1
|
Bańkowski S, Wójcik ZB, Grabara M, Ozner D, Pałka T, Stanek A, Sadowska-Krępa E. Does curcumin supplementation affect inflammation, blood count and serum brain-derived neurotropic factor concentration in amateur long-distance runners? PLoS One 2025; 20:e0317446. [PMID: 39808679 PMCID: PMC11731706 DOI: 10.1371/journal.pone.0317446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Curcumin is known for its potential health benefits; however, the evidence remains inconclusive regarding its necessity as a supplement for athletes during the preparatory phase of training. This study aimed to assess the effect of 6-week curcumin supplementation at a dose of 2g/day on selected inflammatory markers, blood count, and brain-derived neurotropic factor (BDNF) levels in middle-aged amateur long-distance runners during the preparatory period of a macrocycle. Thirty runners were randomly assigned to either a curcumin-supplemented group (CUR, n = 15) or a placebo group (PLA, n = 15). Venous blood samples were collected at rest, immediately post-exercise, and 1h post-exercise. The participants underwent a graded exercise stress test, with an increasing inclination angle after reaching a speed of 14 km/h, both before and after the 6-week supplementation period. Blood samples were collected at rest, 3 minutes post-stress test, and after 1 hour of recovery. The results showed no significant changes in C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), interleukin-1 β (IL-1β), or blood morphology due to curcumin supplementation. However, BDNF levels increased by 21% in the CUR group post-supplementation, while a 5% decrease was observed in the PLA group. These findings do not support a significant effect of curcumin supplementation on inflammatory markers, blood count, or BDNF concentration. Further research is warranted to determine the potential benefits of curcumin supplementation for endurance athletes during the preparatory period for a training cycle.
Collapse
Affiliation(s)
- Sebastian Bańkowski
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | | | - Małgorzata Grabara
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Dariusz Ozner
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Tomasz Pałka
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education in Krakow, Krakow, Poland
| | - Agata Stanek
- Department of Internal Medicine and Metabolic Diseases, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Upper-Silesian Medical Centre of the Medical University of Silesia in Katowice, Katowice, Poland
| | - Ewa Sadowska-Krępa
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| |
Collapse
|
2
|
Ali AQ, Sabir DK, Dawood AF, Abu-Rashed M, Hasari A, Gharqan F, Alnefaie S, Mohiddin LE, Tatry MM, Albadan DA, Alyami MM, Almutairi MF, Shawky LM. The potential liver injury induced by metronidazole-provoked disturbance of gut microbiota: modulatory effect of turmeric supplementation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9845-9858. [PMID: 38922353 DOI: 10.1007/s00210-024-03242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
It has been reported that the gut-liver axis and intestinal microbiome contribute crucially to different liver diseases. So, targeting this hepato-intestinal connection may provide a novel treatment modality for hepatic disorders such as drug-induced liver injury (DILI). The present study thought to investigate the protective effect of turmeric (TUR) on metronidazole (MNZ)-induced liver damage and the possible association of the gut-liver axis and gut microbiota as a suggested underlying mechanism. In the first experiment, a MNZ-induced liver injury rat model was reproduced after 130 mg/kg oral MNZ administration for 30 days. Meanwhile, the treatment group was orally treated with 100 mg/kg turmeric daily. In the second experiment, fecal microbiome transplantation (FMT) was conducted, in which the fecal microbiome of each group in the first experiment was transplanted to a healthy corresponding group in the second experiment. The liver enzymes (aminotransferase (ALT) and aspartate aminotransferase (AST)) and histopathological examination were estimated to assess liver function. Inflammatory cytokines and oxidative markers were evaluated in the liver tissues. Histological analysis, intestinal barrier markers, and expression of tight junction proteins were measured for assessment of the intestinal injury. Changes in the gut microbial community and possible hepatic bacterial transmission were analyzed using 16S rRNA sequencing. MNZ induced intestinal and liver injuries which were significantly improved by turmeric. Increased firmicutes/bacteroidetes ratio and bacterial transmission due to gut barrier disruption were suggested. Moreover, TUR has maintained the gut microbial community by rebalancing and restoring bacterial proportions and abundance, thereby repairing the gut mucosal barrier and suppressing bacterial translocation. TUR protected against MNZ-induced gut barrier disruption. Reshaping of the intestinal bacterial composition and prohibition of the hepatic microbial translocation were suggested turmeric effects, potentially mitigating MNZ-related liver toxicity.
Collapse
Affiliation(s)
- Abdulaziz Qaid Ali
- Vision Colleges, Riyadh, Saudi Arabia.
- Faculty of Medicine, University of Sciences and Technology, Sana'a, Yemen.
| | - Deema Kamal Sabir
- Department of Medical Surgical Nursing, College of Nursing, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Amal F Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | - Lamiaa M Shawky
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
3
|
Adeyele EI, Ayanyemi EO, Akomolafe RO, Sesan OO, Aladesanmi OT, Adetutu AO. Assessment of the toxic influence of locally formulated pesticides on hepatic and renal biomarkers in male Wistar rats. Toxicol Res (Camb) 2024; 13:tfae157. [PMID: 39359713 PMCID: PMC11442146 DOI: 10.1093/toxres/tfae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/03/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Background There is growing concern of the potential damage to vital organs after long term exposure to locally formulated pesticides in rural area of Nigeria. This study was designed to assessed the effects of the individual chemical compound and their combination on the kidney and liver of rats' model. Methodology Fifty-four rats divided into six groups and three sub-groups were exposed to 25, 50 and 75% dose of each of the pesticide's LD50 for 4 h at 3 days interval in an inhalation chamber for 28 days. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TOT_BIL), creatinine and urea assay showed significant increase at the aforementioned doses in comparison to the control group. The red blood cell counts, hematocrit and hemoglobin concentrations were significantly altered in the rats administered varying doses of the pesticides when compared with the control. Similar result was obtained for the differential white blood cell counts. Histopathological examinations of the liver tissue of rats showed infiltrated sinusoids, traces of karypyknosis, vacuolar degeneration and microvesicular steatosis while that of the renal tissue showed glomeruli atrophy leading to widened Bowman's spaces as well as few shrunken glomeruli and varied level of degenerative tubular changes to tubular necrosis. Conclusion This study established that individual pesticides and their mixture is toxic to the liver and kidney, as evidenced by the elevated markers of renal and liver functions and distortion of the structure of both organs as revealed by their photomicrographs. Therefore, it is a matter of public health significance to regularly monitor pesticide residues in foods and humans in order to assess the food safety risk and population exposure to pesticides.
Collapse
Affiliation(s)
- Esther Itunuoluwa Adeyele
- Institute of Ecology and Environmental Studies, Obafemi Awolowo University, Road 7, P.M.B 13, Ile Ife, Osun State, 220282, Nigeria
| | - Esther Olutomilayo Ayanyemi
- Institute of Ecology and Environmental Studies, Obafemi Awolowo University, Road 7, P.M.B 13, Ile Ife, Osun State, 220282, Nigeria
| | - Rufus Ojo Akomolafe
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Road 7, P.M.B 13, Ile Ife, Osun State, 220282, Nigeria
| | - Olaoluwa Olukiran Sesan
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Road 7, P.M.B 13, Ile Ife, Osun State, 220282, Nigeria
| | - Omolara Titilayo Aladesanmi
- Institute of Ecology and Environmental Studies, Obafemi Awolowo University, Road 7, P.M.B 13, Ile Ife, Osun State, 220282, Nigeria
| | - Aderonke Okoya Adetutu
- Institute of Ecology and Environmental Studies, Obafemi Awolowo University, Road 7, P.M.B 13, Ile Ife, Osun State, 220282, Nigeria
| |
Collapse
|
4
|
Sajad M, Shabir S, Singh SK, Bhardwaj R, Alsanie WF, Alamri AS, Alhomrani M, Alsharif A, Vamanu E, Singh MP. Role of nutraceutical against exposure to pesticide residues: power of bioactive compounds. Front Nutr 2024; 11:1342881. [PMID: 38694227 PMCID: PMC11061536 DOI: 10.3389/fnut.2024.1342881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Pesticides play a crucial role in modern agriculture, aiding in the protection of crops from pests and diseases. However, their indiscriminate use has raised concerns about their potential adverse effects on human health and the environment. Pesticide residues in food and water supplies are a serious health hazards to the general public since long-term exposure can cause cancer, endocrine disruption, and neurotoxicity, among other health problems. In response to these concerns, researchers and health professionals have been exploring alternative approaches to mitigate the toxic effects of pesticide residues. Bioactive substances called nutraceuticals that come from whole foods including fruits, vegetables, herbs, and spices have drawn interest because of their ability to mitigate the negative effects of pesticide residues. These substances, which include minerals, vitamins, antioxidants, and polyphenols, have a variety of biological actions that may assist in the body's detoxification and healing of harm from pesticide exposure. In this context, this review aims to explore the potential of nutraceutical interventions as a promising strategy to mitigate the toxic effects of pesticide residues.
Collapse
Affiliation(s)
- Mabil Sajad
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Shabnam Shabir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | | | - Rima Bhardwaj
- Department of Chemistry, Poona College, Savitribai Phule Pune University, Pune, India
| | - Walaa F. Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, Bucharest, Romania
| | - Mahendra P. Singh
- Department of Zoology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, India
- Centre of Genomics and Bioinformatics, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, India
| |
Collapse
|
5
|
ALRashdi BM, Hussein MM, Mohammed RM, Abdelhamed NW, Asaad ME, Alruwaili M, Alrashidi SM, Habotta OA, Abdel Moneim AE, Ramadan SS. Turmeric Extract-loaded Selenium Nanoparticles Counter Doxorubicin-induced Hepatotoxicity in Mice via Repressing Oxidative Stress, Inflammatory Cytokines, and Cell Apoptosis. Anticancer Agents Med Chem 2024; 24:443-453. [PMID: 38204261 DOI: 10.2174/0118715206274530231213104519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Doxorubicin (DOX) is an antitumor anthracycline used to treat a variety of malignancies; however, its clinical use is associated with noticeable hepatotoxicity. Therefore, the current study was designed to delineate if biosynthesized SeNPs with turmeric extract (Tur-SeNPs) could alleviate DOX-induced hepatic adverse effects. METHODS Mice were orally post-treated with Tur extract, Tur-SeNPs, or N-acetyl cysteine after the intraperitoneal injection of DOX. RESULTS Our findings have unveiled a remarkable liver attenuating effect in DOX-injected mice post-treated with Tur-SeNPs. High serum levels of ALT, AST, ALP, and total bilirubin induced by DOX were significantly decreased by Tur-SeNPs therapy. Furthermore, Tur-SeNPs counteracted DOX-caused hepatic oxidative stress, indicated by decreased MDA and NO levels along with elevated levels of SOD, CAT, GPx, GR, GSH, and mRNA expression levels of Nrf-2. Noteworthily, decreased hepatic IL-1β, TNF-α, and NF-κB p65 levels in addition to downregulated iNOS gene expression in Tur-SeNPs-treated mice have indicated their potent antiinflammatory impact. Post-treatment with Tur-SeNPs also mitigated the hepatic apoptosis evoked by DOX injection. A liver histological examination confirmed the biochemical and molecular findings. CONCLUSIONS In brief, the outcomes have demonstrated Tur loaded with nanoselenium to successfully mitigate the liver damage induced by DOX via blocking oxidative stress, and inflammatory and apoptotic signaling.
Collapse
Affiliation(s)
- Barakat M ALRashdi
- Department of Biology, College of Science, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Mohamed M Hussein
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rawan M Mohammed
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Nada W Abdelhamed
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Maran E Asaad
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Saad M Alrashidi
- Consultant Radiation Oncology, Comprehensive Cancer Centre, King Fahad Medical City & College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Shimaa S Ramadan
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
6
|
Niewiadomska J, Kumiega E, Płóciennik M, Gajek J, Noszczyk-Nowak A. Effects of Punica granatum L. peel extract supplementation on body weight, cardiac function, and haematological and biochemical parameters in an animal model of metabolic syndrome. J Vet Res 2023; 67:219-232. [PMID: 38143830 PMCID: PMC10740328 DOI: 10.2478/jvetres-2023-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/15/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Metabolic syndrome (MetS) is a cluster of pathological conditions well described in humans but still investigated insufficiently in animals. A novel approach in its management is the utilisation of nutrients from natural sources. Recent studies suggested that phenolic compounds from pomegranate peel could be a promising dietary intervention for MetS. This study evaluated the potency of polyphenol-rich pomegranate peel extract (EPP) in mitigating some MetS components in an animal model. Material and Methods Zucker diabetic fatty rats (with an fa/fa missense mutation in the Lepr leptin receptor gene) and their healthy counterparts (fa/+) as controls were fed a high-calorie diet to induce MetS and supplemented with EPP at two doses: 100 mg/kg body weight (b.w.) and 200 mg/kg b.w. The extract was administered for eight weeks. The rats' body weights were monitored twice per week, and blood samples were taken before EPP administration after four weeks and eight weeks of study. Echocardiography measurement was performed at the beginning and at the end of the study. Results The extract restrained the dynamic of weight gain. A cardioprotective effect of the highest dose of EPP supplementation was manifested in a relative decrease in heart rate and improved mid-fractional shortening, representing myocardial contractility. No improvement in fasting blood glucose or lipid profile was observed. Conclusion Pomegranate peel extract possesses beneficial health properties that could be useful in dietary intervention in MetS. However, its bioavailability still requires further investigation in clinical trials in humans and animals suffering from endocrine and metabolic disorders.
Collapse
Affiliation(s)
- Joanna Niewiadomska
- Doctoral School of Wroclaw University of Environmental and Life Sciences, 50-375Wrocław, Poland
| | - Ewa Kumiega
- Department of Internal and Diseases with Clinic for Horses, Dogs, and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375Wrocław, Poland
| | - Michał Płóciennik
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375Wrocław, Poland
| | - Jacek Gajek
- Department of Emergency Medical Service, Wroclaw Medical University, 50-556Wrocław, Poland
| | - Agnieszka Noszczyk-Nowak
- Department of Internal and Diseases with Clinic for Horses, Dogs, and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375Wrocław, Poland
| |
Collapse
|
7
|
Hossain M, Suchi TT, Samiha F, Islam MM, Tully FA, Hasan J, Rahman MA, Shill MC, Bepari AK, Rahman GS, Reza HM. Coenzyme Q10 ameliorates carbofuran induced hepatotoxicity and nephrotoxicity in wister rats. Heliyon 2023; 9:e13727. [PMID: 36865458 PMCID: PMC9971173 DOI: 10.1016/j.heliyon.2023.e13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Carbofuran is a widely used poisonous pesticide around the world that helps to control insects during farming. Upon oral ingestion to humans, it exaggerates oxidative stress in various organs like the liver, brain, kidney, and heart. Several studies reported that oxidative stress in the liver initiates and propagates hepatic cell necrosis, ultimately resulting in hepatotoxicity. It also reported that coenzyme Q10 (CoQ10) can neutralize oxidative stress due to its antioxidant properties. However, the hepatoprotective and nephroprotective role of CoQ10 against carbofuran toxicity has not been investigated. Therefore, the present study aimed to evaluate the hepatoprotective and nephroprotective role of CoQ10 in carbofuran-induced hepatotoxicity and nephrotoxicity in a mouse model for the first time. We determined the blood serum diagnostic markers, oxidative stress parameters, antioxidant system, and histopathological characteristics of liver and kidney tissues. The administration of 100 mg/kg of CoQ10 in carbofuran-treated rats significantly attenuated AST, ALT, ALP, serum creatinine, and BUN levels. Moreover, CoQ10 (100 mg/kg) remarkably altered the level of NO, MDA, AOPP, GSH, SOD, and CAT in both the liver and kidney. The histopathological data also unveiled that CoQ10 treatment prevented inflammatory cell infiltration in carbofuran-exposed rats. Therefore, our findings infer that CoQ10 may effectively protect liver and kidney tissues against carbofuran-induced oxidative hepatotoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Murad Hossain
- Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Dhaka 1229, Bangladesh,Corresponding author.
| | - Tamanna Tanjim Suchi
- Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Dhaka 1229, Bangladesh
| | - Farzana Samiha
- Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Dhaka 1229, Bangladesh
| | - M.M. Monirul Islam
- Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Dhaka 1229, Bangladesh
| | - Fahima Abdullah Tully
- Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Dhaka 1229, Bangladesh
| | - Javed Hasan
- Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Dhaka 1229, Bangladesh
| | - Md Ashrafur Rahman
- Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Dhaka 1229, Bangladesh,Department of Pharmaceutical Sciences, Wilkes university, Pennsylvania, USA, 18766
| | - Manik Chandra Shill
- Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Dhaka 1229, Bangladesh
| | - Asim Kumar Bepari
- Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Dhaka 1229, Bangladesh
| | - G.M. Sayedur Rahman
- Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Dhaka 1229, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Dhaka 1229, Bangladesh,Corresponding author.
| |
Collapse
|
8
|
Kempuraj D, Zhang E, Gupta S, Gupta RC, Sinha NR, Mohan RR. Carbofuran pesticide toxicity to the eye. Exp Eye Res 2023; 227:109355. [PMID: 36572166 PMCID: PMC9918712 DOI: 10.1016/j.exer.2022.109355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Pesticide exposure to eyes is a major source of ocular morbidities in adults and children all over the world. Carbofuran (CF), N-methyl carbamate, pesticide is most widely used as an insecticide, nematicide, and acaricide in agriculture, forestry, and gardening. Contact or ingestion of carbofuran causes high morbidity and mortality in humans and pets. Pesticides are absorbed in the eye faster than other organs of the body and damage ocular tissues very quickly. Carbofuran exposure to eye causes blurred vision, pain, loss of coordination, anti-cholinesterase activities, weakness, sweating, nausea and vomiting, abdominal pain, endocrine, reproductive, and cytotoxic effects in humans depending on amount and duration of exposure. Pesticide exposure to eye injures cornea, conjunctiva, lens, retina, and optic nerve and leads to abnormal ocular movement and vision impairment. Additionally, anticholinesterase pesticides like carbofuran are known to cause salivation, lacrimation, urination, and defecation (SLUD). Carbofuran and its two major metabolites (3-hydroxycarbofuran and 3-ketocarbofuran) are reversible inhibitors of acetylcholinesterase (AChE) which regulates acetylcholine (ACh), a neurohumoral chemical that plays an important role in corneal wound healing. The corneal epithelium contains high levels of ACh whose accumulation by AChE inhibition after CF exposure overstimulates muscarinic ACh receptors (mAChRs) and nicotinic ACh receptors (nAChRs). Hyper stimulation of mAChRs in the eye causes miosis (excessive constriction of the pupil), dacryorrhea (excessive flow of tears), or chromodacryorrhea (red tears). Recent studies reported alteration of autophagy mechanism in human cornea in vitro and ex vivo post carbofuran exposure. This review describes carbofuran toxicity to the eye with special emphasis on corneal morbidities and blindness.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; One-Health One-Medicine Vision Research Program, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Eric Zhang
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Suneel Gupta
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; One-Health One-Medicine Vision Research Program, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Ramesh C Gupta
- Toxicology Department, Murray State University, Hopkinsville, KY, USA
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; One-Health One-Medicine Vision Research Program, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; One-Health One-Medicine Vision Research Program, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
9
|
Naeini F, Tutunchi H, Razmi H, Mahmoodpoor A, Vajdi M, Sefidmooye Aza P, Najifipour F, Tarighat-Esfanjani A, Karimi A. Does nano-curcumin supplementation improve hematological indices in critically ill patients with sepsis? A randomized controlled clinical trial. J Food Biochem 2022; 46:e14093. [PMID: 35150143 DOI: 10.1111/jfbc.14093] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/30/2021] [Accepted: 01/09/2022] [Indexed: 02/06/2023]
Abstract
Sepsis is the final common pathway to death for severe infectious diseases worldwide. The present trial aimed to investigate the effects of nano-curcumin supplementation on hematological indices in critically ill patients with sepsis. Fourteen ICU-admitted patients were randomly allocated into either nano-curcumin or placebo group for 10 days. The blood indices, serum levels of inflammatory biomarker and presepsin as well as nutrition status, and clinical outcomes were assessed before the intervention and on days 5 and 10. White blood cells, neutrophils, platelets, erythrocyte sedimentation rate (ESR), and the levels of interleukin-8 significantly decreased in the nano-curcumin group compared to the placebo after 10 days of intervention (p = .024, p = .045, p = .017, p = .041, and p = .004, respectively). There was also a marginal meaningful decrease in serum presepsin levels in the intervention group compared to the placebo at the end of the study (p = .054). However, total lymphocyte count showed a significant increase in the nano-curcumin group compared to the placebo at the end-point (p = .04). No significant differences were found in the level of lymphocyte and the ratios of neutrophil/lymphocyte and platelet/lymphocyte between the study groups. Moreover, no significant between-group differences were observed for other study outcomes, post-intervention. Collectively, nano-curcumin may be a useful adjuvant therapy in critically ill patients with sepsis. However, further trials are suggested to examine the effects of nano-curcumin in the management of sepsis and its complications. PRACTICAL APPLICATIONS: Curcumin (1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5- dione) or diferuloylmethane is widely used in medicine due to its several biological properties. Recent evidence has shown that curcumin possesses multiple pharmacological activities including immune-modulatory, antioxidant, anti-inflammatory, anti-cancer, and anti-microbial effects. In this study, it was observed that nano-curcumin at a dose of 160 mg for 10 days, without side effects, reduced some inflammatory factors and regulated the immune responses in sepsis patients. For the first time, this trial was conducted to determine the effect of nano-curcumin on hematological indices and the serum levels of presepsin and IL-8.
Collapse
Affiliation(s)
- Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Helda Tutunchi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Endoceine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Razmi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ata Mahmoodpoor
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Vajdi
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pouria Sefidmooye Aza
- Department of Nutrition and Hospitality Management, School of Applied Sciences, The University of Mississippi, University Park, Mississippi, USA
| | - Farzad Najifipour
- Endoceine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighat-Esfanjani
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Karimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Endoceine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Ishaq A, Gulzar H, Hassan A, Kamran M, Riaz M, Parveen A, Chattha MS, Walayat N, Fatima S, Afzal S, Fahad S. Ameliorative mechanisms of turmeric-extracted curcumin on arsenic (As)-induced biochemical alterations, oxidative damage, and impaired organ functions in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:66313-66326. [PMID: 34331650 DOI: 10.1007/s11356-021-15695-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) is known for its carcinogenic and hepatorenal toxic effects causing serious health problems in human beings. Turmeric (Curcuma longa L.) extracted curcumin (Cur) is a polyphenolic antioxidant which has ability to combat hazardous environmental toxicants. This study (28 days) was carried out to investigate the therapeutic efficacy of different doses of Cur (Cur: 80, 160, 240 mg kg-1) against the oxidative damage in the liver and kidney of male rats caused by sodium arsenate (Na3AsO4) (10 mg L-1). As exposure significantly elevated the values of organ index, markers of hepatic injury (i.e., alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP)) and renal functions (i.e., total bilirubin, urea and creatinine, total cholesterol, total triglycerides, and lipid peroxidation malondialdehyde (MDA)). Moreover, different antioxidant markers such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) activities in the liver and kidney tissues were reduced after As-induced toxicity. However, Na3AsO4 induced histopathological changes in various organs were minimized after the treatment with Cur. The alleviation effect of Cur was dosage dependent with an order of 240>160>80 mg kg-1. The oral administration of Cur prominently alleviated the As-induced toxicity in liver and kidney tissues by reducing lipid peroxidation, ALT, AST, ALP, total bilirubin, urea, creatinine, total cholesterol, total triglycerides, and low-density lipoproteins (LDL). In addition, Cur being an antioxidant improved defense system by enhancing activities of SOD, CAT, GPx, and GR. Overall, the findings explain the capability of Cur to counteract the oxidative alterations as well as hepatorenal injuries due to As intoxication.
Collapse
Affiliation(s)
- Anam Ishaq
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, 3800, Pakistan
| | - Huma Gulzar
- College of Life Sciences, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Ali Hassan
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, 3800, Pakistan.
| | - Muhammad Kamran
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Muhammad Riaz
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Aasma Parveen
- Faculty of Agriculture & Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Sohaib Chattha
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Noman Walayat
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Sana Fatima
- Faculty of Sciences, University of Agriculture, Faisalabad, 3800, Pakistan
| | - Sobia Afzal
- Faculty of Agriculture & Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, People's Republic of China.
- Department of Agronomy, The University of Haripur, Haripur, Khyber Pakhtunkhwa, 22620, Pakistan.
| |
Collapse
|
11
|
Biomedical Effects of the Phytonutrients Turmeric, Garlic, Cinnamon, Graviola, and Oregano: A Comprehensive Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phytonutrients are plant foods that contain many natural bioactive compounds, called phytochemicals, which show specific biological activities. These phytonutrients and their phytochemicals may play an important role in health care maintaining normal organism functions (as preventives) and fighting against diseases (as therapeutics). Phytonutrients’ components are the primary metabolites (i.e., proteins, carbohydrates, and lipids) and phytochemicals or secondary metabolites (i.e., phenolics, alkaloids, organosulfides, and terpenes). For years, several phytonutrients and their phytochemicals have demonstrated specific pharmacological and therapeutic effects in human health such as anticancer, antioxidant, antiviral, anti-inflammatory, antibacterial, antifungal, and immune response. This review summarizes the effects of the most studied or the most popular phytonutrients (i.e., turmeric, garlic, cinnamon, graviola, and oregano) and any reported contraindications. This article also presents the calculated physicochemical properties of the main phytochemicals in the selected phytonutrients using Lipinski’s, Veber’s, and Ghose’s rules. Based on our revisions for this article, all these phytonutrients have consistently shown great potential as preventives and therapeutics on many diseases in vitro, in vivo, and clinical studies.
Collapse
|
12
|
Mondal M, Saha S, Sarkar C, Hossen MS, Hossain MS, Khalipha ABR, Islam MF, Wahed TB, Islam MT, Rauf A, Mubarak MS, Kundu SK. Role of Citrus medica L. Fruits Extract in Combatting the Hematological and Hepatic Toxic Effects of Carbofuran. Chem Res Toxicol 2021; 34:1890-1902. [PMID: 34264070 DOI: 10.1021/acs.chemrestox.1c00166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Citrus medica L. is rich in numerous vital bioactive constituents, though it is an underutilized among the citrus genus. Therefore, the aim of the present investigation was to evaluate the protective role of the C. medica fruit (CMF) methanol extract against carbofuran (CF)-induced toxicity in experimental rats. In addition, this work aims at detecting and measuring polyphenolic compounds by means of high-performance liquid chromatography (HPLC) and evaluation of the antioxidant activity of this extract. For this, studies dealing with serum hematological and biochemical parameters, liver endogenous antioxidants, as well as hepatic histo-architectural features have been carried out to assess the protective ability of CMF against CF-induced toxicity. Additionally, total phenol, flavonoid, and antioxidant capability were measured and the antioxidant action was investigated using DPPH and nitric oxide radical scavenging assays as well as reducing power assessments. HPLC results revealed the presence of benzoic acid, cinnamic acid, gallic acid, quercetin, and salicylic acid in CMF extract. Furthermore, results showed that CMF has considerable total phenol, flavonoid, and antioxidant capability and exhibits significant free radical scavenging and reducing potentialities. On the other hand, CF intoxication of rats significantly altered the hematological and serum biochemical parameters with hepatocytes disruption. Carbofuran also caused an upsurge in malondialdehyde (MDA) level and a decline in hepatic cellular antioxidant enzymes levels in rats compared to the control group. Co-administration of CMF amended the anomalies and improved the histo-architectural arrangement of hepatocytes in treated groups. CMF also inhibited the alteration of endogenous antioxidant enzymes and MDA levels as compared to the carbofuran treated group and returned them to their normal state. Taken all together, results from this investigation highlight the protective role of CMF against CF-induced toxicity which might be attributed to the polyphenolic constituents of the extract.
Collapse
Affiliation(s)
- Milon Mondal
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Sushmita Saha
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Sakib Hossen
- Department of Biochemistry, Primeasia University, Banani, Dhaka 1212, Bangladesh
| | - Md Solayman Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Abul Bashar Ripon Khalipha
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Fokhrul Islam
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Tania Binte Wahed
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Ambar, Swabi, Khyber Pakhtunkhwa 94640, Pakistan
| | | | | |
Collapse
|
13
|
Islam MT, Quispe C, Islam MA, Ali ES, Saha S, Asha UH, Mondal M, Razis AFA, Sunusi U, Kamal RM, Kumar M, Sharifi-Rad J. Effects of nerol on paracetamol-induced liver damage in Wistar albino rats. Biomed Pharmacother 2021; 140:111732. [PMID: 34130201 DOI: 10.1016/j.biopha.2021.111732] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 02/02/2023] Open
Abstract
Nerol, a monoterpene is evident to possess diverse biological activities, including antioxidant, anti-microbial, anti-spasmodic, anthelmintic, and anti-arrhythmias. This study aims to evaluate its hepatoprotective effect against paracetamol-induced liver toxicity in a rat model. Five groups of rats (n = 7) were orally treated (once daily) with 0.05% tween 80 dissolved in 0.9% NaCl solution (vehicle), paracetamol 640 mg/kg (negative control), 50 mg/kg silymarin (positive control), or nerol (50 and 100 mg/kg) for 14 days, followed by the hepatotoxicity induction using paracetamol (PCM). The blood samples and livers of the animals were collected and subjected to biochemical and microscopical analysis. The histological findings suggest that paracetamol caused lymphocyte infiltration and marked necrosis, whereas maintenance of the normal hepatic structural was observed in group pre-treated with silymarin and nerol. The rats pre-treated with nerol significantly and dose-dependently reduced the hepatotoxic markers in animals. Nerol at 100 mg/kg significantly reversed the paracetamol-induced altered situations, including the liver enzymes, plasma proteins, antioxidant enzymes and serum bilirubin, lipid peroxidation (LPO) and cholesterol [e.g., total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c)] levels in animals. Taken together, nerol exerted significant hepatoprotective activity in rats in a dose-dependent manner. PCM-induced toxicity and nerol induced hepatoprotective effects based on expression of inflammatory and apoptosis factors will be future line of work for establishing the precise mechanism of action of nerol in Wistar albino rats.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique, 1110939, Chile.
| | - Md Amirul Islam
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh.
| | - Eunus S Ali
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042, Australia.
| | - Sushmita Saha
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh.
| | - Umma Hafsa Asha
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka), 8100, Bangladesh.
| | - Milon Mondal
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka), 8100, Bangladesh.
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Bayero University Kano, PMB 3011, Kano, Nigeria.
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Pharmacology, Federal University Dutse, PMB 7156 Dutse, Jigawa state, Nigeria.
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on CottonTechnology, Mumbai, 400019, Maharashtra, India
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Mondal M, Hossen MS, Rahman MA, Saha S, Sarkar C, Bhoumik NC, Kundu SK. Antioxidant mediated protective effect of Bridelia tomentosa leaf extract against carbofuran induced oxidative hepatic toxicity. Toxicol Rep 2021; 8:1369-1380. [PMID: 34285883 PMCID: PMC8278150 DOI: 10.1016/j.toxrep.2021.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 12/21/2022] Open
Abstract
Bridelia tomentosa is a traditional medicinal plant that is used against colitis, traumatic injury, diarrhea, and diabetes. Gallic acid, Tannic acid, salicylic acid, and naringin were isolated from the leaf of B. tomentosa for the first time. B. tomentosa extract amended serum biochemical markers, MDA levels, and improved the levels of hepatic antioxidant enzymes. Phenolic and flavonoid compounds of the B. tomentosa can be used as nutraceuticals for treating oxidative hepatic ailments.
Bridelia tomentosa (B. tomentosa) is a traditional medicinal plant for treating diverse ailments. Hence, we designed our study to scrutinize the protective effect of the methanol extract of B. tomentosa leaf (BTL) against carbofuran-induced oxidative stress-mediated hepato-toxicity in Sprague-Dawley rats for the first time, along with the identification and quantification of phenolic acids and flavonoids by high-performance liquid chromatography (HPLC) and evaluation of antioxidant and antiradical activities of this extract. HPLC analysis confirmed the existence of tannic acid, gallic acid, salicylic acid, and naringin in B. tomentosa leaf extract which showed in-vitro antioxidant potentialities with DPPH, nitric oxide, hydrogen peroxide, and hydroxyl radical scavenging properties. Co-administration of B. tomentosa leaf extract with carbofuran showed dose-dependent significant protective effects of hepatic toxicity on serum markers such as alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, γ-glutamyl-transferase, lactate dehydrogenase, total bilirubin, total protein, albumin, globulin, lipid profile, urea, uric acid, and creatinine. Carbofuran intoxication also revealed an upsurge in malondialdehyde (MDA) and a decline in cellular endogenous antioxidant enzyme levels in rats compared with the control group. However, B. tomentosa leaf extract co-treatment increased the levels of hepatic antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, and amended the MDA level. Similarly, histopathological evaluation further assured that BTL could keep the hepatocyte from carbofuran-induced damage. Therefore, all of our findings may conclude that the phenolic acids and flavonoids of B. tomentosa leaf extract are responsible to neutralize the toxic free radical-mediated oxidative hepatic damages.
Collapse
Affiliation(s)
- Milon Mondal
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Corresponding author.
| | - Md. Sakib Hossen
- Department of Biochemistry, Primeasia University, Banani, 1213, Bangladesh
| | | | - Sushmita Saha
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Nikhil Chandra Bhoumik
- Wazed Miah Science Research Centre, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Sukalyan Kumar Kundu
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| |
Collapse
|
15
|
Preclinical Evidence of Curcuma longa and Its Noncurcuminoid Constituents against Hepatobiliary Diseases: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8761435. [PMID: 32802138 PMCID: PMC7411463 DOI: 10.1155/2020/8761435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
Hepatobiliary disease currently serves as an important public health issue due to the fact that it is one of the major causes of death among economically active individuals and can easily progress to chronic diseases. Despite the development of vaccines and numerous drugs, a definite treatment remains lacking owing to different stages of the disease itself, its intricate pathogenesis, an effect uncertainty for long-term use, resistance, and side effects. Curcuma longa (C. longa), which belongs to the family Zingiberaceae and the genus Curcuma, has long been used not only as spice for curry or dye but also as a constituent of herbal formula for the treatment of different diseases due to its bioactive activities. Recently, many studies on the experimental results of C. longa have been published relative to hepatobiliary diseases such as fatty liver, hepatitis, cirrhosis, and tumors. Therefore, in this review, we aimed to summarize the pharmacological effects and underlying molecular mechanisms of C. longa and its four compounds, β-elemene, germacrone, ar-turmerone, and bisacurone, against hepatobiliary diseases. C. longa exhibited antioxidant, hepatoprotective, antisteatotic, anti-inflammatory, antifibrotic, antitumor, and cholagogic effects by regulating apoptosis, CYP2E1, Nrf, lipid metabolism-related factors, TGF-β, NF-κB, CYP7A1, and so on. In particular, β-elemene could be an attractive compound owing to its remarkable hepatoprotective, anti-inflammatory, antifibrotic, and antitumor activities. Altogether, the present review provides a preclinical basis for the efficacy of C. longa as an effective therapeutic agent for the prevention and treatment of hepatobiliary diseases, despite the need for further studies to establish the extraction conditions and separation of active constituents with high bioavailability, and warrants further evaluation in clinical trials.
Collapse
|
16
|
Apigenin, flavonoid component isolated from Gentiana veitchiorum flower suppresses the oxidative stress through LDLR-LCAT signaling pathway. Biomed Pharmacother 2020; 128:110298. [PMID: 32504920 DOI: 10.1016/j.biopha.2020.110298] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 01/17/2023] Open
Abstract
Flower of Gentiana veitchiorum has traditionally been used as an herbal medicine in Tibet for treatment of variola, respiratory infection, and pneumonia. However, the effective components contained in flower are not identified yet, and the underlying mechanisms for anti-inflammatory, antibacterial, and antioxidative activities remain to be elucidated. Here, we first extracted the flavonoid mixture from G. veitchiorum flower. The mixture was then further isolated and the within compounds was identified through the high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). The results showed that apigenin (4',5,7-trihydroxyflavone) was the most abundant flavonoid in G. veitchiorum flower. We next examined the antioxidative activity of the extracted apigenin using the ferric reducing/antioxidant power (FRAP), the 1,1-diphenyl-2-picrylhydrazyl (DPPH), and the 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) assays and found that a positive correlation between apigenin concentration and reactive oxygen species (ROS) scavenging rate. The biochemical assays further revealed that the levels of total cholesterol (TC), triglyceride (TG), and malondialdehyde (MDA) were reduced, while the activity of superoxide dismutase (SOD) was increased after apigenin treatment in hyperlipidemic rats. Moreover, we performed histopathological investigations and found that the lipidic deposition patterns were recovered and the amount of lipid vacuoles was significantly reduced in apigenin-treated hyperlipidemic rat liver. Western blotting assay showed that the expression of low-density lipoprotein receptor (LDLR) and lecithin-cholesterol acyltransferase (LCAT) were up-regulated in the apigenin-treated samples. Overall, our results demonstrated that the apigenin isolated from G. veitchiorum flower exhibited radical scavenging activities, and reversed the high fat diet-induced oxidative damage in rats. Its antioxidative activities are probably achieved via LDLR-LCAT signaling pathway.
Collapse
|
17
|
Mailafiya MM, Abubakar K, Chiroma SM, Danmaigoro A, Rahim EBA, Mohd Moklas MA, Zakaria ZAB. Curcumin-loaded cockle shell-derived calcium carbonate nanoparticles: A novel strategy for the treatment of lead-induced hepato-renal toxicity in rats. Saudi J Biol Sci 2020; 27:1538-1552. [PMID: 32489292 PMCID: PMC7253904 DOI: 10.1016/j.sjbs.2020.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Lead (Pb) toxicity affects the hepatic and renal systems resulting to homeostasis imbalance. Curcumin is a strong antioxidant but has restrained clinical applications due to its poor bioavailability. Nanomedicine showed promising potentials in drug delivery and has brought forth the use of cockle shell-derived aragonite calcium carbonate nanoparticles (CSCaCO3NP) to enhance the effectiveness and targeted delivery of curcumin (Cur). Thus, this study aimed at evaluating the therapeutic effect of curcumin-loaded CSCaCO3NP (Cur- CSCaCO3NP) on lead-induced hepato-renal toxicity in rats. Thirty-six male adults Sprague-Dawley rats were randomly assigned into five groups. All groups contained six rats each except for group A, which contained 12 rats. All rats apart from the rats in group A (control) were orally administered a flat dose of 50 mg/kg of lead for four weeks. Six rats from group A and B were euthanized after four weeks of lead induction. Oral administration of curcumin (100 mg/kg) for group C and Cur-CSCaCO3NP (50 and 100 mg/kg) for groups D and E respectively, commenced immediately after 4 weeks of lead induction which lasted for 4 weeks. All rats were euthanized at the 8th week of the experiment. Further, biochemical, histological and hematological analysis were performed. The findings revealed a biochemical, hematological and histological changes in lead-induced rats. However, treatments with the Cur-CSCaCO3NP and free curcumin reversed the aforementioned changes. Although, Cur-CSCaCO3NP presented better therapeutic effects on lead-induced toxicity in rats when compared to free curcumin as there was significant improvements in hematological, biochemical and histological changes which is parallel with attenuation of oxidative stress. The findings of the current study hold great prospects for Cur-CSCaCO3NP as a novel approach for effective oral treatment of lead-induced hepato-renal impairments.
Collapse
Affiliation(s)
- Maryam Muhammad Mailafiya
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia,Department of Human Anatomy, College of Medical Sciences, Federal University Lafia, 950101, Akunza, Lafia, Nasarawa State, Nigeria
| | - Kabeer Abubakar
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia,Department of Human Anatomy, College of Medical Sciences, Federal University Lafia, 950101, Akunza, Lafia, Nasarawa State, Nigeria
| | - Samaila Musa Chiroma
- Department of Human Anatomy, Faculty of Basic Medical Sciences, University of Maiduguri, 600230 Maiduguri, Borno State, Nigeria
| | - Abubakar Danmaigoro
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Usman Danfodiyo University, 840213, Sultan Abubakar, Sokoto State, Nigeria
| | - Ezamin Bin Abdul Rahim
- Department of Radiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia,Corresponding author at: Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia.
| | - Zuki Abu Bakar Zakaria
- Department of Preclinical Sciences Faculty of Veterinary Medicine, University Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
18
|
Liu H, Li P, Wang P, Liu D, Zhou Z. Toxicity risk assessment of pyriproxyfen and metabolites in the rat liver: A vitro study. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121835. [PMID: 31843398 DOI: 10.1016/j.jhazmat.2019.121835] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/09/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Pyriproxyfen (PYR) is a type of aromatic juvenile hormone analog and a hygienic insecticide used in agriculture to control insect species. Therefore, assessing the metabolic behavior and toxic effects of PYR in mammals is the best means of evaluating its risks to human health. Previous studies have reported conflicting results regarding the toxicity risks of PYR and its metabolites in rat hepatocytes. We used ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to perform a chiral analysis of PYR and its metabolites investigating the enantioselective metabolism of PYR in rat liver microsomes. Our results concluded that the recoveries of PYR, metabolites A and B ranged from 81.13%-111.54 %, with RSD values of 0.01 %-6.52 %. The method limits of detection (LODs) and limits of quantification (LOQs) for PYR, metabolites A and B were in accordance with the analysis requirements. Previous studies have demonstrated the enantioselective metabolism of PYR and the generation of metabolites. Measurements of cell proliferation toxicity to rat hepatocytes, apoptosis and DNA damage induced by PYR and its metabolites in rat hepatocytes indicated that the metabolites reflected higher toxicity potential than PYR in rat hepatocytes. More studies about the molecular mechanism of PYR-induced toxicity are urgently needed in future work.
Collapse
Affiliation(s)
- Hui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Peize Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| |
Collapse
|
19
|
Li W, Lu Y, Cheng Y, Luo H, Jia Z, Li N. Preparation of galactosylated curcumol liposomes. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenjie Li
- Department of HematologyAffiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Yan Lu
- Department of AnesthesiologyAffiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Yi Cheng
- School of Chinese Materia MedicaGuangzhou University of Chinese Medicine Guangzhou China
| | - Hui Luo
- Chemistry Teaching and Research Section, The Key Laboratory of Zhanjiang for R&D Marine Microbial Resources in The Beibu Gulf RimGuangdong Medical University Zhanjiang China
| | - Zhenbin Jia
- Office of Academic AffairsGuangdong Medical University Dongguan China
| | - Ning Li
- Department of HematologyAffiliated Hospital of Guangdong Medical University Zhanjiang China
- Department of Biochemistry and Molecular BiologyGuangdong Medical University Zhanjiang China
| |
Collapse
|
20
|
Abubakar K, Mailafiya MM, Chiroma SM, Danmaigoro A, Zyoud TYT, Abdul Rahim E, Abu Bakar Zakaria MZ. Ameliorative effect of curcumin on lead-induced hematological and hepatorenal toxicity in a rat model. J Biochem Mol Toxicol 2020; 34:e22483. [PMID: 32125074 DOI: 10.1002/jbt.22483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/18/2019] [Accepted: 02/14/2020] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Lead (Pb) is a ubiquitous toxic heavy metal that inflicts numerous clinical consequences on humans. Curcumin is the principal component of turmeric, which is reported to have antioxidative properties. This study aimed at evaluating the ameliorative effects of curcumin on Pb-induced hepatorenal toxicity in a rat model. METHODS Thirty-six male Sprague-Dawley rats were randomly assigned into five groups with 12 rats in the control (normal saline) and six rats each for the lead-treated group (LTG) (50 mg/kg lead acetate [Pb acetate] for 4 weeks), recovery group (50 mg/kg Pb acetate for 4 weeks and left with no treatment for another 4 weeks), treatment group 1 (Cur100) (50 mg/kg Pb acetate for 4 weeks, followed by 100 mg/kg curcumin for 4 weeks), and treatment group 2 (Cur200) (50 mg/kg Pb acetate for 4 weeks, followed by 200 mg/kg curcumin for 4 weeks). All the experimental groups received oral treatments via orogastric-tube on alternate days. Pb concentration in the liver and kidney of the rats were evaluated using inductive-coupled plasma mass spectrometry techniques. RESULTS Pb-administered rats revealed significant alteration in oxidative status and increased Pb concentration in their liver and kidney with obvious reduction of hemogram and increased in leukogram as well as aberration in histological architecture of the liver and kidney. However, treatment with curcumin reduces the tissue Pb concentrations and ameliorates the above mention alterations. CONCLUSIONS The results in this study suggested that curcumin attenuates Pb-induced hepatorenal toxicity via chelating activity and inhibition of oxidative stress.
Collapse
Affiliation(s)
- Kabeer Abubakar
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, Selangor Darul Ehsan, Malaysia.,Department of Human Anatomy, College of Medical Sciences, Federal University Lafia, Lafia, Nigeria
| | - Maryam M Mailafiya
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, Selangor Darul Ehsan, Malaysia.,Department of Human Anatomy, College of Medical Sciences, Federal University Lafia, Lafia, Nigeria
| | - Samaila M Chiroma
- Department of Human Anatomy, Faculty of Basic Medical Sciences, University of Maiduguri, Maiduguri, Nigeria
| | - Abubakar Danmaigoro
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Usman Danfodiyo University, Sokoto, Nigeria
| | - Tawfiq Y T Zyoud
- Department of Radiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Selangor Darul Ehsan, Malaysia
| | - Ezamin Abdul Rahim
- Department of Radiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Selangor Darul Ehsan, Malaysia
| | - Md Zuki Abu Bakar Zakaria
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University Putra Malaysia, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
21
|
Mondal M, Hossain MM, Rahman MA, Saha S, Uddin N, Hasan MR, Kader A, Wahed TB, Kundu SK, Islam MT, Mubarak MS. Hepatoprotective and Antioxidant Activities of Justicia gendarussa Leaf Extract in Carbofuran-Induced Hepatic Damage in Rats. Chem Res Toxicol 2019; 32:2499-2508. [DOI: 10.1021/acs.chemrestox.9b00345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Milon Mondal
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh
| | - Md. Monir Hossain
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | | | - Sushmita Saha
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Nizam Uddin
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md. Rakib Hasan
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Abdul Kader
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Tania Binte Wahed
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | | | - Muhammad Torequl Islam
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | | |
Collapse
|
22
|
Astuti SD, Victory VS, Mahmud AF, Putra AP, Winarni D. The effects of laser diode treatment on liver dysfunction of Mus musculus due to carbofuran exposure: An in vivo study. J Adv Vet Anim Res 2019; 6:499-505. [PMID: 31819878 PMCID: PMC6882707 DOI: 10.5455/javar.2019.f374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 01/06/2023] Open
Abstract
Objective: The aim of this study is to determine the effect of laser diode as an alternative treatment on liver dysfunction (in vivo study) that is caused by carbofuran using male mice (Mus musculus) strain Balb/C. Materials and Methods: The samples were divided into three groups, namely, Group C–L– (control group, no treatment), Group C+L– (only treated by carbofuran treatment), and Group C+L+ (treatment group, treated by carbofuran and laser-puncture) with five replications each. After being treated, each liver slice of samples was observed using microscope to get the histology result and then scored. Results: Carbofuran contamination can lead to inflammation of cells and necrosis. The histology results and the scoring test showed that the liver cells repair with the energy dose of laser diode at 0.5 and 1.0 Joule. Conclusion: The optimum energy dose in this study was 1.0 Joule which had the closest score of inflammatory cells and necrosis to normal liver cells.
Collapse
Affiliation(s)
- Suryani Dyah Astuti
- Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
| | - Vivi Sumanti Victory
- Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
| | - Amalia Fitriana Mahmud
- Biomedical Engineering Study Program, Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
| | - Alfian Pramudita Putra
- Biomedical Engineering Study Program, Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
| | - Dwi Winarni
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| |
Collapse
|
23
|
da Costa IM, Freire MADM, de Paiva Cavalcanti JRL, de Araújo DP, Norrara B, Moreira Rosa IMM, de Azevedo EP, do Rego ACM, Filho IA, Guzen FP. Supplementation with Curcuma longa Reverses Neurotoxic and Behavioral Damage in Models of Alzheimer's Disease: A Systematic Review. Curr Neuropharmacol 2019; 17:406-421. [PMID: 29338678 PMCID: PMC6520588 DOI: 10.2174/0929867325666180117112610] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 12/30/2022] Open
Abstract
Background: The formation of senile plaques and neurofibrillary tangles of the tau protein are the main pathological mechanism of Alzheimer’s disease (AD). Current therapies for AD offer discrete benefits to the clinical symptoms and do not prevent the continuing degeneration of neuronal cells. Therefore, novel therapeutic strategies have long been investigated, where curcumin (Curcuma longa) has shown some properties that can prevent the deleterious processes involved in neurodegenerative diseases. Objective: The aim of the present work is to review studies that addressed the effects of curcumin in experimental models (in vivo and in vitro) for AD. Method: This study is a systematic review conducted between January and June 2017, in which a consultation of scientific articles from indexed periodicals was carried out in Science Direct, United States National Library of Medicine (PubMed), Cochrane Library and Scielo databases, using the following descriptors: “Curcuma longa”, “Curcumin” and “Alzheimer’s disease”. Results: A total of 32 studies were analyzed, which indicated that curcumin supplementation reverses neurotoxic and behavioral damages in both in vivo and in vitro models of AD. Conclusion: The administration of curcumin in experimental models seems to be a promising approach in AD, even though it is suggested that additional studies must be conducted using distinct doses and through other routes of administration.
Collapse
Affiliation(s)
- Ianara Mendonça da Costa
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoro/RN, Brazil.,Post graduate in Prescription of Herbal Medicines, Clinical and Sports Nutritional Supplementation, Estácio de Sá University, São Paulo/SP, Brazil
| | - Marco Aurelio de Moura Freire
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoro/RN, Brazil
| | - José Rodolfo Lopes de Paiva Cavalcanti
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoro/RN, Brazil
| | - Dayane Pessoa de Araújo
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoro/RN, Brazil
| | - Bianca Norrara
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoro/RN, Brazil
| | - Isleânia Maria Marques Moreira Rosa
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoro/RN, Brazil
| | | | | | - Irami Araújo Filho
- Post Graduation Program in Biotechnology, Health School, Potiguar University (UnP), Natal/RN, Brazil
| | - Fausto Pierdoná Guzen
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte, Mossoro/RN, Brazil.,Post Graduation Program in Biotechnology, Health School, Potiguar University (UnP), Natal/RN, Brazil
| |
Collapse
|
24
|
Wahed TB, Mondal M, Rahman MA, Hossen MS, Bhoumik NC, Saha S, Tanvir EM, Khalil MI, Kundu SK, Islam MT, Mubarak MS. Protective Role of Syzygium Cymosum Leaf Extract Against Carbofuran-Induced Hematological and Hepatic Toxicities. Chem Res Toxicol 2019; 32:1619-1629. [DOI: 10.1021/acs.chemrestox.9b00164] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Tania Binte Wahed
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Milon Mondal
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | | | - Md. Sakib Hossen
- Department of Biochemistry, Primeasia University, Banani 1213, Bangladesh
| | - Nikhil Chandra Bhoumik
- Wazed Miah Science Research Centre, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Sushmita Saha
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - E. M. Tanvir
- Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Savar, Bangladesh
| | - Md. Ibrahim Khalil
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | | | - Muhammad Torequl Islam
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | | |
Collapse
|
25
|
Tanvir EM, Hasan MA, Nayan SI, Islam T, Ahmed T, Hossen MS, Perveen R, Rahman S, Afroz R, Afroz R, Chowdhury MAZ. Ameliorative effects of ethanolic constituents of Bangladeshi propolis against tetracycline-induced hepatic and renal toxicity in rats. J Food Biochem 2019; 43:e12958. [PMID: 31368558 DOI: 10.1111/jfbc.12958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/23/2019] [Accepted: 05/29/2019] [Indexed: 11/28/2022]
Abstract
The study reports the phenolic composition of propolis from Bangladesh and its ameliorative effects against tetracycline-induced hepatonephrotoxicity in rats. Male Wistar Albino rats (n = 18) were randomly divided into three following groups: (1) normal control, (2) tetracycline-treatment (200 mg kg-1 rat-1 ), and (3) tetracycline (200 mg kg-1 rat-1 ) + propolis (100 mg kg-1 rat-1 ) treatments. The ethanolic extract of propolis contained major phenolic acids as well as a flavonoid, rutin. Oral exposure to tetracycline caused severe hepatic and renal damage as indicated by significant alterations in liver marker enzymes in rat serum: bilirubin and protein concentrations, lipid profile, and markers of kidney function when compared with controls. The observed biochemical perturbations were accompanied by histopathological changes. Co-administration with propolis extract, however, prevented the changes in biochemical parameters, as revealed by maintenance of cell membrane integrity and regulation of lipid profile and the conservation of the histoarchitecture. PRACTICAL APPLICATIONS: Propolis is a resinous honeybee product which is becoming increasingly popular due to its potential contributions to human health. The phenolic compounds identified in propolis from Bangladesh were effective against tetracycline-induced hepatic and renal toxicity. Propolis may be a promising natural product in reducing the effects of chronic liver and kidney damage.
Collapse
Affiliation(s)
- E M Tanvir
- Veterinary Drug Residue Analysis Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh.,School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, Australia.,Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Dhaka, Bangladesh
| | - Md Asif Hasan
- Department of Pharmacy, Gono Bishwabidyalay, Dhaka, Bangladesh
| | | | - Tamanna Islam
- Department of Pharmacy, Gono Bishwabidyalay, Dhaka, Bangladesh
| | - Tania Ahmed
- Department of Pharmacy, Gono Bishwabidyalay, Dhaka, Bangladesh
| | - Md Sakib Hossen
- Department of Biochemistry, Primeasia University, Dhaka, Bangladesh
| | - Rasheda Perveen
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Dhaka, Bangladesh.,Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Shahnaz Rahman
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Dhaka, Bangladesh
| | - Raihana Afroz
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Rizwana Afroz
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, Australia
| | - Muhammed Alamgir Zaman Chowdhury
- Veterinary Drug Residue Analysis Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| |
Collapse
|
26
|
Li WJ, Lian YW, Guan QS, Li N, Liang WJ, Liu WX, Huang YB, Cheng Y, Luo H. Liver-targeted delivery of liposome-encapsulated curcumol using galactosylated-stearate. Exp Ther Med 2018; 16:925-930. [PMID: 30112045 PMCID: PMC6090458 DOI: 10.3892/etm.2018.6210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/18/2018] [Indexed: 12/11/2022] Open
Abstract
Liver-targeted drug delivery improves the efficacy of anti-liver cancer agents and reduces systemic toxicity by limiting the bioavailability of these drugs to within tumors. Liver targeting reagents with galactose residues, which selectively combine to asialoglyco protein receptors, have previously been used to improve liposome-encapsulated drug accumulation within liver cells. They lead to a reduction in liver cancer cell growth and have been used to cure certain hepatic diseases. In the present study, curcumol, which is the primary active component of Chinese traditional medicine Rhizoma zedoariae, was encapsulated in galactosylated-liposomes to enhance its anti-liver cancer efficacy. Galactosylated-liposomes and normal liposomes were labeled with propidium iodide. Galactosylated-liposomes with increasing concentrations of galactosylated-stearate (Gal-s) had a notably increased level of uptake in HepG2 cells (hepatoblastoma) compared with SGC-7901 (gastric cancer) and A549 (non-small cell lung cancer) cells. When the percentage of Gal-s reached 20%, liposome uptake plateaued. In the in vitro anti-liver cancer experiment, the anti-liver cancer efficacy of galactosylated-curcumol-liposomes increased significantly more compared with normal curcumol liposomes and free curcumol as indicated by cell survival rate and lactate dehydrogenase release rate. Collectively, these results demonstrate that galactosylated-liposomes are able to enhance the in vitro liver-targeting effect and anti-liver cancer efficacy of curcumol.
Collapse
Affiliation(s)
- Wen-Jie Li
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - You-Wen Lian
- Laboratory Animal Center, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Quan-Sheng Guan
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Ning Li
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Wen-Jun Liang
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Wen-Xin Liu
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yong-Bin Huang
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yi Cheng
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hui Luo
- Chemistry Teaching and Research Section, The Key Laboratory of Zhanjiang for R&D Marine Microbial Resources in The Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| |
Collapse
|
27
|
Ganoderma lucidum and Auricularia polytricha Mushrooms Protect against Carbofuran-Induced Toxicity in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6254929. [PMID: 29861774 PMCID: PMC5976964 DOI: 10.1155/2018/6254929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/31/2017] [Accepted: 04/08/2018] [Indexed: 11/17/2022]
Abstract
The current study aimed to investigate the ameliorative effects of two types of mushrooms, Ganoderma lucidum (GL) and Auricularia polytricha (AP), against carbofuran- (CF) induced toxicity in rats. Male Wistar rats (n = 42) were divided into six equal groups. The rats in the negative control group received oral administration of CF at 1 mg/kg with the normal diet for 28 days. The treatment groups received oral administration of ethanolic extract of GL or AP at 100 mg/kg followed by coadministration of CF at 1 mg/kg with the normal diet for the same experimental period, respectively. In the CF alone treated group, there were significant decreases in the erythrocytic and thrombocytic indices but increases in the concentrations of the total leukocytes, including the agranulocytes. A significant increase in all of the liver function biomarkers except albumin, in lipid profiles except high-density lipoprotein, and in the kidney function markers occurred in the negative control group compared to the rats of the normal control and positive control groups. The coadministration of mushroom extracts significantly ameliorated the toxic effects of the CF. The GL mushroom extract was more efficacious than that of the AP mushroom, possibly due to the presence of high levels of phenolic compounds and other antioxidants in the GL mushroom.
Collapse
|