe the effect of optimal management of hyperglycemia and intensive nursing on blood glucose control level and complications in patients with postoperative cerebral hemorrhage. Methods One hundred and eight patients with postoperative cerebral hemorrhage comorbid with stress hyperglycemia admitted to our neurosurgery department from February 2019 to February 2022 were selected and divided into a general group of 54 cases and an optimized group of 54 cases by simple random method. The general group was managed with conventional care, while the optimized group developed optimized management of hyperglycemia for intensive care. The indexes related to blood glucose control, electrolytes, National Institutes of Health Stroke Scale (NIHSS) scores, Barthel Index (BI) scores, and time to achieve blood glucose standard, insulin pumping time, patient satisfaction, and prognosis were compared between the two groups. Results Before intervention, there was no statistical significance in the comparison of blood glucose control-related indicators and electrolytes between the two groups (P > 0.05). After 7 d and 14 d of intervention, the fasting blood glucose and 2 h postprandial blood glucose in the two groups were lower than before, while K+ and Na+ were higher than before (P < 0.05). The blood glucose indexes at the same time point in the optimized group were found to be lower than those in the general group by statistical analysis, but electrolytes were not statistically significant when compared with the general group (P > 0.05). In the optimized group, the time to achieve blood glucose standard (6.59 ± 1.94) d and insulin pumping time (7.14 ± 1.89) d were shorter than those in the general group [(7.48 ± 2.12) d and (8.58 ± 2.14) d], insulin dosage (748.85 ± 63.61) U was less than that in the general group (923.54 ± 84.14) U, and the incidence of hypoglycemia (3.70%) was lower than that in the general group (16.67%), and the satisfaction rate (92.59%) was higher than that of the general group (77.78%), which was statistically significant (P < 0.05). Before intervention, there was no significant difference in NIHSS score and BI score between the two groups (P > 0.05). After 7 d and 14 d of intervention, the NIHSS scores of the two groups were lower than before, while the BI scores were higher than before, and the NIHSS scores of the optimized group at the same time point were all lower than those of the general group, and the BI scores were higher than those of the general group (P < 0.05). The incidence of pulmonary infection (11.11%) and rebleeding (7.41%) in the optimized group were lower than those in the general group (25.93% and 22.22%), while deep vein thrombosis, multiple organ dysfunction syndrome (MODS), and death within 28 d was not statistically significant when compared with the general group (P > 0.05). Conclusion Optimal management of hyperglycemia and intensive nursing can effectively control the blood sugar level of patients after cerebral hemorrhage, reducing insulin dosage, and the occurrence of hypoglycemia, pulmonary infection, and rebleeding.
Collapse
Affiliation(s)
- Dandan Sun
- Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Liang Sun
- Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Fang Su
- Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
15
|
Folorunso IM, Olawale F, Olofinsan K, Iwaloye O. Picralima nitida leaf extract ameliorates oxidative stress and modulates insulin signaling pathway in high fat-diet/STZ induced diabetic rats. SOUTH AFRICAN JOURNAL OF BOTANY 2022; 148:268-282. [DOI: 10.1016/j.sajb.2022.04.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Tian L, Wang Y, Qing J, Zhou W, Sun L, Li R, Li Y. A review of the pharmacological activities and protective effects of Inonotus obliquus triterpenoids in kidney diseases. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Kidney diseases are common health problems worldwide. Various etiologies ultimately lead to the development of chronic kidney disease and end-stage renal disease. Natural compounds from herbs or medicinal plants are widely used for therapy and prevention of various ailments, among which is Inonotus obliquus. I. obliquus is rich in triterpenoids and the main active ingredients include betulinic acid, trametenolic acid, inotodiol, and ergosterol. New evidence suggests that I. obliquus triterpenes may be an effective drug for the treatment and protection of various kidney diseases. The aim of this review is to highlight the pharmacological activities and potential role of I. obliquus triterpenes in the kidney disease treatment and protection.
Collapse
Affiliation(s)
- Lingling Tian
- The Third Clinical College, Shanxi University of Chinese Medicine , Taiyuan , Shanxi, 030001 , China
| | - Yi Wang
- The Third Clinical College, Shanxi University of Chinese Medicine , Taiyuan , Shanxi, 030001 , China
| | - Jianbo Qing
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan , 030001 , China
- The Fifth Clinical Medical College of Shanxi Medical University , Taiyuan , Shanxi, 030001 , China
| | - Wenjing Zhou
- School of Medical Sciences, Shanxi University of Chinese Medicine , jinzhong , 030619 , China
| | - Lin Sun
- College of Taditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine , jinzhong , 030619 , China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University ; Taiyuan , 030001 , China
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan, 030012 , Shanxi , China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan , 030001 , China
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan , 030012, Shanxi , China
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan , 030001 , China
- Academy of Microbial Ecology, Shanxi Medical University , Taiyuan , 030001 , China
| |
Collapse
|
17
|
Lin X, Zhu L, Gao X, Kong L, Huang Y, Zhao H, Chen Y, Wen L, Li R, Wu J, Yuan Z, Yi J. Ameliorative effect of betulinic acid against zearalenone exposure triggers testicular dysfunction and oxidative stress in mice via p38/ERK MAPK inhibition and Nrf2-mediated antioxidant defense activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113561. [PMID: 35489292 DOI: 10.1016/j.ecoenv.2022.113561] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Zearalenone (ZEA) is a nonsteroidal estrogenic mycotoxin, which mainly contaminates grains and has estrogen-like effects on the reproductive system. Betulinic acid (BA), a natural lupane-type pentacyclic triterpene, has anti-oxidative and anti-inflammatory properties. This study aimed to investigate whether BA alleviates ZEA-induced testicular damage and explore the possible mechanism. Here, BA ameliorated testicular damage by mitigating the disordered arrangement of seminiferous tubules, the exfoliation of lumen cells, and the increase of cell apoptosis caused by ZEA. Meanwhile, BA alleviated ZEA-triggered testicular damage by restoring hormone levels and sperm motility, and reconstructing the blood-testis-barrier. Moreover, BA alleviated ZEA-exposed testicular oxidative stress by activating Nrf2 pathway. Furthermore, BA moderated ZEA-evoked testicular inflammation by inhibiting p38/ERK MAPK pathway. Overall, our results revealed that BA has a therapeutic protective effect on ZEA-induced testicular injury and oxidative stress via p38/ERK MAPK inhibition and Nrf2-mediated antioxidant defense activation, which provides a viable alternative to alleviate ZEA-induced male reproductive toxicology.
Collapse
Affiliation(s)
- Xing Lin
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lijuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xinyu Gao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Haoqiang Zhao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yazhi Chen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Rongfang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
18
|
Niu K, Bai P, Yang B, Feng X, Qiu F. Asiatic acid alleviates metabolism disorders in ob/ob mice: mechanistic insights. Food Funct 2022; 13:6934-6946. [PMID: 35696250 DOI: 10.1039/d2fo01069k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glucolipid metabolism disorders pose a serious and global health problem, and more effective prevention and treatment methods are urgently needed. In this study, ob/ob mice were used to explore the potential mechanism explaining how asiatic acid (AA) regulates glucolipid metabolism disorders. Five-week AA treatment (30 mg kg-1) significantly improved a host of metabolic factors in ob/ob mice, including hyperglycemia, hyperlipidemia, insulin resistance, and liver histopathology. Combined analysis of untargeted liver metabolomics, liver transcriptomics, and the gut microbiome was conducted, and the results showed that AA alleviates metabolic disorders in ob/ob mice through regulating pyrimidine metabolism, activating PPAR-γ, and modulating gut microbiota. AA treatment remarkedly increased the levels of cytosine and cytidine, two crucial endogenous metabolites related to pyrimidine metabolism, which were significantly decreased in ob/ob mice. AA treatment also affected the levels of 13-S-hydroxyoctadecadienoic acid, an endogenous PPAR-γ agonist. The abundances of Lachnospiraceae_NK4A136_group and norank_f__norank_o__Clostridia_UCG-014 were increased after AA treatment. Meanwhile, correlation analysis showed that endogenous metabolites and gut microbiota were strongly correlated. These findings indicated that AA supplements might be beneficial for the prevention of metabolic disorders.
Collapse
Affiliation(s)
- Kaixia Niu
- School of Chinese Materia Medica, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Pengpeng Bai
- School of Chinese Materia Medica, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Bingbing Yang
- School of Chinese Materia Medica, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xinchi Feng
- School of Chinese Materia Medica, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Feng Qiu
- School of Chinese Materia Medica, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
19
|
Dong Y, Zheng Y, Zhu L, Li T, Guan Y, Zhao S, Wang Q, Wang J, Li L. Hua-Tan-Sheng-Jing Decoction Treats Obesity With Oligoasthenozoospermia by Up-Regulating the PI3K-AKT and Down-Regulating the JNK MAPK Signaling Pathways: At the Crossroad of Obesity and Oligoasthenozoospermia. Front Pharmacol 2022; 13:896434. [PMID: 35559247 PMCID: PMC9086321 DOI: 10.3389/fphar.2022.896434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Oligoasthenozoospermia is the leading cause of male infertility, seriously affecting men's health and increasing the societal medical burden. In recent years, obesity-related oligoasthenozoospermia has attracted increased attention from researchers to find a cure. This study aimed to evaluate the efficacy of Hua-Tan-Sheng-Jing decoction (HTSJD) in treating obesity with oligoasthenozoospermia, determine its active ingredients and identify its mechanism of action. Methods: The ingredients of HTSJD were determined by combining the ultra-performance liquid chromatography with mass spectrometry (UPLC-MS/MS) and systems pharmacology approach. The common pathogenesis of obesity and oligoasthenozoospermia and the potential mechanism of HTSJD against obesity with oligoasthenozoospermia were obtained through target fishing, network construction, and enrichment analyses. Further, molecular docking of the key ingredients with the upstream receptors of the key signaling pathways of the potential mechanism was used to predict their affinity. Finally, high-fat-induced obesity with oligoasthenozoospermia rat model was constructed to determine the effects of HTSJD on semen concentration, sperm motility, body weight, and serum lipid metabolism. The key proteins were validated by immunohistochemistry (IHC). Results: A total of 70 effective components and 847 potential targets of HTSJD (H targets) were identified, of which 743 were common targets related to obesity and oligoasthenozoospermia (O-O targets) mainly enriched in the pathways related to inflammation, oxidative stress and hormone regulation. Finally, 143 common targets (H-O-O targets) for HTSJD against obesity with oligoasthenozoospermia were obtained. Combining the hub genes and the results of Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of H-O-O targets, PI3K-AKT and MAPK signaling pathways were identified as the key pathways. Molecular docking results showed that Diosgenin, Kaempferol, Quercetin, Hederagenin, Isorhamnetin may act on the related pathways by docking EGFR, IGF1R and INSR. The animal-based in vivo experiments confirmed that HTSJD improves the sperm quality of high-fat diet-fed rats by reducing their body weight and blood lipid levels, influencing the PI3K-AKT and MAPK signaling pathways and altering the corresponding protein expressions. Conclusion: HTSJD treats obesity with oligoasthenozoospermia by up-regulating the PI3K-AKT signaling pathway and down-regulating the MAPK signaling pathway, which are at the crossroad of obesity and oligoasthenozoospermia.
Collapse
Affiliation(s)
- Yang Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Linghui Zhu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tianxing Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyuan Guan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shipeng Zhao
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ji Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
Hypoglycemic effects of black brick tea with fungal growth in hyperglycemic mice model. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Milan A, Mioc A, Prodea A, Mioc M, Buzatu R, Ghiulai R, Racoviceanu R, Caruntu F, Şoica C. The Optimized Delivery of Triterpenes by Liposomal Nanoformulations: Overcoming the Challenges. Int J Mol Sci 2022; 23:1140. [PMID: 35163063 PMCID: PMC8835305 DOI: 10.3390/ijms23031140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The last decade has witnessed a sustained increase in the research development of modern-day chemo-therapeutics, especially for those used for high mortality rate pathologies. However, the therapeutic landscape is continuously changing as a result of the currently existing toxic side effects induced by a substantial range of drug classes. One growing research direction driven to mitigate such inconveniences has converged towards the study of natural molecules for their promising therapeutic potential. Triterpenes are one such class of compounds, intensively investigated for their therapeutic versatility. Although the pharmacological effects reported for several representatives of this class has come as a well-deserved encouragement, the pharmacokinetic profile of these molecules has turned out to be an unwelcomed disappointment. Nevertheless, the light at the end of the tunnel arrived with the development of nanotechnology, more specifically, the use of liposomes as drug delivery systems. Liposomes are easily synthesizable phospholipid-based vesicles, with highly tunable surfaces, that have the ability to transport both hydrophilic and lipophilic structures ensuring superior drug bioavailability at the action site as well as an increased selectivity. This study aims to report the results related to the development of different types of liposomes, used as targeted vectors for the delivery of various triterpenes of high pharmacological interest.
Collapse
Affiliation(s)
- Andreea Milan
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Alexandra Prodea
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Marius Mioc
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Roxana Buzatu
- Faculty of Dental Medicine, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Street, 300041 Timişoara, Romania
| | - Roxana Ghiulai
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Roxana Racoviceanu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Florina Caruntu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Street, 300041 Timişoara, Romania;
| | - Codruţa Şoica
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| |
Collapse
|
22
|
Prodea A, Mioc A, Banciu C, Trandafirescu C, Milan A, Racoviceanu R, Ghiulai R, Mioc M, Soica C. The Role of Cyclodextrins in the Design and Development of Triterpene-Based Therapeutic Agents. Int J Mol Sci 2022; 23:ijms23020736. [PMID: 35054925 PMCID: PMC8775686 DOI: 10.3390/ijms23020736] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/25/2022] Open
Abstract
Triterpenic compounds stand as a widely investigated class of natural compounds due to their remarkable therapeutic potential. However, their use is currently being hampered by their low solubility and, subsequently, bioavailability. In order to overcome this drawback and increase the therapeutic use of triterpenes, cyclodextrins have been introduced as water solubility enhancers; cyclodextrins are starch derivatives that possess hydrophobic internal cavities that can incorporate lipophilic molecules and exterior surfaces that can be subjected to various derivatizations in order to improve their biological behavior. This review aims to summarize the most recent achievements in terms of triterpene:cyclodextrin inclusion complexes and bioconjugates, emphasizing their practical applications including the development of new isolation and bioproduction protocols, the elucidation of their underlying mechanism of action, the optimization of triterpenes’ therapeutic effects and the development of new topical formulations.
Collapse
Affiliation(s)
- Alexandra Prodea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Alexandra Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Christian Banciu
- Department of Internal Medicine IV, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
- Correspondence: (C.B.); (C.T.); Tel.: +40-256-494-604 (C.B. & C.T.)
| | - Cristina Trandafirescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
- Correspondence: (C.B.); (C.T.); Tel.: +40-256-494-604 (C.B. & C.T.)
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Codruta Soica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
23
|
Behavior Characteristics and Risk for Metabolic Syndrome Among Women in Rural Communities in China. J Cardiovasc Nurs 2021; 37:490-498. [PMID: 34321435 DOI: 10.1097/jcn.0000000000000836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Rapid economic growth and lifestyle changes in China have resulted in increased metabolic syndrome (MetS) rates. Few investigators have examined sex-specific risk factors and the role of menopause, stress, and sleep on MetS among women in China. OBJECTIVE In this study, we aimed to identify the risk factors for MetS among women in rural China. METHODS A cross-sectional study design was used, and participants were recruited from rural areas in China. Female participants older than 18 years were eligible to participate. Participants had their weight, height, waist circumference, blood pressure, and fasting blood measured at study sites. They also completed validated questionnaires regarding sociodemographic information and MetS-related health behaviors. RESULTS A total of 646 women were included in this study. The overall prevalence of MetS was 26.2%. The MetS group had a greater number of overweight/obese women than the non-MetS group did. For premenopausal women, a higher income, being overweight/obese, and eating salty/marinated food increased their risk for MetS (odds ratio [OR], 2.56, 4.55, and 3.1, respectively). For postmenopausal women, a low level of education (OR, 0.44) and being overweight/obese (OR, 4.98) increased their risk of MetS. CONCLUSION Almost half of the women in this study were overweight/obese, and many of them did not meet the national recommendations for a healthy lifestyle, increasing their risk for MetS. Developing cultural and behavioral interventions tailored for overweight/obese women is critical in reducing MetS.
Collapse
|
24
|
Mitochondrial abnormalities: a hub in metabolic syndrome-related cardiac dysfunction caused by oxidative stress. Heart Fail Rev 2021; 27:1387-1394. [PMID: 33950478 PMCID: PMC9197868 DOI: 10.1007/s10741-021-10109-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome (MetS) refers to a group of cardiovascular risk elements comprising insulin resistance, obesity, dyslipidemia, increased glucose intolerance, and increased blood pressure. Individually, all the MetS components can lead to cardiac dysfunction, while their combination generates additional risks of morbidity and mortality. Growing evidence suggests that oxidative stress, a dominant event in cellular damage and impairment, plays an indispensable role in cardiac dysfunction in MetS. Oxidative stress can not only disrupt mitochondrial activity through inducing oxidative damage to mitochondrial DNA, RNA, lipids, and proteins but can also impair cardiomyocyte contractile function via mitochondria-related oxidative modifications of proteins central to excitation-contraction coupling. Furthermore, excessive reactive oxygen species (ROS) generation can lead to the activation of several mitochondria apoptotic signaling pathways, release of cytochrome c, and eventual induction of myocardial apoptosis. This review will focus on such processes of mitochondrial abnormalities in oxidative stress induced cardiac dysfunction in MetS.
Collapse
|
25
|
Virgen-Carrillo CA, de Los Ríos DLH, Torres KR, Moreno AGM. Diagnostic Criteria for Metabolic Syndrome in Diet-Induced Rodent Models: A Systematic Review. Curr Diabetes Rev 2021; 17:e140421192834. [PMID: 33855947 DOI: 10.2174/1573399817666210414103730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/14/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thousands of publications in recent years have addressed the induction of metabolic syndrome (MetS) in rodents. However, the criteria and the reference values for diagnosing this disease have not been defined. OBJECTIVE Our main objective was to carry out a systematic review to gather evidence about the criteria for biochemical and anthropometric parameters in which scientific studies have relied on to report that rats developed MetS from a previous dietary manipulation. METHODS We compiled characteristics and findings of diet-induced MetS with high-fat, high-carbohydrate, high-fat/high-carbohydrates, and cafeteria diet from PubMed and Science Direct databases published in the last 5 years. RESULTS The results on the principal determinants for the syndrome, published in the reviewed articles, were chosen to propose reference values in the rat models of food induction. CONCLUSION The values obtained will serve as reference cut-of points in the development of the disease; in addition, the compilation of data will be useful in planning and executing research protocols in animal models.
Collapse
Affiliation(s)
- Carmen Alejandrina Virgen-Carrillo
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Jalisco, Mexico
| | - Diana Laura Hernández de Los Ríos
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Jalisco, Mexico
| | - Karina Ruíz Torres
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Jalisco, Mexico
| | - Alma Gabriela Martínez Moreno
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Jalisco, Mexico
| |
Collapse
|
26
|
Abdelhamid YA, Elyamany MF, Al-Shorbagy MY, Badary OA. Effects of TNF-α antagonist infliximab on fructose-induced metabolic syndrome in rats. Hum Exp Toxicol 2020; 40:801-811. [PMID: 33118400 DOI: 10.1177/0960327120969960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Public health issues have been raised regarding fructose toxicity and its serious metabolic disorders. Deleterious effects of high fructose intake on insulin sensitivity, body weight, lipid homeostasis have been identified. The new millennium has witnessed the emergence of a modern epidemic, the metabolic syndrome (MS), in approximately 25% of the world's adult population. The current study aimed to investigate the effect of the TNF-α antagonist infliximab on fructose-induced MS in rats. Rats were administered fructose (10%) in drinking water for 12 weeks to induce the experimental MS model. infliximab (5 mg/kg) was injected once weekly intraperitoneally starting on the 13th week for 4 weeks. Increase in body weight, blood glucose level, serum triglycerides (TGs), adiponectin level and blood pressure were present in MS rats. They also prompted increases in serum of leptin, TNF-α, and malondialdehyde (MDA) levels. Treatment with infliximab did not affect body weight, hyperglycemia or hypertension, but decreased serum TGs and increased serum HDL-c levels. Infliximab also decreased adiponectin levels. Surprisingly, infliximab increased MDA above its value in the MS group. These results reflect the fact that infliximab affects the manifestations of MS in rats. Though infliximab reduced TGs, increased HDL-c levels, reversed adiponectin resistance occurred by fructose, the drug failed to combat MS-mediated hyperglycemia, hypertension, and elevated MDA above the insult.
Collapse
Affiliation(s)
| | - Mohammed F Elyamany
- Pharmacology & Toxicology Department, 110154Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Muhammad Y Al-Shorbagy
- Pharmacology & Toxicology Department, 110154Faculty of Pharmacy, Cairo University, Giza, Egypt.,Pharmacology & Toxicology Department, School of Pharmacy, Newgiza University, Egypt
| | - Osama A Badary
- Clinical Pharmacy Department, Faculty of Pharmacy, British University in Egypt, Cairo, Egypt
| |
Collapse
|
27
|
Zhang HJ, Chen C, Ding L, Shi HH, Wang CC, Xue CH, Zhang TT, Wang YM. Sea cucumbers-derived sterol sulfate alleviates insulin resistance and inflammation in high-fat-high-fructose diet-induced obese mice. Pharmacol Res 2020; 160:105191. [PMID: 32911073 DOI: 10.1016/j.phrs.2020.105191] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/08/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
Sea cucumbers are widely consumed in traditional medicine and food. Sea cucumbers-derived sulfated sterol exhibits a sulfate group at C-3 position, which is different from phytosterol with a hydroxyl group. However, the effect of sterol sulfate on metabolic syndrome remains unknown. The purpose of the present study is to investigate the alleviation of sterol sulfate on high-fat-high-fructose diet (HFFD)-induced insulin resistance and inflammation. After 2 weeks feeding with HFFD, male C57BL/6J mice were continuously fed with HFFD plus 0.4 % (w/w) sterol sulfate or phytosterol for 6 weeks. The OGTT was carried out at 7 weeks. At the end of the experimental period, the changes of glycogen, circulating glucose, insulin, pro-inflammatory cytokine and adiponectin were measured. H&E staining was used to observe the morphological changes in adipose tissue. Furthermore, the underlying molecular mechanisms were investigated. Dietary sterol sulfate was superior to phytosterol in reducing body weight gain, adipocyte hypertrophy, and levels of circulating glucose and insulin, as well as increasing the glycogen content of tissues. Furthermore, sterol sulfate ameliorated insulin resistance mainly due to the inhibition of gluconeogenesis, the promotion of glycogen synthesis and GLUT4 translocation by activating PI3K/Akt signaling pathway. Additionally, sterol sulfate effectively attenuated inflammation by increasing serum adiponectin and reducing pro-inflammatory cytokine release. Sterol sulfate exhibited a more significant effect than phytosterol in alleviating HFFD -induced insulin resistance and inflammation, which might be closely related to the sulfate group. The results might provide insights into the prevention and alleviation of metabolic syndrome.
Collapse
Affiliation(s)
- Hui-Juan Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Cheng Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Lin Ding
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Hao-Hao Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China; Laboratory of Marine Drugs & Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, Shandong Province, China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China; Laboratory of Marine Drugs & Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, Shandong Province, China.
| |
Collapse
|
28
|
Mu Q, Wang H, Tong L, Fang Q, Xiang M, Han L, Jin L, Yang J, Qian Z, Ning G, Zhang Y, Zhang Z. Betulinic acid improves nonalcoholic fatty liver disease through YY1/FAS signaling pathway. FASEB J 2020; 34:13033-13048. [PMID: 32777136 DOI: 10.1096/fj.202000546r] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/14/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Abstract
The increasing prevalence of nonalcoholic fatty liver disease (NAFLD) worldwide indicates the urgent need to develop novel and effective treatment strategies. Betulinic acid (BA), a naturally occurring plant-derived pentacyclic triterpenoid, has an outstanding effect in improving metabolism. However, the pharmacological action and mechanism of BA in NAFLD remain unclear. Here, we show that BA-treated high-fat diet mice and methionine-choline deficient diet-fed mice are resistant to hepatic steatosis when compared with vehicle-treated mice. BA alleviates fatty acid synthesis, fibrosis, and inflammation and promotes fatty acid oxidation. Meanwhile, fatty acid synthase (FAS) expression and activity are markedly inhibited with BA treatment both in vitro and in vivo. Moreover, BA inhibits FAS expression through transcriptional suppression of Yin Yang 1 (YY1), leading to retard hepatocytes triglyceride accumulation. Collectively, BA protects hepatocytes from abnormal lipid deposition in NAFLD through YY1/FAS pathway. Our findings establish a novel role of BA in representing a possible therapeutic strategy to reverse NAFLD.
Collapse
Affiliation(s)
- Qian Mu
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Tong
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianhua Fang
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minqi Xiang
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luyu Han
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lina Jin
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Yang
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Qian
- Department of Pharmacology, School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Guang Ning
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifei Zhang
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiguo Zhang
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Alegbe EO, Teralı K, Olofinsan KA, Surgun S, Ogbaga CC, Ajiboye TO. Antidiabetic activity-guided isolation of gallic and protocatechuic acids from Hibiscus sabdariffa calyxes. J Food Biochem 2019; 43:e12927. [PMID: 31353728 DOI: 10.1111/jfbc.12927] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/11/2019] [Accepted: 05/12/2019] [Indexed: 12/16/2022]
Abstract
We isolated and identified gallic and protocatechuic acids as the antidiabetic principles in Hibiscus sabdariffa using solvent extraction, column chromatographic fractionation, and nuclear magnetic resonance (NMR) spectroscopy. Ethylacetate fraction of the aqueous extract of H. sabdariffa inhibited α-amylase and α-glucosidase with IC50 of 411.73 and 433.93 μg/ml, respectively. Furthermore, fractions I and II obtained from column chromatography inhibited α-amylase with IC50 of 27.03 and 20.12 μg/ml, and α-glucosidase with IC50 of 24.30 and 22.29 μg/ml, respectively. In addition, the principles reduced the serum glucose and lipid peroxide levels of diabetic rats and with an improvement in the rat lipid profiles and antioxidant defenses. Fractions I and II were identified as protocatechuic acid and gallic acid, respectively, using 1 H and 13 C NMR. Protein-ligand docking showed that these compounds form multiple favorable interactions with the active-site residues of the two glycosidases. Overall, protocatechuic and gallic acids emerge as natural antidiabetic agents. PRACTICAL APPLICATIONS: Hibiscus sabdariffa (Zoborodo) is a refreshment drink for ceremonial gatherings in Nigeria. Also, its pharmacological use includes diabetes, hypertension, hyperlipidemia, metabolic syndrome, and hepatoprotection. The consumption of this food drink could improve diabetes, hypertension, dyslipidemia, metabolic syndrome, and liver disease. Furthermore, the inhibition of α-amylase and α-glucosidase could prevent diabetic complications associated with postprandial glucose. Developing the extract of H. sabdariffa calyx as food supplement could be used in managing diabetes and its associated complications such as dyslipidemia, hypertension, and metabolic syndrome.
Collapse
Affiliation(s)
- Emmanuel Ohifueme Alegbe
- Faculty of Natural and Applied Sciences, Department of Chemistry, Nile University of Nigeria, Abuja, Nigeria
| | - Kerem Teralı
- Faculty of Medicine, Department of Medical Biochemistry, Near East University, Nicosia, Cyprus
| | - Kolawole Ayodapo Olofinsan
- Faculty of Natural and Applied Sciences, Department of Biochemistry, Nile University of Nigeria, Abuja, Nigeria
| | - Serdar Surgun
- Faculty of Natural and Applied Sciences, Department of Chemistry, Nile University of Nigeria, Abuja, Nigeria
| | - Chukwuma Collins Ogbaga
- Faculty of Natural and Applied Sciences, Department of Biological Sciences, Nile University of Nigeria, Abuja, Nigeria.,Faculty of Natural and Applied Sciences, Department of Microbiology and Biotechnology, Nile University of Nigeria, Abuja, Nigeria
| | - Taofeek Olakunle Ajiboye
- Antioxidants, Redox Biology and Toxicology Research Group, Department of Medical Biochemistry, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| |
Collapse
|
30
|
Cui X, Qian DW, Jiang S, Shang EX, Zhu ZH, Duan JA. Scutellariae Radix and Coptidis Rhizoma Improve Glucose and Lipid Metabolism in T2DM Rats via Regulation of the Metabolic Profiling and MAPK/PI3K/Akt Signaling Pathway. Int J Mol Sci 2018; 19:E3634. [PMID: 30453687 PMCID: PMC6274950 DOI: 10.3390/ijms19113634] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
Aim Scutellariae Radix (SR) and Coptidis Rhizoma (CR) have often been combined to cure type 2 diabetes mellitus (T2DM) in the clinical practice for over thousands of years, but their compatibility mechanism is not clear. Mitogen-activated protein kinase (MAPK) signaling pathway has been suggested to play a critical role during the process of inflammation, insulin resistance, and T2DM. This study was designed to investigate their compatibility effects on T2DM rats and explore the underlying mechanisms by analyzing the metabolic profiling and MAPK/PI3K/Akt signaling pathway. Methods The compatibility effects of SR and CR were evaluated with T2DM rats induced by a high-fat diet (HFD) along with a low dose of streptozocin (STZ). Ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was performed to discover potential biomarkers. The levels of pro-inflammatory cytokines; biochemical indexes in serum, and the activities of key enzymes related to glycometabolism in liver were assessed by ELISA kits. qPCR was applied to examine mRNA levels of key targets in MAPK and insulin signaling pathways. Protein expressions of p65; p-p65; phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K); phosphorylated-PI3K (p-PI3K); protein kinase B (Akt); phosphorylated Akt (p-Akt) and glucose transporter 2 (Glut2) in liver were investigated by Western blot analysis. Results Remarkably, hyperglycaemia, dyslipidemia, inflammation, and insulin resistance in T2DM were ameliorated after oral administration of SR and CR, particularly their combined extracts. The effects of SR, CR, low dose of combined extracts (LSC) and high dose of combined extracts (HSC) on pro-inflammatory cytokine transcription in T2DM rats showed that the MAPK pathway might account for the phenomenon with down-regulation of MAPK (P38 mitogen-activated protein kinases (P38), extracellular regulated protein kinases (ERK), and c-Jun N-terminal kinase (JNK)) mRNA, and protein reduction in p-P65. While mRNA levels of key targets such as insulin receptor substrate 1 (IRS1), PI3K, Akt2, and Glut2 in the insulin signaling pathway were notably up-modulated, phosphorylations of PI3K, Akt, and expression of Glut2 were markedly enhanced. Moreover, the increased activities of phosphoenolpyruvate carboxykinase (PEPCK), fructose-1,6-bisphosphatase (FBPase), glucose 6-phosphatase (G6Pase), and glycogen phosphorylase (GP) were highly reduced and the decreased activities of glucokinase (GK), phosphofructokinase (PFK), pyruvate kinase (PK), and glycogen synthase (GS) in liver were notably increased after treatment. Further investigation indicated that the metabolic profiles of plasma and urine were clearly improved in T2DM rats. Fourteen potential biomarkers (nine in plasma and five in urine) were identified. After intervention, these biomarkers returned to normal level to some extent. Conclusion The results showed that SR, CR, and combined extract groups were normalized. The effects of combined extracts were more remarkable than single herb treatment. Additionally, this study also showed that the metabonomics method is a promising tool to unravel how traditional Chinese medicines work.
Collapse
Affiliation(s)
- Xiang Cui
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Zhen-Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| |
Collapse
|